raid1.c 54 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077
  1. /*
  2. * raid1.c : Multiple Devices driver for Linux
  3. *
  4. * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
  5. *
  6. * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
  7. *
  8. * RAID-1 management functions.
  9. *
  10. * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
  11. *
  12. * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
  13. * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
  14. *
  15. * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
  16. * bitmapped intelligence in resync:
  17. *
  18. * - bitmap marked during normal i/o
  19. * - bitmap used to skip nondirty blocks during sync
  20. *
  21. * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
  22. * - persistent bitmap code
  23. *
  24. * This program is free software; you can redistribute it and/or modify
  25. * it under the terms of the GNU General Public License as published by
  26. * the Free Software Foundation; either version 2, or (at your option)
  27. * any later version.
  28. *
  29. * You should have received a copy of the GNU General Public License
  30. * (for example /usr/src/linux/COPYING); if not, write to the Free
  31. * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  32. */
  33. #include "dm-bio-list.h"
  34. #include <linux/raid/raid1.h>
  35. #include <linux/raid/bitmap.h>
  36. #define DEBUG 0
  37. #if DEBUG
  38. #define PRINTK(x...) printk(x)
  39. #else
  40. #define PRINTK(x...)
  41. #endif
  42. /*
  43. * Number of guaranteed r1bios in case of extreme VM load:
  44. */
  45. #define NR_RAID1_BIOS 256
  46. static mdk_personality_t raid1_personality;
  47. static void unplug_slaves(mddev_t *mddev);
  48. static void allow_barrier(conf_t *conf);
  49. static void lower_barrier(conf_t *conf);
  50. static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
  51. {
  52. struct pool_info *pi = data;
  53. r1bio_t *r1_bio;
  54. int size = offsetof(r1bio_t, bios[pi->raid_disks]);
  55. /* allocate a r1bio with room for raid_disks entries in the bios array */
  56. r1_bio = kmalloc(size, gfp_flags);
  57. if (r1_bio)
  58. memset(r1_bio, 0, size);
  59. else
  60. unplug_slaves(pi->mddev);
  61. return r1_bio;
  62. }
  63. static void r1bio_pool_free(void *r1_bio, void *data)
  64. {
  65. kfree(r1_bio);
  66. }
  67. #define RESYNC_BLOCK_SIZE (64*1024)
  68. //#define RESYNC_BLOCK_SIZE PAGE_SIZE
  69. #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
  70. #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
  71. #define RESYNC_WINDOW (2048*1024)
  72. static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
  73. {
  74. struct pool_info *pi = data;
  75. struct page *page;
  76. r1bio_t *r1_bio;
  77. struct bio *bio;
  78. int i, j;
  79. r1_bio = r1bio_pool_alloc(gfp_flags, pi);
  80. if (!r1_bio) {
  81. unplug_slaves(pi->mddev);
  82. return NULL;
  83. }
  84. /*
  85. * Allocate bios : 1 for reading, n-1 for writing
  86. */
  87. for (j = pi->raid_disks ; j-- ; ) {
  88. bio = bio_alloc(gfp_flags, RESYNC_PAGES);
  89. if (!bio)
  90. goto out_free_bio;
  91. r1_bio->bios[j] = bio;
  92. }
  93. /*
  94. * Allocate RESYNC_PAGES data pages and attach them to
  95. * the first bio.
  96. * If this is a user-requested check/repair, allocate
  97. * RESYNC_PAGES for each bio.
  98. */
  99. if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
  100. j = pi->raid_disks;
  101. else
  102. j = 1;
  103. while(j--) {
  104. bio = r1_bio->bios[j];
  105. for (i = 0; i < RESYNC_PAGES; i++) {
  106. page = alloc_page(gfp_flags);
  107. if (unlikely(!page))
  108. goto out_free_pages;
  109. bio->bi_io_vec[i].bv_page = page;
  110. }
  111. }
  112. /* If not user-requests, copy the page pointers to all bios */
  113. if (!test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) {
  114. for (i=0; i<RESYNC_PAGES ; i++)
  115. for (j=1; j<pi->raid_disks; j++)
  116. r1_bio->bios[j]->bi_io_vec[i].bv_page =
  117. r1_bio->bios[0]->bi_io_vec[i].bv_page;
  118. }
  119. r1_bio->master_bio = NULL;
  120. return r1_bio;
  121. out_free_pages:
  122. for (i=0; i < RESYNC_PAGES ; i++)
  123. for (j=0 ; j < pi->raid_disks; j++)
  124. __free_page(r1_bio->bios[j]->bi_io_vec[i].bv_page);
  125. j = -1;
  126. out_free_bio:
  127. while ( ++j < pi->raid_disks )
  128. bio_put(r1_bio->bios[j]);
  129. r1bio_pool_free(r1_bio, data);
  130. return NULL;
  131. }
  132. static void r1buf_pool_free(void *__r1_bio, void *data)
  133. {
  134. struct pool_info *pi = data;
  135. int i,j;
  136. r1bio_t *r1bio = __r1_bio;
  137. for (i = 0; i < RESYNC_PAGES; i++)
  138. for (j = pi->raid_disks; j-- ;) {
  139. if (j == 0 ||
  140. r1bio->bios[j]->bi_io_vec[i].bv_page !=
  141. r1bio->bios[0]->bi_io_vec[i].bv_page)
  142. __free_page(r1bio->bios[j]->bi_io_vec[i].bv_page);
  143. }
  144. for (i=0 ; i < pi->raid_disks; i++)
  145. bio_put(r1bio->bios[i]);
  146. r1bio_pool_free(r1bio, data);
  147. }
  148. static void put_all_bios(conf_t *conf, r1bio_t *r1_bio)
  149. {
  150. int i;
  151. for (i = 0; i < conf->raid_disks; i++) {
  152. struct bio **bio = r1_bio->bios + i;
  153. if (*bio && *bio != IO_BLOCKED)
  154. bio_put(*bio);
  155. *bio = NULL;
  156. }
  157. }
  158. static inline void free_r1bio(r1bio_t *r1_bio)
  159. {
  160. conf_t *conf = mddev_to_conf(r1_bio->mddev);
  161. /*
  162. * Wake up any possible resync thread that waits for the device
  163. * to go idle.
  164. */
  165. allow_barrier(conf);
  166. put_all_bios(conf, r1_bio);
  167. mempool_free(r1_bio, conf->r1bio_pool);
  168. }
  169. static inline void put_buf(r1bio_t *r1_bio)
  170. {
  171. conf_t *conf = mddev_to_conf(r1_bio->mddev);
  172. int i;
  173. for (i=0; i<conf->raid_disks; i++) {
  174. struct bio *bio = r1_bio->bios[i];
  175. if (bio->bi_end_io)
  176. rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
  177. }
  178. mempool_free(r1_bio, conf->r1buf_pool);
  179. lower_barrier(conf);
  180. }
  181. static void reschedule_retry(r1bio_t *r1_bio)
  182. {
  183. unsigned long flags;
  184. mddev_t *mddev = r1_bio->mddev;
  185. conf_t *conf = mddev_to_conf(mddev);
  186. spin_lock_irqsave(&conf->device_lock, flags);
  187. list_add(&r1_bio->retry_list, &conf->retry_list);
  188. conf->nr_queued ++;
  189. spin_unlock_irqrestore(&conf->device_lock, flags);
  190. wake_up(&conf->wait_barrier);
  191. md_wakeup_thread(mddev->thread);
  192. }
  193. /*
  194. * raid_end_bio_io() is called when we have finished servicing a mirrored
  195. * operation and are ready to return a success/failure code to the buffer
  196. * cache layer.
  197. */
  198. static void raid_end_bio_io(r1bio_t *r1_bio)
  199. {
  200. struct bio *bio = r1_bio->master_bio;
  201. /* if nobody has done the final endio yet, do it now */
  202. if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
  203. PRINTK(KERN_DEBUG "raid1: sync end %s on sectors %llu-%llu\n",
  204. (bio_data_dir(bio) == WRITE) ? "write" : "read",
  205. (unsigned long long) bio->bi_sector,
  206. (unsigned long long) bio->bi_sector +
  207. (bio->bi_size >> 9) - 1);
  208. bio_endio(bio, bio->bi_size,
  209. test_bit(R1BIO_Uptodate, &r1_bio->state) ? 0 : -EIO);
  210. }
  211. free_r1bio(r1_bio);
  212. }
  213. /*
  214. * Update disk head position estimator based on IRQ completion info.
  215. */
  216. static inline void update_head_pos(int disk, r1bio_t *r1_bio)
  217. {
  218. conf_t *conf = mddev_to_conf(r1_bio->mddev);
  219. conf->mirrors[disk].head_position =
  220. r1_bio->sector + (r1_bio->sectors);
  221. }
  222. static int raid1_end_read_request(struct bio *bio, unsigned int bytes_done, int error)
  223. {
  224. int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
  225. r1bio_t * r1_bio = (r1bio_t *)(bio->bi_private);
  226. int mirror;
  227. conf_t *conf = mddev_to_conf(r1_bio->mddev);
  228. if (bio->bi_size)
  229. return 1;
  230. mirror = r1_bio->read_disk;
  231. /*
  232. * this branch is our 'one mirror IO has finished' event handler:
  233. */
  234. update_head_pos(mirror, r1_bio);
  235. if (uptodate || conf->working_disks <= 1) {
  236. /*
  237. * Set R1BIO_Uptodate in our master bio, so that
  238. * we will return a good error code for to the higher
  239. * levels even if IO on some other mirrored buffer fails.
  240. *
  241. * The 'master' represents the composite IO operation to
  242. * user-side. So if something waits for IO, then it will
  243. * wait for the 'master' bio.
  244. */
  245. set_bit(R1BIO_Uptodate, &r1_bio->state);
  246. raid_end_bio_io(r1_bio);
  247. } else {
  248. /*
  249. * oops, read error:
  250. */
  251. char b[BDEVNAME_SIZE];
  252. if (printk_ratelimit())
  253. printk(KERN_ERR "raid1: %s: rescheduling sector %llu\n",
  254. bdevname(conf->mirrors[mirror].rdev->bdev,b), (unsigned long long)r1_bio->sector);
  255. reschedule_retry(r1_bio);
  256. }
  257. rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev);
  258. return 0;
  259. }
  260. static int raid1_end_write_request(struct bio *bio, unsigned int bytes_done, int error)
  261. {
  262. int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
  263. r1bio_t * r1_bio = (r1bio_t *)(bio->bi_private);
  264. int mirror, behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
  265. conf_t *conf = mddev_to_conf(r1_bio->mddev);
  266. if (bio->bi_size)
  267. return 1;
  268. for (mirror = 0; mirror < conf->raid_disks; mirror++)
  269. if (r1_bio->bios[mirror] == bio)
  270. break;
  271. if (error == -ENOTSUPP && test_bit(R1BIO_Barrier, &r1_bio->state)) {
  272. set_bit(BarriersNotsupp, &conf->mirrors[mirror].rdev->flags);
  273. set_bit(R1BIO_BarrierRetry, &r1_bio->state);
  274. r1_bio->mddev->barriers_work = 0;
  275. } else {
  276. /*
  277. * this branch is our 'one mirror IO has finished' event handler:
  278. */
  279. r1_bio->bios[mirror] = NULL;
  280. if (!uptodate) {
  281. md_error(r1_bio->mddev, conf->mirrors[mirror].rdev);
  282. /* an I/O failed, we can't clear the bitmap */
  283. set_bit(R1BIO_Degraded, &r1_bio->state);
  284. } else
  285. /*
  286. * Set R1BIO_Uptodate in our master bio, so that
  287. * we will return a good error code for to the higher
  288. * levels even if IO on some other mirrored buffer fails.
  289. *
  290. * The 'master' represents the composite IO operation to
  291. * user-side. So if something waits for IO, then it will
  292. * wait for the 'master' bio.
  293. */
  294. set_bit(R1BIO_Uptodate, &r1_bio->state);
  295. update_head_pos(mirror, r1_bio);
  296. if (behind) {
  297. if (test_bit(WriteMostly, &conf->mirrors[mirror].rdev->flags))
  298. atomic_dec(&r1_bio->behind_remaining);
  299. /* In behind mode, we ACK the master bio once the I/O has safely
  300. * reached all non-writemostly disks. Setting the Returned bit
  301. * ensures that this gets done only once -- we don't ever want to
  302. * return -EIO here, instead we'll wait */
  303. if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
  304. test_bit(R1BIO_Uptodate, &r1_bio->state)) {
  305. /* Maybe we can return now */
  306. if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
  307. struct bio *mbio = r1_bio->master_bio;
  308. PRINTK(KERN_DEBUG "raid1: behind end write sectors %llu-%llu\n",
  309. (unsigned long long) mbio->bi_sector,
  310. (unsigned long long) mbio->bi_sector +
  311. (mbio->bi_size >> 9) - 1);
  312. bio_endio(mbio, mbio->bi_size, 0);
  313. }
  314. }
  315. }
  316. }
  317. /*
  318. *
  319. * Let's see if all mirrored write operations have finished
  320. * already.
  321. */
  322. if (atomic_dec_and_test(&r1_bio->remaining)) {
  323. if (test_bit(R1BIO_BarrierRetry, &r1_bio->state)) {
  324. reschedule_retry(r1_bio);
  325. /* Don't dec_pending yet, we want to hold
  326. * the reference over the retry
  327. */
  328. return 0;
  329. }
  330. if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
  331. /* free extra copy of the data pages */
  332. int i = bio->bi_vcnt;
  333. while (i--)
  334. __free_page(bio->bi_io_vec[i].bv_page);
  335. }
  336. /* clear the bitmap if all writes complete successfully */
  337. bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
  338. r1_bio->sectors,
  339. !test_bit(R1BIO_Degraded, &r1_bio->state),
  340. behind);
  341. md_write_end(r1_bio->mddev);
  342. raid_end_bio_io(r1_bio);
  343. }
  344. if (r1_bio->bios[mirror]==NULL)
  345. bio_put(bio);
  346. rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev);
  347. return 0;
  348. }
  349. /*
  350. * This routine returns the disk from which the requested read should
  351. * be done. There is a per-array 'next expected sequential IO' sector
  352. * number - if this matches on the next IO then we use the last disk.
  353. * There is also a per-disk 'last know head position' sector that is
  354. * maintained from IRQ contexts, both the normal and the resync IO
  355. * completion handlers update this position correctly. If there is no
  356. * perfect sequential match then we pick the disk whose head is closest.
  357. *
  358. * If there are 2 mirrors in the same 2 devices, performance degrades
  359. * because position is mirror, not device based.
  360. *
  361. * The rdev for the device selected will have nr_pending incremented.
  362. */
  363. static int read_balance(conf_t *conf, r1bio_t *r1_bio)
  364. {
  365. const unsigned long this_sector = r1_bio->sector;
  366. int new_disk = conf->last_used, disk = new_disk;
  367. int wonly_disk = -1;
  368. const int sectors = r1_bio->sectors;
  369. sector_t new_distance, current_distance;
  370. mdk_rdev_t *rdev;
  371. rcu_read_lock();
  372. /*
  373. * Check if we can balance. We can balance on the whole
  374. * device if no resync is going on, or below the resync window.
  375. * We take the first readable disk when above the resync window.
  376. */
  377. retry:
  378. if (conf->mddev->recovery_cp < MaxSector &&
  379. (this_sector + sectors >= conf->next_resync)) {
  380. /* Choose the first operation device, for consistancy */
  381. new_disk = 0;
  382. for (rdev = rcu_dereference(conf->mirrors[new_disk].rdev);
  383. r1_bio->bios[new_disk] == IO_BLOCKED ||
  384. !rdev || !test_bit(In_sync, &rdev->flags)
  385. || test_bit(WriteMostly, &rdev->flags);
  386. rdev = rcu_dereference(conf->mirrors[++new_disk].rdev)) {
  387. if (rdev && test_bit(In_sync, &rdev->flags) &&
  388. r1_bio->bios[new_disk] != IO_BLOCKED)
  389. wonly_disk = new_disk;
  390. if (new_disk == conf->raid_disks - 1) {
  391. new_disk = wonly_disk;
  392. break;
  393. }
  394. }
  395. goto rb_out;
  396. }
  397. /* make sure the disk is operational */
  398. for (rdev = rcu_dereference(conf->mirrors[new_disk].rdev);
  399. r1_bio->bios[new_disk] == IO_BLOCKED ||
  400. !rdev || !test_bit(In_sync, &rdev->flags) ||
  401. test_bit(WriteMostly, &rdev->flags);
  402. rdev = rcu_dereference(conf->mirrors[new_disk].rdev)) {
  403. if (rdev && test_bit(In_sync, &rdev->flags) &&
  404. r1_bio->bios[new_disk] != IO_BLOCKED)
  405. wonly_disk = new_disk;
  406. if (new_disk <= 0)
  407. new_disk = conf->raid_disks;
  408. new_disk--;
  409. if (new_disk == disk) {
  410. new_disk = wonly_disk;
  411. break;
  412. }
  413. }
  414. if (new_disk < 0)
  415. goto rb_out;
  416. disk = new_disk;
  417. /* now disk == new_disk == starting point for search */
  418. /*
  419. * Don't change to another disk for sequential reads:
  420. */
  421. if (conf->next_seq_sect == this_sector)
  422. goto rb_out;
  423. if (this_sector == conf->mirrors[new_disk].head_position)
  424. goto rb_out;
  425. current_distance = abs(this_sector - conf->mirrors[disk].head_position);
  426. /* Find the disk whose head is closest */
  427. do {
  428. if (disk <= 0)
  429. disk = conf->raid_disks;
  430. disk--;
  431. rdev = rcu_dereference(conf->mirrors[disk].rdev);
  432. if (!rdev || r1_bio->bios[disk] == IO_BLOCKED ||
  433. !test_bit(In_sync, &rdev->flags) ||
  434. test_bit(WriteMostly, &rdev->flags))
  435. continue;
  436. if (!atomic_read(&rdev->nr_pending)) {
  437. new_disk = disk;
  438. break;
  439. }
  440. new_distance = abs(this_sector - conf->mirrors[disk].head_position);
  441. if (new_distance < current_distance) {
  442. current_distance = new_distance;
  443. new_disk = disk;
  444. }
  445. } while (disk != conf->last_used);
  446. rb_out:
  447. if (new_disk >= 0) {
  448. rdev = rcu_dereference(conf->mirrors[new_disk].rdev);
  449. if (!rdev)
  450. goto retry;
  451. atomic_inc(&rdev->nr_pending);
  452. if (!test_bit(In_sync, &rdev->flags)) {
  453. /* cannot risk returning a device that failed
  454. * before we inc'ed nr_pending
  455. */
  456. atomic_dec(&rdev->nr_pending);
  457. goto retry;
  458. }
  459. conf->next_seq_sect = this_sector + sectors;
  460. conf->last_used = new_disk;
  461. }
  462. rcu_read_unlock();
  463. return new_disk;
  464. }
  465. static void unplug_slaves(mddev_t *mddev)
  466. {
  467. conf_t *conf = mddev_to_conf(mddev);
  468. int i;
  469. rcu_read_lock();
  470. for (i=0; i<mddev->raid_disks; i++) {
  471. mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
  472. if (rdev && !test_bit(Faulty, &rdev->flags) && atomic_read(&rdev->nr_pending)) {
  473. request_queue_t *r_queue = bdev_get_queue(rdev->bdev);
  474. atomic_inc(&rdev->nr_pending);
  475. rcu_read_unlock();
  476. if (r_queue->unplug_fn)
  477. r_queue->unplug_fn(r_queue);
  478. rdev_dec_pending(rdev, mddev);
  479. rcu_read_lock();
  480. }
  481. }
  482. rcu_read_unlock();
  483. }
  484. static void raid1_unplug(request_queue_t *q)
  485. {
  486. mddev_t *mddev = q->queuedata;
  487. unplug_slaves(mddev);
  488. md_wakeup_thread(mddev->thread);
  489. }
  490. static int raid1_issue_flush(request_queue_t *q, struct gendisk *disk,
  491. sector_t *error_sector)
  492. {
  493. mddev_t *mddev = q->queuedata;
  494. conf_t *conf = mddev_to_conf(mddev);
  495. int i, ret = 0;
  496. rcu_read_lock();
  497. for (i=0; i<mddev->raid_disks && ret == 0; i++) {
  498. mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
  499. if (rdev && !test_bit(Faulty, &rdev->flags)) {
  500. struct block_device *bdev = rdev->bdev;
  501. request_queue_t *r_queue = bdev_get_queue(bdev);
  502. if (!r_queue->issue_flush_fn)
  503. ret = -EOPNOTSUPP;
  504. else {
  505. atomic_inc(&rdev->nr_pending);
  506. rcu_read_unlock();
  507. ret = r_queue->issue_flush_fn(r_queue, bdev->bd_disk,
  508. error_sector);
  509. rdev_dec_pending(rdev, mddev);
  510. rcu_read_lock();
  511. }
  512. }
  513. }
  514. rcu_read_unlock();
  515. return ret;
  516. }
  517. /* Barriers....
  518. * Sometimes we need to suspend IO while we do something else,
  519. * either some resync/recovery, or reconfigure the array.
  520. * To do this we raise a 'barrier'.
  521. * The 'barrier' is a counter that can be raised multiple times
  522. * to count how many activities are happening which preclude
  523. * normal IO.
  524. * We can only raise the barrier if there is no pending IO.
  525. * i.e. if nr_pending == 0.
  526. * We choose only to raise the barrier if no-one is waiting for the
  527. * barrier to go down. This means that as soon as an IO request
  528. * is ready, no other operations which require a barrier will start
  529. * until the IO request has had a chance.
  530. *
  531. * So: regular IO calls 'wait_barrier'. When that returns there
  532. * is no backgroup IO happening, It must arrange to call
  533. * allow_barrier when it has finished its IO.
  534. * backgroup IO calls must call raise_barrier. Once that returns
  535. * there is no normal IO happeing. It must arrange to call
  536. * lower_barrier when the particular background IO completes.
  537. */
  538. #define RESYNC_DEPTH 32
  539. static void raise_barrier(conf_t *conf)
  540. {
  541. spin_lock_irq(&conf->resync_lock);
  542. /* Wait until no block IO is waiting */
  543. wait_event_lock_irq(conf->wait_barrier, !conf->nr_waiting,
  544. conf->resync_lock,
  545. raid1_unplug(conf->mddev->queue));
  546. /* block any new IO from starting */
  547. conf->barrier++;
  548. /* No wait for all pending IO to complete */
  549. wait_event_lock_irq(conf->wait_barrier,
  550. !conf->nr_pending && conf->barrier < RESYNC_DEPTH,
  551. conf->resync_lock,
  552. raid1_unplug(conf->mddev->queue));
  553. spin_unlock_irq(&conf->resync_lock);
  554. }
  555. static void lower_barrier(conf_t *conf)
  556. {
  557. unsigned long flags;
  558. spin_lock_irqsave(&conf->resync_lock, flags);
  559. conf->barrier--;
  560. spin_unlock_irqrestore(&conf->resync_lock, flags);
  561. wake_up(&conf->wait_barrier);
  562. }
  563. static void wait_barrier(conf_t *conf)
  564. {
  565. spin_lock_irq(&conf->resync_lock);
  566. if (conf->barrier) {
  567. conf->nr_waiting++;
  568. wait_event_lock_irq(conf->wait_barrier, !conf->barrier,
  569. conf->resync_lock,
  570. raid1_unplug(conf->mddev->queue));
  571. conf->nr_waiting--;
  572. }
  573. conf->nr_pending++;
  574. spin_unlock_irq(&conf->resync_lock);
  575. }
  576. static void allow_barrier(conf_t *conf)
  577. {
  578. unsigned long flags;
  579. spin_lock_irqsave(&conf->resync_lock, flags);
  580. conf->nr_pending--;
  581. spin_unlock_irqrestore(&conf->resync_lock, flags);
  582. wake_up(&conf->wait_barrier);
  583. }
  584. static void freeze_array(conf_t *conf)
  585. {
  586. /* stop syncio and normal IO and wait for everything to
  587. * go quite.
  588. * We increment barrier and nr_waiting, and then
  589. * wait until barrier+nr_pending match nr_queued+2
  590. */
  591. spin_lock_irq(&conf->resync_lock);
  592. conf->barrier++;
  593. conf->nr_waiting++;
  594. wait_event_lock_irq(conf->wait_barrier,
  595. conf->barrier+conf->nr_pending == conf->nr_queued+2,
  596. conf->resync_lock,
  597. raid1_unplug(conf->mddev->queue));
  598. spin_unlock_irq(&conf->resync_lock);
  599. }
  600. static void unfreeze_array(conf_t *conf)
  601. {
  602. /* reverse the effect of the freeze */
  603. spin_lock_irq(&conf->resync_lock);
  604. conf->barrier--;
  605. conf->nr_waiting--;
  606. wake_up(&conf->wait_barrier);
  607. spin_unlock_irq(&conf->resync_lock);
  608. }
  609. /* duplicate the data pages for behind I/O */
  610. static struct page **alloc_behind_pages(struct bio *bio)
  611. {
  612. int i;
  613. struct bio_vec *bvec;
  614. struct page **pages = kmalloc(bio->bi_vcnt * sizeof(struct page *),
  615. GFP_NOIO);
  616. if (unlikely(!pages))
  617. goto do_sync_io;
  618. memset(pages, 0, bio->bi_vcnt * sizeof(struct page *));
  619. bio_for_each_segment(bvec, bio, i) {
  620. pages[i] = alloc_page(GFP_NOIO);
  621. if (unlikely(!pages[i]))
  622. goto do_sync_io;
  623. memcpy(kmap(pages[i]) + bvec->bv_offset,
  624. kmap(bvec->bv_page) + bvec->bv_offset, bvec->bv_len);
  625. kunmap(pages[i]);
  626. kunmap(bvec->bv_page);
  627. }
  628. return pages;
  629. do_sync_io:
  630. if (pages)
  631. for (i = 0; i < bio->bi_vcnt && pages[i]; i++)
  632. __free_page(pages[i]);
  633. kfree(pages);
  634. PRINTK("%dB behind alloc failed, doing sync I/O\n", bio->bi_size);
  635. return NULL;
  636. }
  637. static int make_request(request_queue_t *q, struct bio * bio)
  638. {
  639. mddev_t *mddev = q->queuedata;
  640. conf_t *conf = mddev_to_conf(mddev);
  641. mirror_info_t *mirror;
  642. r1bio_t *r1_bio;
  643. struct bio *read_bio;
  644. int i, targets = 0, disks;
  645. mdk_rdev_t *rdev;
  646. struct bitmap *bitmap = mddev->bitmap;
  647. unsigned long flags;
  648. struct bio_list bl;
  649. struct page **behind_pages = NULL;
  650. const int rw = bio_data_dir(bio);
  651. int do_barriers;
  652. if (unlikely(!mddev->barriers_work && bio_barrier(bio))) {
  653. bio_endio(bio, bio->bi_size, -EOPNOTSUPP);
  654. return 0;
  655. }
  656. /*
  657. * Register the new request and wait if the reconstruction
  658. * thread has put up a bar for new requests.
  659. * Continue immediately if no resync is active currently.
  660. */
  661. md_write_start(mddev, bio); /* wait on superblock update early */
  662. wait_barrier(conf);
  663. disk_stat_inc(mddev->gendisk, ios[rw]);
  664. disk_stat_add(mddev->gendisk, sectors[rw], bio_sectors(bio));
  665. /*
  666. * make_request() can abort the operation when READA is being
  667. * used and no empty request is available.
  668. *
  669. */
  670. r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
  671. r1_bio->master_bio = bio;
  672. r1_bio->sectors = bio->bi_size >> 9;
  673. r1_bio->state = 0;
  674. r1_bio->mddev = mddev;
  675. r1_bio->sector = bio->bi_sector;
  676. if (rw == READ) {
  677. /*
  678. * read balancing logic:
  679. */
  680. int rdisk = read_balance(conf, r1_bio);
  681. if (rdisk < 0) {
  682. /* couldn't find anywhere to read from */
  683. raid_end_bio_io(r1_bio);
  684. return 0;
  685. }
  686. mirror = conf->mirrors + rdisk;
  687. r1_bio->read_disk = rdisk;
  688. read_bio = bio_clone(bio, GFP_NOIO);
  689. r1_bio->bios[rdisk] = read_bio;
  690. read_bio->bi_sector = r1_bio->sector + mirror->rdev->data_offset;
  691. read_bio->bi_bdev = mirror->rdev->bdev;
  692. read_bio->bi_end_io = raid1_end_read_request;
  693. read_bio->bi_rw = READ;
  694. read_bio->bi_private = r1_bio;
  695. generic_make_request(read_bio);
  696. return 0;
  697. }
  698. /*
  699. * WRITE:
  700. */
  701. /* first select target devices under spinlock and
  702. * inc refcount on their rdev. Record them by setting
  703. * bios[x] to bio
  704. */
  705. disks = conf->raid_disks;
  706. #if 0
  707. { static int first=1;
  708. if (first) printk("First Write sector %llu disks %d\n",
  709. (unsigned long long)r1_bio->sector, disks);
  710. first = 0;
  711. }
  712. #endif
  713. rcu_read_lock();
  714. for (i = 0; i < disks; i++) {
  715. if ((rdev=rcu_dereference(conf->mirrors[i].rdev)) != NULL &&
  716. !test_bit(Faulty, &rdev->flags)) {
  717. atomic_inc(&rdev->nr_pending);
  718. if (test_bit(Faulty, &rdev->flags)) {
  719. atomic_dec(&rdev->nr_pending);
  720. r1_bio->bios[i] = NULL;
  721. } else
  722. r1_bio->bios[i] = bio;
  723. targets++;
  724. } else
  725. r1_bio->bios[i] = NULL;
  726. }
  727. rcu_read_unlock();
  728. BUG_ON(targets == 0); /* we never fail the last device */
  729. if (targets < conf->raid_disks) {
  730. /* array is degraded, we will not clear the bitmap
  731. * on I/O completion (see raid1_end_write_request) */
  732. set_bit(R1BIO_Degraded, &r1_bio->state);
  733. }
  734. /* do behind I/O ? */
  735. if (bitmap &&
  736. atomic_read(&bitmap->behind_writes) < bitmap->max_write_behind &&
  737. (behind_pages = alloc_behind_pages(bio)) != NULL)
  738. set_bit(R1BIO_BehindIO, &r1_bio->state);
  739. atomic_set(&r1_bio->remaining, 0);
  740. atomic_set(&r1_bio->behind_remaining, 0);
  741. do_barriers = bio->bi_rw & BIO_RW_BARRIER;
  742. if (do_barriers)
  743. set_bit(R1BIO_Barrier, &r1_bio->state);
  744. bio_list_init(&bl);
  745. for (i = 0; i < disks; i++) {
  746. struct bio *mbio;
  747. if (!r1_bio->bios[i])
  748. continue;
  749. mbio = bio_clone(bio, GFP_NOIO);
  750. r1_bio->bios[i] = mbio;
  751. mbio->bi_sector = r1_bio->sector + conf->mirrors[i].rdev->data_offset;
  752. mbio->bi_bdev = conf->mirrors[i].rdev->bdev;
  753. mbio->bi_end_io = raid1_end_write_request;
  754. mbio->bi_rw = WRITE | do_barriers;
  755. mbio->bi_private = r1_bio;
  756. if (behind_pages) {
  757. struct bio_vec *bvec;
  758. int j;
  759. /* Yes, I really want the '__' version so that
  760. * we clear any unused pointer in the io_vec, rather
  761. * than leave them unchanged. This is important
  762. * because when we come to free the pages, we won't
  763. * know the originial bi_idx, so we just free
  764. * them all
  765. */
  766. __bio_for_each_segment(bvec, mbio, j, 0)
  767. bvec->bv_page = behind_pages[j];
  768. if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags))
  769. atomic_inc(&r1_bio->behind_remaining);
  770. }
  771. atomic_inc(&r1_bio->remaining);
  772. bio_list_add(&bl, mbio);
  773. }
  774. kfree(behind_pages); /* the behind pages are attached to the bios now */
  775. bitmap_startwrite(bitmap, bio->bi_sector, r1_bio->sectors,
  776. test_bit(R1BIO_BehindIO, &r1_bio->state));
  777. spin_lock_irqsave(&conf->device_lock, flags);
  778. bio_list_merge(&conf->pending_bio_list, &bl);
  779. bio_list_init(&bl);
  780. blk_plug_device(mddev->queue);
  781. spin_unlock_irqrestore(&conf->device_lock, flags);
  782. #if 0
  783. while ((bio = bio_list_pop(&bl)) != NULL)
  784. generic_make_request(bio);
  785. #endif
  786. return 0;
  787. }
  788. static void status(struct seq_file *seq, mddev_t *mddev)
  789. {
  790. conf_t *conf = mddev_to_conf(mddev);
  791. int i;
  792. seq_printf(seq, " [%d/%d] [", conf->raid_disks,
  793. conf->working_disks);
  794. for (i = 0; i < conf->raid_disks; i++)
  795. seq_printf(seq, "%s",
  796. conf->mirrors[i].rdev &&
  797. test_bit(In_sync, &conf->mirrors[i].rdev->flags) ? "U" : "_");
  798. seq_printf(seq, "]");
  799. }
  800. static void error(mddev_t *mddev, mdk_rdev_t *rdev)
  801. {
  802. char b[BDEVNAME_SIZE];
  803. conf_t *conf = mddev_to_conf(mddev);
  804. /*
  805. * If it is not operational, then we have already marked it as dead
  806. * else if it is the last working disks, ignore the error, let the
  807. * next level up know.
  808. * else mark the drive as failed
  809. */
  810. if (test_bit(In_sync, &rdev->flags)
  811. && conf->working_disks == 1)
  812. /*
  813. * Don't fail the drive, act as though we were just a
  814. * normal single drive
  815. */
  816. return;
  817. if (test_bit(In_sync, &rdev->flags)) {
  818. mddev->degraded++;
  819. conf->working_disks--;
  820. /*
  821. * if recovery is running, make sure it aborts.
  822. */
  823. set_bit(MD_RECOVERY_ERR, &mddev->recovery);
  824. }
  825. clear_bit(In_sync, &rdev->flags);
  826. set_bit(Faulty, &rdev->flags);
  827. mddev->sb_dirty = 1;
  828. printk(KERN_ALERT "raid1: Disk failure on %s, disabling device. \n"
  829. " Operation continuing on %d devices\n",
  830. bdevname(rdev->bdev,b), conf->working_disks);
  831. }
  832. static void print_conf(conf_t *conf)
  833. {
  834. int i;
  835. mirror_info_t *tmp;
  836. printk("RAID1 conf printout:\n");
  837. if (!conf) {
  838. printk("(!conf)\n");
  839. return;
  840. }
  841. printk(" --- wd:%d rd:%d\n", conf->working_disks,
  842. conf->raid_disks);
  843. for (i = 0; i < conf->raid_disks; i++) {
  844. char b[BDEVNAME_SIZE];
  845. tmp = conf->mirrors + i;
  846. if (tmp->rdev)
  847. printk(" disk %d, wo:%d, o:%d, dev:%s\n",
  848. i, !test_bit(In_sync, &tmp->rdev->flags), !test_bit(Faulty, &tmp->rdev->flags),
  849. bdevname(tmp->rdev->bdev,b));
  850. }
  851. }
  852. static void close_sync(conf_t *conf)
  853. {
  854. wait_barrier(conf);
  855. allow_barrier(conf);
  856. mempool_destroy(conf->r1buf_pool);
  857. conf->r1buf_pool = NULL;
  858. }
  859. static int raid1_spare_active(mddev_t *mddev)
  860. {
  861. int i;
  862. conf_t *conf = mddev->private;
  863. mirror_info_t *tmp;
  864. /*
  865. * Find all failed disks within the RAID1 configuration
  866. * and mark them readable
  867. */
  868. for (i = 0; i < conf->raid_disks; i++) {
  869. tmp = conf->mirrors + i;
  870. if (tmp->rdev
  871. && !test_bit(Faulty, &tmp->rdev->flags)
  872. && !test_bit(In_sync, &tmp->rdev->flags)) {
  873. conf->working_disks++;
  874. mddev->degraded--;
  875. set_bit(In_sync, &tmp->rdev->flags);
  876. }
  877. }
  878. print_conf(conf);
  879. return 0;
  880. }
  881. static int raid1_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
  882. {
  883. conf_t *conf = mddev->private;
  884. int found = 0;
  885. int mirror = 0;
  886. mirror_info_t *p;
  887. for (mirror=0; mirror < mddev->raid_disks; mirror++)
  888. if ( !(p=conf->mirrors+mirror)->rdev) {
  889. blk_queue_stack_limits(mddev->queue,
  890. rdev->bdev->bd_disk->queue);
  891. /* as we don't honour merge_bvec_fn, we must never risk
  892. * violating it, so limit ->max_sector to one PAGE, as
  893. * a one page request is never in violation.
  894. */
  895. if (rdev->bdev->bd_disk->queue->merge_bvec_fn &&
  896. mddev->queue->max_sectors > (PAGE_SIZE>>9))
  897. blk_queue_max_sectors(mddev->queue, PAGE_SIZE>>9);
  898. p->head_position = 0;
  899. rdev->raid_disk = mirror;
  900. found = 1;
  901. /* As all devices are equivalent, we don't need a full recovery
  902. * if this was recently any drive of the array
  903. */
  904. if (rdev->saved_raid_disk < 0)
  905. conf->fullsync = 1;
  906. rcu_assign_pointer(p->rdev, rdev);
  907. break;
  908. }
  909. print_conf(conf);
  910. return found;
  911. }
  912. static int raid1_remove_disk(mddev_t *mddev, int number)
  913. {
  914. conf_t *conf = mddev->private;
  915. int err = 0;
  916. mdk_rdev_t *rdev;
  917. mirror_info_t *p = conf->mirrors+ number;
  918. print_conf(conf);
  919. rdev = p->rdev;
  920. if (rdev) {
  921. if (test_bit(In_sync, &rdev->flags) ||
  922. atomic_read(&rdev->nr_pending)) {
  923. err = -EBUSY;
  924. goto abort;
  925. }
  926. p->rdev = NULL;
  927. synchronize_rcu();
  928. if (atomic_read(&rdev->nr_pending)) {
  929. /* lost the race, try later */
  930. err = -EBUSY;
  931. p->rdev = rdev;
  932. }
  933. }
  934. abort:
  935. print_conf(conf);
  936. return err;
  937. }
  938. static int end_sync_read(struct bio *bio, unsigned int bytes_done, int error)
  939. {
  940. r1bio_t * r1_bio = (r1bio_t *)(bio->bi_private);
  941. int i;
  942. if (bio->bi_size)
  943. return 1;
  944. for (i=r1_bio->mddev->raid_disks; i--; )
  945. if (r1_bio->bios[i] == bio)
  946. break;
  947. BUG_ON(i < 0);
  948. update_head_pos(i, r1_bio);
  949. /*
  950. * we have read a block, now it needs to be re-written,
  951. * or re-read if the read failed.
  952. * We don't do much here, just schedule handling by raid1d
  953. */
  954. if (test_bit(BIO_UPTODATE, &bio->bi_flags))
  955. set_bit(R1BIO_Uptodate, &r1_bio->state);
  956. if (atomic_dec_and_test(&r1_bio->remaining))
  957. reschedule_retry(r1_bio);
  958. return 0;
  959. }
  960. static int end_sync_write(struct bio *bio, unsigned int bytes_done, int error)
  961. {
  962. int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
  963. r1bio_t * r1_bio = (r1bio_t *)(bio->bi_private);
  964. mddev_t *mddev = r1_bio->mddev;
  965. conf_t *conf = mddev_to_conf(mddev);
  966. int i;
  967. int mirror=0;
  968. if (bio->bi_size)
  969. return 1;
  970. for (i = 0; i < conf->raid_disks; i++)
  971. if (r1_bio->bios[i] == bio) {
  972. mirror = i;
  973. break;
  974. }
  975. if (!uptodate)
  976. md_error(mddev, conf->mirrors[mirror].rdev);
  977. update_head_pos(mirror, r1_bio);
  978. if (atomic_dec_and_test(&r1_bio->remaining)) {
  979. md_done_sync(mddev, r1_bio->sectors, uptodate);
  980. put_buf(r1_bio);
  981. }
  982. return 0;
  983. }
  984. static void sync_request_write(mddev_t *mddev, r1bio_t *r1_bio)
  985. {
  986. conf_t *conf = mddev_to_conf(mddev);
  987. int i;
  988. int disks = conf->raid_disks;
  989. struct bio *bio, *wbio;
  990. bio = r1_bio->bios[r1_bio->read_disk];
  991. if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
  992. /* We have read all readable devices. If we haven't
  993. * got the block, then there is no hope left.
  994. * If we have, then we want to do a comparison
  995. * and skip the write if everything is the same.
  996. * If any blocks failed to read, then we need to
  997. * attempt an over-write
  998. */
  999. int primary;
  1000. if (!test_bit(R1BIO_Uptodate, &r1_bio->state)) {
  1001. for (i=0; i<mddev->raid_disks; i++)
  1002. if (r1_bio->bios[i]->bi_end_io == end_sync_read)
  1003. md_error(mddev, conf->mirrors[i].rdev);
  1004. md_done_sync(mddev, r1_bio->sectors, 1);
  1005. put_buf(r1_bio);
  1006. return;
  1007. }
  1008. for (primary=0; primary<mddev->raid_disks; primary++)
  1009. if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
  1010. test_bit(BIO_UPTODATE, &r1_bio->bios[primary]->bi_flags)) {
  1011. r1_bio->bios[primary]->bi_end_io = NULL;
  1012. break;
  1013. }
  1014. r1_bio->read_disk = primary;
  1015. for (i=0; i<mddev->raid_disks; i++)
  1016. if (r1_bio->bios[i]->bi_end_io == end_sync_read &&
  1017. test_bit(BIO_UPTODATE, &r1_bio->bios[i]->bi_flags)) {
  1018. int j;
  1019. int vcnt = r1_bio->sectors >> (PAGE_SHIFT- 9);
  1020. struct bio *pbio = r1_bio->bios[primary];
  1021. struct bio *sbio = r1_bio->bios[i];
  1022. for (j = vcnt; j-- ; )
  1023. if (memcmp(page_address(pbio->bi_io_vec[j].bv_page),
  1024. page_address(sbio->bi_io_vec[j].bv_page),
  1025. PAGE_SIZE))
  1026. break;
  1027. if (j >= 0)
  1028. mddev->resync_mismatches += r1_bio->sectors;
  1029. if (j < 0 || test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
  1030. sbio->bi_end_io = NULL;
  1031. else {
  1032. /* fixup the bio for reuse */
  1033. sbio->bi_vcnt = vcnt;
  1034. sbio->bi_size = r1_bio->sectors << 9;
  1035. sbio->bi_idx = 0;
  1036. sbio->bi_phys_segments = 0;
  1037. sbio->bi_hw_segments = 0;
  1038. sbio->bi_hw_front_size = 0;
  1039. sbio->bi_hw_back_size = 0;
  1040. sbio->bi_flags &= ~(BIO_POOL_MASK - 1);
  1041. sbio->bi_flags |= 1 << BIO_UPTODATE;
  1042. sbio->bi_next = NULL;
  1043. sbio->bi_sector = r1_bio->sector +
  1044. conf->mirrors[i].rdev->data_offset;
  1045. sbio->bi_bdev = conf->mirrors[i].rdev->bdev;
  1046. }
  1047. }
  1048. }
  1049. if (!test_bit(R1BIO_Uptodate, &r1_bio->state)) {
  1050. /* ouch - failed to read all of that.
  1051. * Try some synchronous reads of other devices to get
  1052. * good data, much like with normal read errors. Only
  1053. * read into the pages we already have so they we don't
  1054. * need to re-issue the read request.
  1055. * We don't need to freeze the array, because being in an
  1056. * active sync request, there is no normal IO, and
  1057. * no overlapping syncs.
  1058. */
  1059. sector_t sect = r1_bio->sector;
  1060. int sectors = r1_bio->sectors;
  1061. int idx = 0;
  1062. while(sectors) {
  1063. int s = sectors;
  1064. int d = r1_bio->read_disk;
  1065. int success = 0;
  1066. mdk_rdev_t *rdev;
  1067. if (s > (PAGE_SIZE>>9))
  1068. s = PAGE_SIZE >> 9;
  1069. do {
  1070. if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
  1071. rdev = conf->mirrors[d].rdev;
  1072. if (sync_page_io(rdev->bdev,
  1073. sect + rdev->data_offset,
  1074. s<<9,
  1075. bio->bi_io_vec[idx].bv_page,
  1076. READ)) {
  1077. success = 1;
  1078. break;
  1079. }
  1080. }
  1081. d++;
  1082. if (d == conf->raid_disks)
  1083. d = 0;
  1084. } while (!success && d != r1_bio->read_disk);
  1085. if (success) {
  1086. /* write it back and re-read */
  1087. set_bit(R1BIO_Uptodate, &r1_bio->state);
  1088. while (d != r1_bio->read_disk) {
  1089. if (d == 0)
  1090. d = conf->raid_disks;
  1091. d--;
  1092. if (r1_bio->bios[d]->bi_end_io != end_sync_read)
  1093. continue;
  1094. rdev = conf->mirrors[d].rdev;
  1095. if (sync_page_io(rdev->bdev,
  1096. sect + rdev->data_offset,
  1097. s<<9,
  1098. bio->bi_io_vec[idx].bv_page,
  1099. WRITE) == 0 ||
  1100. sync_page_io(rdev->bdev,
  1101. sect + rdev->data_offset,
  1102. s<<9,
  1103. bio->bi_io_vec[idx].bv_page,
  1104. READ) == 0) {
  1105. md_error(mddev, rdev);
  1106. }
  1107. }
  1108. } else {
  1109. char b[BDEVNAME_SIZE];
  1110. /* Cannot read from anywhere, array is toast */
  1111. md_error(mddev, conf->mirrors[r1_bio->read_disk].rdev);
  1112. printk(KERN_ALERT "raid1: %s: unrecoverable I/O read error"
  1113. " for block %llu\n",
  1114. bdevname(bio->bi_bdev,b),
  1115. (unsigned long long)r1_bio->sector);
  1116. md_done_sync(mddev, r1_bio->sectors, 0);
  1117. put_buf(r1_bio);
  1118. return;
  1119. }
  1120. sectors -= s;
  1121. sect += s;
  1122. idx ++;
  1123. }
  1124. }
  1125. /*
  1126. * schedule writes
  1127. */
  1128. atomic_set(&r1_bio->remaining, 1);
  1129. for (i = 0; i < disks ; i++) {
  1130. wbio = r1_bio->bios[i];
  1131. if (wbio->bi_end_io == NULL ||
  1132. (wbio->bi_end_io == end_sync_read &&
  1133. (i == r1_bio->read_disk ||
  1134. !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
  1135. continue;
  1136. wbio->bi_rw = WRITE;
  1137. wbio->bi_end_io = end_sync_write;
  1138. atomic_inc(&r1_bio->remaining);
  1139. md_sync_acct(conf->mirrors[i].rdev->bdev, wbio->bi_size >> 9);
  1140. generic_make_request(wbio);
  1141. }
  1142. if (atomic_dec_and_test(&r1_bio->remaining)) {
  1143. /* if we're here, all write(s) have completed, so clean up */
  1144. md_done_sync(mddev, r1_bio->sectors, 1);
  1145. put_buf(r1_bio);
  1146. }
  1147. }
  1148. /*
  1149. * This is a kernel thread which:
  1150. *
  1151. * 1. Retries failed read operations on working mirrors.
  1152. * 2. Updates the raid superblock when problems encounter.
  1153. * 3. Performs writes following reads for array syncronising.
  1154. */
  1155. static void raid1d(mddev_t *mddev)
  1156. {
  1157. r1bio_t *r1_bio;
  1158. struct bio *bio;
  1159. unsigned long flags;
  1160. conf_t *conf = mddev_to_conf(mddev);
  1161. struct list_head *head = &conf->retry_list;
  1162. int unplug=0;
  1163. mdk_rdev_t *rdev;
  1164. md_check_recovery(mddev);
  1165. for (;;) {
  1166. char b[BDEVNAME_SIZE];
  1167. spin_lock_irqsave(&conf->device_lock, flags);
  1168. if (conf->pending_bio_list.head) {
  1169. bio = bio_list_get(&conf->pending_bio_list);
  1170. blk_remove_plug(mddev->queue);
  1171. spin_unlock_irqrestore(&conf->device_lock, flags);
  1172. /* flush any pending bitmap writes to disk before proceeding w/ I/O */
  1173. if (bitmap_unplug(mddev->bitmap) != 0)
  1174. printk("%s: bitmap file write failed!\n", mdname(mddev));
  1175. while (bio) { /* submit pending writes */
  1176. struct bio *next = bio->bi_next;
  1177. bio->bi_next = NULL;
  1178. generic_make_request(bio);
  1179. bio = next;
  1180. }
  1181. unplug = 1;
  1182. continue;
  1183. }
  1184. if (list_empty(head))
  1185. break;
  1186. r1_bio = list_entry(head->prev, r1bio_t, retry_list);
  1187. list_del(head->prev);
  1188. conf->nr_queued--;
  1189. spin_unlock_irqrestore(&conf->device_lock, flags);
  1190. mddev = r1_bio->mddev;
  1191. conf = mddev_to_conf(mddev);
  1192. if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
  1193. sync_request_write(mddev, r1_bio);
  1194. unplug = 1;
  1195. } else if (test_bit(R1BIO_BarrierRetry, &r1_bio->state)) {
  1196. /* some requests in the r1bio were BIO_RW_BARRIER
  1197. * requests which failed with -ENOTSUPP. Hohumm..
  1198. * Better resubmit without the barrier.
  1199. * We know which devices to resubmit for, because
  1200. * all others have had their bios[] entry cleared.
  1201. */
  1202. int i;
  1203. clear_bit(R1BIO_BarrierRetry, &r1_bio->state);
  1204. clear_bit(R1BIO_Barrier, &r1_bio->state);
  1205. for (i=0; i < conf->raid_disks; i++)
  1206. if (r1_bio->bios[i]) {
  1207. struct bio_vec *bvec;
  1208. int j;
  1209. bio = bio_clone(r1_bio->master_bio, GFP_NOIO);
  1210. /* copy pages from the failed bio, as
  1211. * this might be a write-behind device */
  1212. __bio_for_each_segment(bvec, bio, j, 0)
  1213. bvec->bv_page = bio_iovec_idx(r1_bio->bios[i], j)->bv_page;
  1214. bio_put(r1_bio->bios[i]);
  1215. bio->bi_sector = r1_bio->sector +
  1216. conf->mirrors[i].rdev->data_offset;
  1217. bio->bi_bdev = conf->mirrors[i].rdev->bdev;
  1218. bio->bi_end_io = raid1_end_write_request;
  1219. bio->bi_rw = WRITE;
  1220. bio->bi_private = r1_bio;
  1221. r1_bio->bios[i] = bio;
  1222. generic_make_request(bio);
  1223. }
  1224. } else {
  1225. int disk;
  1226. /* we got a read error. Maybe the drive is bad. Maybe just
  1227. * the block and we can fix it.
  1228. * We freeze all other IO, and try reading the block from
  1229. * other devices. When we find one, we re-write
  1230. * and check it that fixes the read error.
  1231. * This is all done synchronously while the array is
  1232. * frozen
  1233. */
  1234. sector_t sect = r1_bio->sector;
  1235. int sectors = r1_bio->sectors;
  1236. freeze_array(conf);
  1237. if (mddev->ro == 0) while(sectors) {
  1238. int s = sectors;
  1239. int d = r1_bio->read_disk;
  1240. int success = 0;
  1241. if (s > (PAGE_SIZE>>9))
  1242. s = PAGE_SIZE >> 9;
  1243. do {
  1244. rdev = conf->mirrors[d].rdev;
  1245. if (rdev &&
  1246. test_bit(In_sync, &rdev->flags) &&
  1247. sync_page_io(rdev->bdev,
  1248. sect + rdev->data_offset,
  1249. s<<9,
  1250. conf->tmppage, READ))
  1251. success = 1;
  1252. else {
  1253. d++;
  1254. if (d == conf->raid_disks)
  1255. d = 0;
  1256. }
  1257. } while (!success && d != r1_bio->read_disk);
  1258. if (success) {
  1259. /* write it back and re-read */
  1260. while (d != r1_bio->read_disk) {
  1261. if (d==0)
  1262. d = conf->raid_disks;
  1263. d--;
  1264. rdev = conf->mirrors[d].rdev;
  1265. if (rdev &&
  1266. test_bit(In_sync, &rdev->flags)) {
  1267. if (sync_page_io(rdev->bdev,
  1268. sect + rdev->data_offset,
  1269. s<<9, conf->tmppage, WRITE) == 0 ||
  1270. sync_page_io(rdev->bdev,
  1271. sect + rdev->data_offset,
  1272. s<<9, conf->tmppage, READ) == 0) {
  1273. /* Well, this device is dead */
  1274. md_error(mddev, rdev);
  1275. }
  1276. }
  1277. }
  1278. } else {
  1279. /* Cannot read from anywhere -- bye bye array */
  1280. md_error(mddev, conf->mirrors[r1_bio->read_disk].rdev);
  1281. break;
  1282. }
  1283. sectors -= s;
  1284. sect += s;
  1285. }
  1286. unfreeze_array(conf);
  1287. bio = r1_bio->bios[r1_bio->read_disk];
  1288. if ((disk=read_balance(conf, r1_bio)) == -1) {
  1289. printk(KERN_ALERT "raid1: %s: unrecoverable I/O"
  1290. " read error for block %llu\n",
  1291. bdevname(bio->bi_bdev,b),
  1292. (unsigned long long)r1_bio->sector);
  1293. raid_end_bio_io(r1_bio);
  1294. } else {
  1295. r1_bio->bios[r1_bio->read_disk] =
  1296. mddev->ro ? IO_BLOCKED : NULL;
  1297. r1_bio->read_disk = disk;
  1298. bio_put(bio);
  1299. bio = bio_clone(r1_bio->master_bio, GFP_NOIO);
  1300. r1_bio->bios[r1_bio->read_disk] = bio;
  1301. rdev = conf->mirrors[disk].rdev;
  1302. if (printk_ratelimit())
  1303. printk(KERN_ERR "raid1: %s: redirecting sector %llu to"
  1304. " another mirror\n",
  1305. bdevname(rdev->bdev,b),
  1306. (unsigned long long)r1_bio->sector);
  1307. bio->bi_sector = r1_bio->sector + rdev->data_offset;
  1308. bio->bi_bdev = rdev->bdev;
  1309. bio->bi_end_io = raid1_end_read_request;
  1310. bio->bi_rw = READ;
  1311. bio->bi_private = r1_bio;
  1312. unplug = 1;
  1313. generic_make_request(bio);
  1314. }
  1315. }
  1316. }
  1317. spin_unlock_irqrestore(&conf->device_lock, flags);
  1318. if (unplug)
  1319. unplug_slaves(mddev);
  1320. }
  1321. static int init_resync(conf_t *conf)
  1322. {
  1323. int buffs;
  1324. buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
  1325. if (conf->r1buf_pool)
  1326. BUG();
  1327. conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free,
  1328. conf->poolinfo);
  1329. if (!conf->r1buf_pool)
  1330. return -ENOMEM;
  1331. conf->next_resync = 0;
  1332. return 0;
  1333. }
  1334. /*
  1335. * perform a "sync" on one "block"
  1336. *
  1337. * We need to make sure that no normal I/O request - particularly write
  1338. * requests - conflict with active sync requests.
  1339. *
  1340. * This is achieved by tracking pending requests and a 'barrier' concept
  1341. * that can be installed to exclude normal IO requests.
  1342. */
  1343. static sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
  1344. {
  1345. conf_t *conf = mddev_to_conf(mddev);
  1346. r1bio_t *r1_bio;
  1347. struct bio *bio;
  1348. sector_t max_sector, nr_sectors;
  1349. int disk = -1;
  1350. int i;
  1351. int wonly = -1;
  1352. int write_targets = 0, read_targets = 0;
  1353. int sync_blocks;
  1354. int still_degraded = 0;
  1355. if (!conf->r1buf_pool)
  1356. {
  1357. /*
  1358. printk("sync start - bitmap %p\n", mddev->bitmap);
  1359. */
  1360. if (init_resync(conf))
  1361. return 0;
  1362. }
  1363. max_sector = mddev->size << 1;
  1364. if (sector_nr >= max_sector) {
  1365. /* If we aborted, we need to abort the
  1366. * sync on the 'current' bitmap chunk (there will
  1367. * only be one in raid1 resync.
  1368. * We can find the current addess in mddev->curr_resync
  1369. */
  1370. if (mddev->curr_resync < max_sector) /* aborted */
  1371. bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
  1372. &sync_blocks, 1);
  1373. else /* completed sync */
  1374. conf->fullsync = 0;
  1375. bitmap_close_sync(mddev->bitmap);
  1376. close_sync(conf);
  1377. return 0;
  1378. }
  1379. /* before building a request, check if we can skip these blocks..
  1380. * This call the bitmap_start_sync doesn't actually record anything
  1381. */
  1382. if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
  1383. !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
  1384. /* We can skip this block, and probably several more */
  1385. *skipped = 1;
  1386. return sync_blocks;
  1387. }
  1388. /*
  1389. * If there is non-resync activity waiting for a turn,
  1390. * and resync is going fast enough,
  1391. * then let it though before starting on this new sync request.
  1392. */
  1393. if (!go_faster && conf->nr_waiting)
  1394. msleep_interruptible(1000);
  1395. raise_barrier(conf);
  1396. conf->next_resync = sector_nr;
  1397. r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO);
  1398. rcu_read_lock();
  1399. /*
  1400. * If we get a correctably read error during resync or recovery,
  1401. * we might want to read from a different device. So we
  1402. * flag all drives that could conceivably be read from for READ,
  1403. * and any others (which will be non-In_sync devices) for WRITE.
  1404. * If a read fails, we try reading from something else for which READ
  1405. * is OK.
  1406. */
  1407. r1_bio->mddev = mddev;
  1408. r1_bio->sector = sector_nr;
  1409. r1_bio->state = 0;
  1410. set_bit(R1BIO_IsSync, &r1_bio->state);
  1411. for (i=0; i < conf->raid_disks; i++) {
  1412. mdk_rdev_t *rdev;
  1413. bio = r1_bio->bios[i];
  1414. /* take from bio_init */
  1415. bio->bi_next = NULL;
  1416. bio->bi_flags |= 1 << BIO_UPTODATE;
  1417. bio->bi_rw = 0;
  1418. bio->bi_vcnt = 0;
  1419. bio->bi_idx = 0;
  1420. bio->bi_phys_segments = 0;
  1421. bio->bi_hw_segments = 0;
  1422. bio->bi_size = 0;
  1423. bio->bi_end_io = NULL;
  1424. bio->bi_private = NULL;
  1425. rdev = rcu_dereference(conf->mirrors[i].rdev);
  1426. if (rdev == NULL ||
  1427. test_bit(Faulty, &rdev->flags)) {
  1428. still_degraded = 1;
  1429. continue;
  1430. } else if (!test_bit(In_sync, &rdev->flags)) {
  1431. bio->bi_rw = WRITE;
  1432. bio->bi_end_io = end_sync_write;
  1433. write_targets ++;
  1434. } else {
  1435. /* may need to read from here */
  1436. bio->bi_rw = READ;
  1437. bio->bi_end_io = end_sync_read;
  1438. if (test_bit(WriteMostly, &rdev->flags)) {
  1439. if (wonly < 0)
  1440. wonly = i;
  1441. } else {
  1442. if (disk < 0)
  1443. disk = i;
  1444. }
  1445. read_targets++;
  1446. }
  1447. atomic_inc(&rdev->nr_pending);
  1448. bio->bi_sector = sector_nr + rdev->data_offset;
  1449. bio->bi_bdev = rdev->bdev;
  1450. bio->bi_private = r1_bio;
  1451. }
  1452. rcu_read_unlock();
  1453. if (disk < 0)
  1454. disk = wonly;
  1455. r1_bio->read_disk = disk;
  1456. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
  1457. /* extra read targets are also write targets */
  1458. write_targets += read_targets-1;
  1459. if (write_targets == 0 || read_targets == 0) {
  1460. /* There is nowhere to write, so all non-sync
  1461. * drives must be failed - so we are finished
  1462. */
  1463. sector_t rv = max_sector - sector_nr;
  1464. *skipped = 1;
  1465. put_buf(r1_bio);
  1466. return rv;
  1467. }
  1468. nr_sectors = 0;
  1469. sync_blocks = 0;
  1470. do {
  1471. struct page *page;
  1472. int len = PAGE_SIZE;
  1473. if (sector_nr + (len>>9) > max_sector)
  1474. len = (max_sector - sector_nr) << 9;
  1475. if (len == 0)
  1476. break;
  1477. if (sync_blocks == 0) {
  1478. if (!bitmap_start_sync(mddev->bitmap, sector_nr,
  1479. &sync_blocks, still_degraded) &&
  1480. !conf->fullsync &&
  1481. !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
  1482. break;
  1483. if (sync_blocks < (PAGE_SIZE>>9))
  1484. BUG();
  1485. if (len > (sync_blocks<<9))
  1486. len = sync_blocks<<9;
  1487. }
  1488. for (i=0 ; i < conf->raid_disks; i++) {
  1489. bio = r1_bio->bios[i];
  1490. if (bio->bi_end_io) {
  1491. page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
  1492. if (bio_add_page(bio, page, len, 0) == 0) {
  1493. /* stop here */
  1494. bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
  1495. while (i > 0) {
  1496. i--;
  1497. bio = r1_bio->bios[i];
  1498. if (bio->bi_end_io==NULL)
  1499. continue;
  1500. /* remove last page from this bio */
  1501. bio->bi_vcnt--;
  1502. bio->bi_size -= len;
  1503. bio->bi_flags &= ~(1<< BIO_SEG_VALID);
  1504. }
  1505. goto bio_full;
  1506. }
  1507. }
  1508. }
  1509. nr_sectors += len>>9;
  1510. sector_nr += len>>9;
  1511. sync_blocks -= (len>>9);
  1512. } while (r1_bio->bios[disk]->bi_vcnt < RESYNC_PAGES);
  1513. bio_full:
  1514. r1_bio->sectors = nr_sectors;
  1515. /* For a user-requested sync, we read all readable devices and do a
  1516. * compare
  1517. */
  1518. if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
  1519. atomic_set(&r1_bio->remaining, read_targets);
  1520. for (i=0; i<conf->raid_disks; i++) {
  1521. bio = r1_bio->bios[i];
  1522. if (bio->bi_end_io == end_sync_read) {
  1523. md_sync_acct(conf->mirrors[i].rdev->bdev, nr_sectors);
  1524. generic_make_request(bio);
  1525. }
  1526. }
  1527. } else {
  1528. atomic_set(&r1_bio->remaining, 1);
  1529. bio = r1_bio->bios[r1_bio->read_disk];
  1530. md_sync_acct(conf->mirrors[r1_bio->read_disk].rdev->bdev,
  1531. nr_sectors);
  1532. generic_make_request(bio);
  1533. }
  1534. return nr_sectors;
  1535. }
  1536. static int run(mddev_t *mddev)
  1537. {
  1538. conf_t *conf;
  1539. int i, j, disk_idx;
  1540. mirror_info_t *disk;
  1541. mdk_rdev_t *rdev;
  1542. struct list_head *tmp;
  1543. if (mddev->level != 1) {
  1544. printk("raid1: %s: raid level not set to mirroring (%d)\n",
  1545. mdname(mddev), mddev->level);
  1546. goto out;
  1547. }
  1548. /*
  1549. * copy the already verified devices into our private RAID1
  1550. * bookkeeping area. [whatever we allocate in run(),
  1551. * should be freed in stop()]
  1552. */
  1553. conf = kmalloc(sizeof(conf_t), GFP_KERNEL);
  1554. mddev->private = conf;
  1555. if (!conf)
  1556. goto out_no_mem;
  1557. memset(conf, 0, sizeof(*conf));
  1558. conf->mirrors = kmalloc(sizeof(struct mirror_info)*mddev->raid_disks,
  1559. GFP_KERNEL);
  1560. if (!conf->mirrors)
  1561. goto out_no_mem;
  1562. memset(conf->mirrors, 0, sizeof(struct mirror_info)*mddev->raid_disks);
  1563. conf->tmppage = alloc_page(GFP_KERNEL);
  1564. if (!conf->tmppage)
  1565. goto out_no_mem;
  1566. conf->poolinfo = kmalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
  1567. if (!conf->poolinfo)
  1568. goto out_no_mem;
  1569. conf->poolinfo->mddev = mddev;
  1570. conf->poolinfo->raid_disks = mddev->raid_disks;
  1571. conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
  1572. r1bio_pool_free,
  1573. conf->poolinfo);
  1574. if (!conf->r1bio_pool)
  1575. goto out_no_mem;
  1576. ITERATE_RDEV(mddev, rdev, tmp) {
  1577. disk_idx = rdev->raid_disk;
  1578. if (disk_idx >= mddev->raid_disks
  1579. || disk_idx < 0)
  1580. continue;
  1581. disk = conf->mirrors + disk_idx;
  1582. disk->rdev = rdev;
  1583. blk_queue_stack_limits(mddev->queue,
  1584. rdev->bdev->bd_disk->queue);
  1585. /* as we don't honour merge_bvec_fn, we must never risk
  1586. * violating it, so limit ->max_sector to one PAGE, as
  1587. * a one page request is never in violation.
  1588. */
  1589. if (rdev->bdev->bd_disk->queue->merge_bvec_fn &&
  1590. mddev->queue->max_sectors > (PAGE_SIZE>>9))
  1591. blk_queue_max_sectors(mddev->queue, PAGE_SIZE>>9);
  1592. disk->head_position = 0;
  1593. if (!test_bit(Faulty, &rdev->flags) && test_bit(In_sync, &rdev->flags))
  1594. conf->working_disks++;
  1595. }
  1596. conf->raid_disks = mddev->raid_disks;
  1597. conf->mddev = mddev;
  1598. spin_lock_init(&conf->device_lock);
  1599. INIT_LIST_HEAD(&conf->retry_list);
  1600. if (conf->working_disks == 1)
  1601. mddev->recovery_cp = MaxSector;
  1602. spin_lock_init(&conf->resync_lock);
  1603. init_waitqueue_head(&conf->wait_barrier);
  1604. bio_list_init(&conf->pending_bio_list);
  1605. bio_list_init(&conf->flushing_bio_list);
  1606. if (!conf->working_disks) {
  1607. printk(KERN_ERR "raid1: no operational mirrors for %s\n",
  1608. mdname(mddev));
  1609. goto out_free_conf;
  1610. }
  1611. mddev->degraded = 0;
  1612. for (i = 0; i < conf->raid_disks; i++) {
  1613. disk = conf->mirrors + i;
  1614. if (!disk->rdev) {
  1615. disk->head_position = 0;
  1616. mddev->degraded++;
  1617. }
  1618. }
  1619. /*
  1620. * find the first working one and use it as a starting point
  1621. * to read balancing.
  1622. */
  1623. for (j = 0; j < conf->raid_disks &&
  1624. (!conf->mirrors[j].rdev ||
  1625. !test_bit(In_sync, &conf->mirrors[j].rdev->flags)) ; j++)
  1626. /* nothing */;
  1627. conf->last_used = j;
  1628. mddev->thread = md_register_thread(raid1d, mddev, "%s_raid1");
  1629. if (!mddev->thread) {
  1630. printk(KERN_ERR
  1631. "raid1: couldn't allocate thread for %s\n",
  1632. mdname(mddev));
  1633. goto out_free_conf;
  1634. }
  1635. printk(KERN_INFO
  1636. "raid1: raid set %s active with %d out of %d mirrors\n",
  1637. mdname(mddev), mddev->raid_disks - mddev->degraded,
  1638. mddev->raid_disks);
  1639. /*
  1640. * Ok, everything is just fine now
  1641. */
  1642. mddev->array_size = mddev->size;
  1643. mddev->queue->unplug_fn = raid1_unplug;
  1644. mddev->queue->issue_flush_fn = raid1_issue_flush;
  1645. return 0;
  1646. out_no_mem:
  1647. printk(KERN_ERR "raid1: couldn't allocate memory for %s\n",
  1648. mdname(mddev));
  1649. out_free_conf:
  1650. if (conf) {
  1651. if (conf->r1bio_pool)
  1652. mempool_destroy(conf->r1bio_pool);
  1653. kfree(conf->mirrors);
  1654. __free_page(conf->tmppage);
  1655. kfree(conf->poolinfo);
  1656. kfree(conf);
  1657. mddev->private = NULL;
  1658. }
  1659. out:
  1660. return -EIO;
  1661. }
  1662. static int stop(mddev_t *mddev)
  1663. {
  1664. conf_t *conf = mddev_to_conf(mddev);
  1665. struct bitmap *bitmap = mddev->bitmap;
  1666. int behind_wait = 0;
  1667. /* wait for behind writes to complete */
  1668. while (bitmap && atomic_read(&bitmap->behind_writes) > 0) {
  1669. behind_wait++;
  1670. printk(KERN_INFO "raid1: behind writes in progress on device %s, waiting to stop (%d)\n", mdname(mddev), behind_wait);
  1671. set_current_state(TASK_UNINTERRUPTIBLE);
  1672. schedule_timeout(HZ); /* wait a second */
  1673. /* need to kick something here to make sure I/O goes? */
  1674. }
  1675. md_unregister_thread(mddev->thread);
  1676. mddev->thread = NULL;
  1677. blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
  1678. if (conf->r1bio_pool)
  1679. mempool_destroy(conf->r1bio_pool);
  1680. kfree(conf->mirrors);
  1681. kfree(conf->poolinfo);
  1682. kfree(conf);
  1683. mddev->private = NULL;
  1684. return 0;
  1685. }
  1686. static int raid1_resize(mddev_t *mddev, sector_t sectors)
  1687. {
  1688. /* no resync is happening, and there is enough space
  1689. * on all devices, so we can resize.
  1690. * We need to make sure resync covers any new space.
  1691. * If the array is shrinking we should possibly wait until
  1692. * any io in the removed space completes, but it hardly seems
  1693. * worth it.
  1694. */
  1695. mddev->array_size = sectors>>1;
  1696. set_capacity(mddev->gendisk, mddev->array_size << 1);
  1697. mddev->changed = 1;
  1698. if (mddev->array_size > mddev->size && mddev->recovery_cp == MaxSector) {
  1699. mddev->recovery_cp = mddev->size << 1;
  1700. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  1701. }
  1702. mddev->size = mddev->array_size;
  1703. mddev->resync_max_sectors = sectors;
  1704. return 0;
  1705. }
  1706. static int raid1_reshape(mddev_t *mddev, int raid_disks)
  1707. {
  1708. /* We need to:
  1709. * 1/ resize the r1bio_pool
  1710. * 2/ resize conf->mirrors
  1711. *
  1712. * We allocate a new r1bio_pool if we can.
  1713. * Then raise a device barrier and wait until all IO stops.
  1714. * Then resize conf->mirrors and swap in the new r1bio pool.
  1715. *
  1716. * At the same time, we "pack" the devices so that all the missing
  1717. * devices have the higher raid_disk numbers.
  1718. */
  1719. mempool_t *newpool, *oldpool;
  1720. struct pool_info *newpoolinfo;
  1721. mirror_info_t *newmirrors;
  1722. conf_t *conf = mddev_to_conf(mddev);
  1723. int cnt;
  1724. int d, d2;
  1725. if (raid_disks < conf->raid_disks) {
  1726. cnt=0;
  1727. for (d= 0; d < conf->raid_disks; d++)
  1728. if (conf->mirrors[d].rdev)
  1729. cnt++;
  1730. if (cnt > raid_disks)
  1731. return -EBUSY;
  1732. }
  1733. newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
  1734. if (!newpoolinfo)
  1735. return -ENOMEM;
  1736. newpoolinfo->mddev = mddev;
  1737. newpoolinfo->raid_disks = raid_disks;
  1738. newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
  1739. r1bio_pool_free, newpoolinfo);
  1740. if (!newpool) {
  1741. kfree(newpoolinfo);
  1742. return -ENOMEM;
  1743. }
  1744. newmirrors = kmalloc(sizeof(struct mirror_info) * raid_disks, GFP_KERNEL);
  1745. if (!newmirrors) {
  1746. kfree(newpoolinfo);
  1747. mempool_destroy(newpool);
  1748. return -ENOMEM;
  1749. }
  1750. memset(newmirrors, 0, sizeof(struct mirror_info)*raid_disks);
  1751. raise_barrier(conf);
  1752. /* ok, everything is stopped */
  1753. oldpool = conf->r1bio_pool;
  1754. conf->r1bio_pool = newpool;
  1755. for (d=d2=0; d < conf->raid_disks; d++)
  1756. if (conf->mirrors[d].rdev) {
  1757. conf->mirrors[d].rdev->raid_disk = d2;
  1758. newmirrors[d2++].rdev = conf->mirrors[d].rdev;
  1759. }
  1760. kfree(conf->mirrors);
  1761. conf->mirrors = newmirrors;
  1762. kfree(conf->poolinfo);
  1763. conf->poolinfo = newpoolinfo;
  1764. mddev->degraded += (raid_disks - conf->raid_disks);
  1765. conf->raid_disks = mddev->raid_disks = raid_disks;
  1766. conf->last_used = 0; /* just make sure it is in-range */
  1767. lower_barrier(conf);
  1768. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  1769. md_wakeup_thread(mddev->thread);
  1770. mempool_destroy(oldpool);
  1771. return 0;
  1772. }
  1773. static void raid1_quiesce(mddev_t *mddev, int state)
  1774. {
  1775. conf_t *conf = mddev_to_conf(mddev);
  1776. switch(state) {
  1777. case 1:
  1778. raise_barrier(conf);
  1779. break;
  1780. case 0:
  1781. lower_barrier(conf);
  1782. break;
  1783. }
  1784. }
  1785. static mdk_personality_t raid1_personality =
  1786. {
  1787. .name = "raid1",
  1788. .owner = THIS_MODULE,
  1789. .make_request = make_request,
  1790. .run = run,
  1791. .stop = stop,
  1792. .status = status,
  1793. .error_handler = error,
  1794. .hot_add_disk = raid1_add_disk,
  1795. .hot_remove_disk= raid1_remove_disk,
  1796. .spare_active = raid1_spare_active,
  1797. .sync_request = sync_request,
  1798. .resize = raid1_resize,
  1799. .reshape = raid1_reshape,
  1800. .quiesce = raid1_quiesce,
  1801. };
  1802. static int __init raid_init(void)
  1803. {
  1804. return register_md_personality(RAID1, &raid1_personality);
  1805. }
  1806. static void raid_exit(void)
  1807. {
  1808. unregister_md_personality(RAID1);
  1809. }
  1810. module_init(raid_init);
  1811. module_exit(raid_exit);
  1812. MODULE_LICENSE("GPL");
  1813. MODULE_ALIAS("md-personality-3"); /* RAID1 */