huge_memory.c 64 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470
  1. /*
  2. * Copyright (C) 2009 Red Hat, Inc.
  3. *
  4. * This work is licensed under the terms of the GNU GPL, version 2. See
  5. * the COPYING file in the top-level directory.
  6. */
  7. #include <linux/mm.h>
  8. #include <linux/sched.h>
  9. #include <linux/highmem.h>
  10. #include <linux/hugetlb.h>
  11. #include <linux/mmu_notifier.h>
  12. #include <linux/rmap.h>
  13. #include <linux/swap.h>
  14. #include <linux/mm_inline.h>
  15. #include <linux/kthread.h>
  16. #include <linux/khugepaged.h>
  17. #include <linux/freezer.h>
  18. #include <linux/mman.h>
  19. #include <linux/pagemap.h>
  20. #include <asm/tlb.h>
  21. #include <asm/pgalloc.h>
  22. #include "internal.h"
  23. /*
  24. * By default transparent hugepage support is enabled for all mappings
  25. * and khugepaged scans all mappings. Defrag is only invoked by
  26. * khugepaged hugepage allocations and by page faults inside
  27. * MADV_HUGEPAGE regions to avoid the risk of slowing down short lived
  28. * allocations.
  29. */
  30. unsigned long transparent_hugepage_flags __read_mostly =
  31. #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
  32. (1<<TRANSPARENT_HUGEPAGE_FLAG)|
  33. #endif
  34. #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
  35. (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
  36. #endif
  37. (1<<TRANSPARENT_HUGEPAGE_DEFRAG_FLAG)|
  38. (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
  39. /* default scan 8*512 pte (or vmas) every 30 second */
  40. static unsigned int khugepaged_pages_to_scan __read_mostly = HPAGE_PMD_NR*8;
  41. static unsigned int khugepaged_pages_collapsed;
  42. static unsigned int khugepaged_full_scans;
  43. static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
  44. /* during fragmentation poll the hugepage allocator once every minute */
  45. static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
  46. static struct task_struct *khugepaged_thread __read_mostly;
  47. static DEFINE_MUTEX(khugepaged_mutex);
  48. static DEFINE_SPINLOCK(khugepaged_mm_lock);
  49. static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
  50. /*
  51. * default collapse hugepages if there is at least one pte mapped like
  52. * it would have happened if the vma was large enough during page
  53. * fault.
  54. */
  55. static unsigned int khugepaged_max_ptes_none __read_mostly = HPAGE_PMD_NR-1;
  56. static int khugepaged(void *none);
  57. static int mm_slots_hash_init(void);
  58. static int khugepaged_slab_init(void);
  59. static void khugepaged_slab_free(void);
  60. #define MM_SLOTS_HASH_HEADS 1024
  61. static struct hlist_head *mm_slots_hash __read_mostly;
  62. static struct kmem_cache *mm_slot_cache __read_mostly;
  63. /**
  64. * struct mm_slot - hash lookup from mm to mm_slot
  65. * @hash: hash collision list
  66. * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
  67. * @mm: the mm that this information is valid for
  68. */
  69. struct mm_slot {
  70. struct hlist_node hash;
  71. struct list_head mm_node;
  72. struct mm_struct *mm;
  73. };
  74. /**
  75. * struct khugepaged_scan - cursor for scanning
  76. * @mm_head: the head of the mm list to scan
  77. * @mm_slot: the current mm_slot we are scanning
  78. * @address: the next address inside that to be scanned
  79. *
  80. * There is only the one khugepaged_scan instance of this cursor structure.
  81. */
  82. struct khugepaged_scan {
  83. struct list_head mm_head;
  84. struct mm_slot *mm_slot;
  85. unsigned long address;
  86. };
  87. static struct khugepaged_scan khugepaged_scan = {
  88. .mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
  89. };
  90. static int set_recommended_min_free_kbytes(void)
  91. {
  92. struct zone *zone;
  93. int nr_zones = 0;
  94. unsigned long recommended_min;
  95. extern int min_free_kbytes;
  96. if (!khugepaged_enabled())
  97. return 0;
  98. for_each_populated_zone(zone)
  99. nr_zones++;
  100. /* Make sure at least 2 hugepages are free for MIGRATE_RESERVE */
  101. recommended_min = pageblock_nr_pages * nr_zones * 2;
  102. /*
  103. * Make sure that on average at least two pageblocks are almost free
  104. * of another type, one for a migratetype to fall back to and a
  105. * second to avoid subsequent fallbacks of other types There are 3
  106. * MIGRATE_TYPES we care about.
  107. */
  108. recommended_min += pageblock_nr_pages * nr_zones *
  109. MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
  110. /* don't ever allow to reserve more than 5% of the lowmem */
  111. recommended_min = min(recommended_min,
  112. (unsigned long) nr_free_buffer_pages() / 20);
  113. recommended_min <<= (PAGE_SHIFT-10);
  114. if (recommended_min > min_free_kbytes)
  115. min_free_kbytes = recommended_min;
  116. setup_per_zone_wmarks();
  117. return 0;
  118. }
  119. late_initcall(set_recommended_min_free_kbytes);
  120. static int start_khugepaged(void)
  121. {
  122. int err = 0;
  123. if (khugepaged_enabled()) {
  124. if (!khugepaged_thread)
  125. khugepaged_thread = kthread_run(khugepaged, NULL,
  126. "khugepaged");
  127. if (unlikely(IS_ERR(khugepaged_thread))) {
  128. printk(KERN_ERR
  129. "khugepaged: kthread_run(khugepaged) failed\n");
  130. err = PTR_ERR(khugepaged_thread);
  131. khugepaged_thread = NULL;
  132. }
  133. if (!list_empty(&khugepaged_scan.mm_head))
  134. wake_up_interruptible(&khugepaged_wait);
  135. set_recommended_min_free_kbytes();
  136. } else if (khugepaged_thread) {
  137. kthread_stop(khugepaged_thread);
  138. khugepaged_thread = NULL;
  139. }
  140. return err;
  141. }
  142. #ifdef CONFIG_SYSFS
  143. static ssize_t double_flag_show(struct kobject *kobj,
  144. struct kobj_attribute *attr, char *buf,
  145. enum transparent_hugepage_flag enabled,
  146. enum transparent_hugepage_flag req_madv)
  147. {
  148. if (test_bit(enabled, &transparent_hugepage_flags)) {
  149. VM_BUG_ON(test_bit(req_madv, &transparent_hugepage_flags));
  150. return sprintf(buf, "[always] madvise never\n");
  151. } else if (test_bit(req_madv, &transparent_hugepage_flags))
  152. return sprintf(buf, "always [madvise] never\n");
  153. else
  154. return sprintf(buf, "always madvise [never]\n");
  155. }
  156. static ssize_t double_flag_store(struct kobject *kobj,
  157. struct kobj_attribute *attr,
  158. const char *buf, size_t count,
  159. enum transparent_hugepage_flag enabled,
  160. enum transparent_hugepage_flag req_madv)
  161. {
  162. if (!memcmp("always", buf,
  163. min(sizeof("always")-1, count))) {
  164. set_bit(enabled, &transparent_hugepage_flags);
  165. clear_bit(req_madv, &transparent_hugepage_flags);
  166. } else if (!memcmp("madvise", buf,
  167. min(sizeof("madvise")-1, count))) {
  168. clear_bit(enabled, &transparent_hugepage_flags);
  169. set_bit(req_madv, &transparent_hugepage_flags);
  170. } else if (!memcmp("never", buf,
  171. min(sizeof("never")-1, count))) {
  172. clear_bit(enabled, &transparent_hugepage_flags);
  173. clear_bit(req_madv, &transparent_hugepage_flags);
  174. } else
  175. return -EINVAL;
  176. return count;
  177. }
  178. static ssize_t enabled_show(struct kobject *kobj,
  179. struct kobj_attribute *attr, char *buf)
  180. {
  181. return double_flag_show(kobj, attr, buf,
  182. TRANSPARENT_HUGEPAGE_FLAG,
  183. TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
  184. }
  185. static ssize_t enabled_store(struct kobject *kobj,
  186. struct kobj_attribute *attr,
  187. const char *buf, size_t count)
  188. {
  189. ssize_t ret;
  190. ret = double_flag_store(kobj, attr, buf, count,
  191. TRANSPARENT_HUGEPAGE_FLAG,
  192. TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
  193. if (ret > 0) {
  194. int err;
  195. mutex_lock(&khugepaged_mutex);
  196. err = start_khugepaged();
  197. mutex_unlock(&khugepaged_mutex);
  198. if (err)
  199. ret = err;
  200. }
  201. return ret;
  202. }
  203. static struct kobj_attribute enabled_attr =
  204. __ATTR(enabled, 0644, enabled_show, enabled_store);
  205. static ssize_t single_flag_show(struct kobject *kobj,
  206. struct kobj_attribute *attr, char *buf,
  207. enum transparent_hugepage_flag flag)
  208. {
  209. return sprintf(buf, "%d\n",
  210. !!test_bit(flag, &transparent_hugepage_flags));
  211. }
  212. static ssize_t single_flag_store(struct kobject *kobj,
  213. struct kobj_attribute *attr,
  214. const char *buf, size_t count,
  215. enum transparent_hugepage_flag flag)
  216. {
  217. unsigned long value;
  218. int ret;
  219. ret = kstrtoul(buf, 10, &value);
  220. if (ret < 0)
  221. return ret;
  222. if (value > 1)
  223. return -EINVAL;
  224. if (value)
  225. set_bit(flag, &transparent_hugepage_flags);
  226. else
  227. clear_bit(flag, &transparent_hugepage_flags);
  228. return count;
  229. }
  230. /*
  231. * Currently defrag only disables __GFP_NOWAIT for allocation. A blind
  232. * __GFP_REPEAT is too aggressive, it's never worth swapping tons of
  233. * memory just to allocate one more hugepage.
  234. */
  235. static ssize_t defrag_show(struct kobject *kobj,
  236. struct kobj_attribute *attr, char *buf)
  237. {
  238. return double_flag_show(kobj, attr, buf,
  239. TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
  240. TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
  241. }
  242. static ssize_t defrag_store(struct kobject *kobj,
  243. struct kobj_attribute *attr,
  244. const char *buf, size_t count)
  245. {
  246. return double_flag_store(kobj, attr, buf, count,
  247. TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
  248. TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
  249. }
  250. static struct kobj_attribute defrag_attr =
  251. __ATTR(defrag, 0644, defrag_show, defrag_store);
  252. #ifdef CONFIG_DEBUG_VM
  253. static ssize_t debug_cow_show(struct kobject *kobj,
  254. struct kobj_attribute *attr, char *buf)
  255. {
  256. return single_flag_show(kobj, attr, buf,
  257. TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
  258. }
  259. static ssize_t debug_cow_store(struct kobject *kobj,
  260. struct kobj_attribute *attr,
  261. const char *buf, size_t count)
  262. {
  263. return single_flag_store(kobj, attr, buf, count,
  264. TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
  265. }
  266. static struct kobj_attribute debug_cow_attr =
  267. __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
  268. #endif /* CONFIG_DEBUG_VM */
  269. static struct attribute *hugepage_attr[] = {
  270. &enabled_attr.attr,
  271. &defrag_attr.attr,
  272. #ifdef CONFIG_DEBUG_VM
  273. &debug_cow_attr.attr,
  274. #endif
  275. NULL,
  276. };
  277. static struct attribute_group hugepage_attr_group = {
  278. .attrs = hugepage_attr,
  279. };
  280. static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
  281. struct kobj_attribute *attr,
  282. char *buf)
  283. {
  284. return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs);
  285. }
  286. static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
  287. struct kobj_attribute *attr,
  288. const char *buf, size_t count)
  289. {
  290. unsigned long msecs;
  291. int err;
  292. err = strict_strtoul(buf, 10, &msecs);
  293. if (err || msecs > UINT_MAX)
  294. return -EINVAL;
  295. khugepaged_scan_sleep_millisecs = msecs;
  296. wake_up_interruptible(&khugepaged_wait);
  297. return count;
  298. }
  299. static struct kobj_attribute scan_sleep_millisecs_attr =
  300. __ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
  301. scan_sleep_millisecs_store);
  302. static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
  303. struct kobj_attribute *attr,
  304. char *buf)
  305. {
  306. return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
  307. }
  308. static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
  309. struct kobj_attribute *attr,
  310. const char *buf, size_t count)
  311. {
  312. unsigned long msecs;
  313. int err;
  314. err = strict_strtoul(buf, 10, &msecs);
  315. if (err || msecs > UINT_MAX)
  316. return -EINVAL;
  317. khugepaged_alloc_sleep_millisecs = msecs;
  318. wake_up_interruptible(&khugepaged_wait);
  319. return count;
  320. }
  321. static struct kobj_attribute alloc_sleep_millisecs_attr =
  322. __ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
  323. alloc_sleep_millisecs_store);
  324. static ssize_t pages_to_scan_show(struct kobject *kobj,
  325. struct kobj_attribute *attr,
  326. char *buf)
  327. {
  328. return sprintf(buf, "%u\n", khugepaged_pages_to_scan);
  329. }
  330. static ssize_t pages_to_scan_store(struct kobject *kobj,
  331. struct kobj_attribute *attr,
  332. const char *buf, size_t count)
  333. {
  334. int err;
  335. unsigned long pages;
  336. err = strict_strtoul(buf, 10, &pages);
  337. if (err || !pages || pages > UINT_MAX)
  338. return -EINVAL;
  339. khugepaged_pages_to_scan = pages;
  340. return count;
  341. }
  342. static struct kobj_attribute pages_to_scan_attr =
  343. __ATTR(pages_to_scan, 0644, pages_to_scan_show,
  344. pages_to_scan_store);
  345. static ssize_t pages_collapsed_show(struct kobject *kobj,
  346. struct kobj_attribute *attr,
  347. char *buf)
  348. {
  349. return sprintf(buf, "%u\n", khugepaged_pages_collapsed);
  350. }
  351. static struct kobj_attribute pages_collapsed_attr =
  352. __ATTR_RO(pages_collapsed);
  353. static ssize_t full_scans_show(struct kobject *kobj,
  354. struct kobj_attribute *attr,
  355. char *buf)
  356. {
  357. return sprintf(buf, "%u\n", khugepaged_full_scans);
  358. }
  359. static struct kobj_attribute full_scans_attr =
  360. __ATTR_RO(full_scans);
  361. static ssize_t khugepaged_defrag_show(struct kobject *kobj,
  362. struct kobj_attribute *attr, char *buf)
  363. {
  364. return single_flag_show(kobj, attr, buf,
  365. TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
  366. }
  367. static ssize_t khugepaged_defrag_store(struct kobject *kobj,
  368. struct kobj_attribute *attr,
  369. const char *buf, size_t count)
  370. {
  371. return single_flag_store(kobj, attr, buf, count,
  372. TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
  373. }
  374. static struct kobj_attribute khugepaged_defrag_attr =
  375. __ATTR(defrag, 0644, khugepaged_defrag_show,
  376. khugepaged_defrag_store);
  377. /*
  378. * max_ptes_none controls if khugepaged should collapse hugepages over
  379. * any unmapped ptes in turn potentially increasing the memory
  380. * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
  381. * reduce the available free memory in the system as it
  382. * runs. Increasing max_ptes_none will instead potentially reduce the
  383. * free memory in the system during the khugepaged scan.
  384. */
  385. static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
  386. struct kobj_attribute *attr,
  387. char *buf)
  388. {
  389. return sprintf(buf, "%u\n", khugepaged_max_ptes_none);
  390. }
  391. static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
  392. struct kobj_attribute *attr,
  393. const char *buf, size_t count)
  394. {
  395. int err;
  396. unsigned long max_ptes_none;
  397. err = strict_strtoul(buf, 10, &max_ptes_none);
  398. if (err || max_ptes_none > HPAGE_PMD_NR-1)
  399. return -EINVAL;
  400. khugepaged_max_ptes_none = max_ptes_none;
  401. return count;
  402. }
  403. static struct kobj_attribute khugepaged_max_ptes_none_attr =
  404. __ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
  405. khugepaged_max_ptes_none_store);
  406. static struct attribute *khugepaged_attr[] = {
  407. &khugepaged_defrag_attr.attr,
  408. &khugepaged_max_ptes_none_attr.attr,
  409. &pages_to_scan_attr.attr,
  410. &pages_collapsed_attr.attr,
  411. &full_scans_attr.attr,
  412. &scan_sleep_millisecs_attr.attr,
  413. &alloc_sleep_millisecs_attr.attr,
  414. NULL,
  415. };
  416. static struct attribute_group khugepaged_attr_group = {
  417. .attrs = khugepaged_attr,
  418. .name = "khugepaged",
  419. };
  420. static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
  421. {
  422. int err;
  423. *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
  424. if (unlikely(!*hugepage_kobj)) {
  425. printk(KERN_ERR "hugepage: failed kobject create\n");
  426. return -ENOMEM;
  427. }
  428. err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
  429. if (err) {
  430. printk(KERN_ERR "hugepage: failed register hugeage group\n");
  431. goto delete_obj;
  432. }
  433. err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
  434. if (err) {
  435. printk(KERN_ERR "hugepage: failed register hugeage group\n");
  436. goto remove_hp_group;
  437. }
  438. return 0;
  439. remove_hp_group:
  440. sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
  441. delete_obj:
  442. kobject_put(*hugepage_kobj);
  443. return err;
  444. }
  445. static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
  446. {
  447. sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
  448. sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
  449. kobject_put(hugepage_kobj);
  450. }
  451. #else
  452. static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
  453. {
  454. return 0;
  455. }
  456. static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
  457. {
  458. }
  459. #endif /* CONFIG_SYSFS */
  460. static int __init hugepage_init(void)
  461. {
  462. int err;
  463. struct kobject *hugepage_kobj;
  464. if (!has_transparent_hugepage()) {
  465. transparent_hugepage_flags = 0;
  466. return -EINVAL;
  467. }
  468. err = hugepage_init_sysfs(&hugepage_kobj);
  469. if (err)
  470. return err;
  471. err = khugepaged_slab_init();
  472. if (err)
  473. goto out;
  474. err = mm_slots_hash_init();
  475. if (err) {
  476. khugepaged_slab_free();
  477. goto out;
  478. }
  479. /*
  480. * By default disable transparent hugepages on smaller systems,
  481. * where the extra memory used could hurt more than TLB overhead
  482. * is likely to save. The admin can still enable it through /sys.
  483. */
  484. if (totalram_pages < (512 << (20 - PAGE_SHIFT)))
  485. transparent_hugepage_flags = 0;
  486. start_khugepaged();
  487. return 0;
  488. out:
  489. hugepage_exit_sysfs(hugepage_kobj);
  490. return err;
  491. }
  492. module_init(hugepage_init)
  493. static int __init setup_transparent_hugepage(char *str)
  494. {
  495. int ret = 0;
  496. if (!str)
  497. goto out;
  498. if (!strcmp(str, "always")) {
  499. set_bit(TRANSPARENT_HUGEPAGE_FLAG,
  500. &transparent_hugepage_flags);
  501. clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
  502. &transparent_hugepage_flags);
  503. ret = 1;
  504. } else if (!strcmp(str, "madvise")) {
  505. clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
  506. &transparent_hugepage_flags);
  507. set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
  508. &transparent_hugepage_flags);
  509. ret = 1;
  510. } else if (!strcmp(str, "never")) {
  511. clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
  512. &transparent_hugepage_flags);
  513. clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
  514. &transparent_hugepage_flags);
  515. ret = 1;
  516. }
  517. out:
  518. if (!ret)
  519. printk(KERN_WARNING
  520. "transparent_hugepage= cannot parse, ignored\n");
  521. return ret;
  522. }
  523. __setup("transparent_hugepage=", setup_transparent_hugepage);
  524. static inline pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
  525. {
  526. if (likely(vma->vm_flags & VM_WRITE))
  527. pmd = pmd_mkwrite(pmd);
  528. return pmd;
  529. }
  530. static int __do_huge_pmd_anonymous_page(struct mm_struct *mm,
  531. struct vm_area_struct *vma,
  532. unsigned long haddr, pmd_t *pmd,
  533. struct page *page)
  534. {
  535. pgtable_t pgtable;
  536. VM_BUG_ON(!PageCompound(page));
  537. pgtable = pte_alloc_one(mm, haddr);
  538. if (unlikely(!pgtable))
  539. return VM_FAULT_OOM;
  540. clear_huge_page(page, haddr, HPAGE_PMD_NR);
  541. __SetPageUptodate(page);
  542. spin_lock(&mm->page_table_lock);
  543. if (unlikely(!pmd_none(*pmd))) {
  544. spin_unlock(&mm->page_table_lock);
  545. mem_cgroup_uncharge_page(page);
  546. put_page(page);
  547. pte_free(mm, pgtable);
  548. } else {
  549. pmd_t entry;
  550. entry = mk_pmd(page, vma->vm_page_prot);
  551. entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
  552. entry = pmd_mkhuge(entry);
  553. /*
  554. * The spinlocking to take the lru_lock inside
  555. * page_add_new_anon_rmap() acts as a full memory
  556. * barrier to be sure clear_huge_page writes become
  557. * visible after the set_pmd_at() write.
  558. */
  559. page_add_new_anon_rmap(page, vma, haddr);
  560. set_pmd_at(mm, haddr, pmd, entry);
  561. pgtable_trans_huge_deposit(mm, pgtable);
  562. add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
  563. mm->nr_ptes++;
  564. spin_unlock(&mm->page_table_lock);
  565. }
  566. return 0;
  567. }
  568. static inline gfp_t alloc_hugepage_gfpmask(int defrag, gfp_t extra_gfp)
  569. {
  570. return (GFP_TRANSHUGE & ~(defrag ? 0 : __GFP_WAIT)) | extra_gfp;
  571. }
  572. static inline struct page *alloc_hugepage_vma(int defrag,
  573. struct vm_area_struct *vma,
  574. unsigned long haddr, int nd,
  575. gfp_t extra_gfp)
  576. {
  577. return alloc_pages_vma(alloc_hugepage_gfpmask(defrag, extra_gfp),
  578. HPAGE_PMD_ORDER, vma, haddr, nd);
  579. }
  580. #ifndef CONFIG_NUMA
  581. static inline struct page *alloc_hugepage(int defrag)
  582. {
  583. return alloc_pages(alloc_hugepage_gfpmask(defrag, 0),
  584. HPAGE_PMD_ORDER);
  585. }
  586. #endif
  587. int do_huge_pmd_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
  588. unsigned long address, pmd_t *pmd,
  589. unsigned int flags)
  590. {
  591. struct page *page;
  592. unsigned long haddr = address & HPAGE_PMD_MASK;
  593. pte_t *pte;
  594. if (haddr >= vma->vm_start && haddr + HPAGE_PMD_SIZE <= vma->vm_end) {
  595. if (unlikely(anon_vma_prepare(vma)))
  596. return VM_FAULT_OOM;
  597. if (unlikely(khugepaged_enter(vma)))
  598. return VM_FAULT_OOM;
  599. page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
  600. vma, haddr, numa_node_id(), 0);
  601. if (unlikely(!page)) {
  602. count_vm_event(THP_FAULT_FALLBACK);
  603. goto out;
  604. }
  605. count_vm_event(THP_FAULT_ALLOC);
  606. if (unlikely(mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))) {
  607. put_page(page);
  608. goto out;
  609. }
  610. if (unlikely(__do_huge_pmd_anonymous_page(mm, vma, haddr, pmd,
  611. page))) {
  612. mem_cgroup_uncharge_page(page);
  613. put_page(page);
  614. goto out;
  615. }
  616. return 0;
  617. }
  618. out:
  619. /*
  620. * Use __pte_alloc instead of pte_alloc_map, because we can't
  621. * run pte_offset_map on the pmd, if an huge pmd could
  622. * materialize from under us from a different thread.
  623. */
  624. if (unlikely(pmd_none(*pmd)) &&
  625. unlikely(__pte_alloc(mm, vma, pmd, address)))
  626. return VM_FAULT_OOM;
  627. /* if an huge pmd materialized from under us just retry later */
  628. if (unlikely(pmd_trans_huge(*pmd)))
  629. return 0;
  630. /*
  631. * A regular pmd is established and it can't morph into a huge pmd
  632. * from under us anymore at this point because we hold the mmap_sem
  633. * read mode and khugepaged takes it in write mode. So now it's
  634. * safe to run pte_offset_map().
  635. */
  636. pte = pte_offset_map(pmd, address);
  637. return handle_pte_fault(mm, vma, address, pte, pmd, flags);
  638. }
  639. int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  640. pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
  641. struct vm_area_struct *vma)
  642. {
  643. struct page *src_page;
  644. pmd_t pmd;
  645. pgtable_t pgtable;
  646. int ret;
  647. ret = -ENOMEM;
  648. pgtable = pte_alloc_one(dst_mm, addr);
  649. if (unlikely(!pgtable))
  650. goto out;
  651. spin_lock(&dst_mm->page_table_lock);
  652. spin_lock_nested(&src_mm->page_table_lock, SINGLE_DEPTH_NESTING);
  653. ret = -EAGAIN;
  654. pmd = *src_pmd;
  655. if (unlikely(!pmd_trans_huge(pmd))) {
  656. pte_free(dst_mm, pgtable);
  657. goto out_unlock;
  658. }
  659. if (unlikely(pmd_trans_splitting(pmd))) {
  660. /* split huge page running from under us */
  661. spin_unlock(&src_mm->page_table_lock);
  662. spin_unlock(&dst_mm->page_table_lock);
  663. pte_free(dst_mm, pgtable);
  664. wait_split_huge_page(vma->anon_vma, src_pmd); /* src_vma */
  665. goto out;
  666. }
  667. src_page = pmd_page(pmd);
  668. VM_BUG_ON(!PageHead(src_page));
  669. get_page(src_page);
  670. page_dup_rmap(src_page);
  671. add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
  672. pmdp_set_wrprotect(src_mm, addr, src_pmd);
  673. pmd = pmd_mkold(pmd_wrprotect(pmd));
  674. set_pmd_at(dst_mm, addr, dst_pmd, pmd);
  675. pgtable_trans_huge_deposit(dst_mm, pgtable);
  676. dst_mm->nr_ptes++;
  677. ret = 0;
  678. out_unlock:
  679. spin_unlock(&src_mm->page_table_lock);
  680. spin_unlock(&dst_mm->page_table_lock);
  681. out:
  682. return ret;
  683. }
  684. static int do_huge_pmd_wp_page_fallback(struct mm_struct *mm,
  685. struct vm_area_struct *vma,
  686. unsigned long address,
  687. pmd_t *pmd, pmd_t orig_pmd,
  688. struct page *page,
  689. unsigned long haddr)
  690. {
  691. pgtable_t pgtable;
  692. pmd_t _pmd;
  693. int ret = 0, i;
  694. struct page **pages;
  695. unsigned long mmun_start; /* For mmu_notifiers */
  696. unsigned long mmun_end; /* For mmu_notifiers */
  697. pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
  698. GFP_KERNEL);
  699. if (unlikely(!pages)) {
  700. ret |= VM_FAULT_OOM;
  701. goto out;
  702. }
  703. for (i = 0; i < HPAGE_PMD_NR; i++) {
  704. pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE |
  705. __GFP_OTHER_NODE,
  706. vma, address, page_to_nid(page));
  707. if (unlikely(!pages[i] ||
  708. mem_cgroup_newpage_charge(pages[i], mm,
  709. GFP_KERNEL))) {
  710. if (pages[i])
  711. put_page(pages[i]);
  712. mem_cgroup_uncharge_start();
  713. while (--i >= 0) {
  714. mem_cgroup_uncharge_page(pages[i]);
  715. put_page(pages[i]);
  716. }
  717. mem_cgroup_uncharge_end();
  718. kfree(pages);
  719. ret |= VM_FAULT_OOM;
  720. goto out;
  721. }
  722. }
  723. for (i = 0; i < HPAGE_PMD_NR; i++) {
  724. copy_user_highpage(pages[i], page + i,
  725. haddr + PAGE_SIZE * i, vma);
  726. __SetPageUptodate(pages[i]);
  727. cond_resched();
  728. }
  729. mmun_start = haddr;
  730. mmun_end = haddr + HPAGE_PMD_SIZE;
  731. mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
  732. spin_lock(&mm->page_table_lock);
  733. if (unlikely(!pmd_same(*pmd, orig_pmd)))
  734. goto out_free_pages;
  735. VM_BUG_ON(!PageHead(page));
  736. pmdp_clear_flush(vma, haddr, pmd);
  737. /* leave pmd empty until pte is filled */
  738. pgtable = pgtable_trans_huge_withdraw(mm);
  739. pmd_populate(mm, &_pmd, pgtable);
  740. for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
  741. pte_t *pte, entry;
  742. entry = mk_pte(pages[i], vma->vm_page_prot);
  743. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  744. page_add_new_anon_rmap(pages[i], vma, haddr);
  745. pte = pte_offset_map(&_pmd, haddr);
  746. VM_BUG_ON(!pte_none(*pte));
  747. set_pte_at(mm, haddr, pte, entry);
  748. pte_unmap(pte);
  749. }
  750. kfree(pages);
  751. smp_wmb(); /* make pte visible before pmd */
  752. pmd_populate(mm, pmd, pgtable);
  753. page_remove_rmap(page);
  754. spin_unlock(&mm->page_table_lock);
  755. mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
  756. ret |= VM_FAULT_WRITE;
  757. put_page(page);
  758. out:
  759. return ret;
  760. out_free_pages:
  761. spin_unlock(&mm->page_table_lock);
  762. mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
  763. mem_cgroup_uncharge_start();
  764. for (i = 0; i < HPAGE_PMD_NR; i++) {
  765. mem_cgroup_uncharge_page(pages[i]);
  766. put_page(pages[i]);
  767. }
  768. mem_cgroup_uncharge_end();
  769. kfree(pages);
  770. goto out;
  771. }
  772. int do_huge_pmd_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
  773. unsigned long address, pmd_t *pmd, pmd_t orig_pmd)
  774. {
  775. int ret = 0;
  776. struct page *page, *new_page;
  777. unsigned long haddr;
  778. unsigned long mmun_start; /* For mmu_notifiers */
  779. unsigned long mmun_end; /* For mmu_notifiers */
  780. VM_BUG_ON(!vma->anon_vma);
  781. spin_lock(&mm->page_table_lock);
  782. if (unlikely(!pmd_same(*pmd, orig_pmd)))
  783. goto out_unlock;
  784. page = pmd_page(orig_pmd);
  785. VM_BUG_ON(!PageCompound(page) || !PageHead(page));
  786. haddr = address & HPAGE_PMD_MASK;
  787. if (page_mapcount(page) == 1) {
  788. pmd_t entry;
  789. entry = pmd_mkyoung(orig_pmd);
  790. entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
  791. if (pmdp_set_access_flags(vma, haddr, pmd, entry, 1))
  792. update_mmu_cache_pmd(vma, address, pmd);
  793. ret |= VM_FAULT_WRITE;
  794. goto out_unlock;
  795. }
  796. get_page(page);
  797. spin_unlock(&mm->page_table_lock);
  798. if (transparent_hugepage_enabled(vma) &&
  799. !transparent_hugepage_debug_cow())
  800. new_page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
  801. vma, haddr, numa_node_id(), 0);
  802. else
  803. new_page = NULL;
  804. if (unlikely(!new_page)) {
  805. count_vm_event(THP_FAULT_FALLBACK);
  806. ret = do_huge_pmd_wp_page_fallback(mm, vma, address,
  807. pmd, orig_pmd, page, haddr);
  808. if (ret & VM_FAULT_OOM)
  809. split_huge_page(page);
  810. put_page(page);
  811. goto out;
  812. }
  813. count_vm_event(THP_FAULT_ALLOC);
  814. if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))) {
  815. put_page(new_page);
  816. split_huge_page(page);
  817. put_page(page);
  818. ret |= VM_FAULT_OOM;
  819. goto out;
  820. }
  821. copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
  822. __SetPageUptodate(new_page);
  823. mmun_start = haddr;
  824. mmun_end = haddr + HPAGE_PMD_SIZE;
  825. mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
  826. spin_lock(&mm->page_table_lock);
  827. put_page(page);
  828. if (unlikely(!pmd_same(*pmd, orig_pmd))) {
  829. spin_unlock(&mm->page_table_lock);
  830. mem_cgroup_uncharge_page(new_page);
  831. put_page(new_page);
  832. goto out_mn;
  833. } else {
  834. pmd_t entry;
  835. VM_BUG_ON(!PageHead(page));
  836. entry = mk_pmd(new_page, vma->vm_page_prot);
  837. entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
  838. entry = pmd_mkhuge(entry);
  839. pmdp_clear_flush(vma, haddr, pmd);
  840. page_add_new_anon_rmap(new_page, vma, haddr);
  841. set_pmd_at(mm, haddr, pmd, entry);
  842. update_mmu_cache_pmd(vma, address, pmd);
  843. page_remove_rmap(page);
  844. put_page(page);
  845. ret |= VM_FAULT_WRITE;
  846. }
  847. spin_unlock(&mm->page_table_lock);
  848. out_mn:
  849. mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
  850. out:
  851. return ret;
  852. out_unlock:
  853. spin_unlock(&mm->page_table_lock);
  854. return ret;
  855. }
  856. struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
  857. unsigned long addr,
  858. pmd_t *pmd,
  859. unsigned int flags)
  860. {
  861. struct mm_struct *mm = vma->vm_mm;
  862. struct page *page = NULL;
  863. assert_spin_locked(&mm->page_table_lock);
  864. if (flags & FOLL_WRITE && !pmd_write(*pmd))
  865. goto out;
  866. page = pmd_page(*pmd);
  867. VM_BUG_ON(!PageHead(page));
  868. if (flags & FOLL_TOUCH) {
  869. pmd_t _pmd;
  870. /*
  871. * We should set the dirty bit only for FOLL_WRITE but
  872. * for now the dirty bit in the pmd is meaningless.
  873. * And if the dirty bit will become meaningful and
  874. * we'll only set it with FOLL_WRITE, an atomic
  875. * set_bit will be required on the pmd to set the
  876. * young bit, instead of the current set_pmd_at.
  877. */
  878. _pmd = pmd_mkyoung(pmd_mkdirty(*pmd));
  879. set_pmd_at(mm, addr & HPAGE_PMD_MASK, pmd, _pmd);
  880. }
  881. if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
  882. if (page->mapping && trylock_page(page)) {
  883. lru_add_drain();
  884. if (page->mapping)
  885. mlock_vma_page(page);
  886. unlock_page(page);
  887. }
  888. }
  889. page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
  890. VM_BUG_ON(!PageCompound(page));
  891. if (flags & FOLL_GET)
  892. get_page_foll(page);
  893. out:
  894. return page;
  895. }
  896. /* NUMA hinting page fault entry point for trans huge pmds */
  897. int do_huge_pmd_numa_page(struct mm_struct *mm, unsigned long addr,
  898. pmd_t pmd, pmd_t *pmdp)
  899. {
  900. struct page *page;
  901. unsigned long haddr = addr & HPAGE_PMD_MASK;
  902. spin_lock(&mm->page_table_lock);
  903. if (unlikely(!pmd_same(pmd, *pmdp)))
  904. goto out_unlock;
  905. page = pmd_page(pmd);
  906. pmd = pmd_mknonnuma(pmd);
  907. set_pmd_at(mm, haddr, pmdp, pmd);
  908. VM_BUG_ON(pmd_numa(*pmdp));
  909. update_mmu_cache_pmd(vma, addr, pmdp);
  910. out_unlock:
  911. spin_unlock(&mm->page_table_lock);
  912. return 0;
  913. }
  914. int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
  915. pmd_t *pmd, unsigned long addr)
  916. {
  917. int ret = 0;
  918. if (__pmd_trans_huge_lock(pmd, vma) == 1) {
  919. struct page *page;
  920. pgtable_t pgtable;
  921. pmd_t orig_pmd;
  922. pgtable = pgtable_trans_huge_withdraw(tlb->mm);
  923. orig_pmd = pmdp_get_and_clear(tlb->mm, addr, pmd);
  924. page = pmd_page(orig_pmd);
  925. tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
  926. page_remove_rmap(page);
  927. VM_BUG_ON(page_mapcount(page) < 0);
  928. add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
  929. VM_BUG_ON(!PageHead(page));
  930. tlb->mm->nr_ptes--;
  931. spin_unlock(&tlb->mm->page_table_lock);
  932. tlb_remove_page(tlb, page);
  933. pte_free(tlb->mm, pgtable);
  934. ret = 1;
  935. }
  936. return ret;
  937. }
  938. int mincore_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
  939. unsigned long addr, unsigned long end,
  940. unsigned char *vec)
  941. {
  942. int ret = 0;
  943. if (__pmd_trans_huge_lock(pmd, vma) == 1) {
  944. /*
  945. * All logical pages in the range are present
  946. * if backed by a huge page.
  947. */
  948. spin_unlock(&vma->vm_mm->page_table_lock);
  949. memset(vec, 1, (end - addr) >> PAGE_SHIFT);
  950. ret = 1;
  951. }
  952. return ret;
  953. }
  954. int move_huge_pmd(struct vm_area_struct *vma, struct vm_area_struct *new_vma,
  955. unsigned long old_addr,
  956. unsigned long new_addr, unsigned long old_end,
  957. pmd_t *old_pmd, pmd_t *new_pmd)
  958. {
  959. int ret = 0;
  960. pmd_t pmd;
  961. struct mm_struct *mm = vma->vm_mm;
  962. if ((old_addr & ~HPAGE_PMD_MASK) ||
  963. (new_addr & ~HPAGE_PMD_MASK) ||
  964. old_end - old_addr < HPAGE_PMD_SIZE ||
  965. (new_vma->vm_flags & VM_NOHUGEPAGE))
  966. goto out;
  967. /*
  968. * The destination pmd shouldn't be established, free_pgtables()
  969. * should have release it.
  970. */
  971. if (WARN_ON(!pmd_none(*new_pmd))) {
  972. VM_BUG_ON(pmd_trans_huge(*new_pmd));
  973. goto out;
  974. }
  975. ret = __pmd_trans_huge_lock(old_pmd, vma);
  976. if (ret == 1) {
  977. pmd = pmdp_get_and_clear(mm, old_addr, old_pmd);
  978. VM_BUG_ON(!pmd_none(*new_pmd));
  979. set_pmd_at(mm, new_addr, new_pmd, pmd);
  980. spin_unlock(&mm->page_table_lock);
  981. }
  982. out:
  983. return ret;
  984. }
  985. int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
  986. unsigned long addr, pgprot_t newprot)
  987. {
  988. struct mm_struct *mm = vma->vm_mm;
  989. int ret = 0;
  990. if (__pmd_trans_huge_lock(pmd, vma) == 1) {
  991. pmd_t entry;
  992. entry = pmdp_get_and_clear(mm, addr, pmd);
  993. entry = pmd_modify(entry, newprot);
  994. set_pmd_at(mm, addr, pmd, entry);
  995. spin_unlock(&vma->vm_mm->page_table_lock);
  996. ret = 1;
  997. }
  998. return ret;
  999. }
  1000. /*
  1001. * Returns 1 if a given pmd maps a stable (not under splitting) thp.
  1002. * Returns -1 if it maps a thp under splitting. Returns 0 otherwise.
  1003. *
  1004. * Note that if it returns 1, this routine returns without unlocking page
  1005. * table locks. So callers must unlock them.
  1006. */
  1007. int __pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
  1008. {
  1009. spin_lock(&vma->vm_mm->page_table_lock);
  1010. if (likely(pmd_trans_huge(*pmd))) {
  1011. if (unlikely(pmd_trans_splitting(*pmd))) {
  1012. spin_unlock(&vma->vm_mm->page_table_lock);
  1013. wait_split_huge_page(vma->anon_vma, pmd);
  1014. return -1;
  1015. } else {
  1016. /* Thp mapped by 'pmd' is stable, so we can
  1017. * handle it as it is. */
  1018. return 1;
  1019. }
  1020. }
  1021. spin_unlock(&vma->vm_mm->page_table_lock);
  1022. return 0;
  1023. }
  1024. pmd_t *page_check_address_pmd(struct page *page,
  1025. struct mm_struct *mm,
  1026. unsigned long address,
  1027. enum page_check_address_pmd_flag flag)
  1028. {
  1029. pgd_t *pgd;
  1030. pud_t *pud;
  1031. pmd_t *pmd, *ret = NULL;
  1032. if (address & ~HPAGE_PMD_MASK)
  1033. goto out;
  1034. pgd = pgd_offset(mm, address);
  1035. if (!pgd_present(*pgd))
  1036. goto out;
  1037. pud = pud_offset(pgd, address);
  1038. if (!pud_present(*pud))
  1039. goto out;
  1040. pmd = pmd_offset(pud, address);
  1041. if (pmd_none(*pmd))
  1042. goto out;
  1043. if (pmd_page(*pmd) != page)
  1044. goto out;
  1045. /*
  1046. * split_vma() may create temporary aliased mappings. There is
  1047. * no risk as long as all huge pmd are found and have their
  1048. * splitting bit set before __split_huge_page_refcount
  1049. * runs. Finding the same huge pmd more than once during the
  1050. * same rmap walk is not a problem.
  1051. */
  1052. if (flag == PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG &&
  1053. pmd_trans_splitting(*pmd))
  1054. goto out;
  1055. if (pmd_trans_huge(*pmd)) {
  1056. VM_BUG_ON(flag == PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG &&
  1057. !pmd_trans_splitting(*pmd));
  1058. ret = pmd;
  1059. }
  1060. out:
  1061. return ret;
  1062. }
  1063. static int __split_huge_page_splitting(struct page *page,
  1064. struct vm_area_struct *vma,
  1065. unsigned long address)
  1066. {
  1067. struct mm_struct *mm = vma->vm_mm;
  1068. pmd_t *pmd;
  1069. int ret = 0;
  1070. /* For mmu_notifiers */
  1071. const unsigned long mmun_start = address;
  1072. const unsigned long mmun_end = address + HPAGE_PMD_SIZE;
  1073. mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
  1074. spin_lock(&mm->page_table_lock);
  1075. pmd = page_check_address_pmd(page, mm, address,
  1076. PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG);
  1077. if (pmd) {
  1078. /*
  1079. * We can't temporarily set the pmd to null in order
  1080. * to split it, the pmd must remain marked huge at all
  1081. * times or the VM won't take the pmd_trans_huge paths
  1082. * and it won't wait on the anon_vma->root->mutex to
  1083. * serialize against split_huge_page*.
  1084. */
  1085. pmdp_splitting_flush(vma, address, pmd);
  1086. ret = 1;
  1087. }
  1088. spin_unlock(&mm->page_table_lock);
  1089. mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
  1090. return ret;
  1091. }
  1092. static void __split_huge_page_refcount(struct page *page)
  1093. {
  1094. int i;
  1095. struct zone *zone = page_zone(page);
  1096. struct lruvec *lruvec;
  1097. int tail_count = 0;
  1098. /* prevent PageLRU to go away from under us, and freeze lru stats */
  1099. spin_lock_irq(&zone->lru_lock);
  1100. lruvec = mem_cgroup_page_lruvec(page, zone);
  1101. compound_lock(page);
  1102. /* complete memcg works before add pages to LRU */
  1103. mem_cgroup_split_huge_fixup(page);
  1104. for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
  1105. struct page *page_tail = page + i;
  1106. /* tail_page->_mapcount cannot change */
  1107. BUG_ON(page_mapcount(page_tail) < 0);
  1108. tail_count += page_mapcount(page_tail);
  1109. /* check for overflow */
  1110. BUG_ON(tail_count < 0);
  1111. BUG_ON(atomic_read(&page_tail->_count) != 0);
  1112. /*
  1113. * tail_page->_count is zero and not changing from
  1114. * under us. But get_page_unless_zero() may be running
  1115. * from under us on the tail_page. If we used
  1116. * atomic_set() below instead of atomic_add(), we
  1117. * would then run atomic_set() concurrently with
  1118. * get_page_unless_zero(), and atomic_set() is
  1119. * implemented in C not using locked ops. spin_unlock
  1120. * on x86 sometime uses locked ops because of PPro
  1121. * errata 66, 92, so unless somebody can guarantee
  1122. * atomic_set() here would be safe on all archs (and
  1123. * not only on x86), it's safer to use atomic_add().
  1124. */
  1125. atomic_add(page_mapcount(page) + page_mapcount(page_tail) + 1,
  1126. &page_tail->_count);
  1127. /* after clearing PageTail the gup refcount can be released */
  1128. smp_mb();
  1129. /*
  1130. * retain hwpoison flag of the poisoned tail page:
  1131. * fix for the unsuitable process killed on Guest Machine(KVM)
  1132. * by the memory-failure.
  1133. */
  1134. page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP | __PG_HWPOISON;
  1135. page_tail->flags |= (page->flags &
  1136. ((1L << PG_referenced) |
  1137. (1L << PG_swapbacked) |
  1138. (1L << PG_mlocked) |
  1139. (1L << PG_uptodate)));
  1140. page_tail->flags |= (1L << PG_dirty);
  1141. /* clear PageTail before overwriting first_page */
  1142. smp_wmb();
  1143. /*
  1144. * __split_huge_page_splitting() already set the
  1145. * splitting bit in all pmd that could map this
  1146. * hugepage, that will ensure no CPU can alter the
  1147. * mapcount on the head page. The mapcount is only
  1148. * accounted in the head page and it has to be
  1149. * transferred to all tail pages in the below code. So
  1150. * for this code to be safe, the split the mapcount
  1151. * can't change. But that doesn't mean userland can't
  1152. * keep changing and reading the page contents while
  1153. * we transfer the mapcount, so the pmd splitting
  1154. * status is achieved setting a reserved bit in the
  1155. * pmd, not by clearing the present bit.
  1156. */
  1157. page_tail->_mapcount = page->_mapcount;
  1158. BUG_ON(page_tail->mapping);
  1159. page_tail->mapping = page->mapping;
  1160. page_tail->index = page->index + i;
  1161. BUG_ON(!PageAnon(page_tail));
  1162. BUG_ON(!PageUptodate(page_tail));
  1163. BUG_ON(!PageDirty(page_tail));
  1164. BUG_ON(!PageSwapBacked(page_tail));
  1165. lru_add_page_tail(page, page_tail, lruvec);
  1166. }
  1167. atomic_sub(tail_count, &page->_count);
  1168. BUG_ON(atomic_read(&page->_count) <= 0);
  1169. __mod_zone_page_state(zone, NR_ANON_TRANSPARENT_HUGEPAGES, -1);
  1170. __mod_zone_page_state(zone, NR_ANON_PAGES, HPAGE_PMD_NR);
  1171. ClearPageCompound(page);
  1172. compound_unlock(page);
  1173. spin_unlock_irq(&zone->lru_lock);
  1174. for (i = 1; i < HPAGE_PMD_NR; i++) {
  1175. struct page *page_tail = page + i;
  1176. BUG_ON(page_count(page_tail) <= 0);
  1177. /*
  1178. * Tail pages may be freed if there wasn't any mapping
  1179. * like if add_to_swap() is running on a lru page that
  1180. * had its mapping zapped. And freeing these pages
  1181. * requires taking the lru_lock so we do the put_page
  1182. * of the tail pages after the split is complete.
  1183. */
  1184. put_page(page_tail);
  1185. }
  1186. /*
  1187. * Only the head page (now become a regular page) is required
  1188. * to be pinned by the caller.
  1189. */
  1190. BUG_ON(page_count(page) <= 0);
  1191. }
  1192. static int __split_huge_page_map(struct page *page,
  1193. struct vm_area_struct *vma,
  1194. unsigned long address)
  1195. {
  1196. struct mm_struct *mm = vma->vm_mm;
  1197. pmd_t *pmd, _pmd;
  1198. int ret = 0, i;
  1199. pgtable_t pgtable;
  1200. unsigned long haddr;
  1201. spin_lock(&mm->page_table_lock);
  1202. pmd = page_check_address_pmd(page, mm, address,
  1203. PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG);
  1204. if (pmd) {
  1205. pgtable = pgtable_trans_huge_withdraw(mm);
  1206. pmd_populate(mm, &_pmd, pgtable);
  1207. haddr = address;
  1208. for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
  1209. pte_t *pte, entry;
  1210. BUG_ON(PageCompound(page+i));
  1211. entry = mk_pte(page + i, vma->vm_page_prot);
  1212. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  1213. if (!pmd_write(*pmd))
  1214. entry = pte_wrprotect(entry);
  1215. else
  1216. BUG_ON(page_mapcount(page) != 1);
  1217. if (!pmd_young(*pmd))
  1218. entry = pte_mkold(entry);
  1219. if (pmd_numa(*pmd))
  1220. entry = pte_mknuma(entry);
  1221. pte = pte_offset_map(&_pmd, haddr);
  1222. BUG_ON(!pte_none(*pte));
  1223. set_pte_at(mm, haddr, pte, entry);
  1224. pte_unmap(pte);
  1225. }
  1226. smp_wmb(); /* make pte visible before pmd */
  1227. /*
  1228. * Up to this point the pmd is present and huge and
  1229. * userland has the whole access to the hugepage
  1230. * during the split (which happens in place). If we
  1231. * overwrite the pmd with the not-huge version
  1232. * pointing to the pte here (which of course we could
  1233. * if all CPUs were bug free), userland could trigger
  1234. * a small page size TLB miss on the small sized TLB
  1235. * while the hugepage TLB entry is still established
  1236. * in the huge TLB. Some CPU doesn't like that. See
  1237. * http://support.amd.com/us/Processor_TechDocs/41322.pdf,
  1238. * Erratum 383 on page 93. Intel should be safe but is
  1239. * also warns that it's only safe if the permission
  1240. * and cache attributes of the two entries loaded in
  1241. * the two TLB is identical (which should be the case
  1242. * here). But it is generally safer to never allow
  1243. * small and huge TLB entries for the same virtual
  1244. * address to be loaded simultaneously. So instead of
  1245. * doing "pmd_populate(); flush_tlb_range();" we first
  1246. * mark the current pmd notpresent (atomically because
  1247. * here the pmd_trans_huge and pmd_trans_splitting
  1248. * must remain set at all times on the pmd until the
  1249. * split is complete for this pmd), then we flush the
  1250. * SMP TLB and finally we write the non-huge version
  1251. * of the pmd entry with pmd_populate.
  1252. */
  1253. pmdp_invalidate(vma, address, pmd);
  1254. pmd_populate(mm, pmd, pgtable);
  1255. ret = 1;
  1256. }
  1257. spin_unlock(&mm->page_table_lock);
  1258. return ret;
  1259. }
  1260. /* must be called with anon_vma->root->mutex hold */
  1261. static void __split_huge_page(struct page *page,
  1262. struct anon_vma *anon_vma)
  1263. {
  1264. int mapcount, mapcount2;
  1265. pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
  1266. struct anon_vma_chain *avc;
  1267. BUG_ON(!PageHead(page));
  1268. BUG_ON(PageTail(page));
  1269. mapcount = 0;
  1270. anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
  1271. struct vm_area_struct *vma = avc->vma;
  1272. unsigned long addr = vma_address(page, vma);
  1273. BUG_ON(is_vma_temporary_stack(vma));
  1274. mapcount += __split_huge_page_splitting(page, vma, addr);
  1275. }
  1276. /*
  1277. * It is critical that new vmas are added to the tail of the
  1278. * anon_vma list. This guarantes that if copy_huge_pmd() runs
  1279. * and establishes a child pmd before
  1280. * __split_huge_page_splitting() freezes the parent pmd (so if
  1281. * we fail to prevent copy_huge_pmd() from running until the
  1282. * whole __split_huge_page() is complete), we will still see
  1283. * the newly established pmd of the child later during the
  1284. * walk, to be able to set it as pmd_trans_splitting too.
  1285. */
  1286. if (mapcount != page_mapcount(page))
  1287. printk(KERN_ERR "mapcount %d page_mapcount %d\n",
  1288. mapcount, page_mapcount(page));
  1289. BUG_ON(mapcount != page_mapcount(page));
  1290. __split_huge_page_refcount(page);
  1291. mapcount2 = 0;
  1292. anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
  1293. struct vm_area_struct *vma = avc->vma;
  1294. unsigned long addr = vma_address(page, vma);
  1295. BUG_ON(is_vma_temporary_stack(vma));
  1296. mapcount2 += __split_huge_page_map(page, vma, addr);
  1297. }
  1298. if (mapcount != mapcount2)
  1299. printk(KERN_ERR "mapcount %d mapcount2 %d page_mapcount %d\n",
  1300. mapcount, mapcount2, page_mapcount(page));
  1301. BUG_ON(mapcount != mapcount2);
  1302. }
  1303. int split_huge_page(struct page *page)
  1304. {
  1305. struct anon_vma *anon_vma;
  1306. int ret = 1;
  1307. BUG_ON(!PageAnon(page));
  1308. anon_vma = page_lock_anon_vma(page);
  1309. if (!anon_vma)
  1310. goto out;
  1311. ret = 0;
  1312. if (!PageCompound(page))
  1313. goto out_unlock;
  1314. BUG_ON(!PageSwapBacked(page));
  1315. __split_huge_page(page, anon_vma);
  1316. count_vm_event(THP_SPLIT);
  1317. BUG_ON(PageCompound(page));
  1318. out_unlock:
  1319. page_unlock_anon_vma(anon_vma);
  1320. out:
  1321. return ret;
  1322. }
  1323. #define VM_NO_THP (VM_SPECIAL|VM_MIXEDMAP|VM_HUGETLB|VM_SHARED|VM_MAYSHARE)
  1324. int hugepage_madvise(struct vm_area_struct *vma,
  1325. unsigned long *vm_flags, int advice)
  1326. {
  1327. struct mm_struct *mm = vma->vm_mm;
  1328. switch (advice) {
  1329. case MADV_HUGEPAGE:
  1330. /*
  1331. * Be somewhat over-protective like KSM for now!
  1332. */
  1333. if (*vm_flags & (VM_HUGEPAGE | VM_NO_THP))
  1334. return -EINVAL;
  1335. if (mm->def_flags & VM_NOHUGEPAGE)
  1336. return -EINVAL;
  1337. *vm_flags &= ~VM_NOHUGEPAGE;
  1338. *vm_flags |= VM_HUGEPAGE;
  1339. /*
  1340. * If the vma become good for khugepaged to scan,
  1341. * register it here without waiting a page fault that
  1342. * may not happen any time soon.
  1343. */
  1344. if (unlikely(khugepaged_enter_vma_merge(vma)))
  1345. return -ENOMEM;
  1346. break;
  1347. case MADV_NOHUGEPAGE:
  1348. /*
  1349. * Be somewhat over-protective like KSM for now!
  1350. */
  1351. if (*vm_flags & (VM_NOHUGEPAGE | VM_NO_THP))
  1352. return -EINVAL;
  1353. *vm_flags &= ~VM_HUGEPAGE;
  1354. *vm_flags |= VM_NOHUGEPAGE;
  1355. /*
  1356. * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
  1357. * this vma even if we leave the mm registered in khugepaged if
  1358. * it got registered before VM_NOHUGEPAGE was set.
  1359. */
  1360. break;
  1361. }
  1362. return 0;
  1363. }
  1364. static int __init khugepaged_slab_init(void)
  1365. {
  1366. mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
  1367. sizeof(struct mm_slot),
  1368. __alignof__(struct mm_slot), 0, NULL);
  1369. if (!mm_slot_cache)
  1370. return -ENOMEM;
  1371. return 0;
  1372. }
  1373. static void __init khugepaged_slab_free(void)
  1374. {
  1375. kmem_cache_destroy(mm_slot_cache);
  1376. mm_slot_cache = NULL;
  1377. }
  1378. static inline struct mm_slot *alloc_mm_slot(void)
  1379. {
  1380. if (!mm_slot_cache) /* initialization failed */
  1381. return NULL;
  1382. return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
  1383. }
  1384. static inline void free_mm_slot(struct mm_slot *mm_slot)
  1385. {
  1386. kmem_cache_free(mm_slot_cache, mm_slot);
  1387. }
  1388. static int __init mm_slots_hash_init(void)
  1389. {
  1390. mm_slots_hash = kzalloc(MM_SLOTS_HASH_HEADS * sizeof(struct hlist_head),
  1391. GFP_KERNEL);
  1392. if (!mm_slots_hash)
  1393. return -ENOMEM;
  1394. return 0;
  1395. }
  1396. #if 0
  1397. static void __init mm_slots_hash_free(void)
  1398. {
  1399. kfree(mm_slots_hash);
  1400. mm_slots_hash = NULL;
  1401. }
  1402. #endif
  1403. static struct mm_slot *get_mm_slot(struct mm_struct *mm)
  1404. {
  1405. struct mm_slot *mm_slot;
  1406. struct hlist_head *bucket;
  1407. struct hlist_node *node;
  1408. bucket = &mm_slots_hash[((unsigned long)mm / sizeof(struct mm_struct))
  1409. % MM_SLOTS_HASH_HEADS];
  1410. hlist_for_each_entry(mm_slot, node, bucket, hash) {
  1411. if (mm == mm_slot->mm)
  1412. return mm_slot;
  1413. }
  1414. return NULL;
  1415. }
  1416. static void insert_to_mm_slots_hash(struct mm_struct *mm,
  1417. struct mm_slot *mm_slot)
  1418. {
  1419. struct hlist_head *bucket;
  1420. bucket = &mm_slots_hash[((unsigned long)mm / sizeof(struct mm_struct))
  1421. % MM_SLOTS_HASH_HEADS];
  1422. mm_slot->mm = mm;
  1423. hlist_add_head(&mm_slot->hash, bucket);
  1424. }
  1425. static inline int khugepaged_test_exit(struct mm_struct *mm)
  1426. {
  1427. return atomic_read(&mm->mm_users) == 0;
  1428. }
  1429. int __khugepaged_enter(struct mm_struct *mm)
  1430. {
  1431. struct mm_slot *mm_slot;
  1432. int wakeup;
  1433. mm_slot = alloc_mm_slot();
  1434. if (!mm_slot)
  1435. return -ENOMEM;
  1436. /* __khugepaged_exit() must not run from under us */
  1437. VM_BUG_ON(khugepaged_test_exit(mm));
  1438. if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
  1439. free_mm_slot(mm_slot);
  1440. return 0;
  1441. }
  1442. spin_lock(&khugepaged_mm_lock);
  1443. insert_to_mm_slots_hash(mm, mm_slot);
  1444. /*
  1445. * Insert just behind the scanning cursor, to let the area settle
  1446. * down a little.
  1447. */
  1448. wakeup = list_empty(&khugepaged_scan.mm_head);
  1449. list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
  1450. spin_unlock(&khugepaged_mm_lock);
  1451. atomic_inc(&mm->mm_count);
  1452. if (wakeup)
  1453. wake_up_interruptible(&khugepaged_wait);
  1454. return 0;
  1455. }
  1456. int khugepaged_enter_vma_merge(struct vm_area_struct *vma)
  1457. {
  1458. unsigned long hstart, hend;
  1459. if (!vma->anon_vma)
  1460. /*
  1461. * Not yet faulted in so we will register later in the
  1462. * page fault if needed.
  1463. */
  1464. return 0;
  1465. if (vma->vm_ops)
  1466. /* khugepaged not yet working on file or special mappings */
  1467. return 0;
  1468. VM_BUG_ON(vma->vm_flags & VM_NO_THP);
  1469. hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
  1470. hend = vma->vm_end & HPAGE_PMD_MASK;
  1471. if (hstart < hend)
  1472. return khugepaged_enter(vma);
  1473. return 0;
  1474. }
  1475. void __khugepaged_exit(struct mm_struct *mm)
  1476. {
  1477. struct mm_slot *mm_slot;
  1478. int free = 0;
  1479. spin_lock(&khugepaged_mm_lock);
  1480. mm_slot = get_mm_slot(mm);
  1481. if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
  1482. hlist_del(&mm_slot->hash);
  1483. list_del(&mm_slot->mm_node);
  1484. free = 1;
  1485. }
  1486. spin_unlock(&khugepaged_mm_lock);
  1487. if (free) {
  1488. clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
  1489. free_mm_slot(mm_slot);
  1490. mmdrop(mm);
  1491. } else if (mm_slot) {
  1492. /*
  1493. * This is required to serialize against
  1494. * khugepaged_test_exit() (which is guaranteed to run
  1495. * under mmap sem read mode). Stop here (after we
  1496. * return all pagetables will be destroyed) until
  1497. * khugepaged has finished working on the pagetables
  1498. * under the mmap_sem.
  1499. */
  1500. down_write(&mm->mmap_sem);
  1501. up_write(&mm->mmap_sem);
  1502. }
  1503. }
  1504. static void release_pte_page(struct page *page)
  1505. {
  1506. /* 0 stands for page_is_file_cache(page) == false */
  1507. dec_zone_page_state(page, NR_ISOLATED_ANON + 0);
  1508. unlock_page(page);
  1509. putback_lru_page(page);
  1510. }
  1511. static void release_pte_pages(pte_t *pte, pte_t *_pte)
  1512. {
  1513. while (--_pte >= pte) {
  1514. pte_t pteval = *_pte;
  1515. if (!pte_none(pteval))
  1516. release_pte_page(pte_page(pteval));
  1517. }
  1518. }
  1519. static void release_all_pte_pages(pte_t *pte)
  1520. {
  1521. release_pte_pages(pte, pte + HPAGE_PMD_NR);
  1522. }
  1523. static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
  1524. unsigned long address,
  1525. pte_t *pte)
  1526. {
  1527. struct page *page;
  1528. pte_t *_pte;
  1529. int referenced = 0, isolated = 0, none = 0;
  1530. for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
  1531. _pte++, address += PAGE_SIZE) {
  1532. pte_t pteval = *_pte;
  1533. if (pte_none(pteval)) {
  1534. if (++none <= khugepaged_max_ptes_none)
  1535. continue;
  1536. else {
  1537. release_pte_pages(pte, _pte);
  1538. goto out;
  1539. }
  1540. }
  1541. if (!pte_present(pteval) || !pte_write(pteval)) {
  1542. release_pte_pages(pte, _pte);
  1543. goto out;
  1544. }
  1545. page = vm_normal_page(vma, address, pteval);
  1546. if (unlikely(!page)) {
  1547. release_pte_pages(pte, _pte);
  1548. goto out;
  1549. }
  1550. VM_BUG_ON(PageCompound(page));
  1551. BUG_ON(!PageAnon(page));
  1552. VM_BUG_ON(!PageSwapBacked(page));
  1553. /* cannot use mapcount: can't collapse if there's a gup pin */
  1554. if (page_count(page) != 1) {
  1555. release_pte_pages(pte, _pte);
  1556. goto out;
  1557. }
  1558. /*
  1559. * We can do it before isolate_lru_page because the
  1560. * page can't be freed from under us. NOTE: PG_lock
  1561. * is needed to serialize against split_huge_page
  1562. * when invoked from the VM.
  1563. */
  1564. if (!trylock_page(page)) {
  1565. release_pte_pages(pte, _pte);
  1566. goto out;
  1567. }
  1568. /*
  1569. * Isolate the page to avoid collapsing an hugepage
  1570. * currently in use by the VM.
  1571. */
  1572. if (isolate_lru_page(page)) {
  1573. unlock_page(page);
  1574. release_pte_pages(pte, _pte);
  1575. goto out;
  1576. }
  1577. /* 0 stands for page_is_file_cache(page) == false */
  1578. inc_zone_page_state(page, NR_ISOLATED_ANON + 0);
  1579. VM_BUG_ON(!PageLocked(page));
  1580. VM_BUG_ON(PageLRU(page));
  1581. /* If there is no mapped pte young don't collapse the page */
  1582. if (pte_young(pteval) || PageReferenced(page) ||
  1583. mmu_notifier_test_young(vma->vm_mm, address))
  1584. referenced = 1;
  1585. }
  1586. if (unlikely(!referenced))
  1587. release_all_pte_pages(pte);
  1588. else
  1589. isolated = 1;
  1590. out:
  1591. return isolated;
  1592. }
  1593. static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
  1594. struct vm_area_struct *vma,
  1595. unsigned long address,
  1596. spinlock_t *ptl)
  1597. {
  1598. pte_t *_pte;
  1599. for (_pte = pte; _pte < pte+HPAGE_PMD_NR; _pte++) {
  1600. pte_t pteval = *_pte;
  1601. struct page *src_page;
  1602. if (pte_none(pteval)) {
  1603. clear_user_highpage(page, address);
  1604. add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
  1605. } else {
  1606. src_page = pte_page(pteval);
  1607. copy_user_highpage(page, src_page, address, vma);
  1608. VM_BUG_ON(page_mapcount(src_page) != 1);
  1609. release_pte_page(src_page);
  1610. /*
  1611. * ptl mostly unnecessary, but preempt has to
  1612. * be disabled to update the per-cpu stats
  1613. * inside page_remove_rmap().
  1614. */
  1615. spin_lock(ptl);
  1616. /*
  1617. * paravirt calls inside pte_clear here are
  1618. * superfluous.
  1619. */
  1620. pte_clear(vma->vm_mm, address, _pte);
  1621. page_remove_rmap(src_page);
  1622. spin_unlock(ptl);
  1623. free_page_and_swap_cache(src_page);
  1624. }
  1625. address += PAGE_SIZE;
  1626. page++;
  1627. }
  1628. }
  1629. static void khugepaged_alloc_sleep(void)
  1630. {
  1631. wait_event_freezable_timeout(khugepaged_wait, false,
  1632. msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
  1633. }
  1634. #ifdef CONFIG_NUMA
  1635. static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
  1636. {
  1637. if (IS_ERR(*hpage)) {
  1638. if (!*wait)
  1639. return false;
  1640. *wait = false;
  1641. *hpage = NULL;
  1642. khugepaged_alloc_sleep();
  1643. } else if (*hpage) {
  1644. put_page(*hpage);
  1645. *hpage = NULL;
  1646. }
  1647. return true;
  1648. }
  1649. static struct page
  1650. *khugepaged_alloc_page(struct page **hpage, struct mm_struct *mm,
  1651. struct vm_area_struct *vma, unsigned long address,
  1652. int node)
  1653. {
  1654. VM_BUG_ON(*hpage);
  1655. /*
  1656. * Allocate the page while the vma is still valid and under
  1657. * the mmap_sem read mode so there is no memory allocation
  1658. * later when we take the mmap_sem in write mode. This is more
  1659. * friendly behavior (OTOH it may actually hide bugs) to
  1660. * filesystems in userland with daemons allocating memory in
  1661. * the userland I/O paths. Allocating memory with the
  1662. * mmap_sem in read mode is good idea also to allow greater
  1663. * scalability.
  1664. */
  1665. *hpage = alloc_hugepage_vma(khugepaged_defrag(), vma, address,
  1666. node, __GFP_OTHER_NODE);
  1667. /*
  1668. * After allocating the hugepage, release the mmap_sem read lock in
  1669. * preparation for taking it in write mode.
  1670. */
  1671. up_read(&mm->mmap_sem);
  1672. if (unlikely(!*hpage)) {
  1673. count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
  1674. *hpage = ERR_PTR(-ENOMEM);
  1675. return NULL;
  1676. }
  1677. count_vm_event(THP_COLLAPSE_ALLOC);
  1678. return *hpage;
  1679. }
  1680. #else
  1681. static struct page *khugepaged_alloc_hugepage(bool *wait)
  1682. {
  1683. struct page *hpage;
  1684. do {
  1685. hpage = alloc_hugepage(khugepaged_defrag());
  1686. if (!hpage) {
  1687. count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
  1688. if (!*wait)
  1689. return NULL;
  1690. *wait = false;
  1691. khugepaged_alloc_sleep();
  1692. } else
  1693. count_vm_event(THP_COLLAPSE_ALLOC);
  1694. } while (unlikely(!hpage) && likely(khugepaged_enabled()));
  1695. return hpage;
  1696. }
  1697. static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
  1698. {
  1699. if (!*hpage)
  1700. *hpage = khugepaged_alloc_hugepage(wait);
  1701. if (unlikely(!*hpage))
  1702. return false;
  1703. return true;
  1704. }
  1705. static struct page
  1706. *khugepaged_alloc_page(struct page **hpage, struct mm_struct *mm,
  1707. struct vm_area_struct *vma, unsigned long address,
  1708. int node)
  1709. {
  1710. up_read(&mm->mmap_sem);
  1711. VM_BUG_ON(!*hpage);
  1712. return *hpage;
  1713. }
  1714. #endif
  1715. static void collapse_huge_page(struct mm_struct *mm,
  1716. unsigned long address,
  1717. struct page **hpage,
  1718. struct vm_area_struct *vma,
  1719. int node)
  1720. {
  1721. pgd_t *pgd;
  1722. pud_t *pud;
  1723. pmd_t *pmd, _pmd;
  1724. pte_t *pte;
  1725. pgtable_t pgtable;
  1726. struct page *new_page;
  1727. spinlock_t *ptl;
  1728. int isolated;
  1729. unsigned long hstart, hend;
  1730. unsigned long mmun_start; /* For mmu_notifiers */
  1731. unsigned long mmun_end; /* For mmu_notifiers */
  1732. VM_BUG_ON(address & ~HPAGE_PMD_MASK);
  1733. /* release the mmap_sem read lock. */
  1734. new_page = khugepaged_alloc_page(hpage, mm, vma, address, node);
  1735. if (!new_page)
  1736. return;
  1737. if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL)))
  1738. return;
  1739. /*
  1740. * Prevent all access to pagetables with the exception of
  1741. * gup_fast later hanlded by the ptep_clear_flush and the VM
  1742. * handled by the anon_vma lock + PG_lock.
  1743. */
  1744. down_write(&mm->mmap_sem);
  1745. if (unlikely(khugepaged_test_exit(mm)))
  1746. goto out;
  1747. vma = find_vma(mm, address);
  1748. hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
  1749. hend = vma->vm_end & HPAGE_PMD_MASK;
  1750. if (address < hstart || address + HPAGE_PMD_SIZE > hend)
  1751. goto out;
  1752. if ((!(vma->vm_flags & VM_HUGEPAGE) && !khugepaged_always()) ||
  1753. (vma->vm_flags & VM_NOHUGEPAGE))
  1754. goto out;
  1755. if (!vma->anon_vma || vma->vm_ops)
  1756. goto out;
  1757. if (is_vma_temporary_stack(vma))
  1758. goto out;
  1759. VM_BUG_ON(vma->vm_flags & VM_NO_THP);
  1760. pgd = pgd_offset(mm, address);
  1761. if (!pgd_present(*pgd))
  1762. goto out;
  1763. pud = pud_offset(pgd, address);
  1764. if (!pud_present(*pud))
  1765. goto out;
  1766. pmd = pmd_offset(pud, address);
  1767. /* pmd can't go away or become huge under us */
  1768. if (!pmd_present(*pmd) || pmd_trans_huge(*pmd))
  1769. goto out;
  1770. anon_vma_lock(vma->anon_vma);
  1771. pte = pte_offset_map(pmd, address);
  1772. ptl = pte_lockptr(mm, pmd);
  1773. mmun_start = address;
  1774. mmun_end = address + HPAGE_PMD_SIZE;
  1775. mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
  1776. spin_lock(&mm->page_table_lock); /* probably unnecessary */
  1777. /*
  1778. * After this gup_fast can't run anymore. This also removes
  1779. * any huge TLB entry from the CPU so we won't allow
  1780. * huge and small TLB entries for the same virtual address
  1781. * to avoid the risk of CPU bugs in that area.
  1782. */
  1783. _pmd = pmdp_clear_flush(vma, address, pmd);
  1784. spin_unlock(&mm->page_table_lock);
  1785. mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
  1786. spin_lock(ptl);
  1787. isolated = __collapse_huge_page_isolate(vma, address, pte);
  1788. spin_unlock(ptl);
  1789. if (unlikely(!isolated)) {
  1790. pte_unmap(pte);
  1791. spin_lock(&mm->page_table_lock);
  1792. BUG_ON(!pmd_none(*pmd));
  1793. set_pmd_at(mm, address, pmd, _pmd);
  1794. spin_unlock(&mm->page_table_lock);
  1795. anon_vma_unlock(vma->anon_vma);
  1796. goto out;
  1797. }
  1798. /*
  1799. * All pages are isolated and locked so anon_vma rmap
  1800. * can't run anymore.
  1801. */
  1802. anon_vma_unlock(vma->anon_vma);
  1803. __collapse_huge_page_copy(pte, new_page, vma, address, ptl);
  1804. pte_unmap(pte);
  1805. __SetPageUptodate(new_page);
  1806. pgtable = pmd_pgtable(_pmd);
  1807. _pmd = mk_pmd(new_page, vma->vm_page_prot);
  1808. _pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
  1809. _pmd = pmd_mkhuge(_pmd);
  1810. /*
  1811. * spin_lock() below is not the equivalent of smp_wmb(), so
  1812. * this is needed to avoid the copy_huge_page writes to become
  1813. * visible after the set_pmd_at() write.
  1814. */
  1815. smp_wmb();
  1816. spin_lock(&mm->page_table_lock);
  1817. BUG_ON(!pmd_none(*pmd));
  1818. page_add_new_anon_rmap(new_page, vma, address);
  1819. set_pmd_at(mm, address, pmd, _pmd);
  1820. update_mmu_cache_pmd(vma, address, pmd);
  1821. pgtable_trans_huge_deposit(mm, pgtable);
  1822. spin_unlock(&mm->page_table_lock);
  1823. *hpage = NULL;
  1824. khugepaged_pages_collapsed++;
  1825. out_up_write:
  1826. up_write(&mm->mmap_sem);
  1827. return;
  1828. out:
  1829. mem_cgroup_uncharge_page(new_page);
  1830. goto out_up_write;
  1831. }
  1832. static int khugepaged_scan_pmd(struct mm_struct *mm,
  1833. struct vm_area_struct *vma,
  1834. unsigned long address,
  1835. struct page **hpage)
  1836. {
  1837. pgd_t *pgd;
  1838. pud_t *pud;
  1839. pmd_t *pmd;
  1840. pte_t *pte, *_pte;
  1841. int ret = 0, referenced = 0, none = 0;
  1842. struct page *page;
  1843. unsigned long _address;
  1844. spinlock_t *ptl;
  1845. int node = -1;
  1846. VM_BUG_ON(address & ~HPAGE_PMD_MASK);
  1847. pgd = pgd_offset(mm, address);
  1848. if (!pgd_present(*pgd))
  1849. goto out;
  1850. pud = pud_offset(pgd, address);
  1851. if (!pud_present(*pud))
  1852. goto out;
  1853. pmd = pmd_offset(pud, address);
  1854. if (!pmd_present(*pmd) || pmd_trans_huge(*pmd))
  1855. goto out;
  1856. pte = pte_offset_map_lock(mm, pmd, address, &ptl);
  1857. for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
  1858. _pte++, _address += PAGE_SIZE) {
  1859. pte_t pteval = *_pte;
  1860. if (pte_none(pteval)) {
  1861. if (++none <= khugepaged_max_ptes_none)
  1862. continue;
  1863. else
  1864. goto out_unmap;
  1865. }
  1866. if (!pte_present(pteval) || !pte_write(pteval))
  1867. goto out_unmap;
  1868. page = vm_normal_page(vma, _address, pteval);
  1869. if (unlikely(!page))
  1870. goto out_unmap;
  1871. /*
  1872. * Chose the node of the first page. This could
  1873. * be more sophisticated and look at more pages,
  1874. * but isn't for now.
  1875. */
  1876. if (node == -1)
  1877. node = page_to_nid(page);
  1878. VM_BUG_ON(PageCompound(page));
  1879. if (!PageLRU(page) || PageLocked(page) || !PageAnon(page))
  1880. goto out_unmap;
  1881. /* cannot use mapcount: can't collapse if there's a gup pin */
  1882. if (page_count(page) != 1)
  1883. goto out_unmap;
  1884. if (pte_young(pteval) || PageReferenced(page) ||
  1885. mmu_notifier_test_young(vma->vm_mm, address))
  1886. referenced = 1;
  1887. }
  1888. if (referenced)
  1889. ret = 1;
  1890. out_unmap:
  1891. pte_unmap_unlock(pte, ptl);
  1892. if (ret)
  1893. /* collapse_huge_page will return with the mmap_sem released */
  1894. collapse_huge_page(mm, address, hpage, vma, node);
  1895. out:
  1896. return ret;
  1897. }
  1898. static void collect_mm_slot(struct mm_slot *mm_slot)
  1899. {
  1900. struct mm_struct *mm = mm_slot->mm;
  1901. VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
  1902. if (khugepaged_test_exit(mm)) {
  1903. /* free mm_slot */
  1904. hlist_del(&mm_slot->hash);
  1905. list_del(&mm_slot->mm_node);
  1906. /*
  1907. * Not strictly needed because the mm exited already.
  1908. *
  1909. * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
  1910. */
  1911. /* khugepaged_mm_lock actually not necessary for the below */
  1912. free_mm_slot(mm_slot);
  1913. mmdrop(mm);
  1914. }
  1915. }
  1916. static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
  1917. struct page **hpage)
  1918. __releases(&khugepaged_mm_lock)
  1919. __acquires(&khugepaged_mm_lock)
  1920. {
  1921. struct mm_slot *mm_slot;
  1922. struct mm_struct *mm;
  1923. struct vm_area_struct *vma;
  1924. int progress = 0;
  1925. VM_BUG_ON(!pages);
  1926. VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
  1927. if (khugepaged_scan.mm_slot)
  1928. mm_slot = khugepaged_scan.mm_slot;
  1929. else {
  1930. mm_slot = list_entry(khugepaged_scan.mm_head.next,
  1931. struct mm_slot, mm_node);
  1932. khugepaged_scan.address = 0;
  1933. khugepaged_scan.mm_slot = mm_slot;
  1934. }
  1935. spin_unlock(&khugepaged_mm_lock);
  1936. mm = mm_slot->mm;
  1937. down_read(&mm->mmap_sem);
  1938. if (unlikely(khugepaged_test_exit(mm)))
  1939. vma = NULL;
  1940. else
  1941. vma = find_vma(mm, khugepaged_scan.address);
  1942. progress++;
  1943. for (; vma; vma = vma->vm_next) {
  1944. unsigned long hstart, hend;
  1945. cond_resched();
  1946. if (unlikely(khugepaged_test_exit(mm))) {
  1947. progress++;
  1948. break;
  1949. }
  1950. if ((!(vma->vm_flags & VM_HUGEPAGE) &&
  1951. !khugepaged_always()) ||
  1952. (vma->vm_flags & VM_NOHUGEPAGE)) {
  1953. skip:
  1954. progress++;
  1955. continue;
  1956. }
  1957. if (!vma->anon_vma || vma->vm_ops)
  1958. goto skip;
  1959. if (is_vma_temporary_stack(vma))
  1960. goto skip;
  1961. VM_BUG_ON(vma->vm_flags & VM_NO_THP);
  1962. hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
  1963. hend = vma->vm_end & HPAGE_PMD_MASK;
  1964. if (hstart >= hend)
  1965. goto skip;
  1966. if (khugepaged_scan.address > hend)
  1967. goto skip;
  1968. if (khugepaged_scan.address < hstart)
  1969. khugepaged_scan.address = hstart;
  1970. VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
  1971. while (khugepaged_scan.address < hend) {
  1972. int ret;
  1973. cond_resched();
  1974. if (unlikely(khugepaged_test_exit(mm)))
  1975. goto breakouterloop;
  1976. VM_BUG_ON(khugepaged_scan.address < hstart ||
  1977. khugepaged_scan.address + HPAGE_PMD_SIZE >
  1978. hend);
  1979. ret = khugepaged_scan_pmd(mm, vma,
  1980. khugepaged_scan.address,
  1981. hpage);
  1982. /* move to next address */
  1983. khugepaged_scan.address += HPAGE_PMD_SIZE;
  1984. progress += HPAGE_PMD_NR;
  1985. if (ret)
  1986. /* we released mmap_sem so break loop */
  1987. goto breakouterloop_mmap_sem;
  1988. if (progress >= pages)
  1989. goto breakouterloop;
  1990. }
  1991. }
  1992. breakouterloop:
  1993. up_read(&mm->mmap_sem); /* exit_mmap will destroy ptes after this */
  1994. breakouterloop_mmap_sem:
  1995. spin_lock(&khugepaged_mm_lock);
  1996. VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
  1997. /*
  1998. * Release the current mm_slot if this mm is about to die, or
  1999. * if we scanned all vmas of this mm.
  2000. */
  2001. if (khugepaged_test_exit(mm) || !vma) {
  2002. /*
  2003. * Make sure that if mm_users is reaching zero while
  2004. * khugepaged runs here, khugepaged_exit will find
  2005. * mm_slot not pointing to the exiting mm.
  2006. */
  2007. if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
  2008. khugepaged_scan.mm_slot = list_entry(
  2009. mm_slot->mm_node.next,
  2010. struct mm_slot, mm_node);
  2011. khugepaged_scan.address = 0;
  2012. } else {
  2013. khugepaged_scan.mm_slot = NULL;
  2014. khugepaged_full_scans++;
  2015. }
  2016. collect_mm_slot(mm_slot);
  2017. }
  2018. return progress;
  2019. }
  2020. static int khugepaged_has_work(void)
  2021. {
  2022. return !list_empty(&khugepaged_scan.mm_head) &&
  2023. khugepaged_enabled();
  2024. }
  2025. static int khugepaged_wait_event(void)
  2026. {
  2027. return !list_empty(&khugepaged_scan.mm_head) ||
  2028. kthread_should_stop();
  2029. }
  2030. static void khugepaged_do_scan(void)
  2031. {
  2032. struct page *hpage = NULL;
  2033. unsigned int progress = 0, pass_through_head = 0;
  2034. unsigned int pages = khugepaged_pages_to_scan;
  2035. bool wait = true;
  2036. barrier(); /* write khugepaged_pages_to_scan to local stack */
  2037. while (progress < pages) {
  2038. if (!khugepaged_prealloc_page(&hpage, &wait))
  2039. break;
  2040. cond_resched();
  2041. if (unlikely(kthread_should_stop() || freezing(current)))
  2042. break;
  2043. spin_lock(&khugepaged_mm_lock);
  2044. if (!khugepaged_scan.mm_slot)
  2045. pass_through_head++;
  2046. if (khugepaged_has_work() &&
  2047. pass_through_head < 2)
  2048. progress += khugepaged_scan_mm_slot(pages - progress,
  2049. &hpage);
  2050. else
  2051. progress = pages;
  2052. spin_unlock(&khugepaged_mm_lock);
  2053. }
  2054. if (!IS_ERR_OR_NULL(hpage))
  2055. put_page(hpage);
  2056. }
  2057. static void khugepaged_wait_work(void)
  2058. {
  2059. try_to_freeze();
  2060. if (khugepaged_has_work()) {
  2061. if (!khugepaged_scan_sleep_millisecs)
  2062. return;
  2063. wait_event_freezable_timeout(khugepaged_wait,
  2064. kthread_should_stop(),
  2065. msecs_to_jiffies(khugepaged_scan_sleep_millisecs));
  2066. return;
  2067. }
  2068. if (khugepaged_enabled())
  2069. wait_event_freezable(khugepaged_wait, khugepaged_wait_event());
  2070. }
  2071. static int khugepaged(void *none)
  2072. {
  2073. struct mm_slot *mm_slot;
  2074. set_freezable();
  2075. set_user_nice(current, 19);
  2076. while (!kthread_should_stop()) {
  2077. khugepaged_do_scan();
  2078. khugepaged_wait_work();
  2079. }
  2080. spin_lock(&khugepaged_mm_lock);
  2081. mm_slot = khugepaged_scan.mm_slot;
  2082. khugepaged_scan.mm_slot = NULL;
  2083. if (mm_slot)
  2084. collect_mm_slot(mm_slot);
  2085. spin_unlock(&khugepaged_mm_lock);
  2086. return 0;
  2087. }
  2088. void __split_huge_page_pmd(struct mm_struct *mm, pmd_t *pmd)
  2089. {
  2090. struct page *page;
  2091. spin_lock(&mm->page_table_lock);
  2092. if (unlikely(!pmd_trans_huge(*pmd))) {
  2093. spin_unlock(&mm->page_table_lock);
  2094. return;
  2095. }
  2096. page = pmd_page(*pmd);
  2097. VM_BUG_ON(!page_count(page));
  2098. get_page(page);
  2099. spin_unlock(&mm->page_table_lock);
  2100. split_huge_page(page);
  2101. put_page(page);
  2102. BUG_ON(pmd_trans_huge(*pmd));
  2103. }
  2104. static void split_huge_page_address(struct mm_struct *mm,
  2105. unsigned long address)
  2106. {
  2107. pgd_t *pgd;
  2108. pud_t *pud;
  2109. pmd_t *pmd;
  2110. VM_BUG_ON(!(address & ~HPAGE_PMD_MASK));
  2111. pgd = pgd_offset(mm, address);
  2112. if (!pgd_present(*pgd))
  2113. return;
  2114. pud = pud_offset(pgd, address);
  2115. if (!pud_present(*pud))
  2116. return;
  2117. pmd = pmd_offset(pud, address);
  2118. if (!pmd_present(*pmd))
  2119. return;
  2120. /*
  2121. * Caller holds the mmap_sem write mode, so a huge pmd cannot
  2122. * materialize from under us.
  2123. */
  2124. split_huge_page_pmd(mm, pmd);
  2125. }
  2126. void __vma_adjust_trans_huge(struct vm_area_struct *vma,
  2127. unsigned long start,
  2128. unsigned long end,
  2129. long adjust_next)
  2130. {
  2131. /*
  2132. * If the new start address isn't hpage aligned and it could
  2133. * previously contain an hugepage: check if we need to split
  2134. * an huge pmd.
  2135. */
  2136. if (start & ~HPAGE_PMD_MASK &&
  2137. (start & HPAGE_PMD_MASK) >= vma->vm_start &&
  2138. (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
  2139. split_huge_page_address(vma->vm_mm, start);
  2140. /*
  2141. * If the new end address isn't hpage aligned and it could
  2142. * previously contain an hugepage: check if we need to split
  2143. * an huge pmd.
  2144. */
  2145. if (end & ~HPAGE_PMD_MASK &&
  2146. (end & HPAGE_PMD_MASK) >= vma->vm_start &&
  2147. (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
  2148. split_huge_page_address(vma->vm_mm, end);
  2149. /*
  2150. * If we're also updating the vma->vm_next->vm_start, if the new
  2151. * vm_next->vm_start isn't page aligned and it could previously
  2152. * contain an hugepage: check if we need to split an huge pmd.
  2153. */
  2154. if (adjust_next > 0) {
  2155. struct vm_area_struct *next = vma->vm_next;
  2156. unsigned long nstart = next->vm_start;
  2157. nstart += adjust_next << PAGE_SHIFT;
  2158. if (nstart & ~HPAGE_PMD_MASK &&
  2159. (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
  2160. (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
  2161. split_huge_page_address(next->vm_mm, nstart);
  2162. }
  2163. }