cs4281m.c 127 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487
  1. /*******************************************************************************
  2. *
  3. * "cs4281.c" -- Cirrus Logic-Crystal CS4281 linux audio driver.
  4. *
  5. * Copyright (C) 2000,2001 Cirrus Logic Corp.
  6. * -- adapted from drivers by Thomas Sailer,
  7. * -- but don't bug him; Problems should go to:
  8. * -- tom woller (twoller@crystal.cirrus.com) or
  9. * (audio@crystal.cirrus.com).
  10. *
  11. * This program is free software; you can redistribute it and/or modify
  12. * it under the terms of the GNU General Public License as published by
  13. * the Free Software Foundation; either version 2 of the License, or
  14. * (at your option) any later version.
  15. *
  16. * This program is distributed in the hope that it will be useful,
  17. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  18. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  19. * GNU General Public License for more details.
  20. *
  21. * You should have received a copy of the GNU General Public License
  22. * along with this program; if not, write to the Free Software
  23. * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  24. *
  25. * Module command line parameters:
  26. * none
  27. *
  28. * Supported devices:
  29. * /dev/dsp standard /dev/dsp device, (mostly) OSS compatible
  30. * /dev/mixer standard /dev/mixer device, (mostly) OSS compatible
  31. * /dev/midi simple MIDI UART interface, no ioctl
  32. *
  33. * Modification History
  34. * 08/20/00 trw - silence and no stopping DAC until release
  35. * 08/23/00 trw - added CS_DBG statements, fix interrupt hang issue on DAC stop.
  36. * 09/18/00 trw - added 16bit only record with conversion
  37. * 09/24/00 trw - added Enhanced Full duplex (separate simultaneous
  38. * capture/playback rates)
  39. * 10/03/00 trw - fixed mmap (fixed GRECORD and the XMMS mmap test plugin
  40. * libOSSm.so)
  41. * 10/11/00 trw - modified for 2.4.0-test9 kernel enhancements (NR_MAP removal)
  42. * 11/03/00 trw - fixed interrupt loss/stutter, added debug.
  43. * 11/10/00 bkz - added __devinit to cs4281_hw_init()
  44. * 11/10/00 trw - fixed SMP and capture spinlock hang.
  45. * 12/04/00 trw - cleaned up CSDEBUG flags and added "defaultorder" moduleparm.
  46. * 12/05/00 trw - fixed polling (myth2), and added underrun swptr fix.
  47. * 12/08/00 trw - added PM support.
  48. * 12/14/00 trw - added wrapper code, builds under 2.4.0, 2.2.17-20, 2.2.17-8
  49. * (RH/Dell base), 2.2.18, 2.2.12. cleaned up code mods by ident.
  50. * 12/19/00 trw - added PM support for 2.2 base (apm_callback). other PM cleanup.
  51. * 12/21/00 trw - added fractional "defaultorder" inputs. if >100 then use
  52. * defaultorder-100 as power of 2 for the buffer size. example:
  53. * 106 = 2^(106-100) = 2^6 = 64 bytes for the buffer size.
  54. *
  55. *******************************************************************************/
  56. /* uncomment the following line to disable building PM support into the driver */
  57. //#define NOT_CS4281_PM 1
  58. #include <linux/list.h>
  59. #include <linux/module.h>
  60. #include <linux/string.h>
  61. #include <linux/ioport.h>
  62. #include <linux/sched.h>
  63. #include <linux/delay.h>
  64. #include <linux/sound.h>
  65. #include <linux/slab.h>
  66. #include <linux/soundcard.h>
  67. #include <linux/pci.h>
  68. #include <linux/bitops.h>
  69. #include <linux/init.h>
  70. #include <linux/interrupt.h>
  71. #include <linux/poll.h>
  72. #include <linux/fs.h>
  73. #include <linux/wait.h>
  74. #include <asm/current.h>
  75. #include <asm/io.h>
  76. #include <asm/dma.h>
  77. #include <asm/page.h>
  78. #include <asm/uaccess.h>
  79. //#include "cs_dm.h"
  80. #include "cs4281_hwdefs.h"
  81. #include "cs4281pm.h"
  82. struct cs4281_state;
  83. static void stop_dac(struct cs4281_state *s);
  84. static void stop_adc(struct cs4281_state *s);
  85. static void start_dac(struct cs4281_state *s);
  86. static void start_adc(struct cs4281_state *s);
  87. #undef OSS_DOCUMENTED_MIXER_SEMANTICS
  88. // ---------------------------------------------------------------------
  89. #ifndef PCI_VENDOR_ID_CIRRUS
  90. #define PCI_VENDOR_ID_CIRRUS 0x1013
  91. #endif
  92. #ifndef PCI_DEVICE_ID_CRYSTAL_CS4281
  93. #define PCI_DEVICE_ID_CRYSTAL_CS4281 0x6005
  94. #endif
  95. #define CS4281_MAGIC ((PCI_DEVICE_ID_CRYSTAL_CS4281<<16) | PCI_VENDOR_ID_CIRRUS)
  96. #define CS4281_CFLR_DEFAULT 0x00000001 /* CFLR must be in AC97 link mode */
  97. // buffer order determines the size of the dma buffer for the driver.
  98. // under Linux, a smaller buffer allows more responsiveness from many of the
  99. // applications (e.g. games). A larger buffer allows some of the apps (esound)
  100. // to not underrun the dma buffer as easily. As default, use 32k (order=3)
  101. // rather than 64k as some of the games work more responsively.
  102. // log base 2( buff sz = 32k).
  103. static unsigned long defaultorder = 3;
  104. module_param(defaultorder, ulong, 0);
  105. //
  106. // Turn on/off debugging compilation by commenting out "#define CSDEBUG"
  107. //
  108. #define CSDEBUG 1
  109. #if CSDEBUG
  110. #define CSDEBUG_INTERFACE 1
  111. #else
  112. #undef CSDEBUG_INTERFACE
  113. #endif
  114. //
  115. // cs_debugmask areas
  116. //
  117. #define CS_INIT 0x00000001 // initialization and probe functions
  118. #define CS_ERROR 0x00000002 // tmp debugging bit placeholder
  119. #define CS_INTERRUPT 0x00000004 // interrupt handler (separate from all other)
  120. #define CS_FUNCTION 0x00000008 // enter/leave functions
  121. #define CS_WAVE_WRITE 0x00000010 // write information for wave
  122. #define CS_WAVE_READ 0x00000020 // read information for wave
  123. #define CS_MIDI_WRITE 0x00000040 // write information for midi
  124. #define CS_MIDI_READ 0x00000080 // read information for midi
  125. #define CS_MPU401_WRITE 0x00000100 // write information for mpu401
  126. #define CS_MPU401_READ 0x00000200 // read information for mpu401
  127. #define CS_OPEN 0x00000400 // all open functions in the driver
  128. #define CS_RELEASE 0x00000800 // all release functions in the driver
  129. #define CS_PARMS 0x00001000 // functional and operational parameters
  130. #define CS_IOCTL 0x00002000 // ioctl (non-mixer)
  131. #define CS_PM 0x00004000 // power management
  132. #define CS_TMP 0x10000000 // tmp debug mask bit
  133. #define CS_IOCTL_CMD_SUSPEND 0x1 // suspend
  134. #define CS_IOCTL_CMD_RESUME 0x2 // resume
  135. //
  136. // CSDEBUG is usual mode is set to 1, then use the
  137. // cs_debuglevel and cs_debugmask to turn on or off debugging.
  138. // Debug level of 1 has been defined to be kernel errors and info
  139. // that should be printed on any released driver.
  140. //
  141. #if CSDEBUG
  142. #define CS_DBGOUT(mask,level,x) if((cs_debuglevel >= (level)) && ((mask) & cs_debugmask) ) {x;}
  143. #else
  144. #define CS_DBGOUT(mask,level,x)
  145. #endif
  146. #if CSDEBUG
  147. static unsigned long cs_debuglevel = 1; // levels range from 1-9
  148. static unsigned long cs_debugmask = CS_INIT | CS_ERROR; // use CS_DBGOUT with various mask values
  149. module_param(cs_debuglevel, ulong, 0);
  150. module_param(cs_debugmask, ulong, 0);
  151. #endif
  152. #define CS_TRUE 1
  153. #define CS_FALSE 0
  154. // MIDI buffer sizes
  155. #define MIDIINBUF 500
  156. #define MIDIOUTBUF 500
  157. #define FMODE_MIDI_SHIFT 3
  158. #define FMODE_MIDI_READ (FMODE_READ << FMODE_MIDI_SHIFT)
  159. #define FMODE_MIDI_WRITE (FMODE_WRITE << FMODE_MIDI_SHIFT)
  160. #define CS4281_MAJOR_VERSION 1
  161. #define CS4281_MINOR_VERSION 13
  162. #ifdef __ia64__
  163. #define CS4281_ARCH 64 //architecture key
  164. #else
  165. #define CS4281_ARCH 32 //architecture key
  166. #endif
  167. #define CS_TYPE_ADC 0
  168. #define CS_TYPE_DAC 1
  169. static const char invalid_magic[] =
  170. KERN_CRIT "cs4281: invalid magic value\n";
  171. #define VALIDATE_STATE(s) \
  172. ({ \
  173. if (!(s) || (s)->magic != CS4281_MAGIC) { \
  174. printk(invalid_magic); \
  175. return -ENXIO; \
  176. } \
  177. })
  178. //LIST_HEAD(cs4281_devs);
  179. static struct list_head cs4281_devs = { &cs4281_devs, &cs4281_devs };
  180. struct cs4281_state;
  181. #include "cs4281_wrapper-24.c"
  182. struct cs4281_state {
  183. // magic
  184. unsigned int magic;
  185. // we keep the cards in a linked list
  186. struct cs4281_state *next;
  187. // pcidev is needed to turn off the DDMA controller at driver shutdown
  188. struct pci_dev *pcidev;
  189. struct list_head list;
  190. // soundcore stuff
  191. int dev_audio;
  192. int dev_mixer;
  193. int dev_midi;
  194. // hardware resources
  195. unsigned int pBA0phys, pBA1phys;
  196. char __iomem *pBA0;
  197. char __iomem *pBA1;
  198. unsigned int irq;
  199. // mixer registers
  200. struct {
  201. unsigned short vol[10];
  202. unsigned int recsrc;
  203. unsigned int modcnt;
  204. unsigned short micpreamp;
  205. } mix;
  206. // wave stuff
  207. struct properties {
  208. unsigned fmt;
  209. unsigned fmt_original; // original requested format
  210. unsigned channels;
  211. unsigned rate;
  212. unsigned char clkdiv;
  213. } prop_dac, prop_adc;
  214. unsigned conversion:1; // conversion from 16 to 8 bit in progress
  215. void *tmpbuff; // tmp buffer for sample conversions
  216. unsigned ena;
  217. spinlock_t lock;
  218. struct mutex open_sem;
  219. struct mutex open_sem_adc;
  220. struct mutex open_sem_dac;
  221. mode_t open_mode;
  222. wait_queue_head_t open_wait;
  223. wait_queue_head_t open_wait_adc;
  224. wait_queue_head_t open_wait_dac;
  225. dma_addr_t dmaaddr_tmpbuff;
  226. unsigned buforder_tmpbuff; // Log base 2 of 'rawbuf' size in bytes..
  227. struct dmabuf {
  228. void *rawbuf; // Physical address of
  229. dma_addr_t dmaaddr;
  230. unsigned buforder; // Log base 2 of 'rawbuf' size in bytes..
  231. unsigned numfrag; // # of 'fragments' in the buffer.
  232. unsigned fragshift; // Log base 2 of fragment size.
  233. unsigned hwptr, swptr;
  234. unsigned total_bytes; // # bytes process since open.
  235. unsigned blocks; // last returned blocks value GETOPTR
  236. unsigned wakeup; // interrupt occurred on block
  237. int count;
  238. unsigned underrun; // underrun flag
  239. unsigned error; // over/underrun
  240. wait_queue_head_t wait;
  241. // redundant, but makes calculations easier
  242. unsigned fragsize; // 2**fragshift..
  243. unsigned dmasize; // 2**buforder.
  244. unsigned fragsamples;
  245. // OSS stuff
  246. unsigned mapped:1; // Buffer mapped in cs4281_mmap()?
  247. unsigned ready:1; // prog_dmabuf_dac()/adc() successful?
  248. unsigned endcleared:1;
  249. unsigned type:1; // adc or dac buffer (CS_TYPE_XXX)
  250. unsigned ossfragshift;
  251. int ossmaxfrags;
  252. unsigned subdivision;
  253. } dma_dac, dma_adc;
  254. // midi stuff
  255. struct {
  256. unsigned ird, iwr, icnt;
  257. unsigned ord, owr, ocnt;
  258. wait_queue_head_t iwait;
  259. wait_queue_head_t owait;
  260. struct timer_list timer;
  261. unsigned char ibuf[MIDIINBUF];
  262. unsigned char obuf[MIDIOUTBUF];
  263. } midi;
  264. struct cs4281_pm pm;
  265. struct cs4281_pipeline pl[CS4281_NUMBER_OF_PIPELINES];
  266. };
  267. #include "cs4281pm-24.c"
  268. #if CSDEBUG
  269. // DEBUG ROUTINES
  270. #define SOUND_MIXER_CS_GETDBGLEVEL _SIOWR('M',120, int)
  271. #define SOUND_MIXER_CS_SETDBGLEVEL _SIOWR('M',121, int)
  272. #define SOUND_MIXER_CS_GETDBGMASK _SIOWR('M',122, int)
  273. #define SOUND_MIXER_CS_SETDBGMASK _SIOWR('M',123, int)
  274. #define SOUND_MIXER_CS_APM _SIOWR('M',124, int)
  275. static void cs_printioctl(unsigned int x)
  276. {
  277. unsigned int i;
  278. unsigned char vidx;
  279. // Index of mixtable1[] member is Device ID
  280. // and must be <= SOUND_MIXER_NRDEVICES.
  281. // Value of array member is index into s->mix.vol[]
  282. static const unsigned char mixtable1[SOUND_MIXER_NRDEVICES] = {
  283. [SOUND_MIXER_PCM] = 1, // voice
  284. [SOUND_MIXER_LINE1] = 2, // AUX
  285. [SOUND_MIXER_CD] = 3, // CD
  286. [SOUND_MIXER_LINE] = 4, // Line
  287. [SOUND_MIXER_SYNTH] = 5, // FM
  288. [SOUND_MIXER_MIC] = 6, // Mic
  289. [SOUND_MIXER_SPEAKER] = 7, // Speaker
  290. [SOUND_MIXER_RECLEV] = 8, // Recording level
  291. [SOUND_MIXER_VOLUME] = 9 // Master Volume
  292. };
  293. switch (x) {
  294. case SOUND_MIXER_CS_GETDBGMASK:
  295. CS_DBGOUT(CS_IOCTL, 4,
  296. printk("SOUND_MIXER_CS_GETDBGMASK:\n"));
  297. break;
  298. case SOUND_MIXER_CS_GETDBGLEVEL:
  299. CS_DBGOUT(CS_IOCTL, 4,
  300. printk("SOUND_MIXER_CS_GETDBGLEVEL:\n"));
  301. break;
  302. case SOUND_MIXER_CS_SETDBGMASK:
  303. CS_DBGOUT(CS_IOCTL, 4,
  304. printk("SOUND_MIXER_CS_SETDBGMASK:\n"));
  305. break;
  306. case SOUND_MIXER_CS_SETDBGLEVEL:
  307. CS_DBGOUT(CS_IOCTL, 4,
  308. printk("SOUND_MIXER_CS_SETDBGLEVEL:\n"));
  309. break;
  310. case OSS_GETVERSION:
  311. CS_DBGOUT(CS_IOCTL, 4, printk("OSS_GETVERSION:\n"));
  312. break;
  313. case SNDCTL_DSP_SYNC:
  314. CS_DBGOUT(CS_IOCTL, 4, printk("SNDCTL_DSP_SYNC:\n"));
  315. break;
  316. case SNDCTL_DSP_SETDUPLEX:
  317. CS_DBGOUT(CS_IOCTL, 4, printk("SNDCTL_DSP_SETDUPLEX:\n"));
  318. break;
  319. case SNDCTL_DSP_GETCAPS:
  320. CS_DBGOUT(CS_IOCTL, 4, printk("SNDCTL_DSP_GETCAPS:\n"));
  321. break;
  322. case SNDCTL_DSP_RESET:
  323. CS_DBGOUT(CS_IOCTL, 4, printk("SNDCTL_DSP_RESET:\n"));
  324. break;
  325. case SNDCTL_DSP_SPEED:
  326. CS_DBGOUT(CS_IOCTL, 4, printk("SNDCTL_DSP_SPEED:\n"));
  327. break;
  328. case SNDCTL_DSP_STEREO:
  329. CS_DBGOUT(CS_IOCTL, 4, printk("SNDCTL_DSP_STEREO:\n"));
  330. break;
  331. case SNDCTL_DSP_CHANNELS:
  332. CS_DBGOUT(CS_IOCTL, 4, printk("SNDCTL_DSP_CHANNELS:\n"));
  333. break;
  334. case SNDCTL_DSP_GETFMTS:
  335. CS_DBGOUT(CS_IOCTL, 4, printk("SNDCTL_DSP_GETFMTS:\n"));
  336. break;
  337. case SNDCTL_DSP_SETFMT:
  338. CS_DBGOUT(CS_IOCTL, 4, printk("SNDCTL_DSP_SETFMT:\n"));
  339. break;
  340. case SNDCTL_DSP_POST:
  341. CS_DBGOUT(CS_IOCTL, 4, printk("SNDCTL_DSP_POST:\n"));
  342. break;
  343. case SNDCTL_DSP_GETTRIGGER:
  344. CS_DBGOUT(CS_IOCTL, 4, printk("SNDCTL_DSP_GETTRIGGER:\n"));
  345. break;
  346. case SNDCTL_DSP_SETTRIGGER:
  347. CS_DBGOUT(CS_IOCTL, 4, printk("SNDCTL_DSP_SETTRIGGER:\n"));
  348. break;
  349. case SNDCTL_DSP_GETOSPACE:
  350. CS_DBGOUT(CS_IOCTL, 4, printk("SNDCTL_DSP_GETOSPACE:\n"));
  351. break;
  352. case SNDCTL_DSP_GETISPACE:
  353. CS_DBGOUT(CS_IOCTL, 4, printk("SNDCTL_DSP_GETISPACE:\n"));
  354. break;
  355. case SNDCTL_DSP_NONBLOCK:
  356. CS_DBGOUT(CS_IOCTL, 4, printk("SNDCTL_DSP_NONBLOCK:\n"));
  357. break;
  358. case SNDCTL_DSP_GETODELAY:
  359. CS_DBGOUT(CS_IOCTL, 4, printk("SNDCTL_DSP_GETODELAY:\n"));
  360. break;
  361. case SNDCTL_DSP_GETIPTR:
  362. CS_DBGOUT(CS_IOCTL, 4, printk("SNDCTL_DSP_GETIPTR:\n"));
  363. break;
  364. case SNDCTL_DSP_GETOPTR:
  365. CS_DBGOUT(CS_IOCTL, 4, printk("SNDCTL_DSP_GETOPTR:\n"));
  366. break;
  367. case SNDCTL_DSP_GETBLKSIZE:
  368. CS_DBGOUT(CS_IOCTL, 4, printk("SNDCTL_DSP_GETBLKSIZE:\n"));
  369. break;
  370. case SNDCTL_DSP_SETFRAGMENT:
  371. CS_DBGOUT(CS_IOCTL, 4,
  372. printk("SNDCTL_DSP_SETFRAGMENT:\n"));
  373. break;
  374. case SNDCTL_DSP_SUBDIVIDE:
  375. CS_DBGOUT(CS_IOCTL, 4, printk("SNDCTL_DSP_SUBDIVIDE:\n"));
  376. break;
  377. case SOUND_PCM_READ_RATE:
  378. CS_DBGOUT(CS_IOCTL, 4, printk("SOUND_PCM_READ_RATE:\n"));
  379. break;
  380. case SOUND_PCM_READ_CHANNELS:
  381. CS_DBGOUT(CS_IOCTL, 4,
  382. printk("SOUND_PCM_READ_CHANNELS:\n"));
  383. break;
  384. case SOUND_PCM_READ_BITS:
  385. CS_DBGOUT(CS_IOCTL, 4, printk("SOUND_PCM_READ_BITS:\n"));
  386. break;
  387. case SOUND_PCM_WRITE_FILTER:
  388. CS_DBGOUT(CS_IOCTL, 4,
  389. printk("SOUND_PCM_WRITE_FILTER:\n"));
  390. break;
  391. case SNDCTL_DSP_SETSYNCRO:
  392. CS_DBGOUT(CS_IOCTL, 4, printk("SNDCTL_DSP_SETSYNCRO:\n"));
  393. break;
  394. case SOUND_PCM_READ_FILTER:
  395. CS_DBGOUT(CS_IOCTL, 4, printk("SOUND_PCM_READ_FILTER:\n"));
  396. break;
  397. case SOUND_MIXER_PRIVATE1:
  398. CS_DBGOUT(CS_IOCTL, 4, printk("SOUND_MIXER_PRIVATE1:\n"));
  399. break;
  400. case SOUND_MIXER_PRIVATE2:
  401. CS_DBGOUT(CS_IOCTL, 4, printk("SOUND_MIXER_PRIVATE2:\n"));
  402. break;
  403. case SOUND_MIXER_PRIVATE3:
  404. CS_DBGOUT(CS_IOCTL, 4, printk("SOUND_MIXER_PRIVATE3:\n"));
  405. break;
  406. case SOUND_MIXER_PRIVATE4:
  407. CS_DBGOUT(CS_IOCTL, 4, printk("SOUND_MIXER_PRIVATE4:\n"));
  408. break;
  409. case SOUND_MIXER_PRIVATE5:
  410. CS_DBGOUT(CS_IOCTL, 4, printk("SOUND_MIXER_PRIVATE5:\n"));
  411. break;
  412. case SOUND_MIXER_INFO:
  413. CS_DBGOUT(CS_IOCTL, 4, printk("SOUND_MIXER_INFO:\n"));
  414. break;
  415. case SOUND_OLD_MIXER_INFO:
  416. CS_DBGOUT(CS_IOCTL, 4, printk("SOUND_OLD_MIXER_INFO:\n"));
  417. break;
  418. default:
  419. switch (_IOC_NR(x)) {
  420. case SOUND_MIXER_VOLUME:
  421. CS_DBGOUT(CS_IOCTL, 4,
  422. printk("SOUND_MIXER_VOLUME:\n"));
  423. break;
  424. case SOUND_MIXER_SPEAKER:
  425. CS_DBGOUT(CS_IOCTL, 4,
  426. printk("SOUND_MIXER_SPEAKER:\n"));
  427. break;
  428. case SOUND_MIXER_RECLEV:
  429. CS_DBGOUT(CS_IOCTL, 4,
  430. printk("SOUND_MIXER_RECLEV:\n"));
  431. break;
  432. case SOUND_MIXER_MIC:
  433. CS_DBGOUT(CS_IOCTL, 4,
  434. printk("SOUND_MIXER_MIC:\n"));
  435. break;
  436. case SOUND_MIXER_SYNTH:
  437. CS_DBGOUT(CS_IOCTL, 4,
  438. printk("SOUND_MIXER_SYNTH:\n"));
  439. break;
  440. case SOUND_MIXER_RECSRC:
  441. CS_DBGOUT(CS_IOCTL, 4,
  442. printk("SOUND_MIXER_RECSRC:\n"));
  443. break;
  444. case SOUND_MIXER_DEVMASK:
  445. CS_DBGOUT(CS_IOCTL, 4,
  446. printk("SOUND_MIXER_DEVMASK:\n"));
  447. break;
  448. case SOUND_MIXER_RECMASK:
  449. CS_DBGOUT(CS_IOCTL, 4,
  450. printk("SOUND_MIXER_RECMASK:\n"));
  451. break;
  452. case SOUND_MIXER_STEREODEVS:
  453. CS_DBGOUT(CS_IOCTL, 4,
  454. printk("SOUND_MIXER_STEREODEVS:\n"));
  455. break;
  456. case SOUND_MIXER_CAPS:
  457. CS_DBGOUT(CS_IOCTL, 4, printk("SOUND_MIXER_CAPS:\n"));
  458. break;
  459. default:
  460. i = _IOC_NR(x);
  461. if (i >= SOUND_MIXER_NRDEVICES
  462. || !(vidx = mixtable1[i])) {
  463. CS_DBGOUT(CS_IOCTL, 4, printk
  464. ("UNKNOWN IOCTL: 0x%.8x NR=%d\n",
  465. x, i));
  466. } else {
  467. CS_DBGOUT(CS_IOCTL, 4, printk
  468. ("SOUND_MIXER_IOCTL AC9x: 0x%.8x NR=%d\n",
  469. x, i));
  470. }
  471. break;
  472. }
  473. }
  474. }
  475. #endif
  476. static int prog_dmabuf_adc(struct cs4281_state *s);
  477. static void prog_codec(struct cs4281_state *s, unsigned type);
  478. // ---------------------------------------------------------------------
  479. //
  480. // Hardware Interfaces For the CS4281
  481. //
  482. //******************************************************************************
  483. // "delayus()-- Delay for the specified # of microseconds.
  484. //******************************************************************************
  485. static void delayus(struct cs4281_state *s, u32 delay)
  486. {
  487. u32 j;
  488. if ((delay > 9999) && (s->pm.flags & CS4281_PM_IDLE)) {
  489. j = (delay * HZ) / 1000000; /* calculate delay in jiffies */
  490. if (j < 1)
  491. j = 1; /* minimum one jiffy. */
  492. current->state = TASK_UNINTERRUPTIBLE;
  493. schedule_timeout(j);
  494. } else
  495. udelay(delay);
  496. return;
  497. }
  498. //******************************************************************************
  499. // "cs4281_read_ac97" -- Reads a word from the specified location in the
  500. // CS4281's address space(based on the BA0 register).
  501. //
  502. // 1. Write ACCAD = Command Address Register = 46Ch for AC97 register address
  503. // 2. Write ACCDA = Command Data Register = 470h for data to write to AC97 register,
  504. // 0h for reads.
  505. // 3. Write ACCTL = Control Register = 460h for initiating the write
  506. // 4. Read ACCTL = 460h, DCV should be reset by now and 460h = 17h
  507. // 5. if DCV not cleared, break and return error
  508. // 6. Read ACSTS = Status Register = 464h, check VSTS bit
  509. //****************************************************************************
  510. static int cs4281_read_ac97(struct cs4281_state *card, u32 offset,
  511. u32 * value)
  512. {
  513. u32 count, status;
  514. // Make sure that there is not data sitting
  515. // around from a previous uncompleted access.
  516. // ACSDA = Status Data Register = 47Ch
  517. status = readl(card->pBA0 + BA0_ACSDA);
  518. // Setup the AC97 control registers on the CS4281 to send the
  519. // appropriate command to the AC97 to perform the read.
  520. // ACCAD = Command Address Register = 46Ch
  521. // ACCDA = Command Data Register = 470h
  522. // ACCTL = Control Register = 460h
  523. // bit DCV - will clear when process completed
  524. // bit CRW - Read command
  525. // bit VFRM - valid frame enabled
  526. // bit ESYN - ASYNC generation enabled
  527. // Get the actual AC97 register from the offset
  528. writel(offset - BA0_AC97_RESET, card->pBA0 + BA0_ACCAD);
  529. writel(0, card->pBA0 + BA0_ACCDA);
  530. writel(ACCTL_DCV | ACCTL_CRW | ACCTL_VFRM | ACCTL_ESYN,
  531. card->pBA0 + BA0_ACCTL);
  532. // Wait for the read to occur.
  533. for (count = 0; count < 10; count++) {
  534. // First, we want to wait for a short time.
  535. udelay(25);
  536. // Now, check to see if the read has completed.
  537. // ACCTL = 460h, DCV should be reset by now and 460h = 17h
  538. if (!(readl(card->pBA0 + BA0_ACCTL) & ACCTL_DCV))
  539. break;
  540. }
  541. // Make sure the read completed.
  542. if (readl(card->pBA0 + BA0_ACCTL) & ACCTL_DCV)
  543. return 1;
  544. // Wait for the valid status bit to go active.
  545. for (count = 0; count < 10; count++) {
  546. // Read the AC97 status register.
  547. // ACSTS = Status Register = 464h
  548. status = readl(card->pBA0 + BA0_ACSTS);
  549. // See if we have valid status.
  550. // VSTS - Valid Status
  551. if (status & ACSTS_VSTS)
  552. break;
  553. // Wait for a short while.
  554. udelay(25);
  555. }
  556. // Make sure we got valid status.
  557. if (!(status & ACSTS_VSTS))
  558. return 1;
  559. // Read the data returned from the AC97 register.
  560. // ACSDA = Status Data Register = 474h
  561. *value = readl(card->pBA0 + BA0_ACSDA);
  562. // Success.
  563. return (0);
  564. }
  565. //****************************************************************************
  566. //
  567. // "cs4281_write_ac97()"-- writes a word to the specified location in the
  568. // CS461x's address space (based on the part's base address zero register).
  569. //
  570. // 1. Write ACCAD = Command Address Register = 46Ch for AC97 register address
  571. // 2. Write ACCDA = Command Data Register = 470h for data to write to AC97 reg.
  572. // 3. Write ACCTL = Control Register = 460h for initiating the write
  573. // 4. Read ACCTL = 460h, DCV should be reset by now and 460h = 07h
  574. // 5. if DCV not cleared, break and return error
  575. //
  576. //****************************************************************************
  577. static int cs4281_write_ac97(struct cs4281_state *card, u32 offset,
  578. u32 value)
  579. {
  580. u32 count, status=0;
  581. CS_DBGOUT(CS_FUNCTION, 2,
  582. printk(KERN_INFO "cs4281: cs_4281_write_ac97()+ \n"));
  583. // Setup the AC97 control registers on the CS4281 to send the
  584. // appropriate command to the AC97 to perform the read.
  585. // ACCAD = Command Address Register = 46Ch
  586. // ACCDA = Command Data Register = 470h
  587. // ACCTL = Control Register = 460h
  588. // set DCV - will clear when process completed
  589. // reset CRW - Write command
  590. // set VFRM - valid frame enabled
  591. // set ESYN - ASYNC generation enabled
  592. // set RSTN - ARST# inactive, AC97 codec not reset
  593. // Get the actual AC97 register from the offset
  594. writel(offset - BA0_AC97_RESET, card->pBA0 + BA0_ACCAD);
  595. writel(value, card->pBA0 + BA0_ACCDA);
  596. writel(ACCTL_DCV | ACCTL_VFRM | ACCTL_ESYN,
  597. card->pBA0 + BA0_ACCTL);
  598. // Wait for the write to occur.
  599. for (count = 0; count < 100; count++) {
  600. // First, we want to wait for a short time.
  601. udelay(25);
  602. // Now, check to see if the write has completed.
  603. // ACCTL = 460h, DCV should be reset by now and 460h = 07h
  604. status = readl(card->pBA0 + BA0_ACCTL);
  605. if (!(status & ACCTL_DCV))
  606. break;
  607. }
  608. // Make sure the write completed.
  609. if (status & ACCTL_DCV) {
  610. CS_DBGOUT(CS_ERROR, 1, printk(KERN_INFO
  611. "cs4281: cs_4281_write_ac97()- unable to write. ACCTL_DCV active\n"));
  612. return 1;
  613. }
  614. CS_DBGOUT(CS_FUNCTION, 2,
  615. printk(KERN_INFO "cs4281: cs_4281_write_ac97()- 0\n"));
  616. // Success.
  617. return 0;
  618. }
  619. //******************************************************************************
  620. // "Init4281()" -- Bring up the part.
  621. //******************************************************************************
  622. static __devinit int cs4281_hw_init(struct cs4281_state *card)
  623. {
  624. u32 ac97_slotid;
  625. u32 temp1, temp2;
  626. CS_DBGOUT(CS_FUNCTION, 2,
  627. printk(KERN_INFO "cs4281: cs4281_hw_init()+ \n"));
  628. #ifndef NOT_CS4281_PM
  629. if(!card)
  630. return 1;
  631. #endif
  632. temp2 = readl(card->pBA0 + BA0_CFLR);
  633. CS_DBGOUT(CS_INIT | CS_ERROR | CS_PARMS, 4, printk(KERN_INFO
  634. "cs4281: cs4281_hw_init() CFLR 0x%x\n", temp2));
  635. if(temp2 != CS4281_CFLR_DEFAULT)
  636. {
  637. CS_DBGOUT(CS_INIT | CS_ERROR, 1, printk(KERN_INFO
  638. "cs4281: cs4281_hw_init() CFLR invalid - resetting from 0x%x to 0x%x\n",
  639. temp2,CS4281_CFLR_DEFAULT));
  640. writel(CS4281_CFLR_DEFAULT, card->pBA0 + BA0_CFLR);
  641. temp2 = readl(card->pBA0 + BA0_CFLR);
  642. if(temp2 != CS4281_CFLR_DEFAULT)
  643. {
  644. CS_DBGOUT(CS_INIT | CS_ERROR, 1, printk(KERN_INFO
  645. "cs4281: cs4281_hw_init() Invalid hardware - unable to configure CFLR\n"));
  646. return 1;
  647. }
  648. }
  649. //***************************************7
  650. // Set up the Sound System Configuration
  651. //***************************************
  652. // Set the 'Configuration Write Protect' register
  653. // to 4281h. Allows vendor-defined configuration
  654. // space between 0e4h and 0ffh to be written.
  655. writel(0x4281, card->pBA0 + BA0_CWPR); // (3e0h)
  656. // (0), Blast the clock control register to zero so that the
  657. // PLL starts out in a known state, and blast the master serial
  658. // port control register to zero so that the serial ports also
  659. // start out in a known state.
  660. writel(0, card->pBA0 + BA0_CLKCR1); // (400h)
  661. writel(0, card->pBA0 + BA0_SERMC); // (420h)
  662. // (1), Make ESYN go to zero to turn off
  663. // the Sync pulse on the AC97 link.
  664. writel(0, card->pBA0 + BA0_ACCTL);
  665. udelay(50);
  666. // (2) Drive the ARST# pin low for a minimum of 1uS (as defined in
  667. // the AC97 spec) and then drive it high. This is done for non
  668. // AC97 modes since there might be logic external to the CS461x
  669. // that uses the ARST# line for a reset.
  670. writel(0, card->pBA0 + BA0_SPMC); // (3ech)
  671. udelay(100);
  672. writel(SPMC_RSTN, card->pBA0 + BA0_SPMC);
  673. delayus(card,50000); // Wait 50 ms for ABITCLK to become stable.
  674. // (3) Turn on the Sound System Clocks.
  675. writel(CLKCR1_PLLP, card->pBA0 + BA0_CLKCR1); // (400h)
  676. delayus(card,50000); // Wait for the PLL to stabilize.
  677. // Turn on clocking of the core (CLKCR1(400h) = 0x00000030)
  678. writel(CLKCR1_PLLP | CLKCR1_SWCE, card->pBA0 + BA0_CLKCR1);
  679. // (4) Power on everything for now..
  680. writel(0x7E, card->pBA0 + BA0_SSPM); // (740h)
  681. // (5) Wait for clock stabilization.
  682. for (temp1 = 0; temp1 < 1000; temp1++) {
  683. udelay(1000);
  684. if (readl(card->pBA0 + BA0_CLKCR1) & CLKCR1_DLLRDY)
  685. break;
  686. }
  687. if (!(readl(card->pBA0 + BA0_CLKCR1) & CLKCR1_DLLRDY)) {
  688. CS_DBGOUT(CS_ERROR, 1, printk(KERN_ERR
  689. "cs4281: DLLRDY failed!\n"));
  690. return -EIO;
  691. }
  692. // (6) Enable ASYNC generation.
  693. writel(ACCTL_ESYN, card->pBA0 + BA0_ACCTL); // (460h)
  694. // Now wait 'for a short while' to allow the AC97
  695. // part to start generating bit clock. (so we don't
  696. // Try to start the PLL without an input clock.)
  697. delayus(card,50000);
  698. // Set the serial port timing configuration, so that the
  699. // clock control circuit gets its clock from the right place.
  700. writel(SERMC_PTC_AC97, card->pBA0 + BA0_SERMC); // (420h)=2.
  701. // (7) Wait for the codec ready signal from the AC97 codec.
  702. for (temp1 = 0; temp1 < 1000; temp1++) {
  703. // Delay a mil to let things settle out and
  704. // to prevent retrying the read too quickly.
  705. udelay(1000);
  706. if (readl(card->pBA0 + BA0_ACSTS) & ACSTS_CRDY) // If ready, (464h)
  707. break; // exit the 'for' loop.
  708. }
  709. if (!(readl(card->pBA0 + BA0_ACSTS) & ACSTS_CRDY)) // If never came ready,
  710. {
  711. CS_DBGOUT(CS_FUNCTION, 2, printk(KERN_ERR
  712. "cs4281: ACSTS never came ready!\n"));
  713. return -EIO; // exit initialization.
  714. }
  715. // (8) Assert the 'valid frame' signal so we can
  716. // begin sending commands to the AC97 codec.
  717. writel(ACCTL_VFRM | ACCTL_ESYN, card->pBA0 + BA0_ACCTL); // (460h)
  718. // (9), Wait until CODEC calibration is finished.
  719. // Print an error message if it doesn't.
  720. for (temp1 = 0; temp1 < 1000; temp1++) {
  721. delayus(card,10000);
  722. // Read the AC97 Powerdown Control/Status Register.
  723. cs4281_read_ac97(card, BA0_AC97_POWERDOWN, &temp2);
  724. if ((temp2 & 0x0000000F) == 0x0000000F)
  725. break;
  726. }
  727. if ((temp2 & 0x0000000F) != 0x0000000F) {
  728. CS_DBGOUT(CS_FUNCTION, 2, printk(KERN_ERR
  729. "cs4281: Codec failed to calibrate. Status = %.8x.\n",
  730. temp2));
  731. return -EIO;
  732. }
  733. // (10), Set the serial port timing configuration, so that the
  734. // clock control circuit gets its clock from the right place.
  735. writel(SERMC_PTC_AC97, card->pBA0 + BA0_SERMC); // (420h)=2.
  736. // (11) Wait until we've sampled input slots 3 & 4 as valid, meaning
  737. // that the codec is pumping ADC data across the AC link.
  738. for (temp1 = 0; temp1 < 1000; temp1++) {
  739. // Delay a mil to let things settle out and
  740. // to prevent retrying the read too quickly.
  741. delayus(card,1000); //(test)
  742. // Read the input slot valid register; See
  743. // if input slots 3 and 4 are valid yet.
  744. if (
  745. (readl(card->pBA0 + BA0_ACISV) &
  746. (ACISV_ISV3 | ACISV_ISV4)) ==
  747. (ACISV_ISV3 | ACISV_ISV4)) break; // Exit the 'for' if slots are valid.
  748. }
  749. // If we never got valid data, exit initialization.
  750. if ((readl(card->pBA0 + BA0_ACISV) & (ACISV_ISV3 | ACISV_ISV4))
  751. != (ACISV_ISV3 | ACISV_ISV4)) {
  752. CS_DBGOUT(CS_FUNCTION, 2,
  753. printk(KERN_ERR
  754. "cs4281: Never got valid data!\n"));
  755. return -EIO; // If no valid data, exit initialization.
  756. }
  757. // (12), Start digital data transfer of audio data to the codec.
  758. writel(ACOSV_SLV3 | ACOSV_SLV4, card->pBA0 + BA0_ACOSV); // (468h)
  759. //**************************************
  760. // Unmute the Master and Alternate
  761. // (headphone) volumes. Set to max.
  762. //**************************************
  763. cs4281_write_ac97(card, BA0_AC97_HEADPHONE_VOLUME, 0);
  764. cs4281_write_ac97(card, BA0_AC97_MASTER_VOLUME, 0);
  765. //******************************************
  766. // Power on the DAC(AddDACUser()from main())
  767. //******************************************
  768. cs4281_read_ac97(card, BA0_AC97_POWERDOWN, &temp1);
  769. cs4281_write_ac97(card, BA0_AC97_POWERDOWN, temp1 &= 0xfdff);
  770. // Wait until we sample a DAC ready state.
  771. for (temp2 = 0; temp2 < 32; temp2++) {
  772. // Let's wait a mil to let things settle.
  773. delayus(card,1000);
  774. // Read the current state of the power control reg.
  775. cs4281_read_ac97(card, BA0_AC97_POWERDOWN, &temp1);
  776. // If the DAC ready state bit is set, stop waiting.
  777. if (temp1 & 0x2)
  778. break;
  779. }
  780. //******************************************
  781. // Power on the ADC(AddADCUser()from main())
  782. //******************************************
  783. cs4281_read_ac97(card, BA0_AC97_POWERDOWN, &temp1);
  784. cs4281_write_ac97(card, BA0_AC97_POWERDOWN, temp1 &= 0xfeff);
  785. // Wait until we sample ADC ready state.
  786. for (temp2 = 0; temp2 < 32; temp2++) {
  787. // Let's wait a mil to let things settle.
  788. delayus(card,1000);
  789. // Read the current state of the power control reg.
  790. cs4281_read_ac97(card, BA0_AC97_POWERDOWN, &temp1);
  791. // If the ADC ready state bit is set, stop waiting.
  792. if (temp1 & 0x1)
  793. break;
  794. }
  795. // Set up 4281 Register contents that
  796. // don't change for boot duration.
  797. // For playback, we map AC97 slot 3 and 4(Left
  798. // & Right PCM playback) to DMA Channel 0.
  799. // Set the fifo to be 15 bytes at offset zero.
  800. ac97_slotid = 0x01000f00; // FCR0.RS[4:0]=1(=>slot4, right PCM playback).
  801. // FCR0.LS[4:0]=0(=>slot3, left PCM playback).
  802. // FCR0.SZ[6-0]=15; FCR0.OF[6-0]=0.
  803. writel(ac97_slotid, card->pBA0 + BA0_FCR0); // (180h)
  804. writel(ac97_slotid | FCRn_FEN, card->pBA0 + BA0_FCR0); // Turn on FIFO Enable.
  805. // For capture, we map AC97 slot 10 and 11(Left
  806. // and Right PCM Record) to DMA Channel 1.
  807. // Set the fifo to be 15 bytes at offset sixteen.
  808. ac97_slotid = 0x0B0A0f10; // FCR1.RS[4:0]=11(=>slot11, right PCM record).
  809. // FCR1.LS[4:0]=10(=>slot10, left PCM record).
  810. // FCR1.SZ[6-0]=15; FCR1.OF[6-0]=16.
  811. writel(ac97_slotid | FCRn_PSH, card->pBA0 + BA0_FCR1); // (184h)
  812. writel(ac97_slotid | FCRn_FEN, card->pBA0 + BA0_FCR1); // Turn on FIFO Enable.
  813. // Map the Playback SRC to the same AC97 slots(3 & 4--
  814. // --Playback left & right)as DMA channel 0.
  815. // Map the record SRC to the same AC97 slots(10 & 11--
  816. // -- Record left & right) as DMA channel 1.
  817. ac97_slotid = 0x0b0a0100; // SCRSA.PRSS[4:0]=1(=>slot4, right PCM playback).
  818. // SCRSA.PLSS[4:0]=0(=>slot3, left PCM playback).
  819. // SCRSA.CRSS[4:0]=11(=>slot11, right PCM record)
  820. // SCRSA.CLSS[4:0]=10(=>slot10, left PCM record).
  821. writel(ac97_slotid, card->pBA0 + BA0_SRCSA); // (75ch)
  822. // Set 'Half Terminal Count Interrupt Enable' and 'Terminal
  823. // Count Interrupt Enable' in DMA Control Registers 0 & 1.
  824. // Set 'MSK' flag to 1 to keep the DMA engines paused.
  825. temp1 = (DCRn_HTCIE | DCRn_TCIE | DCRn_MSK); // (00030001h)
  826. writel(temp1, card->pBA0 + BA0_DCR0); // (154h
  827. writel(temp1, card->pBA0 + BA0_DCR1); // (15ch)
  828. // Set 'Auto-Initialize Control' to 'enabled'; For playback,
  829. // set 'Transfer Type Control'(TR[1:0]) to 'read transfer',
  830. // for record, set Transfer Type Control to 'write transfer'.
  831. // All other bits set to zero; Some will be changed @ transfer start.
  832. temp1 = (DMRn_DMA | DMRn_AUTO | DMRn_TR_READ); // (20000018h)
  833. writel(temp1, card->pBA0 + BA0_DMR0); // (150h)
  834. temp1 = (DMRn_DMA | DMRn_AUTO | DMRn_TR_WRITE); // (20000014h)
  835. writel(temp1, card->pBA0 + BA0_DMR1); // (158h)
  836. // Enable DMA interrupts generally, and
  837. // DMA0 & DMA1 interrupts specifically.
  838. temp1 = readl(card->pBA0 + BA0_HIMR) & 0xfffbfcff;
  839. writel(temp1, card->pBA0 + BA0_HIMR);
  840. CS_DBGOUT(CS_FUNCTION, 2,
  841. printk(KERN_INFO "cs4281: cs4281_hw_init()- 0\n"));
  842. return 0;
  843. }
  844. #ifndef NOT_CS4281_PM
  845. static void printpm(struct cs4281_state *s)
  846. {
  847. CS_DBGOUT(CS_PM, 9, printk("pm struct:\n"));
  848. CS_DBGOUT(CS_PM, 9, printk("flags:0x%x u32CLKCR1_SAVE: 0%x u32SSPMValue: 0x%x\n",
  849. (unsigned)s->pm.flags,s->pm.u32CLKCR1_SAVE,s->pm.u32SSPMValue));
  850. CS_DBGOUT(CS_PM, 9, printk("u32PPLVCvalue: 0x%x u32PPRVCvalue: 0x%x\n",
  851. s->pm.u32PPLVCvalue,s->pm.u32PPRVCvalue));
  852. CS_DBGOUT(CS_PM, 9, printk("u32FMLVCvalue: 0x%x u32FMRVCvalue: 0x%x\n",
  853. s->pm.u32FMLVCvalue,s->pm.u32FMRVCvalue));
  854. CS_DBGOUT(CS_PM, 9, printk("u32GPIORvalue: 0x%x u32JSCTLvalue: 0x%x\n",
  855. s->pm.u32GPIORvalue,s->pm.u32JSCTLvalue));
  856. CS_DBGOUT(CS_PM, 9, printk("u32SSCR: 0x%x u32SRCSA: 0x%x\n",
  857. s->pm.u32SSCR,s->pm.u32SRCSA));
  858. CS_DBGOUT(CS_PM, 9, printk("u32DacASR: 0x%x u32AdcASR: 0x%x\n",
  859. s->pm.u32DacASR,s->pm.u32AdcASR));
  860. CS_DBGOUT(CS_PM, 9, printk("u32DacSR: 0x%x u32AdcSR: 0x%x\n",
  861. s->pm.u32DacSR,s->pm.u32AdcSR));
  862. CS_DBGOUT(CS_PM, 9, printk("u32MIDCR_Save: 0x%x\n",
  863. s->pm.u32MIDCR_Save));
  864. }
  865. static void printpipe(struct cs4281_pipeline *pl)
  866. {
  867. CS_DBGOUT(CS_PM, 9, printk("pm struct:\n"));
  868. CS_DBGOUT(CS_PM, 9, printk("flags:0x%x number: 0%x\n",
  869. (unsigned)pl->flags,pl->number));
  870. CS_DBGOUT(CS_PM, 9, printk("u32DBAnValue: 0%x u32DBCnValue: 0x%x\n",
  871. pl->u32DBAnValue,pl->u32DBCnValue));
  872. CS_DBGOUT(CS_PM, 9, printk("u32DMRnValue: 0x%x u32DCRnValue: 0x%x\n",
  873. pl->u32DMRnValue,pl->u32DCRnValue));
  874. CS_DBGOUT(CS_PM, 9, printk("u32DBAnAddress: 0x%x u32DBCnAddress: 0x%x\n",
  875. pl->u32DBAnAddress,pl->u32DBCnAddress));
  876. CS_DBGOUT(CS_PM, 9, printk("u32DCAnAddress: 0x%x u32DCCnAddress: 0x%x\n",
  877. pl->u32DCCnAddress,pl->u32DCCnAddress));
  878. CS_DBGOUT(CS_PM, 9, printk("u32DMRnAddress: 0x%x u32DCRnAddress: 0x%x\n",
  879. pl->u32DMRnAddress,pl->u32DCRnAddress));
  880. CS_DBGOUT(CS_PM, 9, printk("u32HDSRnAddress: 0x%x u32DBAn_Save: 0x%x\n",
  881. pl->u32HDSRnAddress,pl->u32DBAn_Save));
  882. CS_DBGOUT(CS_PM, 9, printk("u32DBCn_Save: 0x%x u32DMRn_Save: 0x%x\n",
  883. pl->u32DBCn_Save,pl->u32DMRn_Save));
  884. CS_DBGOUT(CS_PM, 9, printk("u32DCRn_Save: 0x%x u32DCCn_Save: 0x%x\n",
  885. pl->u32DCRn_Save,pl->u32DCCn_Save));
  886. CS_DBGOUT(CS_PM, 9, printk("u32DCAn_Save: 0x%x\n",
  887. pl->u32DCAn_Save));
  888. CS_DBGOUT(CS_PM, 9, printk("u32FCRn_Save: 0x%x u32FSICn_Save: 0x%x\n",
  889. pl->u32FCRn_Save,pl->u32FSICn_Save));
  890. CS_DBGOUT(CS_PM, 9, printk("u32FCRnValue: 0x%x u32FSICnValue: 0x%x\n",
  891. pl->u32FCRnValue,pl->u32FSICnValue));
  892. CS_DBGOUT(CS_PM, 9, printk("u32FCRnAddress: 0x%x u32FSICnAddress: 0x%x\n",
  893. pl->u32FCRnAddress,pl->u32FSICnAddress));
  894. CS_DBGOUT(CS_PM, 9, printk("u32FPDRnValue: 0x%x u32FPDRnAddress: 0x%x\n",
  895. pl->u32FPDRnValue,pl->u32FPDRnAddress));
  896. }
  897. static void printpipelines(struct cs4281_state *s)
  898. {
  899. int i;
  900. for(i=0;i<CS4281_NUMBER_OF_PIPELINES;i++)
  901. {
  902. if(s->pl[i].flags & CS4281_PIPELINE_VALID)
  903. {
  904. printpipe(&s->pl[i]);
  905. }
  906. }
  907. }
  908. /****************************************************************************
  909. *
  910. * Suspend - save the ac97 regs, mute the outputs and power down the part.
  911. *
  912. ****************************************************************************/
  913. static void cs4281_ac97_suspend(struct cs4281_state *s)
  914. {
  915. int Count,i;
  916. CS_DBGOUT(CS_PM, 9, printk("cs4281: cs4281_ac97_suspend()+\n"));
  917. /*
  918. * change the state, save the current hwptr, then stop the dac/adc
  919. */
  920. s->pm.flags &= ~CS4281_PM_IDLE;
  921. s->pm.flags |= CS4281_PM_SUSPENDING;
  922. s->pm.u32hwptr_playback = readl(s->pBA0 + BA0_DCA0);
  923. s->pm.u32hwptr_capture = readl(s->pBA0 + BA0_DCA1);
  924. stop_dac(s);
  925. stop_adc(s);
  926. for(Count = 0x2, i=0; (Count <= CS4281_AC97_HIGHESTREGTORESTORE)
  927. && (i < CS4281_AC97_NUMBER_RESTORE_REGS);
  928. Count += 2, i++)
  929. {
  930. cs4281_read_ac97(s, BA0_AC97_RESET + Count, &s->pm.ac97[i]);
  931. }
  932. /*
  933. * Save the ac97 volume registers as well as the current powerdown state.
  934. * Now, mute the all the outputs (master, headphone, and mono), as well
  935. * as the PCM volume, in preparation for powering down the entire part.
  936. */
  937. cs4281_read_ac97(s, BA0_AC97_MASTER_VOLUME, &s->pm.u32AC97_master_volume);
  938. cs4281_read_ac97(s, BA0_AC97_HEADPHONE_VOLUME, &s->pm.u32AC97_headphone_volume);
  939. cs4281_read_ac97(s, BA0_AC97_MASTER_VOLUME_MONO, &s->pm.u32AC97_master_volume_mono);
  940. cs4281_read_ac97(s, BA0_AC97_PCM_OUT_VOLUME, &s->pm.u32AC97_pcm_out_volume);
  941. cs4281_write_ac97(s, BA0_AC97_MASTER_VOLUME, 0x8000);
  942. cs4281_write_ac97(s, BA0_AC97_HEADPHONE_VOLUME, 0x8000);
  943. cs4281_write_ac97(s, BA0_AC97_MASTER_VOLUME_MONO, 0x8000);
  944. cs4281_write_ac97(s, BA0_AC97_PCM_OUT_VOLUME, 0x8000);
  945. cs4281_read_ac97(s, BA0_AC97_POWERDOWN, &s->pm.u32AC97_powerdown);
  946. cs4281_read_ac97(s, BA0_AC97_GENERAL_PURPOSE, &s->pm.u32AC97_general_purpose);
  947. /*
  948. * And power down everything on the AC97 codec.
  949. */
  950. cs4281_write_ac97(s, BA0_AC97_POWERDOWN, 0xff00);
  951. CS_DBGOUT(CS_PM, 9, printk("cs4281: cs4281_ac97_suspend()-\n"));
  952. }
  953. /****************************************************************************
  954. *
  955. * Resume - power up the part and restore its registers..
  956. *
  957. ****************************************************************************/
  958. static void cs4281_ac97_resume(struct cs4281_state *s)
  959. {
  960. int Count,i;
  961. CS_DBGOUT(CS_PM, 9, printk("cs4281: cs4281_ac97_resume()+\n"));
  962. /* do not save the power state registers at this time
  963. //
  964. // If we saved away the power control registers, write them into the
  965. // shadows so those saved values get restored instead of the current
  966. // shadowed value.
  967. //
  968. if( bPowerStateSaved )
  969. {
  970. PokeShadow( 0x26, ulSaveReg0x26 );
  971. bPowerStateSaved = FALSE;
  972. }
  973. */
  974. //
  975. // First, we restore the state of the general purpose register. This
  976. // contains the mic select (mic1 or mic2) and if we restore this after
  977. // we restore the mic volume/boost state and mic2 was selected at
  978. // suspend time, we will end up with a brief period of time where mic1
  979. // is selected with the volume/boost settings for mic2, causing
  980. // acoustic feedback. So we restore the general purpose register
  981. // first, thereby getting the correct mic selected before we restore
  982. // the mic volume/boost.
  983. //
  984. cs4281_write_ac97(s, BA0_AC97_GENERAL_PURPOSE, s->pm.u32AC97_general_purpose);
  985. //
  986. // Now, while the outputs are still muted, restore the state of power
  987. // on the AC97 part.
  988. //
  989. cs4281_write_ac97(s, BA0_AC97_POWERDOWN, s->pm.u32AC97_powerdown);
  990. /*
  991. * Restore just the first set of registers, from register number
  992. * 0x02 to the register number that ulHighestRegToRestore specifies.
  993. */
  994. for( Count = 0x2, i=0;
  995. (Count <= CS4281_AC97_HIGHESTREGTORESTORE)
  996. && (i < CS4281_AC97_NUMBER_RESTORE_REGS);
  997. Count += 2, i++)
  998. {
  999. cs4281_write_ac97(s, BA0_AC97_RESET + Count, s->pm.ac97[i]);
  1000. }
  1001. CS_DBGOUT(CS_PM, 9, printk("cs4281: cs4281_ac97_resume()-\n"));
  1002. }
  1003. /* do not save the power state registers at this time
  1004. ****************************************************************************
  1005. *
  1006. * SavePowerState - Save the power registers away.
  1007. *
  1008. ****************************************************************************
  1009. void
  1010. HWAC97codec::SavePowerState(void)
  1011. {
  1012. ENTRY(TM_OBJECTCALLS, "HWAC97codec::SavePowerState()\r\n");
  1013. ulSaveReg0x26 = PeekShadow(0x26);
  1014. //
  1015. // Note that we have saved registers that need to be restored during a
  1016. // resume instead of ulAC97Regs[].
  1017. //
  1018. bPowerStateSaved = TRUE;
  1019. } // SavePowerState
  1020. */
  1021. static void cs4281_SuspendFIFO(struct cs4281_state *s, struct cs4281_pipeline *pl)
  1022. {
  1023. /*
  1024. * We need to save the contents of the BASIC FIFO Registers.
  1025. */
  1026. pl->u32FCRn_Save = readl(s->pBA0 + pl->u32FCRnAddress);
  1027. pl->u32FSICn_Save = readl(s->pBA0 + pl->u32FSICnAddress);
  1028. }
  1029. static void cs4281_ResumeFIFO(struct cs4281_state *s, struct cs4281_pipeline *pl)
  1030. {
  1031. /*
  1032. * We need to restore the contents of the BASIC FIFO Registers.
  1033. */
  1034. writel(pl->u32FCRn_Save,s->pBA0 + pl->u32FCRnAddress);
  1035. writel(pl->u32FSICn_Save,s->pBA0 + pl->u32FSICnAddress);
  1036. }
  1037. static void cs4281_SuspendDMAengine(struct cs4281_state *s, struct cs4281_pipeline *pl)
  1038. {
  1039. //
  1040. // We need to save the contents of the BASIC DMA Registers.
  1041. //
  1042. pl->u32DBAn_Save = readl(s->pBA0 + pl->u32DBAnAddress);
  1043. pl->u32DBCn_Save = readl(s->pBA0 + pl->u32DBCnAddress);
  1044. pl->u32DMRn_Save = readl(s->pBA0 + pl->u32DMRnAddress);
  1045. pl->u32DCRn_Save = readl(s->pBA0 + pl->u32DCRnAddress);
  1046. pl->u32DCCn_Save = readl(s->pBA0 + pl->u32DCCnAddress);
  1047. pl->u32DCAn_Save = readl(s->pBA0 + pl->u32DCAnAddress);
  1048. }
  1049. static void cs4281_ResumeDMAengine(struct cs4281_state *s, struct cs4281_pipeline *pl)
  1050. {
  1051. //
  1052. // We need to save the contents of the BASIC DMA Registers.
  1053. //
  1054. writel( pl->u32DBAn_Save, s->pBA0 + pl->u32DBAnAddress);
  1055. writel( pl->u32DBCn_Save, s->pBA0 + pl->u32DBCnAddress);
  1056. writel( pl->u32DMRn_Save, s->pBA0 + pl->u32DMRnAddress);
  1057. writel( pl->u32DCRn_Save, s->pBA0 + pl->u32DCRnAddress);
  1058. writel( pl->u32DCCn_Save, s->pBA0 + pl->u32DCCnAddress);
  1059. writel( pl->u32DCAn_Save, s->pBA0 + pl->u32DCAnAddress);
  1060. }
  1061. static int cs4281_suspend(struct cs4281_state *s)
  1062. {
  1063. int i;
  1064. u32 u32CLKCR1;
  1065. struct cs4281_pm *pm = &s->pm;
  1066. CS_DBGOUT(CS_PM | CS_FUNCTION, 9,
  1067. printk("cs4281: cs4281_suspend()+ flags=%d\n",
  1068. (unsigned)s->pm.flags));
  1069. /*
  1070. * check the current state, only suspend if IDLE
  1071. */
  1072. if(!(s->pm.flags & CS4281_PM_IDLE))
  1073. {
  1074. CS_DBGOUT(CS_PM | CS_ERROR, 2,
  1075. printk("cs4281: cs4281_suspend() unable to suspend, not IDLE\n"));
  1076. return 1;
  1077. }
  1078. s->pm.flags &= ~CS4281_PM_IDLE;
  1079. s->pm.flags |= CS4281_PM_SUSPENDING;
  1080. //
  1081. // Gershwin CLKRUN - Set CKRA
  1082. //
  1083. u32CLKCR1 = readl(s->pBA0 + BA0_CLKCR1);
  1084. pm->u32CLKCR1_SAVE = u32CLKCR1;
  1085. if(!(u32CLKCR1 & 0x00010000 ) )
  1086. writel(u32CLKCR1 | 0x00010000, s->pBA0 + BA0_CLKCR1);
  1087. //
  1088. // First, turn on the clocks (yikes) to the devices, so that they will
  1089. // respond when we try to save their state.
  1090. //
  1091. if(!(u32CLKCR1 & CLKCR1_SWCE))
  1092. {
  1093. writel(u32CLKCR1 | CLKCR1_SWCE , s->pBA0 + BA0_CLKCR1);
  1094. }
  1095. //
  1096. // Save the power state
  1097. //
  1098. pm->u32SSPMValue = readl(s->pBA0 + BA0_SSPM);
  1099. //
  1100. // Disable interrupts.
  1101. //
  1102. writel(HICR_CHGM, s->pBA0 + BA0_HICR);
  1103. //
  1104. // Save the PCM Playback Left and Right Volume Control.
  1105. //
  1106. pm->u32PPLVCvalue = readl(s->pBA0 + BA0_PPLVC);
  1107. pm->u32PPRVCvalue = readl(s->pBA0 + BA0_PPRVC);
  1108. //
  1109. // Save the FM Synthesis Left and Right Volume Control.
  1110. //
  1111. pm->u32FMLVCvalue = readl(s->pBA0 + BA0_FMLVC);
  1112. pm->u32FMRVCvalue = readl(s->pBA0 + BA0_FMRVC);
  1113. //
  1114. // Save the GPIOR value.
  1115. //
  1116. pm->u32GPIORvalue = readl(s->pBA0 + BA0_GPIOR);
  1117. //
  1118. // Save the JSCTL value.
  1119. //
  1120. pm->u32JSCTLvalue = readl(s->pBA0 + BA0_GPIOR);
  1121. //
  1122. // Save Sound System Control Register
  1123. //
  1124. pm->u32SSCR = readl(s->pBA0 + BA0_SSCR);
  1125. //
  1126. // Save SRC Slot Assinment register
  1127. //
  1128. pm->u32SRCSA = readl(s->pBA0 + BA0_SRCSA);
  1129. //
  1130. // Save sample rate
  1131. //
  1132. pm->u32DacASR = readl(s->pBA0 + BA0_PASR);
  1133. pm->u32AdcASR = readl(s->pBA0 + BA0_CASR);
  1134. pm->u32DacSR = readl(s->pBA0 + BA0_DACSR);
  1135. pm->u32AdcSR = readl(s->pBA0 + BA0_ADCSR);
  1136. //
  1137. // Loop through all of the PipeLines
  1138. //
  1139. for(i = 0; i < CS4281_NUMBER_OF_PIPELINES; i++)
  1140. {
  1141. if(s->pl[i].flags & CS4281_PIPELINE_VALID)
  1142. {
  1143. //
  1144. // Ask the DMAengines and FIFOs to Suspend.
  1145. //
  1146. cs4281_SuspendDMAengine(s,&s->pl[i]);
  1147. cs4281_SuspendFIFO(s,&s->pl[i]);
  1148. }
  1149. }
  1150. //
  1151. // We need to save the contents of the Midi Control Register.
  1152. //
  1153. pm->u32MIDCR_Save = readl(s->pBA0 + BA0_MIDCR);
  1154. /*
  1155. * save off the AC97 part information
  1156. */
  1157. cs4281_ac97_suspend(s);
  1158. //
  1159. // Turn off the serial ports.
  1160. //
  1161. writel(0, s->pBA0 + BA0_SERMC);
  1162. //
  1163. // Power off FM, Joystick, AC link,
  1164. //
  1165. writel(0, s->pBA0 + BA0_SSPM);
  1166. //
  1167. // DLL off.
  1168. //
  1169. writel(0, s->pBA0 + BA0_CLKCR1);
  1170. //
  1171. // AC link off.
  1172. //
  1173. writel(0, s->pBA0 + BA0_SPMC);
  1174. //
  1175. // Put the chip into D3(hot) state.
  1176. //
  1177. // PokeBA0(BA0_PMCS, 0x00000003);
  1178. //
  1179. // Gershwin CLKRUN - Clear CKRA
  1180. //
  1181. u32CLKCR1 = readl(s->pBA0 + BA0_CLKCR1);
  1182. writel(u32CLKCR1 & 0xFFFEFFFF, s->pBA0 + BA0_CLKCR1);
  1183. #ifdef CSDEBUG
  1184. printpm(s);
  1185. printpipelines(s);
  1186. #endif
  1187. s->pm.flags &= ~CS4281_PM_SUSPENDING;
  1188. s->pm.flags |= CS4281_PM_SUSPENDED;
  1189. CS_DBGOUT(CS_PM | CS_FUNCTION, 9,
  1190. printk("cs4281: cs4281_suspend()- flags=%d\n",
  1191. (unsigned)s->pm.flags));
  1192. return 0;
  1193. }
  1194. static int cs4281_resume(struct cs4281_state *s)
  1195. {
  1196. int i;
  1197. unsigned temp1;
  1198. u32 u32CLKCR1;
  1199. struct cs4281_pm *pm = &s->pm;
  1200. CS_DBGOUT(CS_PM | CS_FUNCTION, 4,
  1201. printk( "cs4281: cs4281_resume()+ flags=%d\n",
  1202. (unsigned)s->pm.flags));
  1203. if(!(s->pm.flags & CS4281_PM_SUSPENDED))
  1204. {
  1205. CS_DBGOUT(CS_PM | CS_ERROR, 2,
  1206. printk("cs4281: cs4281_resume() unable to resume, not SUSPENDED\n"));
  1207. return 1;
  1208. }
  1209. s->pm.flags &= ~CS4281_PM_SUSPENDED;
  1210. s->pm.flags |= CS4281_PM_RESUMING;
  1211. //
  1212. // Gershwin CLKRUN - Set CKRA
  1213. //
  1214. u32CLKCR1 = readl(s->pBA0 + BA0_CLKCR1);
  1215. writel(u32CLKCR1 | 0x00010000, s->pBA0 + BA0_CLKCR1);
  1216. //
  1217. // set the power state.
  1218. //
  1219. //old PokeBA0(BA0_PMCS, 0);
  1220. //
  1221. // Program the clock circuit and serial ports.
  1222. //
  1223. temp1 = cs4281_hw_init(s);
  1224. if (temp1) {
  1225. CS_DBGOUT(CS_ERROR | CS_INIT, 1,
  1226. printk(KERN_ERR
  1227. "cs4281: resume cs4281_hw_init() error.\n"));
  1228. return -1;
  1229. }
  1230. //
  1231. // restore the Power state
  1232. //
  1233. writel(pm->u32SSPMValue, s->pBA0 + BA0_SSPM);
  1234. //
  1235. // Set post SRC mix setting (FM or ALT48K)
  1236. //
  1237. writel(pm->u32SSPM_BITS, s->pBA0 + BA0_SSPM);
  1238. //
  1239. // Loop through all of the PipeLines
  1240. //
  1241. for(i = 0; i < CS4281_NUMBER_OF_PIPELINES; i++)
  1242. {
  1243. if(s->pl[i].flags & CS4281_PIPELINE_VALID)
  1244. {
  1245. //
  1246. // Ask the DMAengines and FIFOs to Resume.
  1247. //
  1248. cs4281_ResumeDMAengine(s,&s->pl[i]);
  1249. cs4281_ResumeFIFO(s,&s->pl[i]);
  1250. }
  1251. }
  1252. //
  1253. // We need to restore the contents of the Midi Control Register.
  1254. //
  1255. writel(pm->u32MIDCR_Save, s->pBA0 + BA0_MIDCR);
  1256. cs4281_ac97_resume(s);
  1257. //
  1258. // Restore the PCM Playback Left and Right Volume Control.
  1259. //
  1260. writel(pm->u32PPLVCvalue, s->pBA0 + BA0_PPLVC);
  1261. writel(pm->u32PPRVCvalue, s->pBA0 + BA0_PPRVC);
  1262. //
  1263. // Restore the FM Synthesis Left and Right Volume Control.
  1264. //
  1265. writel(pm->u32FMLVCvalue, s->pBA0 + BA0_FMLVC);
  1266. writel(pm->u32FMRVCvalue, s->pBA0 + BA0_FMRVC);
  1267. //
  1268. // Restore the JSCTL value.
  1269. //
  1270. writel(pm->u32JSCTLvalue, s->pBA0 + BA0_JSCTL);
  1271. //
  1272. // Restore the GPIOR register value.
  1273. //
  1274. writel(pm->u32GPIORvalue, s->pBA0 + BA0_GPIOR);
  1275. //
  1276. // Restore Sound System Control Register
  1277. //
  1278. writel(pm->u32SSCR, s->pBA0 + BA0_SSCR);
  1279. //
  1280. // Restore SRC Slot Assignment register
  1281. //
  1282. writel(pm->u32SRCSA, s->pBA0 + BA0_SRCSA);
  1283. //
  1284. // Restore sample rate
  1285. //
  1286. writel(pm->u32DacASR, s->pBA0 + BA0_PASR);
  1287. writel(pm->u32AdcASR, s->pBA0 + BA0_CASR);
  1288. writel(pm->u32DacSR, s->pBA0 + BA0_DACSR);
  1289. writel(pm->u32AdcSR, s->pBA0 + BA0_ADCSR);
  1290. //
  1291. // Restore CFL1/2 registers we saved to compensate for OEM bugs.
  1292. //
  1293. // PokeBA0(BA0_CFLR, ulConfig);
  1294. //
  1295. // Gershwin CLKRUN - Clear CKRA
  1296. //
  1297. writel(pm->u32CLKCR1_SAVE, s->pBA0 + BA0_CLKCR1);
  1298. //
  1299. // Enable interrupts on the part.
  1300. //
  1301. writel(HICR_IEV | HICR_CHGM, s->pBA0 + BA0_HICR);
  1302. #ifdef CSDEBUG
  1303. printpm(s);
  1304. printpipelines(s);
  1305. #endif
  1306. /*
  1307. * change the state, restore the current hwptrs, then stop the dac/adc
  1308. */
  1309. s->pm.flags |= CS4281_PM_IDLE;
  1310. s->pm.flags &= ~(CS4281_PM_SUSPENDING | CS4281_PM_SUSPENDED
  1311. | CS4281_PM_RESUMING | CS4281_PM_RESUMED);
  1312. writel(s->pm.u32hwptr_playback, s->pBA0 + BA0_DCA0);
  1313. writel(s->pm.u32hwptr_capture, s->pBA0 + BA0_DCA1);
  1314. start_dac(s);
  1315. start_adc(s);
  1316. CS_DBGOUT(CS_PM | CS_FUNCTION, 9, printk("cs4281: cs4281_resume()- flags=%d\n",
  1317. (unsigned)s->pm.flags));
  1318. return 0;
  1319. }
  1320. #endif
  1321. //******************************************************************************
  1322. // "cs4281_play_rate()" --
  1323. //******************************************************************************
  1324. static void cs4281_play_rate(struct cs4281_state *card, u32 playrate)
  1325. {
  1326. u32 DACSRvalue = 1;
  1327. // Based on the sample rate, program the DACSR register.
  1328. if (playrate == 8000)
  1329. DACSRvalue = 5;
  1330. if (playrate == 11025)
  1331. DACSRvalue = 4;
  1332. else if (playrate == 22050)
  1333. DACSRvalue = 2;
  1334. else if (playrate == 44100)
  1335. DACSRvalue = 1;
  1336. else if ((playrate <= 48000) && (playrate >= 6023))
  1337. DACSRvalue = 24576000 / (playrate * 16);
  1338. else if (playrate < 6023)
  1339. // Not allowed by open.
  1340. return;
  1341. else if (playrate > 48000)
  1342. // Not allowed by open.
  1343. return;
  1344. CS_DBGOUT(CS_WAVE_WRITE | CS_PARMS, 2, printk(KERN_INFO
  1345. "cs4281: cs4281_play_rate(): DACSRvalue=0x%.8x playrate=%d\n",
  1346. DACSRvalue, playrate));
  1347. // Write the 'sample rate select code'
  1348. // to the 'DAC Sample Rate' register.
  1349. writel(DACSRvalue, card->pBA0 + BA0_DACSR); // (744h)
  1350. }
  1351. //******************************************************************************
  1352. // "cs4281_record_rate()" -- Initialize the record sample rate converter.
  1353. //******************************************************************************
  1354. static void cs4281_record_rate(struct cs4281_state *card, u32 outrate)
  1355. {
  1356. u32 ADCSRvalue = 1;
  1357. //
  1358. // Based on the sample rate, program the ADCSR register
  1359. //
  1360. if (outrate == 8000)
  1361. ADCSRvalue = 5;
  1362. if (outrate == 11025)
  1363. ADCSRvalue = 4;
  1364. else if (outrate == 22050)
  1365. ADCSRvalue = 2;
  1366. else if (outrate == 44100)
  1367. ADCSRvalue = 1;
  1368. else if ((outrate <= 48000) && (outrate >= 6023))
  1369. ADCSRvalue = 24576000 / (outrate * 16);
  1370. else if (outrate < 6023) {
  1371. // Not allowed by open.
  1372. return;
  1373. } else if (outrate > 48000) {
  1374. // Not allowed by open.
  1375. return;
  1376. }
  1377. CS_DBGOUT(CS_WAVE_READ | CS_PARMS, 2, printk(KERN_INFO
  1378. "cs4281: cs4281_record_rate(): ADCSRvalue=0x%.8x outrate=%d\n",
  1379. ADCSRvalue, outrate));
  1380. // Write the 'sample rate select code
  1381. // to the 'ADC Sample Rate' register.
  1382. writel(ADCSRvalue, card->pBA0 + BA0_ADCSR); // (748h)
  1383. }
  1384. static void stop_dac(struct cs4281_state *s)
  1385. {
  1386. unsigned long flags;
  1387. unsigned temp1;
  1388. CS_DBGOUT(CS_WAVE_WRITE, 3, printk(KERN_INFO "cs4281: stop_dac():\n"));
  1389. spin_lock_irqsave(&s->lock, flags);
  1390. s->ena &= ~FMODE_WRITE;
  1391. temp1 = readl(s->pBA0 + BA0_DCR0) | DCRn_MSK;
  1392. writel(temp1, s->pBA0 + BA0_DCR0);
  1393. spin_unlock_irqrestore(&s->lock, flags);
  1394. }
  1395. static void start_dac(struct cs4281_state *s)
  1396. {
  1397. unsigned long flags;
  1398. unsigned temp1;
  1399. CS_DBGOUT(CS_FUNCTION, 3, printk(KERN_INFO "cs4281: start_dac()+\n"));
  1400. spin_lock_irqsave(&s->lock, flags);
  1401. if (!(s->ena & FMODE_WRITE) && (s->dma_dac.mapped ||
  1402. (s->dma_dac.count > 0
  1403. && s->dma_dac.ready))
  1404. #ifndef NOT_CS4281_PM
  1405. && (s->pm.flags & CS4281_PM_IDLE))
  1406. #else
  1407. )
  1408. #endif
  1409. {
  1410. s->ena |= FMODE_WRITE;
  1411. temp1 = readl(s->pBA0 + BA0_DCR0) & ~DCRn_MSK; // Clear DMA0 channel mask.
  1412. writel(temp1, s->pBA0 + BA0_DCR0); // Start DMA'ing.
  1413. writel(HICR_IEV | HICR_CHGM, s->pBA0 + BA0_HICR); // Enable interrupts.
  1414. writel(7, s->pBA0 + BA0_PPRVC);
  1415. writel(7, s->pBA0 + BA0_PPLVC);
  1416. CS_DBGOUT(CS_WAVE_WRITE | CS_PARMS, 8, printk(KERN_INFO
  1417. "cs4281: start_dac(): writel 0x%x start dma\n", temp1));
  1418. }
  1419. spin_unlock_irqrestore(&s->lock, flags);
  1420. CS_DBGOUT(CS_FUNCTION, 3,
  1421. printk(KERN_INFO "cs4281: start_dac()-\n"));
  1422. }
  1423. static void stop_adc(struct cs4281_state *s)
  1424. {
  1425. unsigned long flags;
  1426. unsigned temp1;
  1427. CS_DBGOUT(CS_FUNCTION, 3,
  1428. printk(KERN_INFO "cs4281: stop_adc()+\n"));
  1429. spin_lock_irqsave(&s->lock, flags);
  1430. s->ena &= ~FMODE_READ;
  1431. if (s->conversion == 1) {
  1432. s->conversion = 0;
  1433. s->prop_adc.fmt = s->prop_adc.fmt_original;
  1434. }
  1435. temp1 = readl(s->pBA0 + BA0_DCR1) | DCRn_MSK;
  1436. writel(temp1, s->pBA0 + BA0_DCR1);
  1437. spin_unlock_irqrestore(&s->lock, flags);
  1438. CS_DBGOUT(CS_FUNCTION, 3,
  1439. printk(KERN_INFO "cs4281: stop_adc()-\n"));
  1440. }
  1441. static void start_adc(struct cs4281_state *s)
  1442. {
  1443. unsigned long flags;
  1444. unsigned temp1;
  1445. CS_DBGOUT(CS_FUNCTION, 2,
  1446. printk(KERN_INFO "cs4281: start_adc()+\n"));
  1447. if (!(s->ena & FMODE_READ) &&
  1448. (s->dma_adc.mapped || s->dma_adc.count <=
  1449. (signed) (s->dma_adc.dmasize - 2 * s->dma_adc.fragsize))
  1450. && s->dma_adc.ready
  1451. #ifndef NOT_CS4281_PM
  1452. && (s->pm.flags & CS4281_PM_IDLE))
  1453. #else
  1454. )
  1455. #endif
  1456. {
  1457. if (s->prop_adc.fmt & AFMT_S8 || s->prop_adc.fmt & AFMT_U8) {
  1458. //
  1459. // now only use 16 bit capture, due to truncation issue
  1460. // in the chip, noticable distortion occurs.
  1461. // allocate buffer and then convert from 16 bit to
  1462. // 8 bit for the user buffer.
  1463. //
  1464. s->prop_adc.fmt_original = s->prop_adc.fmt;
  1465. if (s->prop_adc.fmt & AFMT_S8) {
  1466. s->prop_adc.fmt &= ~AFMT_S8;
  1467. s->prop_adc.fmt |= AFMT_S16_LE;
  1468. }
  1469. if (s->prop_adc.fmt & AFMT_U8) {
  1470. s->prop_adc.fmt &= ~AFMT_U8;
  1471. s->prop_adc.fmt |= AFMT_U16_LE;
  1472. }
  1473. //
  1474. // prog_dmabuf_adc performs a stop_adc() but that is
  1475. // ok since we really haven't started the DMA yet.
  1476. //
  1477. prog_codec(s, CS_TYPE_ADC);
  1478. if (prog_dmabuf_adc(s) != 0) {
  1479. CS_DBGOUT(CS_ERROR, 2, printk(KERN_INFO
  1480. "cs4281: start_adc(): error in prog_dmabuf_adc\n"));
  1481. }
  1482. s->conversion = 1;
  1483. }
  1484. spin_lock_irqsave(&s->lock, flags);
  1485. s->ena |= FMODE_READ;
  1486. temp1 = readl(s->pBA0 + BA0_DCR1) & ~DCRn_MSK; // Clear DMA1 channel mask bit.
  1487. writel(temp1, s->pBA0 + BA0_DCR1); // Start recording
  1488. writel(HICR_IEV | HICR_CHGM, s->pBA0 + BA0_HICR); // Enable interrupts.
  1489. spin_unlock_irqrestore(&s->lock, flags);
  1490. CS_DBGOUT(CS_PARMS, 6, printk(KERN_INFO
  1491. "cs4281: start_adc(): writel 0x%x \n", temp1));
  1492. }
  1493. CS_DBGOUT(CS_FUNCTION, 2,
  1494. printk(KERN_INFO "cs4281: start_adc()-\n"));
  1495. }
  1496. // ---------------------------------------------------------------------
  1497. #define DMABUF_MINORDER 1 // ==> min buffer size = 8K.
  1498. static void dealloc_dmabuf(struct cs4281_state *s, struct dmabuf *db)
  1499. {
  1500. struct page *map, *mapend;
  1501. if (db->rawbuf) {
  1502. // Undo prog_dmabuf()'s marking the pages as reserved
  1503. mapend =
  1504. virt_to_page(db->rawbuf + (PAGE_SIZE << db->buforder) -
  1505. 1);
  1506. for (map = virt_to_page(db->rawbuf); map <= mapend; map++)
  1507. ClearPageReserved(map);
  1508. free_dmabuf(s, db);
  1509. }
  1510. if (s->tmpbuff && (db->type == CS_TYPE_ADC)) {
  1511. // Undo prog_dmabuf()'s marking the pages as reserved
  1512. mapend =
  1513. virt_to_page(s->tmpbuff +
  1514. (PAGE_SIZE << s->buforder_tmpbuff) - 1);
  1515. for (map = virt_to_page(s->tmpbuff); map <= mapend; map++)
  1516. ClearPageReserved(map);
  1517. free_dmabuf2(s, db);
  1518. }
  1519. s->tmpbuff = NULL;
  1520. db->rawbuf = NULL;
  1521. db->mapped = db->ready = 0;
  1522. }
  1523. static int prog_dmabuf(struct cs4281_state *s, struct dmabuf *db)
  1524. {
  1525. int order;
  1526. unsigned bytespersec, temp1;
  1527. unsigned bufs, sample_shift = 0;
  1528. struct page *map, *mapend;
  1529. unsigned long df;
  1530. CS_DBGOUT(CS_FUNCTION, 2,
  1531. printk(KERN_INFO "cs4281: prog_dmabuf()+\n"));
  1532. db->hwptr = db->swptr = db->total_bytes = db->count = db->error =
  1533. db->endcleared = db->blocks = db->wakeup = db->underrun = 0;
  1534. /*
  1535. * check for order within limits, but do not overwrite value, check
  1536. * later for a fractional defaultorder (i.e. 100+).
  1537. */
  1538. if((defaultorder > 0) && (defaultorder < 12))
  1539. df = defaultorder;
  1540. else
  1541. df = 1;
  1542. if (!db->rawbuf) {
  1543. db->ready = db->mapped = 0;
  1544. for (order = df; order >= DMABUF_MINORDER; order--)
  1545. if ( (db->rawbuf = (void *) pci_alloc_consistent(
  1546. s->pcidev, PAGE_SIZE << order, &db-> dmaaddr)))
  1547. break;
  1548. if (!db->rawbuf) {
  1549. CS_DBGOUT(CS_ERROR, 1, printk(KERN_ERR
  1550. "cs4281: prog_dmabuf(): unable to allocate rawbuf\n"));
  1551. return -ENOMEM;
  1552. }
  1553. db->buforder = order;
  1554. // Now mark the pages as reserved; otherwise the
  1555. // remap_pfn_range() in cs4281_mmap doesn't work.
  1556. // 1. get index to last page in mem_map array for rawbuf.
  1557. mapend = virt_to_page(db->rawbuf +
  1558. (PAGE_SIZE << db->buforder) - 1);
  1559. // 2. mark each physical page in range as 'reserved'.
  1560. for (map = virt_to_page(db->rawbuf); map <= mapend; map++)
  1561. SetPageReserved(map);
  1562. }
  1563. if (!s->tmpbuff && (db->type == CS_TYPE_ADC)) {
  1564. for (order = df; order >= DMABUF_MINORDER;
  1565. order--)
  1566. if ( (s->tmpbuff = (void *) pci_alloc_consistent(
  1567. s->pcidev, PAGE_SIZE << order,
  1568. &s->dmaaddr_tmpbuff)))
  1569. break;
  1570. if (!s->tmpbuff) {
  1571. CS_DBGOUT(CS_ERROR, 1, printk(KERN_ERR
  1572. "cs4281: prog_dmabuf(): unable to allocate tmpbuff\n"));
  1573. return -ENOMEM;
  1574. }
  1575. s->buforder_tmpbuff = order;
  1576. // Now mark the pages as reserved; otherwise the
  1577. // remap_pfn_range() in cs4281_mmap doesn't work.
  1578. // 1. get index to last page in mem_map array for rawbuf.
  1579. mapend = virt_to_page(s->tmpbuff +
  1580. (PAGE_SIZE << s->buforder_tmpbuff) - 1);
  1581. // 2. mark each physical page in range as 'reserved'.
  1582. for (map = virt_to_page(s->tmpbuff); map <= mapend; map++)
  1583. SetPageReserved(map);
  1584. }
  1585. if (db->type == CS_TYPE_DAC) {
  1586. if (s->prop_dac.fmt & (AFMT_S16_LE | AFMT_U16_LE))
  1587. sample_shift++;
  1588. if (s->prop_dac.channels > 1)
  1589. sample_shift++;
  1590. bytespersec = s->prop_dac.rate << sample_shift;
  1591. } else // CS_TYPE_ADC
  1592. {
  1593. if (s->prop_adc.fmt & (AFMT_S16_LE | AFMT_U16_LE))
  1594. sample_shift++;
  1595. if (s->prop_adc.channels > 1)
  1596. sample_shift++;
  1597. bytespersec = s->prop_adc.rate << sample_shift;
  1598. }
  1599. bufs = PAGE_SIZE << db->buforder;
  1600. /*
  1601. * added fractional "defaultorder" inputs. if >100 then use
  1602. * defaultorder-100 as power of 2 for the buffer size. example:
  1603. * 106 = 2^(106-100) = 2^6 = 64 bytes for the buffer size.
  1604. */
  1605. if(defaultorder >= 100)
  1606. {
  1607. bufs = 1 << (defaultorder-100);
  1608. }
  1609. #define INTERRUPT_RATE_MS 100 // Interrupt rate in milliseconds.
  1610. db->numfrag = 2;
  1611. /*
  1612. * Nominal frag size(bytes/interrupt)
  1613. */
  1614. temp1 = bytespersec / (1000 / INTERRUPT_RATE_MS);
  1615. db->fragshift = 8; // Min 256 bytes.
  1616. while (1 << db->fragshift < temp1) // Calc power of 2 frag size.
  1617. db->fragshift += 1;
  1618. db->fragsize = 1 << db->fragshift;
  1619. db->dmasize = db->fragsize * 2;
  1620. db->fragsamples = db->fragsize >> sample_shift; // # samples/fragment.
  1621. // If the calculated size is larger than the allocated
  1622. // buffer, divide the allocated buffer into 2 fragments.
  1623. if (db->dmasize > bufs) {
  1624. db->numfrag = 2; // Two fragments.
  1625. db->fragsize = bufs >> 1; // Each 1/2 the alloc'ed buffer.
  1626. db->fragsamples = db->fragsize >> sample_shift; // # samples/fragment.
  1627. db->dmasize = bufs; // Use all the alloc'ed buffer.
  1628. db->fragshift = 0; // Calculate 'fragshift'.
  1629. temp1 = db->fragsize; // update_ptr() uses it
  1630. while ((temp1 >>= 1) > 1) // to calc 'total-bytes'
  1631. db->fragshift += 1; // returned in DSP_GETI/OPTR.
  1632. }
  1633. CS_DBGOUT(CS_PARMS, 3, printk(KERN_INFO
  1634. "cs4281: prog_dmabuf(): numfrag=%d fragsize=%d fragsamples=%d fragshift=%d bufs=%d fmt=0x%x ch=%d\n",
  1635. db->numfrag, db->fragsize, db->fragsamples,
  1636. db->fragshift, bufs,
  1637. (db->type == CS_TYPE_DAC) ? s->prop_dac.fmt :
  1638. s->prop_adc.fmt,
  1639. (db->type == CS_TYPE_DAC) ? s->prop_dac.channels :
  1640. s->prop_adc.channels));
  1641. CS_DBGOUT(CS_FUNCTION, 2,
  1642. printk(KERN_INFO "cs4281: prog_dmabuf()-\n"));
  1643. return 0;
  1644. }
  1645. static int prog_dmabuf_adc(struct cs4281_state *s)
  1646. {
  1647. unsigned long va;
  1648. unsigned count;
  1649. int c;
  1650. stop_adc(s);
  1651. s->dma_adc.type = CS_TYPE_ADC;
  1652. if ((c = prog_dmabuf(s, &s->dma_adc)))
  1653. return c;
  1654. if (s->dma_adc.rawbuf) {
  1655. memset(s->dma_adc.rawbuf,
  1656. (s->prop_adc.
  1657. fmt & (AFMT_U8 | AFMT_U16_LE)) ? 0x80 : 0,
  1658. s->dma_adc.dmasize);
  1659. }
  1660. if (s->tmpbuff) {
  1661. memset(s->tmpbuff,
  1662. (s->prop_adc.
  1663. fmt & (AFMT_U8 | AFMT_U16_LE)) ? 0x80 : 0,
  1664. PAGE_SIZE << s->buforder_tmpbuff);
  1665. }
  1666. va = virt_to_bus(s->dma_adc.rawbuf);
  1667. count = s->dma_adc.dmasize;
  1668. if (s->prop_adc.
  1669. fmt & (AFMT_S16_LE | AFMT_U16_LE | AFMT_S16_BE | AFMT_U16_BE))
  1670. count /= 2; // 16-bit.
  1671. if (s->prop_adc.channels > 1)
  1672. count /= 2; // Assume stereo.
  1673. CS_DBGOUT(CS_WAVE_READ, 3, printk(KERN_INFO
  1674. "cs4281: prog_dmabuf_adc(): count=%d va=0x%.8x\n",
  1675. count, (unsigned) va));
  1676. writel(va, s->pBA0 + BA0_DBA1); // Set buffer start address.
  1677. writel(count - 1, s->pBA0 + BA0_DBC1); // Set count.
  1678. s->dma_adc.ready = 1;
  1679. return 0;
  1680. }
  1681. static int prog_dmabuf_dac(struct cs4281_state *s)
  1682. {
  1683. unsigned long va;
  1684. unsigned count;
  1685. int c;
  1686. stop_dac(s);
  1687. s->dma_dac.type = CS_TYPE_DAC;
  1688. if ((c = prog_dmabuf(s, &s->dma_dac)))
  1689. return c;
  1690. memset(s->dma_dac.rawbuf,
  1691. (s->prop_dac.fmt & (AFMT_U8 | AFMT_U16_LE)) ? 0x80 : 0,
  1692. s->dma_dac.dmasize);
  1693. va = virt_to_bus(s->dma_dac.rawbuf);
  1694. count = s->dma_dac.dmasize;
  1695. if (s->prop_dac.
  1696. fmt & (AFMT_S16_LE | AFMT_U16_LE | AFMT_S16_BE | AFMT_U16_BE))
  1697. count /= 2; // 16-bit.
  1698. if (s->prop_dac.channels > 1)
  1699. count /= 2; // Assume stereo.
  1700. writel(va, s->pBA0 + BA0_DBA0); // Set buffer start address.
  1701. writel(count - 1, s->pBA0 + BA0_DBC0); // Set count.
  1702. CS_DBGOUT(CS_WAVE_WRITE, 3, printk(KERN_INFO
  1703. "cs4281: prog_dmabuf_dac(): count=%d va=0x%.8x\n",
  1704. count, (unsigned) va));
  1705. s->dma_dac.ready = 1;
  1706. return 0;
  1707. }
  1708. static void clear_advance(void *buf, unsigned bsize, unsigned bptr,
  1709. unsigned len, unsigned char c)
  1710. {
  1711. if (bptr + len > bsize) {
  1712. unsigned x = bsize - bptr;
  1713. memset(((char *) buf) + bptr, c, x);
  1714. bptr = 0;
  1715. len -= x;
  1716. }
  1717. CS_DBGOUT(CS_WAVE_WRITE, 4, printk(KERN_INFO
  1718. "cs4281: clear_advance(): memset %d at %p for %d size \n",
  1719. (unsigned)c, ((char *) buf) + bptr, len));
  1720. memset(((char *) buf) + bptr, c, len);
  1721. }
  1722. // call with spinlock held!
  1723. static void cs4281_update_ptr(struct cs4281_state *s, int intflag)
  1724. {
  1725. int diff;
  1726. unsigned hwptr, va;
  1727. // update ADC pointer
  1728. if (s->ena & FMODE_READ) {
  1729. hwptr = readl(s->pBA0 + BA0_DCA1); // Read capture DMA address.
  1730. va = virt_to_bus(s->dma_adc.rawbuf);
  1731. hwptr -= (unsigned) va;
  1732. diff =
  1733. (s->dma_adc.dmasize + hwptr -
  1734. s->dma_adc.hwptr) % s->dma_adc.dmasize;
  1735. s->dma_adc.hwptr = hwptr;
  1736. s->dma_adc.total_bytes += diff;
  1737. s->dma_adc.count += diff;
  1738. if (s->dma_adc.count > s->dma_adc.dmasize)
  1739. s->dma_adc.count = s->dma_adc.dmasize;
  1740. if (s->dma_adc.mapped) {
  1741. if (s->dma_adc.count >=
  1742. (signed) s->dma_adc.fragsize) wake_up(&s->
  1743. dma_adc.
  1744. wait);
  1745. } else {
  1746. if (s->dma_adc.count > 0)
  1747. wake_up(&s->dma_adc.wait);
  1748. }
  1749. CS_DBGOUT(CS_PARMS, 8, printk(KERN_INFO
  1750. "cs4281: cs4281_update_ptr(): s=%p hwptr=%d total_bytes=%d count=%d \n",
  1751. s, s->dma_adc.hwptr, s->dma_adc.total_bytes, s->dma_adc.count));
  1752. }
  1753. // update DAC pointer
  1754. //
  1755. // check for end of buffer, means that we are going to wait for another interrupt
  1756. // to allow silence to fill the fifos on the part, to keep pops down to a minimum.
  1757. //
  1758. if (s->ena & FMODE_WRITE) {
  1759. hwptr = readl(s->pBA0 + BA0_DCA0); // Read play DMA address.
  1760. va = virt_to_bus(s->dma_dac.rawbuf);
  1761. hwptr -= (unsigned) va;
  1762. diff = (s->dma_dac.dmasize + hwptr -
  1763. s->dma_dac.hwptr) % s->dma_dac.dmasize;
  1764. s->dma_dac.hwptr = hwptr;
  1765. s->dma_dac.total_bytes += diff;
  1766. if (s->dma_dac.mapped) {
  1767. s->dma_dac.count += diff;
  1768. if (s->dma_dac.count >= s->dma_dac.fragsize) {
  1769. s->dma_dac.wakeup = 1;
  1770. wake_up(&s->dma_dac.wait);
  1771. if (s->dma_dac.count > s->dma_dac.dmasize)
  1772. s->dma_dac.count &=
  1773. s->dma_dac.dmasize - 1;
  1774. }
  1775. } else {
  1776. s->dma_dac.count -= diff;
  1777. if (s->dma_dac.count <= 0) {
  1778. //
  1779. // fill with silence, and do not shut down the DAC.
  1780. // Continue to play silence until the _release.
  1781. //
  1782. CS_DBGOUT(CS_WAVE_WRITE, 6, printk(KERN_INFO
  1783. "cs4281: cs4281_update_ptr(): memset %d at %p for %d size \n",
  1784. (unsigned)(s->prop_dac.fmt &
  1785. (AFMT_U8 | AFMT_U16_LE)) ? 0x80 : 0,
  1786. s->dma_dac.rawbuf, s->dma_dac.dmasize));
  1787. memset(s->dma_dac.rawbuf,
  1788. (s->prop_dac.
  1789. fmt & (AFMT_U8 | AFMT_U16_LE)) ?
  1790. 0x80 : 0, s->dma_dac.dmasize);
  1791. if (s->dma_dac.count < 0) {
  1792. s->dma_dac.underrun = 1;
  1793. s->dma_dac.count = 0;
  1794. CS_DBGOUT(CS_ERROR, 9, printk(KERN_INFO
  1795. "cs4281: cs4281_update_ptr(): underrun\n"));
  1796. }
  1797. } else if (s->dma_dac.count <=
  1798. (signed) s->dma_dac.fragsize
  1799. && !s->dma_dac.endcleared) {
  1800. clear_advance(s->dma_dac.rawbuf,
  1801. s->dma_dac.dmasize,
  1802. s->dma_dac.swptr,
  1803. s->dma_dac.fragsize,
  1804. (s->prop_dac.
  1805. fmt & (AFMT_U8 |
  1806. AFMT_U16_LE)) ? 0x80
  1807. : 0);
  1808. s->dma_dac.endcleared = 1;
  1809. }
  1810. if ( (s->dma_dac.count <= (signed) s->dma_dac.dmasize/2) ||
  1811. intflag)
  1812. {
  1813. wake_up(&s->dma_dac.wait);
  1814. }
  1815. }
  1816. CS_DBGOUT(CS_PARMS, 8, printk(KERN_INFO
  1817. "cs4281: cs4281_update_ptr(): s=%p hwptr=%d total_bytes=%d count=%d \n",
  1818. s, s->dma_dac.hwptr, s->dma_dac.total_bytes, s->dma_dac.count));
  1819. }
  1820. }
  1821. // ---------------------------------------------------------------------
  1822. static void prog_codec(struct cs4281_state *s, unsigned type)
  1823. {
  1824. unsigned long flags;
  1825. unsigned temp1, format;
  1826. CS_DBGOUT(CS_FUNCTION, 2,
  1827. printk(KERN_INFO "cs4281: prog_codec()+ \n"));
  1828. spin_lock_irqsave(&s->lock, flags);
  1829. if (type == CS_TYPE_ADC) {
  1830. temp1 = readl(s->pBA0 + BA0_DCR1);
  1831. writel(temp1 | DCRn_MSK, s->pBA0 + BA0_DCR1); // Stop capture DMA, if active.
  1832. // program sampling rates
  1833. // Note, for CS4281, capture & play rates can be set independently.
  1834. cs4281_record_rate(s, s->prop_adc.rate);
  1835. // program ADC parameters
  1836. format = DMRn_DMA | DMRn_AUTO | DMRn_TR_WRITE;
  1837. if (s->prop_adc.
  1838. fmt & (AFMT_S16_LE | AFMT_U16_LE | AFMT_S16_BE | AFMT_U16_BE)) { // 16-bit
  1839. if (s->prop_adc.fmt & (AFMT_S16_BE | AFMT_U16_BE)) // Big-endian?
  1840. format |= DMRn_BEND;
  1841. if (s->prop_adc.fmt & (AFMT_U16_LE | AFMT_U16_BE))
  1842. format |= DMRn_USIGN; // Unsigned.
  1843. } else
  1844. format |= DMRn_SIZE8 | DMRn_USIGN; // 8-bit, unsigned
  1845. if (s->prop_adc.channels < 2)
  1846. format |= DMRn_MONO;
  1847. writel(format, s->pBA0 + BA0_DMR1);
  1848. CS_DBGOUT(CS_PARMS, 2, printk(KERN_INFO
  1849. "cs4281: prog_codec(): adc %s %s %s rate=%d DMR0 format=0x%.8x\n",
  1850. (format & DMRn_SIZE8) ? "8" : "16",
  1851. (format & DMRn_USIGN) ? "Unsigned" : "Signed",
  1852. (format & DMRn_MONO) ? "Mono" : "Stereo",
  1853. s->prop_adc.rate, format));
  1854. s->ena &= ~FMODE_READ; // not capturing data yet
  1855. }
  1856. if (type == CS_TYPE_DAC) {
  1857. temp1 = readl(s->pBA0 + BA0_DCR0);
  1858. writel(temp1 | DCRn_MSK, s->pBA0 + BA0_DCR0); // Stop play DMA, if active.
  1859. // program sampling rates
  1860. // Note, for CS4281, capture & play rates can be set independently.
  1861. cs4281_play_rate(s, s->prop_dac.rate);
  1862. // program DAC parameters
  1863. format = DMRn_DMA | DMRn_AUTO | DMRn_TR_READ;
  1864. if (s->prop_dac.
  1865. fmt & (AFMT_S16_LE | AFMT_U16_LE | AFMT_S16_BE | AFMT_U16_BE)) { // 16-bit
  1866. if (s->prop_dac.fmt & (AFMT_S16_BE | AFMT_U16_BE))
  1867. format |= DMRn_BEND; // Big Endian.
  1868. if (s->prop_dac.fmt & (AFMT_U16_LE | AFMT_U16_BE))
  1869. format |= DMRn_USIGN; // Unsigned.
  1870. } else
  1871. format |= DMRn_SIZE8 | DMRn_USIGN; // 8-bit, unsigned
  1872. if (s->prop_dac.channels < 2)
  1873. format |= DMRn_MONO;
  1874. writel(format, s->pBA0 + BA0_DMR0);
  1875. CS_DBGOUT(CS_PARMS, 2, printk(KERN_INFO
  1876. "cs4281: prog_codec(): dac %s %s %s rate=%d DMR0 format=0x%.8x\n",
  1877. (format & DMRn_SIZE8) ? "8" : "16",
  1878. (format & DMRn_USIGN) ? "Unsigned" : "Signed",
  1879. (format & DMRn_MONO) ? "Mono" : "Stereo",
  1880. s->prop_dac.rate, format));
  1881. s->ena &= ~FMODE_WRITE; // not capturing data yet
  1882. }
  1883. spin_unlock_irqrestore(&s->lock, flags);
  1884. CS_DBGOUT(CS_FUNCTION, 2,
  1885. printk(KERN_INFO "cs4281: prog_codec()- \n"));
  1886. }
  1887. static int mixer_ioctl(struct cs4281_state *s, unsigned int cmd,
  1888. unsigned long arg)
  1889. {
  1890. // Index to mixer_src[] is value of AC97 Input Mux Select Reg.
  1891. // Value of array member is recording source Device ID Mask.
  1892. static const unsigned int mixer_src[8] = {
  1893. SOUND_MASK_MIC, SOUND_MASK_CD, 0, SOUND_MASK_LINE1,
  1894. SOUND_MASK_LINE, SOUND_MASK_VOLUME, 0, 0
  1895. };
  1896. void __user *argp = (void __user *)arg;
  1897. // Index of mixtable1[] member is Device ID
  1898. // and must be <= SOUND_MIXER_NRDEVICES.
  1899. // Value of array member is index into s->mix.vol[]
  1900. static const unsigned char mixtable1[SOUND_MIXER_NRDEVICES] = {
  1901. [SOUND_MIXER_PCM] = 1, // voice
  1902. [SOUND_MIXER_LINE1] = 2, // AUX
  1903. [SOUND_MIXER_CD] = 3, // CD
  1904. [SOUND_MIXER_LINE] = 4, // Line
  1905. [SOUND_MIXER_SYNTH] = 5, // FM
  1906. [SOUND_MIXER_MIC] = 6, // Mic
  1907. [SOUND_MIXER_SPEAKER] = 7, // Speaker
  1908. [SOUND_MIXER_RECLEV] = 8, // Recording level
  1909. [SOUND_MIXER_VOLUME] = 9 // Master Volume
  1910. };
  1911. static const unsigned mixreg[] = {
  1912. BA0_AC97_PCM_OUT_VOLUME,
  1913. BA0_AC97_AUX_VOLUME,
  1914. BA0_AC97_CD_VOLUME,
  1915. BA0_AC97_LINE_IN_VOLUME
  1916. };
  1917. unsigned char l, r, rl, rr, vidx;
  1918. unsigned char attentbl[11] =
  1919. { 63, 42, 26, 17, 14, 11, 8, 6, 4, 2, 0 };
  1920. unsigned temp1;
  1921. int i, val;
  1922. VALIDATE_STATE(s);
  1923. CS_DBGOUT(CS_FUNCTION, 4, printk(KERN_INFO
  1924. "cs4281: mixer_ioctl(): s=%p cmd=0x%.8x\n", s, cmd));
  1925. #if CSDEBUG
  1926. cs_printioctl(cmd);
  1927. #endif
  1928. #if CSDEBUG_INTERFACE
  1929. if ((cmd == SOUND_MIXER_CS_GETDBGMASK) ||
  1930. (cmd == SOUND_MIXER_CS_SETDBGMASK) ||
  1931. (cmd == SOUND_MIXER_CS_GETDBGLEVEL) ||
  1932. (cmd == SOUND_MIXER_CS_SETDBGLEVEL) ||
  1933. (cmd == SOUND_MIXER_CS_APM))
  1934. {
  1935. switch (cmd) {
  1936. case SOUND_MIXER_CS_GETDBGMASK:
  1937. return put_user(cs_debugmask,
  1938. (unsigned long __user *) argp);
  1939. case SOUND_MIXER_CS_GETDBGLEVEL:
  1940. return put_user(cs_debuglevel,
  1941. (unsigned long __user *) argp);
  1942. case SOUND_MIXER_CS_SETDBGMASK:
  1943. if (get_user(val, (unsigned long __user *) argp))
  1944. return -EFAULT;
  1945. cs_debugmask = val;
  1946. return 0;
  1947. case SOUND_MIXER_CS_SETDBGLEVEL:
  1948. if (get_user(val, (unsigned long __user *) argp))
  1949. return -EFAULT;
  1950. cs_debuglevel = val;
  1951. return 0;
  1952. #ifndef NOT_CS4281_PM
  1953. case SOUND_MIXER_CS_APM:
  1954. if (get_user(val, (unsigned long __user *) argp))
  1955. return -EFAULT;
  1956. if(val == CS_IOCTL_CMD_SUSPEND)
  1957. cs4281_suspend(s);
  1958. else if(val == CS_IOCTL_CMD_RESUME)
  1959. cs4281_resume(s);
  1960. else
  1961. {
  1962. CS_DBGOUT(CS_ERROR, 1, printk(KERN_INFO
  1963. "cs4281: mixer_ioctl(): invalid APM cmd (%d)\n",
  1964. val));
  1965. }
  1966. return 0;
  1967. #endif
  1968. default:
  1969. CS_DBGOUT(CS_ERROR, 1, printk(KERN_INFO
  1970. "cs4281: mixer_ioctl(): ERROR unknown debug cmd\n"));
  1971. return 0;
  1972. }
  1973. }
  1974. #endif
  1975. if (cmd == SOUND_MIXER_PRIVATE1) {
  1976. // enable/disable/query mixer preamp
  1977. if (get_user(val, (int __user *) argp))
  1978. return -EFAULT;
  1979. if (val != -1) {
  1980. cs4281_read_ac97(s, BA0_AC97_MIC_VOLUME, &temp1);
  1981. temp1 = val ? (temp1 | 0x40) : (temp1 & 0xffbf);
  1982. cs4281_write_ac97(s, BA0_AC97_MIC_VOLUME, temp1);
  1983. }
  1984. cs4281_read_ac97(s, BA0_AC97_MIC_VOLUME, &temp1);
  1985. val = (temp1 & 0x40) ? 1 : 0;
  1986. return put_user(val, (int __user *) argp);
  1987. }
  1988. if (cmd == SOUND_MIXER_PRIVATE2) {
  1989. // enable/disable/query spatializer
  1990. if (get_user(val, (int __user *)argp))
  1991. return -EFAULT;
  1992. if (val != -1) {
  1993. temp1 = (val & 0x3f) >> 2;
  1994. cs4281_write_ac97(s, BA0_AC97_3D_CONTROL, temp1);
  1995. cs4281_read_ac97(s, BA0_AC97_GENERAL_PURPOSE,
  1996. &temp1);
  1997. cs4281_write_ac97(s, BA0_AC97_GENERAL_PURPOSE,
  1998. temp1 | 0x2000);
  1999. }
  2000. cs4281_read_ac97(s, BA0_AC97_3D_CONTROL, &temp1);
  2001. return put_user((temp1 << 2) | 3, (int __user *)argp);
  2002. }
  2003. if (cmd == SOUND_MIXER_INFO) {
  2004. mixer_info info;
  2005. strlcpy(info.id, "CS4281", sizeof(info.id));
  2006. strlcpy(info.name, "Crystal CS4281", sizeof(info.name));
  2007. info.modify_counter = s->mix.modcnt;
  2008. if (copy_to_user(argp, &info, sizeof(info)))
  2009. return -EFAULT;
  2010. return 0;
  2011. }
  2012. if (cmd == SOUND_OLD_MIXER_INFO) {
  2013. _old_mixer_info info;
  2014. strlcpy(info.id, "CS4281", sizeof(info.id));
  2015. strlcpy(info.name, "Crystal CS4281", sizeof(info.name));
  2016. if (copy_to_user(argp, &info, sizeof(info)))
  2017. return -EFAULT;
  2018. return 0;
  2019. }
  2020. if (cmd == OSS_GETVERSION)
  2021. return put_user(SOUND_VERSION, (int __user *) argp);
  2022. if (_IOC_TYPE(cmd) != 'M' || _SIOC_SIZE(cmd) != sizeof(int))
  2023. return -EINVAL;
  2024. // If ioctl has only the SIOC_READ bit(bit 31)
  2025. // on, process the only-read commands.
  2026. if (_SIOC_DIR(cmd) == _SIOC_READ) {
  2027. switch (_IOC_NR(cmd)) {
  2028. case SOUND_MIXER_RECSRC: // Arg contains a bit for each recording source
  2029. cs4281_read_ac97(s, BA0_AC97_RECORD_SELECT, &temp1);
  2030. return put_user(mixer_src[temp1&7], (int __user *)argp);
  2031. case SOUND_MIXER_DEVMASK: // Arg contains a bit for each supported device
  2032. return put_user(SOUND_MASK_PCM | SOUND_MASK_SYNTH |
  2033. SOUND_MASK_CD | SOUND_MASK_LINE |
  2034. SOUND_MASK_LINE1 | SOUND_MASK_MIC |
  2035. SOUND_MASK_VOLUME |
  2036. SOUND_MASK_RECLEV |
  2037. SOUND_MASK_SPEAKER, (int __user *)argp);
  2038. case SOUND_MIXER_RECMASK: // Arg contains a bit for each supported recording source
  2039. return put_user(SOUND_MASK_LINE | SOUND_MASK_MIC |
  2040. SOUND_MASK_CD | SOUND_MASK_VOLUME |
  2041. SOUND_MASK_LINE1, (int __user *) argp);
  2042. case SOUND_MIXER_STEREODEVS: // Mixer channels supporting stereo
  2043. return put_user(SOUND_MASK_PCM | SOUND_MASK_SYNTH |
  2044. SOUND_MASK_CD | SOUND_MASK_LINE |
  2045. SOUND_MASK_LINE1 | SOUND_MASK_MIC |
  2046. SOUND_MASK_VOLUME |
  2047. SOUND_MASK_RECLEV, (int __user *)argp);
  2048. case SOUND_MIXER_CAPS:
  2049. return put_user(SOUND_CAP_EXCL_INPUT, (int __user *)argp);
  2050. default:
  2051. i = _IOC_NR(cmd);
  2052. if (i >= SOUND_MIXER_NRDEVICES
  2053. || !(vidx = mixtable1[i]))
  2054. return -EINVAL;
  2055. return put_user(s->mix.vol[vidx - 1], (int __user *)argp);
  2056. }
  2057. }
  2058. // If ioctl doesn't have both the SIOC_READ and
  2059. // the SIOC_WRITE bit set, return invalid.
  2060. if (_SIOC_DIR(cmd) != (_SIOC_READ | _SIOC_WRITE))
  2061. return -EINVAL;
  2062. // Increment the count of volume writes.
  2063. s->mix.modcnt++;
  2064. // Isolate the command; it must be a write.
  2065. switch (_IOC_NR(cmd)) {
  2066. case SOUND_MIXER_RECSRC: // Arg contains a bit for each recording source
  2067. if (get_user(val, (int __user *)argp))
  2068. return -EFAULT;
  2069. i = hweight32(val); // i = # bits on in val.
  2070. if (i != 1) // One & only 1 bit must be on.
  2071. return 0;
  2072. for (i = 0; i < sizeof(mixer_src) / sizeof(int); i++) {
  2073. if (val == mixer_src[i]) {
  2074. temp1 = (i << 8) | i;
  2075. cs4281_write_ac97(s,
  2076. BA0_AC97_RECORD_SELECT,
  2077. temp1);
  2078. return 0;
  2079. }
  2080. }
  2081. return 0;
  2082. case SOUND_MIXER_VOLUME:
  2083. if (get_user(val, (int __user *)argp))
  2084. return -EFAULT;
  2085. l = val & 0xff;
  2086. if (l > 100)
  2087. l = 100; // Max soundcard.h vol is 100.
  2088. if (l < 6) {
  2089. rl = 63;
  2090. l = 0;
  2091. } else
  2092. rl = attentbl[(10 * l) / 100]; // Convert 0-100 vol to 63-0 atten.
  2093. r = (val >> 8) & 0xff;
  2094. if (r > 100)
  2095. r = 100; // Max right volume is 100, too
  2096. if (r < 6) {
  2097. rr = 63;
  2098. r = 0;
  2099. } else
  2100. rr = attentbl[(10 * r) / 100]; // Convert volume to attenuation.
  2101. if ((rl > 60) && (rr > 60)) // If both l & r are 'low',
  2102. temp1 = 0x8000; // turn on the mute bit.
  2103. else
  2104. temp1 = 0;
  2105. temp1 |= (rl << 8) | rr;
  2106. cs4281_write_ac97(s, BA0_AC97_MASTER_VOLUME, temp1);
  2107. cs4281_write_ac97(s, BA0_AC97_HEADPHONE_VOLUME, temp1);
  2108. #ifdef OSS_DOCUMENTED_MIXER_SEMANTICS
  2109. s->mix.vol[8] = ((unsigned int) r << 8) | l;
  2110. #else
  2111. s->mix.vol[8] = val;
  2112. #endif
  2113. return put_user(s->mix.vol[8], (int __user *)argp);
  2114. case SOUND_MIXER_SPEAKER:
  2115. if (get_user(val, (int __user *)argp))
  2116. return -EFAULT;
  2117. l = val & 0xff;
  2118. if (l > 100)
  2119. l = 100;
  2120. if (l < 3) {
  2121. rl = 0;
  2122. l = 0;
  2123. } else {
  2124. rl = (l * 2 - 5) / 13; // Convert 0-100 range to 0-15.
  2125. l = (rl * 13 + 5) / 2;
  2126. }
  2127. if (rl < 3) {
  2128. temp1 = 0x8000;
  2129. rl = 0;
  2130. } else
  2131. temp1 = 0;
  2132. rl = 15 - rl; // Convert volume to attenuation.
  2133. temp1 |= rl << 1;
  2134. cs4281_write_ac97(s, BA0_AC97_PC_BEEP_VOLUME, temp1);
  2135. #ifdef OSS_DOCUMENTED_MIXER_SEMANTICS
  2136. s->mix.vol[6] = l << 8;
  2137. #else
  2138. s->mix.vol[6] = val;
  2139. #endif
  2140. return put_user(s->mix.vol[6], (int __user *)argp);
  2141. case SOUND_MIXER_RECLEV:
  2142. if (get_user(val, (int __user *)argp))
  2143. return -EFAULT;
  2144. l = val & 0xff;
  2145. if (l > 100)
  2146. l = 100;
  2147. r = (val >> 8) & 0xff;
  2148. if (r > 100)
  2149. r = 100;
  2150. rl = (l * 2 - 5) / 13; // Convert 0-100 scale to 0-15.
  2151. rr = (r * 2 - 5) / 13;
  2152. if (rl < 3 && rr < 3)
  2153. temp1 = 0x8000;
  2154. else
  2155. temp1 = 0;
  2156. temp1 = temp1 | (rl << 8) | rr;
  2157. cs4281_write_ac97(s, BA0_AC97_RECORD_GAIN, temp1);
  2158. #ifdef OSS_DOCUMENTED_MIXER_SEMANTICS
  2159. s->mix.vol[7] = ((unsigned int) r << 8) | l;
  2160. #else
  2161. s->mix.vol[7] = val;
  2162. #endif
  2163. return put_user(s->mix.vol[7], (int __user *)argp);
  2164. case SOUND_MIXER_MIC:
  2165. if (get_user(val, (int __user *)argp))
  2166. return -EFAULT;
  2167. l = val & 0xff;
  2168. if (l > 100)
  2169. l = 100;
  2170. if (l < 1) {
  2171. l = 0;
  2172. rl = 0;
  2173. } else {
  2174. rl = ((unsigned) l * 5 - 4) / 16; // Convert 0-100 range to 0-31.
  2175. l = (rl * 16 + 4) / 5;
  2176. }
  2177. cs4281_read_ac97(s, BA0_AC97_MIC_VOLUME, &temp1);
  2178. temp1 &= 0x40; // Isolate 20db gain bit.
  2179. if (rl < 3) {
  2180. temp1 |= 0x8000;
  2181. rl = 0;
  2182. }
  2183. rl = 31 - rl; // Convert volume to attenuation.
  2184. temp1 |= rl;
  2185. cs4281_write_ac97(s, BA0_AC97_MIC_VOLUME, temp1);
  2186. #ifdef OSS_DOCUMENTED_MIXER_SEMANTICS
  2187. s->mix.vol[5] = val << 8;
  2188. #else
  2189. s->mix.vol[5] = val;
  2190. #endif
  2191. return put_user(s->mix.vol[5], (int __user *)argp);
  2192. case SOUND_MIXER_SYNTH:
  2193. if (get_user(val, (int __user *)argp))
  2194. return -EFAULT;
  2195. l = val & 0xff;
  2196. if (l > 100)
  2197. l = 100;
  2198. if (get_user(val, (int __user *)argp))
  2199. return -EFAULT;
  2200. r = (val >> 8) & 0xff;
  2201. if (r > 100)
  2202. r = 100;
  2203. rl = (l * 2 - 11) / 3; // Convert 0-100 range to 0-63.
  2204. rr = (r * 2 - 11) / 3;
  2205. if (rl < 3) // If l is low, turn on
  2206. temp1 = 0x0080; // the mute bit.
  2207. else
  2208. temp1 = 0;
  2209. rl = 63 - rl; // Convert vol to attenuation.
  2210. writel(temp1 | rl, s->pBA0 + BA0_FMLVC);
  2211. if (rr < 3) // If rr is low, turn on
  2212. temp1 = 0x0080; // the mute bit.
  2213. else
  2214. temp1 = 0;
  2215. rr = 63 - rr; // Convert vol to attenuation.
  2216. writel(temp1 | rr, s->pBA0 + BA0_FMRVC);
  2217. #ifdef OSS_DOCUMENTED_MIXER_SEMANTICS
  2218. s->mix.vol[4] = (r << 8) | l;
  2219. #else
  2220. s->mix.vol[4] = val;
  2221. #endif
  2222. return put_user(s->mix.vol[4], (int __user *)argp);
  2223. default:
  2224. CS_DBGOUT(CS_IOCTL, 4, printk(KERN_INFO
  2225. "cs4281: mixer_ioctl(): default\n"));
  2226. i = _IOC_NR(cmd);
  2227. if (i >= SOUND_MIXER_NRDEVICES || !(vidx = mixtable1[i]))
  2228. return -EINVAL;
  2229. if (get_user(val, (int __user *)argp))
  2230. return -EFAULT;
  2231. l = val & 0xff;
  2232. if (l > 100)
  2233. l = 100;
  2234. if (l < 1) {
  2235. l = 0;
  2236. rl = 31;
  2237. } else
  2238. rl = (attentbl[(l * 10) / 100]) >> 1;
  2239. r = (val >> 8) & 0xff;
  2240. if (r > 100)
  2241. r = 100;
  2242. if (r < 1) {
  2243. r = 0;
  2244. rr = 31;
  2245. } else
  2246. rr = (attentbl[(r * 10) / 100]) >> 1;
  2247. if ((rl > 30) && (rr > 30))
  2248. temp1 = 0x8000;
  2249. else
  2250. temp1 = 0;
  2251. temp1 = temp1 | (rl << 8) | rr;
  2252. cs4281_write_ac97(s, mixreg[vidx - 1], temp1);
  2253. #ifdef OSS_DOCUMENTED_MIXER_SEMANTICS
  2254. s->mix.vol[vidx - 1] = ((unsigned int) r << 8) | l;
  2255. #else
  2256. s->mix.vol[vidx - 1] = val;
  2257. #endif
  2258. #ifndef NOT_CS4281_PM
  2259. CS_DBGOUT(CS_PM, 9, printk(KERN_INFO
  2260. "write ac97 mixreg[%d]=0x%x mix.vol[]=0x%x\n",
  2261. vidx-1,temp1,s->mix.vol[vidx-1]));
  2262. #endif
  2263. return put_user(s->mix.vol[vidx - 1], (int __user *)argp);
  2264. }
  2265. }
  2266. // ---------------------------------------------------------------------
  2267. static int cs4281_open_mixdev(struct inode *inode, struct file *file)
  2268. {
  2269. unsigned int minor = iminor(inode);
  2270. struct cs4281_state *s=NULL;
  2271. struct list_head *entry;
  2272. CS_DBGOUT(CS_FUNCTION | CS_OPEN, 4,
  2273. printk(KERN_INFO "cs4281: cs4281_open_mixdev()+\n"));
  2274. list_for_each(entry, &cs4281_devs)
  2275. {
  2276. s = list_entry(entry, struct cs4281_state, list);
  2277. if(s->dev_mixer == minor)
  2278. break;
  2279. }
  2280. if (!s)
  2281. {
  2282. CS_DBGOUT(CS_FUNCTION | CS_OPEN | CS_ERROR, 2,
  2283. printk(KERN_INFO "cs4281: cs4281_open_mixdev()- -ENODEV\n"));
  2284. return -ENODEV;
  2285. }
  2286. VALIDATE_STATE(s);
  2287. file->private_data = s;
  2288. CS_DBGOUT(CS_FUNCTION | CS_OPEN, 4,
  2289. printk(KERN_INFO "cs4281: cs4281_open_mixdev()- 0\n"));
  2290. return nonseekable_open(inode, file);
  2291. }
  2292. static int cs4281_release_mixdev(struct inode *inode, struct file *file)
  2293. {
  2294. struct cs4281_state *s =
  2295. (struct cs4281_state *) file->private_data;
  2296. VALIDATE_STATE(s);
  2297. return 0;
  2298. }
  2299. static int cs4281_ioctl_mixdev(struct inode *inode, struct file *file,
  2300. unsigned int cmd, unsigned long arg)
  2301. {
  2302. return mixer_ioctl((struct cs4281_state *) file->private_data, cmd,
  2303. arg);
  2304. }
  2305. // ******************************************************************************************
  2306. // Mixer file operations struct.
  2307. // ******************************************************************************************
  2308. static /*const */ struct file_operations cs4281_mixer_fops = {
  2309. .owner = THIS_MODULE,
  2310. .llseek = no_llseek,
  2311. .ioctl = cs4281_ioctl_mixdev,
  2312. .open = cs4281_open_mixdev,
  2313. .release = cs4281_release_mixdev,
  2314. };
  2315. // ---------------------------------------------------------------------
  2316. static int drain_adc(struct cs4281_state *s, int nonblock)
  2317. {
  2318. DECLARE_WAITQUEUE(wait, current);
  2319. unsigned long flags;
  2320. int count;
  2321. unsigned tmo;
  2322. if (s->dma_adc.mapped)
  2323. return 0;
  2324. add_wait_queue(&s->dma_adc.wait, &wait);
  2325. for (;;) {
  2326. set_current_state(TASK_INTERRUPTIBLE);
  2327. spin_lock_irqsave(&s->lock, flags);
  2328. count = s->dma_adc.count;
  2329. CS_DBGOUT(CS_FUNCTION, 2,
  2330. printk(KERN_INFO "cs4281: drain_adc() %d\n", count));
  2331. spin_unlock_irqrestore(&s->lock, flags);
  2332. if (count <= 0) {
  2333. CS_DBGOUT(CS_FUNCTION, 2, printk(KERN_INFO
  2334. "cs4281: drain_adc() count<0\n"));
  2335. break;
  2336. }
  2337. if (signal_pending(current))
  2338. break;
  2339. if (nonblock) {
  2340. remove_wait_queue(&s->dma_adc.wait, &wait);
  2341. current->state = TASK_RUNNING;
  2342. return -EBUSY;
  2343. }
  2344. tmo =
  2345. 3 * HZ * (count +
  2346. s->dma_adc.fragsize) / 2 / s->prop_adc.rate;
  2347. if (s->prop_adc.fmt & (AFMT_S16_LE | AFMT_U16_LE))
  2348. tmo >>= 1;
  2349. if (s->prop_adc.channels > 1)
  2350. tmo >>= 1;
  2351. if (!schedule_timeout(tmo + 1))
  2352. printk(KERN_DEBUG "cs4281: dma timed out??\n");
  2353. }
  2354. remove_wait_queue(&s->dma_adc.wait, &wait);
  2355. current->state = TASK_RUNNING;
  2356. if (signal_pending(current))
  2357. return -ERESTARTSYS;
  2358. return 0;
  2359. }
  2360. static int drain_dac(struct cs4281_state *s, int nonblock)
  2361. {
  2362. DECLARE_WAITQUEUE(wait, current);
  2363. unsigned long flags;
  2364. int count;
  2365. unsigned tmo;
  2366. if (s->dma_dac.mapped)
  2367. return 0;
  2368. add_wait_queue(&s->dma_dac.wait, &wait);
  2369. for (;;) {
  2370. set_current_state(TASK_INTERRUPTIBLE);
  2371. spin_lock_irqsave(&s->lock, flags);
  2372. count = s->dma_dac.count;
  2373. spin_unlock_irqrestore(&s->lock, flags);
  2374. if (count <= 0)
  2375. break;
  2376. if (signal_pending(current))
  2377. break;
  2378. if (nonblock) {
  2379. remove_wait_queue(&s->dma_dac.wait, &wait);
  2380. current->state = TASK_RUNNING;
  2381. return -EBUSY;
  2382. }
  2383. tmo =
  2384. 3 * HZ * (count +
  2385. s->dma_dac.fragsize) / 2 / s->prop_dac.rate;
  2386. if (s->prop_dac.fmt & (AFMT_S16_LE | AFMT_U16_LE))
  2387. tmo >>= 1;
  2388. if (s->prop_dac.channels > 1)
  2389. tmo >>= 1;
  2390. if (!schedule_timeout(tmo + 1))
  2391. printk(KERN_DEBUG "cs4281: dma timed out??\n");
  2392. }
  2393. remove_wait_queue(&s->dma_dac.wait, &wait);
  2394. current->state = TASK_RUNNING;
  2395. if (signal_pending(current))
  2396. return -ERESTARTSYS;
  2397. return 0;
  2398. }
  2399. //****************************************************************************
  2400. //
  2401. // CopySamples copies 16-bit stereo samples from the source to the
  2402. // destination, possibly converting down to either 8-bit or mono or both.
  2403. // count specifies the number of output bytes to write.
  2404. //
  2405. // Arguments:
  2406. //
  2407. // dst - Pointer to a destination buffer.
  2408. // src - Pointer to a source buffer
  2409. // count - The number of bytes to copy into the destination buffer.
  2410. // iChannels - Stereo - 2
  2411. // Mono - 1
  2412. // fmt - AFMT_xxx (soundcard.h formats)
  2413. //
  2414. // NOTES: only call this routine for conversion to 8bit from 16bit
  2415. //
  2416. //****************************************************************************
  2417. static void CopySamples(char *dst, char *src, int count, int iChannels,
  2418. unsigned fmt)
  2419. {
  2420. unsigned short *psSrc;
  2421. long lAudioSample;
  2422. CS_DBGOUT(CS_FUNCTION, 2,
  2423. printk(KERN_INFO "cs4281: CopySamples()+ "));
  2424. CS_DBGOUT(CS_WAVE_READ, 8, printk(KERN_INFO
  2425. " dst=%p src=%p count=%d iChannels=%d fmt=0x%x\n",
  2426. dst, src, (unsigned) count, (unsigned) iChannels, (unsigned) fmt));
  2427. // Gershwin does format conversion in hardware so normally
  2428. // we don't do any host based coversion. The data formatter
  2429. // truncates 16 bit data to 8 bit and that causes some hiss.
  2430. // We have already forced the HW to do 16 bit sampling and
  2431. // 2 channel so that we can use software to round instead
  2432. // of truncate
  2433. //
  2434. // See if the data should be output as 8-bit unsigned stereo.
  2435. // or if the data should be output at 8-bit unsigned mono.
  2436. //
  2437. if ( ((iChannels == 2) && (fmt & AFMT_U8)) ||
  2438. ((iChannels == 1) && (fmt & AFMT_U8)) ) {
  2439. //
  2440. // Convert each 16-bit unsigned stereo sample to 8-bit unsigned
  2441. // stereo using rounding.
  2442. //
  2443. psSrc = (unsigned short *) src;
  2444. count = count / 2;
  2445. while (count--) {
  2446. lAudioSample = (long) psSrc[count] + (long) 0x80;
  2447. if (lAudioSample > 0xffff) {
  2448. lAudioSample = 0xffff;
  2449. }
  2450. dst[count] = (char) (lAudioSample >> 8);
  2451. }
  2452. }
  2453. //
  2454. // check for 8-bit signed stereo.
  2455. //
  2456. else if ((iChannels == 2) && (fmt & AFMT_S8)) {
  2457. //
  2458. // Convert each 16-bit stereo sample to 8-bit stereo using rounding.
  2459. //
  2460. psSrc = (short *) src;
  2461. while (count--) {
  2462. lAudioSample =
  2463. (((long) psSrc[0] + (long) psSrc[1]) / 2);
  2464. psSrc += 2;
  2465. *dst++ = (char) ((short) lAudioSample >> 8);
  2466. }
  2467. }
  2468. //
  2469. // Otherwise, the data should be output as 8-bit signed mono.
  2470. //
  2471. else if ((iChannels == 1) && (fmt & AFMT_S8)) {
  2472. //
  2473. // Convert each 16-bit signed mono sample to 8-bit signed mono
  2474. // using rounding.
  2475. //
  2476. psSrc = (short *) src;
  2477. count = count / 2;
  2478. while (count--) {
  2479. lAudioSample =
  2480. (((long) psSrc[0] + (long) psSrc[1]) / 2);
  2481. if (lAudioSample > 0x7fff) {
  2482. lAudioSample = 0x7fff;
  2483. }
  2484. psSrc += 2;
  2485. *dst++ = (char) ((short) lAudioSample >> 8);
  2486. }
  2487. }
  2488. }
  2489. //
  2490. // cs_copy_to_user()
  2491. // replacement for the standard copy_to_user, to allow for a conversion from
  2492. // 16 bit to 8 bit if the record conversion is active. the cs4281 has some
  2493. // issues with 8 bit capture, so the driver always captures data in 16 bit
  2494. // and then if the user requested 8 bit, converts from 16 to 8 bit.
  2495. //
  2496. static unsigned cs_copy_to_user(struct cs4281_state *s, void __user *dest,
  2497. unsigned *hwsrc, unsigned cnt,
  2498. unsigned *copied)
  2499. {
  2500. void *src = hwsrc; //default to the standard destination buffer addr
  2501. CS_DBGOUT(CS_FUNCTION, 6, printk(KERN_INFO
  2502. "cs_copy_to_user()+ fmt=0x%x fmt_o=0x%x cnt=%d dest=%p\n",
  2503. s->prop_adc.fmt, s->prop_adc.fmt_original,
  2504. (unsigned) cnt, dest));
  2505. if (cnt > s->dma_adc.dmasize) {
  2506. cnt = s->dma_adc.dmasize;
  2507. }
  2508. if (!cnt) {
  2509. *copied = 0;
  2510. return 0;
  2511. }
  2512. if (s->conversion) {
  2513. if (!s->tmpbuff) {
  2514. *copied = cnt / 2;
  2515. return 0;
  2516. }
  2517. CopySamples(s->tmpbuff, (void *) hwsrc, cnt,
  2518. (unsigned) s->prop_adc.channels,
  2519. s->prop_adc.fmt_original);
  2520. src = s->tmpbuff;
  2521. cnt = cnt / 2;
  2522. }
  2523. if (copy_to_user(dest, src, cnt)) {
  2524. *copied = 0;
  2525. return -EFAULT;
  2526. }
  2527. *copied = cnt;
  2528. CS_DBGOUT(CS_FUNCTION, 2, printk(KERN_INFO
  2529. "cs4281: cs_copy_to_user()- copied bytes is %d \n", cnt));
  2530. return 0;
  2531. }
  2532. // ---------------------------------------------------------------------
  2533. static ssize_t cs4281_read(struct file *file, char __user *buffer, size_t count,
  2534. loff_t * ppos)
  2535. {
  2536. struct cs4281_state *s =
  2537. (struct cs4281_state *) file->private_data;
  2538. ssize_t ret;
  2539. unsigned long flags;
  2540. unsigned swptr;
  2541. int cnt;
  2542. unsigned copied = 0;
  2543. CS_DBGOUT(CS_FUNCTION | CS_WAVE_READ, 2,
  2544. printk(KERN_INFO "cs4281: cs4281_read()+ %Zu \n", count));
  2545. VALIDATE_STATE(s);
  2546. if (s->dma_adc.mapped)
  2547. return -ENXIO;
  2548. if (!s->dma_adc.ready && (ret = prog_dmabuf_adc(s)))
  2549. return ret;
  2550. if (!access_ok(VERIFY_WRITE, buffer, count))
  2551. return -EFAULT;
  2552. ret = 0;
  2553. //
  2554. // "count" is the amount of bytes to read (from app), is decremented each loop
  2555. // by the amount of bytes that have been returned to the user buffer.
  2556. // "cnt" is the running total of each read from the buffer (changes each loop)
  2557. // "buffer" points to the app's buffer
  2558. // "ret" keeps a running total of the amount of bytes that have been copied
  2559. // to the user buffer.
  2560. // "copied" is the total bytes copied into the user buffer for each loop.
  2561. //
  2562. while (count > 0) {
  2563. CS_DBGOUT(CS_WAVE_READ, 8, printk(KERN_INFO
  2564. "_read() count>0 count=%Zu .count=%d .swptr=%d .hwptr=%d \n",
  2565. count, s->dma_adc.count,
  2566. s->dma_adc.swptr, s->dma_adc.hwptr));
  2567. spin_lock_irqsave(&s->lock, flags);
  2568. // get the current copy point of the sw buffer
  2569. swptr = s->dma_adc.swptr;
  2570. // cnt is the amount of unread bytes from the end of the
  2571. // hw buffer to the current sw pointer
  2572. cnt = s->dma_adc.dmasize - swptr;
  2573. // dma_adc.count is the current total bytes that have not been read.
  2574. // if the amount of unread bytes from the current sw pointer to the
  2575. // end of the buffer is greater than the current total bytes that
  2576. // have not been read, then set the "cnt" (unread bytes) to the
  2577. // amount of unread bytes.
  2578. if (s->dma_adc.count < cnt)
  2579. cnt = s->dma_adc.count;
  2580. spin_unlock_irqrestore(&s->lock, flags);
  2581. //
  2582. // if we are converting from 8/16 then we need to copy
  2583. // twice the number of 16 bit bytes then 8 bit bytes.
  2584. //
  2585. if (s->conversion) {
  2586. if (cnt > (count * 2))
  2587. cnt = (count * 2);
  2588. } else {
  2589. if (cnt > count)
  2590. cnt = count;
  2591. }
  2592. //
  2593. // "cnt" NOW is the smaller of the amount that will be read,
  2594. // and the amount that is requested in this read (or partial).
  2595. // if there are no bytes in the buffer to read, then start the
  2596. // ADC and wait for the interrupt handler to wake us up.
  2597. //
  2598. if (cnt <= 0) {
  2599. // start up the dma engine and then continue back to the top of
  2600. // the loop when wake up occurs.
  2601. start_adc(s);
  2602. if (file->f_flags & O_NONBLOCK)
  2603. return ret ? ret : -EAGAIN;
  2604. interruptible_sleep_on(&s->dma_adc.wait);
  2605. if (signal_pending(current))
  2606. return ret ? ret : -ERESTARTSYS;
  2607. continue;
  2608. }
  2609. // there are bytes in the buffer to read.
  2610. // copy from the hw buffer over to the user buffer.
  2611. // user buffer is designated by "buffer"
  2612. // virtual address to copy from is rawbuf+swptr
  2613. // the "cnt" is the number of bytes to read.
  2614. CS_DBGOUT(CS_WAVE_READ, 2, printk(KERN_INFO
  2615. "_read() copy_to cnt=%d count=%Zu ", cnt, count));
  2616. CS_DBGOUT(CS_WAVE_READ, 8, printk(KERN_INFO
  2617. " .dmasize=%d .count=%d buffer=%p ret=%Zd\n",
  2618. s->dma_adc.dmasize, s->dma_adc.count, buffer, ret));
  2619. if (cs_copy_to_user
  2620. (s, buffer, s->dma_adc.rawbuf + swptr, cnt, &copied))
  2621. return ret ? ret : -EFAULT;
  2622. swptr = (swptr + cnt) % s->dma_adc.dmasize;
  2623. spin_lock_irqsave(&s->lock, flags);
  2624. s->dma_adc.swptr = swptr;
  2625. s->dma_adc.count -= cnt;
  2626. spin_unlock_irqrestore(&s->lock, flags);
  2627. count -= copied;
  2628. buffer += copied;
  2629. ret += copied;
  2630. start_adc(s);
  2631. }
  2632. CS_DBGOUT(CS_FUNCTION | CS_WAVE_READ, 2,
  2633. printk(KERN_INFO "cs4281: cs4281_read()- %Zd\n", ret));
  2634. return ret;
  2635. }
  2636. static ssize_t cs4281_write(struct file *file, const char __user *buffer,
  2637. size_t count, loff_t * ppos)
  2638. {
  2639. struct cs4281_state *s =
  2640. (struct cs4281_state *) file->private_data;
  2641. ssize_t ret;
  2642. unsigned long flags;
  2643. unsigned swptr, hwptr, busaddr;
  2644. int cnt;
  2645. CS_DBGOUT(CS_FUNCTION | CS_WAVE_WRITE, 2,
  2646. printk(KERN_INFO "cs4281: cs4281_write()+ count=%Zu\n",
  2647. count));
  2648. VALIDATE_STATE(s);
  2649. if (s->dma_dac.mapped)
  2650. return -ENXIO;
  2651. if (!s->dma_dac.ready && (ret = prog_dmabuf_dac(s)))
  2652. return ret;
  2653. if (!access_ok(VERIFY_READ, buffer, count))
  2654. return -EFAULT;
  2655. ret = 0;
  2656. while (count > 0) {
  2657. spin_lock_irqsave(&s->lock, flags);
  2658. if (s->dma_dac.count < 0) {
  2659. s->dma_dac.count = 0;
  2660. s->dma_dac.swptr = s->dma_dac.hwptr;
  2661. }
  2662. if (s->dma_dac.underrun) {
  2663. s->dma_dac.underrun = 0;
  2664. hwptr = readl(s->pBA0 + BA0_DCA0);
  2665. busaddr = virt_to_bus(s->dma_dac.rawbuf);
  2666. hwptr -= (unsigned) busaddr;
  2667. s->dma_dac.swptr = s->dma_dac.hwptr = hwptr;
  2668. }
  2669. swptr = s->dma_dac.swptr;
  2670. cnt = s->dma_dac.dmasize - swptr;
  2671. if (s->dma_dac.count + cnt > s->dma_dac.dmasize)
  2672. cnt = s->dma_dac.dmasize - s->dma_dac.count;
  2673. spin_unlock_irqrestore(&s->lock, flags);
  2674. if (cnt > count)
  2675. cnt = count;
  2676. if (cnt <= 0) {
  2677. start_dac(s);
  2678. if (file->f_flags & O_NONBLOCK)
  2679. return ret ? ret : -EAGAIN;
  2680. interruptible_sleep_on(&s->dma_dac.wait);
  2681. if (signal_pending(current))
  2682. return ret ? ret : -ERESTARTSYS;
  2683. continue;
  2684. }
  2685. if (copy_from_user(s->dma_dac.rawbuf + swptr, buffer, cnt))
  2686. return ret ? ret : -EFAULT;
  2687. swptr = (swptr + cnt) % s->dma_dac.dmasize;
  2688. spin_lock_irqsave(&s->lock, flags);
  2689. s->dma_dac.swptr = swptr;
  2690. s->dma_dac.count += cnt;
  2691. s->dma_dac.endcleared = 0;
  2692. spin_unlock_irqrestore(&s->lock, flags);
  2693. count -= cnt;
  2694. buffer += cnt;
  2695. ret += cnt;
  2696. start_dac(s);
  2697. }
  2698. CS_DBGOUT(CS_FUNCTION | CS_WAVE_WRITE, 2,
  2699. printk(KERN_INFO "cs4281: cs4281_write()- %Zd\n", ret));
  2700. return ret;
  2701. }
  2702. static unsigned int cs4281_poll(struct file *file,
  2703. struct poll_table_struct *wait)
  2704. {
  2705. struct cs4281_state *s =
  2706. (struct cs4281_state *) file->private_data;
  2707. unsigned long flags;
  2708. unsigned int mask = 0;
  2709. CS_DBGOUT(CS_FUNCTION | CS_WAVE_WRITE | CS_WAVE_READ, 4,
  2710. printk(KERN_INFO "cs4281: cs4281_poll()+\n"));
  2711. VALIDATE_STATE(s);
  2712. if (file->f_mode & FMODE_WRITE) {
  2713. CS_DBGOUT(CS_FUNCTION | CS_WAVE_WRITE | CS_WAVE_READ, 4,
  2714. printk(KERN_INFO
  2715. "cs4281: cs4281_poll() wait on FMODE_WRITE\n"));
  2716. if(!s->dma_dac.ready && prog_dmabuf_dac(s))
  2717. return 0;
  2718. poll_wait(file, &s->dma_dac.wait, wait);
  2719. }
  2720. if (file->f_mode & FMODE_READ) {
  2721. CS_DBGOUT(CS_FUNCTION | CS_WAVE_WRITE | CS_WAVE_READ, 4,
  2722. printk(KERN_INFO
  2723. "cs4281: cs4281_poll() wait on FMODE_READ\n"));
  2724. if(!s->dma_dac.ready && prog_dmabuf_adc(s))
  2725. return 0;
  2726. poll_wait(file, &s->dma_adc.wait, wait);
  2727. }
  2728. spin_lock_irqsave(&s->lock, flags);
  2729. cs4281_update_ptr(s,CS_FALSE);
  2730. if (file->f_mode & FMODE_WRITE) {
  2731. if (s->dma_dac.mapped) {
  2732. if (s->dma_dac.count >=
  2733. (signed) s->dma_dac.fragsize) {
  2734. if (s->dma_dac.wakeup)
  2735. mask |= POLLOUT | POLLWRNORM;
  2736. else
  2737. mask = 0;
  2738. s->dma_dac.wakeup = 0;
  2739. }
  2740. } else {
  2741. if ((signed) (s->dma_dac.dmasize/2) >= s->dma_dac.count)
  2742. mask |= POLLOUT | POLLWRNORM;
  2743. }
  2744. } else if (file->f_mode & FMODE_READ) {
  2745. if (s->dma_adc.mapped) {
  2746. if (s->dma_adc.count >= (signed) s->dma_adc.fragsize)
  2747. mask |= POLLIN | POLLRDNORM;
  2748. } else {
  2749. if (s->dma_adc.count > 0)
  2750. mask |= POLLIN | POLLRDNORM;
  2751. }
  2752. }
  2753. spin_unlock_irqrestore(&s->lock, flags);
  2754. CS_DBGOUT(CS_FUNCTION | CS_WAVE_WRITE | CS_WAVE_READ, 4,
  2755. printk(KERN_INFO "cs4281: cs4281_poll()- 0x%.8x\n",
  2756. mask));
  2757. return mask;
  2758. }
  2759. static int cs4281_mmap(struct file *file, struct vm_area_struct *vma)
  2760. {
  2761. struct cs4281_state *s =
  2762. (struct cs4281_state *) file->private_data;
  2763. struct dmabuf *db;
  2764. int ret;
  2765. unsigned long size;
  2766. CS_DBGOUT(CS_FUNCTION | CS_PARMS | CS_OPEN, 4,
  2767. printk(KERN_INFO "cs4281: cs4281_mmap()+\n"));
  2768. VALIDATE_STATE(s);
  2769. if (vma->vm_flags & VM_WRITE) {
  2770. if ((ret = prog_dmabuf_dac(s)) != 0)
  2771. return ret;
  2772. db = &s->dma_dac;
  2773. } else if (vma->vm_flags & VM_READ) {
  2774. if ((ret = prog_dmabuf_adc(s)) != 0)
  2775. return ret;
  2776. db = &s->dma_adc;
  2777. } else
  2778. return -EINVAL;
  2779. //
  2780. // only support PLAYBACK for now
  2781. //
  2782. db = &s->dma_dac;
  2783. if (cs4x_pgoff(vma) != 0)
  2784. return -EINVAL;
  2785. size = vma->vm_end - vma->vm_start;
  2786. if (size > (PAGE_SIZE << db->buforder))
  2787. return -EINVAL;
  2788. if (remap_pfn_range(vma, vma->vm_start,
  2789. virt_to_phys(db->rawbuf) >> PAGE_SHIFT,
  2790. size, vma->vm_page_prot))
  2791. return -EAGAIN;
  2792. db->mapped = 1;
  2793. CS_DBGOUT(CS_FUNCTION | CS_PARMS | CS_OPEN, 4,
  2794. printk(KERN_INFO "cs4281: cs4281_mmap()- 0 size=%d\n",
  2795. (unsigned) size));
  2796. return 0;
  2797. }
  2798. static int cs4281_ioctl(struct inode *inode, struct file *file,
  2799. unsigned int cmd, unsigned long arg)
  2800. {
  2801. struct cs4281_state *s =
  2802. (struct cs4281_state *) file->private_data;
  2803. unsigned long flags;
  2804. audio_buf_info abinfo;
  2805. count_info cinfo;
  2806. int val, mapped, ret;
  2807. int __user *p = (int __user *)arg;
  2808. CS_DBGOUT(CS_FUNCTION, 4, printk(KERN_INFO
  2809. "cs4281: cs4281_ioctl(): file=%p cmd=0x%.8x\n", file, cmd));
  2810. #if CSDEBUG
  2811. cs_printioctl(cmd);
  2812. #endif
  2813. VALIDATE_STATE(s);
  2814. mapped = ((file->f_mode & FMODE_WRITE) && s->dma_dac.mapped) ||
  2815. ((file->f_mode & FMODE_READ) && s->dma_adc.mapped);
  2816. switch (cmd) {
  2817. case OSS_GETVERSION:
  2818. CS_DBGOUT(CS_IOCTL | CS_PARMS, 4, printk(KERN_INFO
  2819. "cs4281: cs4281_ioctl(): SOUND_VERSION=0x%.8x\n",
  2820. SOUND_VERSION));
  2821. return put_user(SOUND_VERSION, p);
  2822. case SNDCTL_DSP_SYNC:
  2823. CS_DBGOUT(CS_IOCTL, 4, printk(KERN_INFO
  2824. "cs4281: cs4281_ioctl(): DSP_SYNC\n"));
  2825. if (file->f_mode & FMODE_WRITE)
  2826. return drain_dac(s,
  2827. 0 /*file->f_flags & O_NONBLOCK */
  2828. );
  2829. return 0;
  2830. case SNDCTL_DSP_SETDUPLEX:
  2831. return 0;
  2832. case SNDCTL_DSP_GETCAPS:
  2833. return put_user(DSP_CAP_DUPLEX | DSP_CAP_REALTIME |
  2834. DSP_CAP_TRIGGER | DSP_CAP_MMAP,
  2835. p);
  2836. case SNDCTL_DSP_RESET:
  2837. CS_DBGOUT(CS_IOCTL, 4, printk(KERN_INFO
  2838. "cs4281: cs4281_ioctl(): DSP_RESET\n"));
  2839. if (file->f_mode & FMODE_WRITE) {
  2840. stop_dac(s);
  2841. synchronize_irq(s->irq);
  2842. s->dma_dac.swptr = s->dma_dac.hwptr =
  2843. s->dma_dac.count = s->dma_dac.total_bytes =
  2844. s->dma_dac.blocks = s->dma_dac.wakeup = 0;
  2845. prog_codec(s, CS_TYPE_DAC);
  2846. }
  2847. if (file->f_mode & FMODE_READ) {
  2848. stop_adc(s);
  2849. synchronize_irq(s->irq);
  2850. s->dma_adc.swptr = s->dma_adc.hwptr =
  2851. s->dma_adc.count = s->dma_adc.total_bytes =
  2852. s->dma_adc.blocks = s->dma_dac.wakeup = 0;
  2853. prog_codec(s, CS_TYPE_ADC);
  2854. }
  2855. return 0;
  2856. case SNDCTL_DSP_SPEED:
  2857. if (get_user(val, p))
  2858. return -EFAULT;
  2859. CS_DBGOUT(CS_IOCTL | CS_PARMS, 4, printk(KERN_INFO
  2860. "cs4281: cs4281_ioctl(): DSP_SPEED val=%d\n", val));
  2861. //
  2862. // support independent capture and playback channels
  2863. // assume that the file mode bit determines the
  2864. // direction of the data flow.
  2865. //
  2866. if (file->f_mode & FMODE_READ) {
  2867. if (val >= 0) {
  2868. stop_adc(s);
  2869. s->dma_adc.ready = 0;
  2870. // program sampling rates
  2871. if (val > 48000)
  2872. val = 48000;
  2873. if (val < 6300)
  2874. val = 6300;
  2875. s->prop_adc.rate = val;
  2876. prog_codec(s, CS_TYPE_ADC);
  2877. }
  2878. }
  2879. if (file->f_mode & FMODE_WRITE) {
  2880. if (val >= 0) {
  2881. stop_dac(s);
  2882. s->dma_dac.ready = 0;
  2883. // program sampling rates
  2884. if (val > 48000)
  2885. val = 48000;
  2886. if (val < 6300)
  2887. val = 6300;
  2888. s->prop_dac.rate = val;
  2889. prog_codec(s, CS_TYPE_DAC);
  2890. }
  2891. }
  2892. if (file->f_mode & FMODE_WRITE)
  2893. val = s->prop_dac.rate;
  2894. else if (file->f_mode & FMODE_READ)
  2895. val = s->prop_adc.rate;
  2896. return put_user(val, p);
  2897. case SNDCTL_DSP_STEREO:
  2898. if (get_user(val, p))
  2899. return -EFAULT;
  2900. CS_DBGOUT(CS_IOCTL | CS_PARMS, 4, printk(KERN_INFO
  2901. "cs4281: cs4281_ioctl(): DSP_STEREO val=%d\n", val));
  2902. if (file->f_mode & FMODE_READ) {
  2903. stop_adc(s);
  2904. s->dma_adc.ready = 0;
  2905. s->prop_adc.channels = val ? 2 : 1;
  2906. prog_codec(s, CS_TYPE_ADC);
  2907. }
  2908. if (file->f_mode & FMODE_WRITE) {
  2909. stop_dac(s);
  2910. s->dma_dac.ready = 0;
  2911. s->prop_dac.channels = val ? 2 : 1;
  2912. prog_codec(s, CS_TYPE_DAC);
  2913. }
  2914. return 0;
  2915. case SNDCTL_DSP_CHANNELS:
  2916. if (get_user(val, p))
  2917. return -EFAULT;
  2918. CS_DBGOUT(CS_IOCTL | CS_PARMS, 4, printk(KERN_INFO
  2919. "cs4281: cs4281_ioctl(): DSP_CHANNELS val=%d\n",
  2920. val));
  2921. if (val != 0) {
  2922. if (file->f_mode & FMODE_READ) {
  2923. stop_adc(s);
  2924. s->dma_adc.ready = 0;
  2925. if (val >= 2)
  2926. s->prop_adc.channels = 2;
  2927. else
  2928. s->prop_adc.channels = 1;
  2929. prog_codec(s, CS_TYPE_ADC);
  2930. }
  2931. if (file->f_mode & FMODE_WRITE) {
  2932. stop_dac(s);
  2933. s->dma_dac.ready = 0;
  2934. if (val >= 2)
  2935. s->prop_dac.channels = 2;
  2936. else
  2937. s->prop_dac.channels = 1;
  2938. prog_codec(s, CS_TYPE_DAC);
  2939. }
  2940. }
  2941. if (file->f_mode & FMODE_WRITE)
  2942. val = s->prop_dac.channels;
  2943. else if (file->f_mode & FMODE_READ)
  2944. val = s->prop_adc.channels;
  2945. return put_user(val, p);
  2946. case SNDCTL_DSP_GETFMTS: // Returns a mask
  2947. CS_DBGOUT(CS_IOCTL | CS_PARMS, 4, printk(KERN_INFO
  2948. "cs4281: cs4281_ioctl(): DSP_GETFMT val=0x%.8x\n",
  2949. AFMT_S16_LE | AFMT_U16_LE | AFMT_S8 |
  2950. AFMT_U8));
  2951. return put_user(AFMT_S16_LE | AFMT_U16_LE | AFMT_S8 |
  2952. AFMT_U8, p);
  2953. case SNDCTL_DSP_SETFMT:
  2954. if (get_user(val, p))
  2955. return -EFAULT;
  2956. CS_DBGOUT(CS_IOCTL | CS_PARMS, 4, printk(KERN_INFO
  2957. "cs4281: cs4281_ioctl(): DSP_SETFMT val=0x%.8x\n",
  2958. val));
  2959. if (val != AFMT_QUERY) {
  2960. if (file->f_mode & FMODE_READ) {
  2961. stop_adc(s);
  2962. s->dma_adc.ready = 0;
  2963. if (val != AFMT_S16_LE
  2964. && val != AFMT_U16_LE && val != AFMT_S8
  2965. && val != AFMT_U8)
  2966. val = AFMT_U8;
  2967. s->prop_adc.fmt = val;
  2968. s->prop_adc.fmt_original = s->prop_adc.fmt;
  2969. prog_codec(s, CS_TYPE_ADC);
  2970. }
  2971. if (file->f_mode & FMODE_WRITE) {
  2972. stop_dac(s);
  2973. s->dma_dac.ready = 0;
  2974. if (val != AFMT_S16_LE
  2975. && val != AFMT_U16_LE && val != AFMT_S8
  2976. && val != AFMT_U8)
  2977. val = AFMT_U8;
  2978. s->prop_dac.fmt = val;
  2979. s->prop_dac.fmt_original = s->prop_dac.fmt;
  2980. prog_codec(s, CS_TYPE_DAC);
  2981. }
  2982. } else {
  2983. if (file->f_mode & FMODE_WRITE)
  2984. val = s->prop_dac.fmt_original;
  2985. else if (file->f_mode & FMODE_READ)
  2986. val = s->prop_adc.fmt_original;
  2987. }
  2988. CS_DBGOUT(CS_IOCTL | CS_PARMS, 4, printk(KERN_INFO
  2989. "cs4281: cs4281_ioctl(): DSP_SETFMT return val=0x%.8x\n",
  2990. val));
  2991. return put_user(val, p);
  2992. case SNDCTL_DSP_POST:
  2993. CS_DBGOUT(CS_IOCTL, 4, printk(KERN_INFO
  2994. "cs4281: cs4281_ioctl(): DSP_POST\n"));
  2995. return 0;
  2996. case SNDCTL_DSP_GETTRIGGER:
  2997. val = 0;
  2998. if (file->f_mode & s->ena & FMODE_READ)
  2999. val |= PCM_ENABLE_INPUT;
  3000. if (file->f_mode & s->ena & FMODE_WRITE)
  3001. val |= PCM_ENABLE_OUTPUT;
  3002. return put_user(val, p);
  3003. case SNDCTL_DSP_SETTRIGGER:
  3004. if (get_user(val, p))
  3005. return -EFAULT;
  3006. if (file->f_mode & FMODE_READ) {
  3007. if (val & PCM_ENABLE_INPUT) {
  3008. if (!s->dma_adc.ready
  3009. && (ret = prog_dmabuf_adc(s)))
  3010. return ret;
  3011. start_adc(s);
  3012. } else
  3013. stop_adc(s);
  3014. }
  3015. if (file->f_mode & FMODE_WRITE) {
  3016. if (val & PCM_ENABLE_OUTPUT) {
  3017. if (!s->dma_dac.ready
  3018. && (ret = prog_dmabuf_dac(s)))
  3019. return ret;
  3020. start_dac(s);
  3021. } else
  3022. stop_dac(s);
  3023. }
  3024. return 0;
  3025. case SNDCTL_DSP_GETOSPACE:
  3026. if (!(file->f_mode & FMODE_WRITE))
  3027. return -EINVAL;
  3028. if (!s->dma_dac.ready && (val = prog_dmabuf_dac(s)))
  3029. return val;
  3030. spin_lock_irqsave(&s->lock, flags);
  3031. cs4281_update_ptr(s,CS_FALSE);
  3032. abinfo.fragsize = s->dma_dac.fragsize;
  3033. if (s->dma_dac.mapped)
  3034. abinfo.bytes = s->dma_dac.dmasize;
  3035. else
  3036. abinfo.bytes =
  3037. s->dma_dac.dmasize - s->dma_dac.count;
  3038. abinfo.fragstotal = s->dma_dac.numfrag;
  3039. abinfo.fragments = abinfo.bytes >> s->dma_dac.fragshift;
  3040. CS_DBGOUT(CS_FUNCTION | CS_PARMS, 4, printk(KERN_INFO
  3041. "cs4281: cs4281_ioctl(): GETOSPACE .fragsize=%d .bytes=%d .fragstotal=%d .fragments=%d\n",
  3042. abinfo.fragsize,abinfo.bytes,abinfo.fragstotal,
  3043. abinfo.fragments));
  3044. spin_unlock_irqrestore(&s->lock, flags);
  3045. return copy_to_user(p, &abinfo,
  3046. sizeof(abinfo)) ? -EFAULT : 0;
  3047. case SNDCTL_DSP_GETISPACE:
  3048. if (!(file->f_mode & FMODE_READ))
  3049. return -EINVAL;
  3050. if (!s->dma_adc.ready && (val = prog_dmabuf_adc(s)))
  3051. return val;
  3052. spin_lock_irqsave(&s->lock, flags);
  3053. cs4281_update_ptr(s,CS_FALSE);
  3054. if (s->conversion) {
  3055. abinfo.fragsize = s->dma_adc.fragsize / 2;
  3056. abinfo.bytes = s->dma_adc.count / 2;
  3057. abinfo.fragstotal = s->dma_adc.numfrag;
  3058. abinfo.fragments =
  3059. abinfo.bytes >> (s->dma_adc.fragshift - 1);
  3060. } else {
  3061. abinfo.fragsize = s->dma_adc.fragsize;
  3062. abinfo.bytes = s->dma_adc.count;
  3063. abinfo.fragstotal = s->dma_adc.numfrag;
  3064. abinfo.fragments =
  3065. abinfo.bytes >> s->dma_adc.fragshift;
  3066. }
  3067. spin_unlock_irqrestore(&s->lock, flags);
  3068. return copy_to_user(p, &abinfo,
  3069. sizeof(abinfo)) ? -EFAULT : 0;
  3070. case SNDCTL_DSP_NONBLOCK:
  3071. file->f_flags |= O_NONBLOCK;
  3072. return 0;
  3073. case SNDCTL_DSP_GETODELAY:
  3074. if (!(file->f_mode & FMODE_WRITE))
  3075. return -EINVAL;
  3076. if(!s->dma_dac.ready && prog_dmabuf_dac(s))
  3077. return 0;
  3078. spin_lock_irqsave(&s->lock, flags);
  3079. cs4281_update_ptr(s,CS_FALSE);
  3080. val = s->dma_dac.count;
  3081. spin_unlock_irqrestore(&s->lock, flags);
  3082. return put_user(val, p);
  3083. case SNDCTL_DSP_GETIPTR:
  3084. if (!(file->f_mode & FMODE_READ))
  3085. return -EINVAL;
  3086. if(!s->dma_adc.ready && prog_dmabuf_adc(s))
  3087. return 0;
  3088. spin_lock_irqsave(&s->lock, flags);
  3089. cs4281_update_ptr(s,CS_FALSE);
  3090. cinfo.bytes = s->dma_adc.total_bytes;
  3091. if (s->dma_adc.mapped) {
  3092. cinfo.blocks =
  3093. (cinfo.bytes >> s->dma_adc.fragshift) -
  3094. s->dma_adc.blocks;
  3095. s->dma_adc.blocks =
  3096. cinfo.bytes >> s->dma_adc.fragshift;
  3097. } else {
  3098. if (s->conversion) {
  3099. cinfo.blocks =
  3100. s->dma_adc.count /
  3101. 2 >> (s->dma_adc.fragshift - 1);
  3102. } else
  3103. cinfo.blocks =
  3104. s->dma_adc.count >> s->dma_adc.
  3105. fragshift;
  3106. }
  3107. if (s->conversion)
  3108. cinfo.ptr = s->dma_adc.hwptr / 2;
  3109. else
  3110. cinfo.ptr = s->dma_adc.hwptr;
  3111. if (s->dma_adc.mapped)
  3112. s->dma_adc.count &= s->dma_adc.fragsize - 1;
  3113. spin_unlock_irqrestore(&s->lock, flags);
  3114. if (copy_to_user(p, &cinfo, sizeof(cinfo)))
  3115. return -EFAULT;
  3116. return 0;
  3117. case SNDCTL_DSP_GETOPTR:
  3118. if (!(file->f_mode & FMODE_WRITE))
  3119. return -EINVAL;
  3120. if(!s->dma_dac.ready && prog_dmabuf_dac(s))
  3121. return 0;
  3122. spin_lock_irqsave(&s->lock, flags);
  3123. cs4281_update_ptr(s,CS_FALSE);
  3124. cinfo.bytes = s->dma_dac.total_bytes;
  3125. if (s->dma_dac.mapped) {
  3126. cinfo.blocks =
  3127. (cinfo.bytes >> s->dma_dac.fragshift) -
  3128. s->dma_dac.blocks;
  3129. s->dma_dac.blocks =
  3130. cinfo.bytes >> s->dma_dac.fragshift;
  3131. } else {
  3132. cinfo.blocks =
  3133. s->dma_dac.count >> s->dma_dac.fragshift;
  3134. }
  3135. cinfo.ptr = s->dma_dac.hwptr;
  3136. if (s->dma_dac.mapped)
  3137. s->dma_dac.count &= s->dma_dac.fragsize - 1;
  3138. spin_unlock_irqrestore(&s->lock, flags);
  3139. if (copy_to_user(p, &cinfo, sizeof(cinfo)))
  3140. return -EFAULT;
  3141. return 0;
  3142. case SNDCTL_DSP_GETBLKSIZE:
  3143. if (file->f_mode & FMODE_WRITE) {
  3144. if ((val = prog_dmabuf_dac(s)))
  3145. return val;
  3146. return put_user(s->dma_dac.fragsize, p);
  3147. }
  3148. if ((val = prog_dmabuf_adc(s)))
  3149. return val;
  3150. if (s->conversion)
  3151. return put_user(s->dma_adc.fragsize / 2, p);
  3152. else
  3153. return put_user(s->dma_adc.fragsize, p);
  3154. case SNDCTL_DSP_SETFRAGMENT:
  3155. if (get_user(val, p))
  3156. return -EFAULT;
  3157. return 0; // Say OK, but do nothing.
  3158. case SNDCTL_DSP_SUBDIVIDE:
  3159. if ((file->f_mode & FMODE_READ && s->dma_adc.subdivision)
  3160. || (file->f_mode & FMODE_WRITE
  3161. && s->dma_dac.subdivision)) return -EINVAL;
  3162. if (get_user(val, p))
  3163. return -EFAULT;
  3164. if (val != 1 && val != 2 && val != 4)
  3165. return -EINVAL;
  3166. if (file->f_mode & FMODE_READ)
  3167. s->dma_adc.subdivision = val;
  3168. else if (file->f_mode & FMODE_WRITE)
  3169. s->dma_dac.subdivision = val;
  3170. return 0;
  3171. case SOUND_PCM_READ_RATE:
  3172. if (file->f_mode & FMODE_READ)
  3173. return put_user(s->prop_adc.rate, p);
  3174. else if (file->f_mode & FMODE_WRITE)
  3175. return put_user(s->prop_dac.rate, p);
  3176. case SOUND_PCM_READ_CHANNELS:
  3177. if (file->f_mode & FMODE_READ)
  3178. return put_user(s->prop_adc.channels, p);
  3179. else if (file->f_mode & FMODE_WRITE)
  3180. return put_user(s->prop_dac.channels, p);
  3181. case SOUND_PCM_READ_BITS:
  3182. if (file->f_mode & FMODE_READ)
  3183. return
  3184. put_user(
  3185. (s->prop_adc.
  3186. fmt & (AFMT_S8 | AFMT_U8)) ? 8 : 16,
  3187. p);
  3188. else if (file->f_mode & FMODE_WRITE)
  3189. return
  3190. put_user(
  3191. (s->prop_dac.
  3192. fmt & (AFMT_S8 | AFMT_U8)) ? 8 : 16,
  3193. p);
  3194. case SOUND_PCM_WRITE_FILTER:
  3195. case SNDCTL_DSP_SETSYNCRO:
  3196. case SOUND_PCM_READ_FILTER:
  3197. return -EINVAL;
  3198. }
  3199. return mixer_ioctl(s, cmd, arg);
  3200. }
  3201. static int cs4281_release(struct inode *inode, struct file *file)
  3202. {
  3203. struct cs4281_state *s =
  3204. (struct cs4281_state *) file->private_data;
  3205. CS_DBGOUT(CS_FUNCTION | CS_RELEASE, 2, printk(KERN_INFO
  3206. "cs4281: cs4281_release(): inode=%p file=%p f_mode=%d\n",
  3207. inode, file, file->f_mode));
  3208. VALIDATE_STATE(s);
  3209. if (file->f_mode & FMODE_WRITE) {
  3210. drain_dac(s, file->f_flags & O_NONBLOCK);
  3211. mutex_lock(&s->open_sem_dac);
  3212. stop_dac(s);
  3213. dealloc_dmabuf(s, &s->dma_dac);
  3214. s->open_mode &= ~FMODE_WRITE;
  3215. mutex_unlock(&s->open_sem_dac);
  3216. wake_up(&s->open_wait_dac);
  3217. }
  3218. if (file->f_mode & FMODE_READ) {
  3219. drain_adc(s, file->f_flags & O_NONBLOCK);
  3220. mutex_lock(&s->open_sem_adc);
  3221. stop_adc(s);
  3222. dealloc_dmabuf(s, &s->dma_adc);
  3223. s->open_mode &= ~FMODE_READ;
  3224. mutex_unlock(&s->open_sem_adc);
  3225. wake_up(&s->open_wait_adc);
  3226. }
  3227. return 0;
  3228. }
  3229. static int cs4281_open(struct inode *inode, struct file *file)
  3230. {
  3231. unsigned int minor = iminor(inode);
  3232. struct cs4281_state *s=NULL;
  3233. struct list_head *entry;
  3234. CS_DBGOUT(CS_FUNCTION | CS_OPEN, 2, printk(KERN_INFO
  3235. "cs4281: cs4281_open(): inode=%p file=%p f_mode=0x%x\n",
  3236. inode, file, file->f_mode));
  3237. list_for_each(entry, &cs4281_devs)
  3238. {
  3239. s = list_entry(entry, struct cs4281_state, list);
  3240. if (!((s->dev_audio ^ minor) & ~0xf))
  3241. break;
  3242. }
  3243. if (entry == &cs4281_devs)
  3244. return -ENODEV;
  3245. if (!s) {
  3246. CS_DBGOUT(CS_FUNCTION | CS_OPEN, 2, printk(KERN_INFO
  3247. "cs4281: cs4281_open(): Error - unable to find audio state struct\n"));
  3248. return -ENODEV;
  3249. }
  3250. VALIDATE_STATE(s);
  3251. file->private_data = s;
  3252. // wait for device to become free
  3253. if (!(file->f_mode & (FMODE_WRITE | FMODE_READ))) {
  3254. CS_DBGOUT(CS_FUNCTION | CS_OPEN | CS_ERROR, 2, printk(KERN_INFO
  3255. "cs4281: cs4281_open(): Error - must open READ and/or WRITE\n"));
  3256. return -ENODEV;
  3257. }
  3258. if (file->f_mode & FMODE_WRITE) {
  3259. mutex_lock(&s->open_sem_dac);
  3260. while (s->open_mode & FMODE_WRITE) {
  3261. if (file->f_flags & O_NONBLOCK) {
  3262. mutex_unlock(&s->open_sem_dac);
  3263. return -EBUSY;
  3264. }
  3265. mutex_unlock(&s->open_sem_dac);
  3266. interruptible_sleep_on(&s->open_wait_dac);
  3267. if (signal_pending(current))
  3268. return -ERESTARTSYS;
  3269. mutex_lock(&s->open_sem_dac);
  3270. }
  3271. }
  3272. if (file->f_mode & FMODE_READ) {
  3273. mutex_lock(&s->open_sem_adc);
  3274. while (s->open_mode & FMODE_READ) {
  3275. if (file->f_flags & O_NONBLOCK) {
  3276. mutex_unlock(&s->open_sem_adc);
  3277. return -EBUSY;
  3278. }
  3279. mutex_unlock(&s->open_sem_adc);
  3280. interruptible_sleep_on(&s->open_wait_adc);
  3281. if (signal_pending(current))
  3282. return -ERESTARTSYS;
  3283. mutex_lock(&s->open_sem_adc);
  3284. }
  3285. }
  3286. s->open_mode |= file->f_mode & (FMODE_READ | FMODE_WRITE);
  3287. if (file->f_mode & FMODE_READ) {
  3288. s->prop_adc.fmt = AFMT_U8;
  3289. s->prop_adc.fmt_original = s->prop_adc.fmt;
  3290. s->prop_adc.channels = 1;
  3291. s->prop_adc.rate = 8000;
  3292. s->prop_adc.clkdiv = 96 | 0x80;
  3293. s->conversion = 0;
  3294. s->ena &= ~FMODE_READ;
  3295. s->dma_adc.ossfragshift = s->dma_adc.ossmaxfrags =
  3296. s->dma_adc.subdivision = 0;
  3297. mutex_unlock(&s->open_sem_adc);
  3298. if (prog_dmabuf_adc(s)) {
  3299. CS_DBGOUT(CS_OPEN | CS_ERROR, 2, printk(KERN_ERR
  3300. "cs4281: adc Program dmabufs failed.\n"));
  3301. cs4281_release(inode, file);
  3302. return -ENOMEM;
  3303. }
  3304. prog_codec(s, CS_TYPE_ADC);
  3305. }
  3306. if (file->f_mode & FMODE_WRITE) {
  3307. s->prop_dac.fmt = AFMT_U8;
  3308. s->prop_dac.fmt_original = s->prop_dac.fmt;
  3309. s->prop_dac.channels = 1;
  3310. s->prop_dac.rate = 8000;
  3311. s->prop_dac.clkdiv = 96 | 0x80;
  3312. s->conversion = 0;
  3313. s->ena &= ~FMODE_WRITE;
  3314. s->dma_dac.ossfragshift = s->dma_dac.ossmaxfrags =
  3315. s->dma_dac.subdivision = 0;
  3316. mutex_unlock(&s->open_sem_dac);
  3317. if (prog_dmabuf_dac(s)) {
  3318. CS_DBGOUT(CS_OPEN | CS_ERROR, 2, printk(KERN_ERR
  3319. "cs4281: dac Program dmabufs failed.\n"));
  3320. cs4281_release(inode, file);
  3321. return -ENOMEM;
  3322. }
  3323. prog_codec(s, CS_TYPE_DAC);
  3324. }
  3325. CS_DBGOUT(CS_FUNCTION | CS_OPEN, 2,
  3326. printk(KERN_INFO "cs4281: cs4281_open()- 0\n"));
  3327. return nonseekable_open(inode, file);
  3328. }
  3329. // ******************************************************************************************
  3330. // Wave (audio) file operations struct.
  3331. // ******************************************************************************************
  3332. static /*const */ struct file_operations cs4281_audio_fops = {
  3333. .owner = THIS_MODULE,
  3334. .llseek = no_llseek,
  3335. .read = cs4281_read,
  3336. .write = cs4281_write,
  3337. .poll = cs4281_poll,
  3338. .ioctl = cs4281_ioctl,
  3339. .mmap = cs4281_mmap,
  3340. .open = cs4281_open,
  3341. .release = cs4281_release,
  3342. };
  3343. // ---------------------------------------------------------------------
  3344. // hold spinlock for the following!
  3345. static void cs4281_handle_midi(struct cs4281_state *s)
  3346. {
  3347. unsigned char ch;
  3348. int wake;
  3349. unsigned temp1;
  3350. wake = 0;
  3351. while (!(readl(s->pBA0 + BA0_MIDSR) & 0x80)) {
  3352. ch = readl(s->pBA0 + BA0_MIDRP);
  3353. if (s->midi.icnt < MIDIINBUF) {
  3354. s->midi.ibuf[s->midi.iwr] = ch;
  3355. s->midi.iwr = (s->midi.iwr + 1) % MIDIINBUF;
  3356. s->midi.icnt++;
  3357. }
  3358. wake = 1;
  3359. }
  3360. if (wake)
  3361. wake_up(&s->midi.iwait);
  3362. wake = 0;
  3363. while (!(readl(s->pBA0 + BA0_MIDSR) & 0x40) && s->midi.ocnt > 0) {
  3364. temp1 = (s->midi.obuf[s->midi.ord]) & 0x000000ff;
  3365. writel(temp1, s->pBA0 + BA0_MIDWP);
  3366. s->midi.ord = (s->midi.ord + 1) % MIDIOUTBUF;
  3367. s->midi.ocnt--;
  3368. if (s->midi.ocnt < MIDIOUTBUF - 16)
  3369. wake = 1;
  3370. }
  3371. if (wake)
  3372. wake_up(&s->midi.owait);
  3373. }
  3374. static irqreturn_t cs4281_interrupt(int irq, void *dev_id, struct pt_regs *regs)
  3375. {
  3376. struct cs4281_state *s = (struct cs4281_state *) dev_id;
  3377. unsigned int temp1;
  3378. // fastpath out, to ease interrupt sharing
  3379. temp1 = readl(s->pBA0 + BA0_HISR); // Get Int Status reg.
  3380. CS_DBGOUT(CS_INTERRUPT, 6, printk(KERN_INFO
  3381. "cs4281: cs4281_interrupt() BA0_HISR=0x%.8x\n", temp1));
  3382. /*
  3383. * If not DMA or MIDI interrupt, then just return.
  3384. */
  3385. if (!(temp1 & (HISR_DMA0 | HISR_DMA1 | HISR_MIDI))) {
  3386. writel(HICR_IEV | HICR_CHGM, s->pBA0 + BA0_HICR);
  3387. CS_DBGOUT(CS_INTERRUPT, 9, printk(KERN_INFO
  3388. "cs4281: cs4281_interrupt(): returning not cs4281 interrupt.\n"));
  3389. return IRQ_NONE;
  3390. }
  3391. if (temp1 & HISR_DMA0) // If play interrupt,
  3392. readl(s->pBA0 + BA0_HDSR0); // clear the source.
  3393. if (temp1 & HISR_DMA1) // Same for play.
  3394. readl(s->pBA0 + BA0_HDSR1);
  3395. writel(HICR_IEV | HICR_CHGM, s->pBA0 + BA0_HICR); // Local EOI
  3396. spin_lock(&s->lock);
  3397. cs4281_update_ptr(s,CS_TRUE);
  3398. cs4281_handle_midi(s);
  3399. spin_unlock(&s->lock);
  3400. return IRQ_HANDLED;
  3401. }
  3402. // **************************************************************************
  3403. static void cs4281_midi_timer(unsigned long data)
  3404. {
  3405. struct cs4281_state *s = (struct cs4281_state *) data;
  3406. unsigned long flags;
  3407. spin_lock_irqsave(&s->lock, flags);
  3408. cs4281_handle_midi(s);
  3409. spin_unlock_irqrestore(&s->lock, flags);
  3410. s->midi.timer.expires = jiffies + 1;
  3411. add_timer(&s->midi.timer);
  3412. }
  3413. // ---------------------------------------------------------------------
  3414. static ssize_t cs4281_midi_read(struct file *file, char __user *buffer,
  3415. size_t count, loff_t * ppos)
  3416. {
  3417. struct cs4281_state *s =
  3418. (struct cs4281_state *) file->private_data;
  3419. ssize_t ret;
  3420. unsigned long flags;
  3421. unsigned ptr;
  3422. int cnt;
  3423. VALIDATE_STATE(s);
  3424. if (!access_ok(VERIFY_WRITE, buffer, count))
  3425. return -EFAULT;
  3426. ret = 0;
  3427. while (count > 0) {
  3428. spin_lock_irqsave(&s->lock, flags);
  3429. ptr = s->midi.ird;
  3430. cnt = MIDIINBUF - ptr;
  3431. if (s->midi.icnt < cnt)
  3432. cnt = s->midi.icnt;
  3433. spin_unlock_irqrestore(&s->lock, flags);
  3434. if (cnt > count)
  3435. cnt = count;
  3436. if (cnt <= 0) {
  3437. if (file->f_flags & O_NONBLOCK)
  3438. return ret ? ret : -EAGAIN;
  3439. interruptible_sleep_on(&s->midi.iwait);
  3440. if (signal_pending(current))
  3441. return ret ? ret : -ERESTARTSYS;
  3442. continue;
  3443. }
  3444. if (copy_to_user(buffer, s->midi.ibuf + ptr, cnt))
  3445. return ret ? ret : -EFAULT;
  3446. ptr = (ptr + cnt) % MIDIINBUF;
  3447. spin_lock_irqsave(&s->lock, flags);
  3448. s->midi.ird = ptr;
  3449. s->midi.icnt -= cnt;
  3450. spin_unlock_irqrestore(&s->lock, flags);
  3451. count -= cnt;
  3452. buffer += cnt;
  3453. ret += cnt;
  3454. }
  3455. return ret;
  3456. }
  3457. static ssize_t cs4281_midi_write(struct file *file, const char __user *buffer,
  3458. size_t count, loff_t * ppos)
  3459. {
  3460. struct cs4281_state *s =
  3461. (struct cs4281_state *) file->private_data;
  3462. ssize_t ret;
  3463. unsigned long flags;
  3464. unsigned ptr;
  3465. int cnt;
  3466. VALIDATE_STATE(s);
  3467. if (!access_ok(VERIFY_READ, buffer, count))
  3468. return -EFAULT;
  3469. ret = 0;
  3470. while (count > 0) {
  3471. spin_lock_irqsave(&s->lock, flags);
  3472. ptr = s->midi.owr;
  3473. cnt = MIDIOUTBUF - ptr;
  3474. if (s->midi.ocnt + cnt > MIDIOUTBUF)
  3475. cnt = MIDIOUTBUF - s->midi.ocnt;
  3476. if (cnt <= 0)
  3477. cs4281_handle_midi(s);
  3478. spin_unlock_irqrestore(&s->lock, flags);
  3479. if (cnt > count)
  3480. cnt = count;
  3481. if (cnt <= 0) {
  3482. if (file->f_flags & O_NONBLOCK)
  3483. return ret ? ret : -EAGAIN;
  3484. interruptible_sleep_on(&s->midi.owait);
  3485. if (signal_pending(current))
  3486. return ret ? ret : -ERESTARTSYS;
  3487. continue;
  3488. }
  3489. if (copy_from_user(s->midi.obuf + ptr, buffer, cnt))
  3490. return ret ? ret : -EFAULT;
  3491. ptr = (ptr + cnt) % MIDIOUTBUF;
  3492. spin_lock_irqsave(&s->lock, flags);
  3493. s->midi.owr = ptr;
  3494. s->midi.ocnt += cnt;
  3495. spin_unlock_irqrestore(&s->lock, flags);
  3496. count -= cnt;
  3497. buffer += cnt;
  3498. ret += cnt;
  3499. spin_lock_irqsave(&s->lock, flags);
  3500. cs4281_handle_midi(s);
  3501. spin_unlock_irqrestore(&s->lock, flags);
  3502. }
  3503. return ret;
  3504. }
  3505. static unsigned int cs4281_midi_poll(struct file *file,
  3506. struct poll_table_struct *wait)
  3507. {
  3508. struct cs4281_state *s =
  3509. (struct cs4281_state *) file->private_data;
  3510. unsigned long flags;
  3511. unsigned int mask = 0;
  3512. VALIDATE_STATE(s);
  3513. if (file->f_flags & FMODE_WRITE)
  3514. poll_wait(file, &s->midi.owait, wait);
  3515. if (file->f_flags & FMODE_READ)
  3516. poll_wait(file, &s->midi.iwait, wait);
  3517. spin_lock_irqsave(&s->lock, flags);
  3518. if (file->f_flags & FMODE_READ) {
  3519. if (s->midi.icnt > 0)
  3520. mask |= POLLIN | POLLRDNORM;
  3521. }
  3522. if (file->f_flags & FMODE_WRITE) {
  3523. if (s->midi.ocnt < MIDIOUTBUF)
  3524. mask |= POLLOUT | POLLWRNORM;
  3525. }
  3526. spin_unlock_irqrestore(&s->lock, flags);
  3527. return mask;
  3528. }
  3529. static int cs4281_midi_open(struct inode *inode, struct file *file)
  3530. {
  3531. unsigned long flags, temp1;
  3532. unsigned int minor = iminor(inode);
  3533. struct cs4281_state *s=NULL;
  3534. struct list_head *entry;
  3535. list_for_each(entry, &cs4281_devs)
  3536. {
  3537. s = list_entry(entry, struct cs4281_state, list);
  3538. if (s->dev_midi == minor)
  3539. break;
  3540. }
  3541. if (entry == &cs4281_devs)
  3542. return -ENODEV;
  3543. if (!s)
  3544. {
  3545. CS_DBGOUT(CS_FUNCTION | CS_OPEN, 2, printk(KERN_INFO
  3546. "cs4281: cs4281_open(): Error - unable to find audio state struct\n"));
  3547. return -ENODEV;
  3548. }
  3549. VALIDATE_STATE(s);
  3550. file->private_data = s;
  3551. // wait for device to become free
  3552. mutex_lock(&s->open_sem);
  3553. while (s->open_mode & (file->f_mode << FMODE_MIDI_SHIFT)) {
  3554. if (file->f_flags & O_NONBLOCK) {
  3555. mutex_unlock(&s->open_sem);
  3556. return -EBUSY;
  3557. }
  3558. mutex_unlock(&s->open_sem);
  3559. interruptible_sleep_on(&s->open_wait);
  3560. if (signal_pending(current))
  3561. return -ERESTARTSYS;
  3562. mutex_lock(&s->open_sem);
  3563. }
  3564. spin_lock_irqsave(&s->lock, flags);
  3565. if (!(s->open_mode & (FMODE_MIDI_READ | FMODE_MIDI_WRITE))) {
  3566. s->midi.ird = s->midi.iwr = s->midi.icnt = 0;
  3567. s->midi.ord = s->midi.owr = s->midi.ocnt = 0;
  3568. writel(1, s->pBA0 + BA0_MIDCR); // Reset the interface.
  3569. writel(0, s->pBA0 + BA0_MIDCR); // Return to normal mode.
  3570. s->midi.ird = s->midi.iwr = s->midi.icnt = 0;
  3571. writel(0x0000000f, s->pBA0 + BA0_MIDCR); // Enable transmit, record, ints.
  3572. temp1 = readl(s->pBA0 + BA0_HIMR);
  3573. writel(temp1 & 0xffbfffff, s->pBA0 + BA0_HIMR); // Enable midi int. recognition.
  3574. writel(HICR_IEV | HICR_CHGM, s->pBA0 + BA0_HICR); // Enable interrupts
  3575. init_timer(&s->midi.timer);
  3576. s->midi.timer.expires = jiffies + 1;
  3577. s->midi.timer.data = (unsigned long) s;
  3578. s->midi.timer.function = cs4281_midi_timer;
  3579. add_timer(&s->midi.timer);
  3580. }
  3581. if (file->f_mode & FMODE_READ) {
  3582. s->midi.ird = s->midi.iwr = s->midi.icnt = 0;
  3583. }
  3584. if (file->f_mode & FMODE_WRITE) {
  3585. s->midi.ord = s->midi.owr = s->midi.ocnt = 0;
  3586. }
  3587. spin_unlock_irqrestore(&s->lock, flags);
  3588. s->open_mode |=
  3589. (file->
  3590. f_mode << FMODE_MIDI_SHIFT) & (FMODE_MIDI_READ |
  3591. FMODE_MIDI_WRITE);
  3592. mutex_unlock(&s->open_sem);
  3593. return nonseekable_open(inode, file);
  3594. }
  3595. static int cs4281_midi_release(struct inode *inode, struct file *file)
  3596. {
  3597. struct cs4281_state *s =
  3598. (struct cs4281_state *) file->private_data;
  3599. DECLARE_WAITQUEUE(wait, current);
  3600. unsigned long flags;
  3601. unsigned count, tmo;
  3602. VALIDATE_STATE(s);
  3603. if (file->f_mode & FMODE_WRITE) {
  3604. add_wait_queue(&s->midi.owait, &wait);
  3605. for (;;) {
  3606. set_current_state(TASK_INTERRUPTIBLE);
  3607. spin_lock_irqsave(&s->lock, flags);
  3608. count = s->midi.ocnt;
  3609. spin_unlock_irqrestore(&s->lock, flags);
  3610. if (count <= 0)
  3611. break;
  3612. if (signal_pending(current))
  3613. break;
  3614. if (file->f_flags & O_NONBLOCK) {
  3615. remove_wait_queue(&s->midi.owait, &wait);
  3616. current->state = TASK_RUNNING;
  3617. return -EBUSY;
  3618. }
  3619. tmo = (count * HZ) / 3100;
  3620. if (!schedule_timeout(tmo ? : 1) && tmo)
  3621. printk(KERN_DEBUG
  3622. "cs4281: midi timed out??\n");
  3623. }
  3624. remove_wait_queue(&s->midi.owait, &wait);
  3625. current->state = TASK_RUNNING;
  3626. }
  3627. mutex_lock(&s->open_sem);
  3628. s->open_mode &=
  3629. (~(file->f_mode << FMODE_MIDI_SHIFT)) & (FMODE_MIDI_READ |
  3630. FMODE_MIDI_WRITE);
  3631. spin_lock_irqsave(&s->lock, flags);
  3632. if (!(s->open_mode & (FMODE_MIDI_READ | FMODE_MIDI_WRITE))) {
  3633. writel(0, s->pBA0 + BA0_MIDCR); // Disable Midi interrupts.
  3634. del_timer(&s->midi.timer);
  3635. }
  3636. spin_unlock_irqrestore(&s->lock, flags);
  3637. mutex_unlock(&s->open_sem);
  3638. wake_up(&s->open_wait);
  3639. return 0;
  3640. }
  3641. // ******************************************************************************************
  3642. // Midi file operations struct.
  3643. // ******************************************************************************************
  3644. static /*const */ struct file_operations cs4281_midi_fops = {
  3645. .owner = THIS_MODULE,
  3646. .llseek = no_llseek,
  3647. .read = cs4281_midi_read,
  3648. .write = cs4281_midi_write,
  3649. .poll = cs4281_midi_poll,
  3650. .open = cs4281_midi_open,
  3651. .release = cs4281_midi_release,
  3652. };
  3653. // ---------------------------------------------------------------------
  3654. // maximum number of devices
  3655. #define NR_DEVICE 8 // Only eight devices supported currently.
  3656. // ---------------------------------------------------------------------
  3657. static struct initvol {
  3658. int mixch;
  3659. int vol;
  3660. } initvol[] __devinitdata = {
  3661. {
  3662. SOUND_MIXER_WRITE_VOLUME, 0x4040}, {
  3663. SOUND_MIXER_WRITE_PCM, 0x4040}, {
  3664. SOUND_MIXER_WRITE_SYNTH, 0x4040}, {
  3665. SOUND_MIXER_WRITE_CD, 0x4040}, {
  3666. SOUND_MIXER_WRITE_LINE, 0x4040}, {
  3667. SOUND_MIXER_WRITE_LINE1, 0x4040}, {
  3668. SOUND_MIXER_WRITE_RECLEV, 0x0000}, {
  3669. SOUND_MIXER_WRITE_SPEAKER, 0x4040}, {
  3670. SOUND_MIXER_WRITE_MIC, 0x0000}
  3671. };
  3672. #ifndef NOT_CS4281_PM
  3673. static void __devinit cs4281_BuildFIFO(
  3674. struct cs4281_pipeline *p,
  3675. struct cs4281_state *s)
  3676. {
  3677. switch(p->number)
  3678. {
  3679. case 0: /* playback */
  3680. {
  3681. p->u32FCRnAddress = BA0_FCR0;
  3682. p->u32FSICnAddress = BA0_FSIC0;
  3683. p->u32FPDRnAddress = BA0_FPDR0;
  3684. break;
  3685. }
  3686. case 1: /* capture */
  3687. {
  3688. p->u32FCRnAddress = BA0_FCR1;
  3689. p->u32FSICnAddress = BA0_FSIC1;
  3690. p->u32FPDRnAddress = BA0_FPDR1;
  3691. break;
  3692. }
  3693. case 2:
  3694. {
  3695. p->u32FCRnAddress = BA0_FCR2;
  3696. p->u32FSICnAddress = BA0_FSIC2;
  3697. p->u32FPDRnAddress = BA0_FPDR2;
  3698. break;
  3699. }
  3700. case 3:
  3701. {
  3702. p->u32FCRnAddress = BA0_FCR3;
  3703. p->u32FSICnAddress = BA0_FSIC3;
  3704. p->u32FPDRnAddress = BA0_FPDR3;
  3705. break;
  3706. }
  3707. default:
  3708. break;
  3709. }
  3710. //
  3711. // first read the hardware to initialize the member variables
  3712. //
  3713. p->u32FCRnValue = readl(s->pBA0 + p->u32FCRnAddress);
  3714. p->u32FSICnValue = readl(s->pBA0 + p->u32FSICnAddress);
  3715. p->u32FPDRnValue = readl(s->pBA0 + p->u32FPDRnAddress);
  3716. }
  3717. static void __devinit cs4281_BuildDMAengine(
  3718. struct cs4281_pipeline *p,
  3719. struct cs4281_state *s)
  3720. {
  3721. /*
  3722. * initialize all the addresses of this pipeline dma info.
  3723. */
  3724. switch(p->number)
  3725. {
  3726. case 0: /* playback */
  3727. {
  3728. p->u32DBAnAddress = BA0_DBA0;
  3729. p->u32DCAnAddress = BA0_DCA0;
  3730. p->u32DBCnAddress = BA0_DBC0;
  3731. p->u32DCCnAddress = BA0_DCC0;
  3732. p->u32DMRnAddress = BA0_DMR0;
  3733. p->u32DCRnAddress = BA0_DCR0;
  3734. p->u32HDSRnAddress = BA0_HDSR0;
  3735. break;
  3736. }
  3737. case 1: /* capture */
  3738. {
  3739. p->u32DBAnAddress = BA0_DBA1;
  3740. p->u32DCAnAddress = BA0_DCA1;
  3741. p->u32DBCnAddress = BA0_DBC1;
  3742. p->u32DCCnAddress = BA0_DCC1;
  3743. p->u32DMRnAddress = BA0_DMR1;
  3744. p->u32DCRnAddress = BA0_DCR1;
  3745. p->u32HDSRnAddress = BA0_HDSR1;
  3746. break;
  3747. }
  3748. case 2:
  3749. {
  3750. p->u32DBAnAddress = BA0_DBA2;
  3751. p->u32DCAnAddress = BA0_DCA2;
  3752. p->u32DBCnAddress = BA0_DBC2;
  3753. p->u32DCCnAddress = BA0_DCC2;
  3754. p->u32DMRnAddress = BA0_DMR2;
  3755. p->u32DCRnAddress = BA0_DCR2;
  3756. p->u32HDSRnAddress = BA0_HDSR2;
  3757. break;
  3758. }
  3759. case 3:
  3760. {
  3761. p->u32DBAnAddress = BA0_DBA3;
  3762. p->u32DCAnAddress = BA0_DCA3;
  3763. p->u32DBCnAddress = BA0_DBC3;
  3764. p->u32DCCnAddress = BA0_DCC3;
  3765. p->u32DMRnAddress = BA0_DMR3;
  3766. p->u32DCRnAddress = BA0_DCR3;
  3767. p->u32HDSRnAddress = BA0_HDSR3;
  3768. break;
  3769. }
  3770. default:
  3771. break;
  3772. }
  3773. //
  3774. // Initialize the dma values for this pipeline
  3775. //
  3776. p->u32DBAnValue = readl(s->pBA0 + p->u32DBAnAddress);
  3777. p->u32DBCnValue = readl(s->pBA0 + p->u32DBCnAddress);
  3778. p->u32DMRnValue = readl(s->pBA0 + p->u32DMRnAddress);
  3779. p->u32DCRnValue = readl(s->pBA0 + p->u32DCRnAddress);
  3780. }
  3781. static void __devinit cs4281_InitPM(struct cs4281_state *s)
  3782. {
  3783. int i;
  3784. struct cs4281_pipeline *p;
  3785. for(i=0;i<CS4281_NUMBER_OF_PIPELINES;i++)
  3786. {
  3787. p = &s->pl[i];
  3788. p->number = i;
  3789. cs4281_BuildDMAengine(p,s);
  3790. cs4281_BuildFIFO(p,s);
  3791. /*
  3792. * currently only 2 pipelines are used
  3793. * so, only set the valid bit on the playback and capture.
  3794. */
  3795. if( (i == CS4281_PLAYBACK_PIPELINE_NUMBER) ||
  3796. (i == CS4281_CAPTURE_PIPELINE_NUMBER))
  3797. p->flags |= CS4281_PIPELINE_VALID;
  3798. }
  3799. s->pm.u32SSPM_BITS = 0x7e; /* rev c, use 0x7c for rev a or b */
  3800. }
  3801. #endif
  3802. static int __devinit cs4281_probe(struct pci_dev *pcidev,
  3803. const struct pci_device_id *pciid)
  3804. {
  3805. struct cs4281_state *s;
  3806. dma_addr_t dma_mask;
  3807. mm_segment_t fs;
  3808. int i, val;
  3809. unsigned int temp1, temp2;
  3810. CS_DBGOUT(CS_FUNCTION | CS_INIT, 2,
  3811. printk(KERN_INFO "cs4281: probe()+\n"));
  3812. if (pci_enable_device(pcidev)) {
  3813. CS_DBGOUT(CS_INIT | CS_ERROR, 1, printk(KERN_ERR
  3814. "cs4281: pci_enable_device() failed\n"));
  3815. return -1;
  3816. }
  3817. if (!(pci_resource_flags(pcidev, 0) & IORESOURCE_MEM) ||
  3818. !(pci_resource_flags(pcidev, 1) & IORESOURCE_MEM)) {
  3819. CS_DBGOUT(CS_ERROR, 1, printk(KERN_ERR
  3820. "cs4281: probe()- Memory region not assigned\n"));
  3821. return -ENODEV;
  3822. }
  3823. if (pcidev->irq == 0) {
  3824. CS_DBGOUT(CS_ERROR, 1, printk(KERN_ERR
  3825. "cs4281: probe() IRQ not assigned\n"));
  3826. return -ENODEV;
  3827. }
  3828. dma_mask = 0xffffffff; /* this enables playback and recording */
  3829. i = pci_set_dma_mask(pcidev, dma_mask);
  3830. if (i) {
  3831. CS_DBGOUT(CS_ERROR, 1, printk(KERN_ERR
  3832. "cs4281: probe() architecture does not support 32bit PCI busmaster DMA\n"));
  3833. return i;
  3834. }
  3835. if (!(s = kmalloc(sizeof(struct cs4281_state), GFP_KERNEL))) {
  3836. CS_DBGOUT(CS_ERROR, 1, printk(KERN_ERR
  3837. "cs4281: probe() no memory for state struct.\n"));
  3838. return -1;
  3839. }
  3840. memset(s, 0, sizeof(struct cs4281_state));
  3841. init_waitqueue_head(&s->dma_adc.wait);
  3842. init_waitqueue_head(&s->dma_dac.wait);
  3843. init_waitqueue_head(&s->open_wait);
  3844. init_waitqueue_head(&s->open_wait_adc);
  3845. init_waitqueue_head(&s->open_wait_dac);
  3846. init_waitqueue_head(&s->midi.iwait);
  3847. init_waitqueue_head(&s->midi.owait);
  3848. mutex_init(&s->open_sem);
  3849. mutex_init(&s->open_sem_adc);
  3850. mutex_init(&s->open_sem_dac);
  3851. spin_lock_init(&s->lock);
  3852. s->pBA0phys = pci_resource_start(pcidev, 0);
  3853. s->pBA1phys = pci_resource_start(pcidev, 1);
  3854. /* Convert phys to linear. */
  3855. s->pBA0 = ioremap_nocache(s->pBA0phys, 4096);
  3856. if (!s->pBA0) {
  3857. CS_DBGOUT(CS_ERROR | CS_INIT, 1, printk(KERN_ERR
  3858. "cs4281: BA0 I/O mapping failed. Skipping part.\n"));
  3859. goto err_free;
  3860. }
  3861. s->pBA1 = ioremap_nocache(s->pBA1phys, 65536);
  3862. if (!s->pBA1) {
  3863. CS_DBGOUT(CS_ERROR | CS_INIT, 1, printk(KERN_ERR
  3864. "cs4281: BA1 I/O mapping failed. Skipping part.\n"));
  3865. goto err_unmap;
  3866. }
  3867. temp1 = readl(s->pBA0 + BA0_PCICFG00);
  3868. temp2 = readl(s->pBA0 + BA0_PCICFG04);
  3869. CS_DBGOUT(CS_INIT, 2,
  3870. printk(KERN_INFO
  3871. "cs4281: probe() BA0=0x%.8x BA1=0x%.8x pBA0=%p pBA1=%p \n",
  3872. (unsigned) temp1, (unsigned) temp2, s->pBA0, s->pBA1));
  3873. CS_DBGOUT(CS_INIT, 2,
  3874. printk(KERN_INFO
  3875. "cs4281: probe() pBA0phys=0x%.8x pBA1phys=0x%.8x\n",
  3876. (unsigned) s->pBA0phys, (unsigned) s->pBA1phys));
  3877. #ifndef NOT_CS4281_PM
  3878. s->pm.flags = CS4281_PM_IDLE;
  3879. #endif
  3880. temp1 = cs4281_hw_init(s);
  3881. if (temp1) {
  3882. CS_DBGOUT(CS_ERROR | CS_INIT, 1, printk(KERN_ERR
  3883. "cs4281: cs4281_hw_init() failed. Skipping part.\n"));
  3884. goto err_irq;
  3885. }
  3886. s->magic = CS4281_MAGIC;
  3887. s->pcidev = pcidev;
  3888. s->irq = pcidev->irq;
  3889. if (request_irq
  3890. (s->irq, cs4281_interrupt, IRQF_SHARED, "Crystal CS4281", s)) {
  3891. CS_DBGOUT(CS_INIT | CS_ERROR, 1,
  3892. printk(KERN_ERR "cs4281: irq %u in use\n", s->irq));
  3893. goto err_irq;
  3894. }
  3895. if ((s->dev_audio = register_sound_dsp(&cs4281_audio_fops, -1)) <
  3896. 0) {
  3897. CS_DBGOUT(CS_INIT | CS_ERROR, 1, printk(KERN_ERR
  3898. "cs4281: probe() register_sound_dsp() failed.\n"));
  3899. goto err_dev1;
  3900. }
  3901. if ((s->dev_mixer = register_sound_mixer(&cs4281_mixer_fops, -1)) <
  3902. 0) {
  3903. CS_DBGOUT(CS_INIT | CS_ERROR, 1, printk(KERN_ERR
  3904. "cs4281: probe() register_sound_mixer() failed.\n"));
  3905. goto err_dev2;
  3906. }
  3907. if ((s->dev_midi = register_sound_midi(&cs4281_midi_fops, -1)) < 0) {
  3908. CS_DBGOUT(CS_INIT | CS_ERROR, 1, printk(KERN_ERR
  3909. "cs4281: probe() register_sound_midi() failed.\n"));
  3910. goto err_dev3;
  3911. }
  3912. #ifndef NOT_CS4281_PM
  3913. cs4281_InitPM(s);
  3914. s->pm.flags |= CS4281_PM_NOT_REGISTERED;
  3915. #endif
  3916. pci_set_master(pcidev); // enable bus mastering
  3917. fs = get_fs();
  3918. set_fs(KERNEL_DS);
  3919. val = SOUND_MASK_LINE;
  3920. mixer_ioctl(s, SOUND_MIXER_WRITE_RECSRC, (unsigned long) &val);
  3921. for (i = 0; i < sizeof(initvol) / sizeof(initvol[0]); i++) {
  3922. val = initvol[i].vol;
  3923. mixer_ioctl(s, initvol[i].mixch, (unsigned long) &val);
  3924. }
  3925. val = 1; // enable mic preamp
  3926. mixer_ioctl(s, SOUND_MIXER_PRIVATE1, (unsigned long) &val);
  3927. set_fs(fs);
  3928. pci_set_drvdata(pcidev, s);
  3929. list_add(&s->list, &cs4281_devs);
  3930. CS_DBGOUT(CS_INIT | CS_FUNCTION, 2, printk(KERN_INFO
  3931. "cs4281: probe()- device allocated successfully\n"));
  3932. return 0;
  3933. err_dev3:
  3934. unregister_sound_mixer(s->dev_mixer);
  3935. err_dev2:
  3936. unregister_sound_dsp(s->dev_audio);
  3937. err_dev1:
  3938. free_irq(s->irq, s);
  3939. err_irq:
  3940. iounmap(s->pBA1);
  3941. err_unmap:
  3942. iounmap(s->pBA0);
  3943. err_free:
  3944. kfree(s);
  3945. CS_DBGOUT(CS_INIT | CS_ERROR, 1, printk(KERN_INFO
  3946. "cs4281: probe()- no device allocated\n"));
  3947. return -ENODEV;
  3948. } // probe_cs4281
  3949. // ---------------------------------------------------------------------
  3950. static void __devexit cs4281_remove(struct pci_dev *pci_dev)
  3951. {
  3952. struct cs4281_state *s = pci_get_drvdata(pci_dev);
  3953. // stop DMA controller
  3954. synchronize_irq(s->irq);
  3955. free_irq(s->irq, s);
  3956. unregister_sound_dsp(s->dev_audio);
  3957. unregister_sound_mixer(s->dev_mixer);
  3958. unregister_sound_midi(s->dev_midi);
  3959. iounmap(s->pBA1);
  3960. iounmap(s->pBA0);
  3961. pci_set_drvdata(pci_dev,NULL);
  3962. list_del(&s->list);
  3963. kfree(s);
  3964. CS_DBGOUT(CS_INIT | CS_FUNCTION, 2, printk(KERN_INFO
  3965. "cs4281: cs4281_remove()-: remove successful\n"));
  3966. }
  3967. static struct pci_device_id cs4281_pci_tbl[] = {
  3968. {
  3969. .vendor = PCI_VENDOR_ID_CIRRUS,
  3970. .device = PCI_DEVICE_ID_CRYSTAL_CS4281,
  3971. .subvendor = PCI_ANY_ID,
  3972. .subdevice = PCI_ANY_ID,
  3973. },
  3974. { 0, },
  3975. };
  3976. MODULE_DEVICE_TABLE(pci, cs4281_pci_tbl);
  3977. static struct pci_driver cs4281_pci_driver = {
  3978. .name = "cs4281",
  3979. .id_table = cs4281_pci_tbl,
  3980. .probe = cs4281_probe,
  3981. .remove = __devexit_p(cs4281_remove),
  3982. .suspend = CS4281_SUSPEND_TBL,
  3983. .resume = CS4281_RESUME_TBL,
  3984. };
  3985. static int __init cs4281_init_module(void)
  3986. {
  3987. int rtn = 0;
  3988. CS_DBGOUT(CS_INIT | CS_FUNCTION, 2, printk(KERN_INFO
  3989. "cs4281: cs4281_init_module()+ \n"));
  3990. printk(KERN_INFO "cs4281: version v%d.%02d.%d time " __TIME__ " "
  3991. __DATE__ "\n", CS4281_MAJOR_VERSION, CS4281_MINOR_VERSION,
  3992. CS4281_ARCH);
  3993. rtn = pci_register_driver(&cs4281_pci_driver);
  3994. CS_DBGOUT(CS_INIT | CS_FUNCTION, 2,
  3995. printk(KERN_INFO "cs4281: cs4281_init_module()- (%d)\n",rtn));
  3996. return rtn;
  3997. }
  3998. static void __exit cs4281_cleanup_module(void)
  3999. {
  4000. pci_unregister_driver(&cs4281_pci_driver);
  4001. CS_DBGOUT(CS_INIT | CS_FUNCTION, 2,
  4002. printk(KERN_INFO "cs4281: cleanup_cs4281() finished\n"));
  4003. }
  4004. // ---------------------------------------------------------------------
  4005. MODULE_AUTHOR("gw boynton, audio@crystal.cirrus.com");
  4006. MODULE_DESCRIPTION("Cirrus Logic CS4281 Driver");
  4007. MODULE_LICENSE("GPL");
  4008. // ---------------------------------------------------------------------
  4009. module_init(cs4281_init_module);
  4010. module_exit(cs4281_cleanup_module);