svcsock.c 40 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566
  1. /*
  2. * linux/net/sunrpc/svcsock.c
  3. *
  4. * These are the RPC server socket internals.
  5. *
  6. * The server scheduling algorithm does not always distribute the load
  7. * evenly when servicing a single client. May need to modify the
  8. * svc_sock_enqueue procedure...
  9. *
  10. * TCP support is largely untested and may be a little slow. The problem
  11. * is that we currently do two separate recvfrom's, one for the 4-byte
  12. * record length, and the second for the actual record. This could possibly
  13. * be improved by always reading a minimum size of around 100 bytes and
  14. * tucking any superfluous bytes away in a temporary store. Still, that
  15. * leaves write requests out in the rain. An alternative may be to peek at
  16. * the first skb in the queue, and if it matches the next TCP sequence
  17. * number, to extract the record marker. Yuck.
  18. *
  19. * Copyright (C) 1995, 1996 Olaf Kirch <okir@monad.swb.de>
  20. */
  21. #include <linux/sched.h>
  22. #include <linux/errno.h>
  23. #include <linux/fcntl.h>
  24. #include <linux/net.h>
  25. #include <linux/in.h>
  26. #include <linux/inet.h>
  27. #include <linux/udp.h>
  28. #include <linux/tcp.h>
  29. #include <linux/unistd.h>
  30. #include <linux/slab.h>
  31. #include <linux/netdevice.h>
  32. #include <linux/skbuff.h>
  33. #include <net/sock.h>
  34. #include <net/checksum.h>
  35. #include <net/ip.h>
  36. #include <net/tcp_states.h>
  37. #include <asm/uaccess.h>
  38. #include <asm/ioctls.h>
  39. #include <linux/sunrpc/types.h>
  40. #include <linux/sunrpc/xdr.h>
  41. #include <linux/sunrpc/svcsock.h>
  42. #include <linux/sunrpc/stats.h>
  43. /* SMP locking strategy:
  44. *
  45. * svc_serv->sv_lock protects most stuff for that service.
  46. *
  47. * Some flags can be set to certain values at any time
  48. * providing that certain rules are followed:
  49. *
  50. * SK_BUSY can be set to 0 at any time.
  51. * svc_sock_enqueue must be called afterwards
  52. * SK_CONN, SK_DATA, can be set or cleared at any time.
  53. * after a set, svc_sock_enqueue must be called.
  54. * after a clear, the socket must be read/accepted
  55. * if this succeeds, it must be set again.
  56. * SK_CLOSE can set at any time. It is never cleared.
  57. *
  58. */
  59. #define RPCDBG_FACILITY RPCDBG_SVCSOCK
  60. static struct svc_sock *svc_setup_socket(struct svc_serv *, struct socket *,
  61. int *errp, int pmap_reg);
  62. static void svc_udp_data_ready(struct sock *, int);
  63. static int svc_udp_recvfrom(struct svc_rqst *);
  64. static int svc_udp_sendto(struct svc_rqst *);
  65. static struct svc_deferred_req *svc_deferred_dequeue(struct svc_sock *svsk);
  66. static int svc_deferred_recv(struct svc_rqst *rqstp);
  67. static struct cache_deferred_req *svc_defer(struct cache_req *req);
  68. /*
  69. * Queue up an idle server thread. Must have serv->sv_lock held.
  70. * Note: this is really a stack rather than a queue, so that we only
  71. * use as many different threads as we need, and the rest don't polute
  72. * the cache.
  73. */
  74. static inline void
  75. svc_serv_enqueue(struct svc_serv *serv, struct svc_rqst *rqstp)
  76. {
  77. list_add(&rqstp->rq_list, &serv->sv_threads);
  78. }
  79. /*
  80. * Dequeue an nfsd thread. Must have serv->sv_lock held.
  81. */
  82. static inline void
  83. svc_serv_dequeue(struct svc_serv *serv, struct svc_rqst *rqstp)
  84. {
  85. list_del(&rqstp->rq_list);
  86. }
  87. /*
  88. * Release an skbuff after use
  89. */
  90. static inline void
  91. svc_release_skb(struct svc_rqst *rqstp)
  92. {
  93. struct sk_buff *skb = rqstp->rq_skbuff;
  94. struct svc_deferred_req *dr = rqstp->rq_deferred;
  95. if (skb) {
  96. rqstp->rq_skbuff = NULL;
  97. dprintk("svc: service %p, releasing skb %p\n", rqstp, skb);
  98. skb_free_datagram(rqstp->rq_sock->sk_sk, skb);
  99. }
  100. if (dr) {
  101. rqstp->rq_deferred = NULL;
  102. kfree(dr);
  103. }
  104. }
  105. /*
  106. * Any space to write?
  107. */
  108. static inline unsigned long
  109. svc_sock_wspace(struct svc_sock *svsk)
  110. {
  111. int wspace;
  112. if (svsk->sk_sock->type == SOCK_STREAM)
  113. wspace = sk_stream_wspace(svsk->sk_sk);
  114. else
  115. wspace = sock_wspace(svsk->sk_sk);
  116. return wspace;
  117. }
  118. /*
  119. * Queue up a socket with data pending. If there are idle nfsd
  120. * processes, wake 'em up.
  121. *
  122. */
  123. static void
  124. svc_sock_enqueue(struct svc_sock *svsk)
  125. {
  126. struct svc_serv *serv = svsk->sk_server;
  127. struct svc_rqst *rqstp;
  128. if (!(svsk->sk_flags &
  129. ( (1<<SK_CONN)|(1<<SK_DATA)|(1<<SK_CLOSE)|(1<<SK_DEFERRED)) ))
  130. return;
  131. if (test_bit(SK_DEAD, &svsk->sk_flags))
  132. return;
  133. spin_lock_bh(&serv->sv_lock);
  134. if (!list_empty(&serv->sv_threads) &&
  135. !list_empty(&serv->sv_sockets))
  136. printk(KERN_ERR
  137. "svc_sock_enqueue: threads and sockets both waiting??\n");
  138. if (test_bit(SK_DEAD, &svsk->sk_flags)) {
  139. /* Don't enqueue dead sockets */
  140. dprintk("svc: socket %p is dead, not enqueued\n", svsk->sk_sk);
  141. goto out_unlock;
  142. }
  143. if (test_bit(SK_BUSY, &svsk->sk_flags)) {
  144. /* Don't enqueue socket while daemon is receiving */
  145. dprintk("svc: socket %p busy, not enqueued\n", svsk->sk_sk);
  146. goto out_unlock;
  147. }
  148. set_bit(SOCK_NOSPACE, &svsk->sk_sock->flags);
  149. if (((svsk->sk_reserved + serv->sv_bufsz)*2
  150. > svc_sock_wspace(svsk))
  151. && !test_bit(SK_CLOSE, &svsk->sk_flags)
  152. && !test_bit(SK_CONN, &svsk->sk_flags)) {
  153. /* Don't enqueue while not enough space for reply */
  154. dprintk("svc: socket %p no space, %d*2 > %ld, not enqueued\n",
  155. svsk->sk_sk, svsk->sk_reserved+serv->sv_bufsz,
  156. svc_sock_wspace(svsk));
  157. goto out_unlock;
  158. }
  159. clear_bit(SOCK_NOSPACE, &svsk->sk_sock->flags);
  160. /* Mark socket as busy. It will remain in this state until the
  161. * server has processed all pending data and put the socket back
  162. * on the idle list.
  163. */
  164. set_bit(SK_BUSY, &svsk->sk_flags);
  165. if (!list_empty(&serv->sv_threads)) {
  166. rqstp = list_entry(serv->sv_threads.next,
  167. struct svc_rqst,
  168. rq_list);
  169. dprintk("svc: socket %p served by daemon %p\n",
  170. svsk->sk_sk, rqstp);
  171. svc_serv_dequeue(serv, rqstp);
  172. if (rqstp->rq_sock)
  173. printk(KERN_ERR
  174. "svc_sock_enqueue: server %p, rq_sock=%p!\n",
  175. rqstp, rqstp->rq_sock);
  176. rqstp->rq_sock = svsk;
  177. svsk->sk_inuse++;
  178. rqstp->rq_reserved = serv->sv_bufsz;
  179. svsk->sk_reserved += rqstp->rq_reserved;
  180. wake_up(&rqstp->rq_wait);
  181. } else {
  182. dprintk("svc: socket %p put into queue\n", svsk->sk_sk);
  183. list_add_tail(&svsk->sk_ready, &serv->sv_sockets);
  184. }
  185. out_unlock:
  186. spin_unlock_bh(&serv->sv_lock);
  187. }
  188. /*
  189. * Dequeue the first socket. Must be called with the serv->sv_lock held.
  190. */
  191. static inline struct svc_sock *
  192. svc_sock_dequeue(struct svc_serv *serv)
  193. {
  194. struct svc_sock *svsk;
  195. if (list_empty(&serv->sv_sockets))
  196. return NULL;
  197. svsk = list_entry(serv->sv_sockets.next,
  198. struct svc_sock, sk_ready);
  199. list_del_init(&svsk->sk_ready);
  200. dprintk("svc: socket %p dequeued, inuse=%d\n",
  201. svsk->sk_sk, svsk->sk_inuse);
  202. return svsk;
  203. }
  204. /*
  205. * Having read something from a socket, check whether it
  206. * needs to be re-enqueued.
  207. * Note: SK_DATA only gets cleared when a read-attempt finds
  208. * no (or insufficient) data.
  209. */
  210. static inline void
  211. svc_sock_received(struct svc_sock *svsk)
  212. {
  213. clear_bit(SK_BUSY, &svsk->sk_flags);
  214. svc_sock_enqueue(svsk);
  215. }
  216. /**
  217. * svc_reserve - change the space reserved for the reply to a request.
  218. * @rqstp: The request in question
  219. * @space: new max space to reserve
  220. *
  221. * Each request reserves some space on the output queue of the socket
  222. * to make sure the reply fits. This function reduces that reserved
  223. * space to be the amount of space used already, plus @space.
  224. *
  225. */
  226. void svc_reserve(struct svc_rqst *rqstp, int space)
  227. {
  228. space += rqstp->rq_res.head[0].iov_len;
  229. if (space < rqstp->rq_reserved) {
  230. struct svc_sock *svsk = rqstp->rq_sock;
  231. spin_lock_bh(&svsk->sk_server->sv_lock);
  232. svsk->sk_reserved -= (rqstp->rq_reserved - space);
  233. rqstp->rq_reserved = space;
  234. spin_unlock_bh(&svsk->sk_server->sv_lock);
  235. svc_sock_enqueue(svsk);
  236. }
  237. }
  238. /*
  239. * Release a socket after use.
  240. */
  241. static inline void
  242. svc_sock_put(struct svc_sock *svsk)
  243. {
  244. struct svc_serv *serv = svsk->sk_server;
  245. spin_lock_bh(&serv->sv_lock);
  246. if (!--(svsk->sk_inuse) && test_bit(SK_DEAD, &svsk->sk_flags)) {
  247. spin_unlock_bh(&serv->sv_lock);
  248. dprintk("svc: releasing dead socket\n");
  249. sock_release(svsk->sk_sock);
  250. kfree(svsk);
  251. }
  252. else
  253. spin_unlock_bh(&serv->sv_lock);
  254. }
  255. static void
  256. svc_sock_release(struct svc_rqst *rqstp)
  257. {
  258. struct svc_sock *svsk = rqstp->rq_sock;
  259. svc_release_skb(rqstp);
  260. svc_free_allpages(rqstp);
  261. rqstp->rq_res.page_len = 0;
  262. rqstp->rq_res.page_base = 0;
  263. /* Reset response buffer and release
  264. * the reservation.
  265. * But first, check that enough space was reserved
  266. * for the reply, otherwise we have a bug!
  267. */
  268. if ((rqstp->rq_res.len) > rqstp->rq_reserved)
  269. printk(KERN_ERR "RPC request reserved %d but used %d\n",
  270. rqstp->rq_reserved,
  271. rqstp->rq_res.len);
  272. rqstp->rq_res.head[0].iov_len = 0;
  273. svc_reserve(rqstp, 0);
  274. rqstp->rq_sock = NULL;
  275. svc_sock_put(svsk);
  276. }
  277. /*
  278. * External function to wake up a server waiting for data
  279. */
  280. void
  281. svc_wake_up(struct svc_serv *serv)
  282. {
  283. struct svc_rqst *rqstp;
  284. spin_lock_bh(&serv->sv_lock);
  285. if (!list_empty(&serv->sv_threads)) {
  286. rqstp = list_entry(serv->sv_threads.next,
  287. struct svc_rqst,
  288. rq_list);
  289. dprintk("svc: daemon %p woken up.\n", rqstp);
  290. /*
  291. svc_serv_dequeue(serv, rqstp);
  292. rqstp->rq_sock = NULL;
  293. */
  294. wake_up(&rqstp->rq_wait);
  295. }
  296. spin_unlock_bh(&serv->sv_lock);
  297. }
  298. /*
  299. * Generic sendto routine
  300. */
  301. static int
  302. svc_sendto(struct svc_rqst *rqstp, struct xdr_buf *xdr)
  303. {
  304. struct svc_sock *svsk = rqstp->rq_sock;
  305. struct socket *sock = svsk->sk_sock;
  306. int slen;
  307. char buffer[CMSG_SPACE(sizeof(struct in_pktinfo))];
  308. struct cmsghdr *cmh = (struct cmsghdr *)buffer;
  309. struct in_pktinfo *pki = (struct in_pktinfo *)CMSG_DATA(cmh);
  310. int len = 0;
  311. int result;
  312. int size;
  313. struct page **ppage = xdr->pages;
  314. size_t base = xdr->page_base;
  315. unsigned int pglen = xdr->page_len;
  316. unsigned int flags = MSG_MORE;
  317. slen = xdr->len;
  318. if (rqstp->rq_prot == IPPROTO_UDP) {
  319. /* set the source and destination */
  320. struct msghdr msg;
  321. msg.msg_name = &rqstp->rq_addr;
  322. msg.msg_namelen = sizeof(rqstp->rq_addr);
  323. msg.msg_iov = NULL;
  324. msg.msg_iovlen = 0;
  325. msg.msg_flags = MSG_MORE;
  326. msg.msg_control = cmh;
  327. msg.msg_controllen = sizeof(buffer);
  328. cmh->cmsg_len = CMSG_LEN(sizeof(*pki));
  329. cmh->cmsg_level = SOL_IP;
  330. cmh->cmsg_type = IP_PKTINFO;
  331. pki->ipi_ifindex = 0;
  332. pki->ipi_spec_dst.s_addr = rqstp->rq_daddr;
  333. if (sock_sendmsg(sock, &msg, 0) < 0)
  334. goto out;
  335. }
  336. /* send head */
  337. if (slen == xdr->head[0].iov_len)
  338. flags = 0;
  339. len = kernel_sendpage(sock, rqstp->rq_respages[0], 0, xdr->head[0].iov_len, flags);
  340. if (len != xdr->head[0].iov_len)
  341. goto out;
  342. slen -= xdr->head[0].iov_len;
  343. if (slen == 0)
  344. goto out;
  345. /* send page data */
  346. size = PAGE_SIZE - base < pglen ? PAGE_SIZE - base : pglen;
  347. while (pglen > 0) {
  348. if (slen == size)
  349. flags = 0;
  350. result = kernel_sendpage(sock, *ppage, base, size, flags);
  351. if (result > 0)
  352. len += result;
  353. if (result != size)
  354. goto out;
  355. slen -= size;
  356. pglen -= size;
  357. size = PAGE_SIZE < pglen ? PAGE_SIZE : pglen;
  358. base = 0;
  359. ppage++;
  360. }
  361. /* send tail */
  362. if (xdr->tail[0].iov_len) {
  363. result = kernel_sendpage(sock, rqstp->rq_respages[rqstp->rq_restailpage],
  364. ((unsigned long)xdr->tail[0].iov_base)& (PAGE_SIZE-1),
  365. xdr->tail[0].iov_len, 0);
  366. if (result > 0)
  367. len += result;
  368. }
  369. out:
  370. dprintk("svc: socket %p sendto([%p %Zu... ], %d) = %d (addr %x)\n",
  371. rqstp->rq_sock, xdr->head[0].iov_base, xdr->head[0].iov_len, xdr->len, len,
  372. rqstp->rq_addr.sin_addr.s_addr);
  373. return len;
  374. }
  375. /*
  376. * Check input queue length
  377. */
  378. static int
  379. svc_recv_available(struct svc_sock *svsk)
  380. {
  381. struct socket *sock = svsk->sk_sock;
  382. int avail, err;
  383. err = kernel_sock_ioctl(sock, TIOCINQ, (unsigned long) &avail);
  384. return (err >= 0)? avail : err;
  385. }
  386. /*
  387. * Generic recvfrom routine.
  388. */
  389. static int
  390. svc_recvfrom(struct svc_rqst *rqstp, struct kvec *iov, int nr, int buflen)
  391. {
  392. struct msghdr msg;
  393. struct socket *sock;
  394. int len, alen;
  395. rqstp->rq_addrlen = sizeof(rqstp->rq_addr);
  396. sock = rqstp->rq_sock->sk_sock;
  397. msg.msg_name = &rqstp->rq_addr;
  398. msg.msg_namelen = sizeof(rqstp->rq_addr);
  399. msg.msg_control = NULL;
  400. msg.msg_controllen = 0;
  401. msg.msg_flags = MSG_DONTWAIT;
  402. len = kernel_recvmsg(sock, &msg, iov, nr, buflen, MSG_DONTWAIT);
  403. /* sock_recvmsg doesn't fill in the name/namelen, so we must..
  404. * possibly we should cache this in the svc_sock structure
  405. * at accept time. FIXME
  406. */
  407. alen = sizeof(rqstp->rq_addr);
  408. kernel_getpeername(sock, (struct sockaddr *)&rqstp->rq_addr, &alen);
  409. dprintk("svc: socket %p recvfrom(%p, %Zu) = %d\n",
  410. rqstp->rq_sock, iov[0].iov_base, iov[0].iov_len, len);
  411. return len;
  412. }
  413. /*
  414. * Set socket snd and rcv buffer lengths
  415. */
  416. static inline void
  417. svc_sock_setbufsize(struct socket *sock, unsigned int snd, unsigned int rcv)
  418. {
  419. #if 0
  420. mm_segment_t oldfs;
  421. oldfs = get_fs(); set_fs(KERNEL_DS);
  422. sock_setsockopt(sock, SOL_SOCKET, SO_SNDBUF,
  423. (char*)&snd, sizeof(snd));
  424. sock_setsockopt(sock, SOL_SOCKET, SO_RCVBUF,
  425. (char*)&rcv, sizeof(rcv));
  426. #else
  427. /* sock_setsockopt limits use to sysctl_?mem_max,
  428. * which isn't acceptable. Until that is made conditional
  429. * on not having CAP_SYS_RESOURCE or similar, we go direct...
  430. * DaveM said I could!
  431. */
  432. lock_sock(sock->sk);
  433. sock->sk->sk_sndbuf = snd * 2;
  434. sock->sk->sk_rcvbuf = rcv * 2;
  435. sock->sk->sk_userlocks |= SOCK_SNDBUF_LOCK|SOCK_RCVBUF_LOCK;
  436. release_sock(sock->sk);
  437. #endif
  438. }
  439. /*
  440. * INET callback when data has been received on the socket.
  441. */
  442. static void
  443. svc_udp_data_ready(struct sock *sk, int count)
  444. {
  445. struct svc_sock *svsk = (struct svc_sock *)sk->sk_user_data;
  446. if (svsk) {
  447. dprintk("svc: socket %p(inet %p), count=%d, busy=%d\n",
  448. svsk, sk, count, test_bit(SK_BUSY, &svsk->sk_flags));
  449. set_bit(SK_DATA, &svsk->sk_flags);
  450. svc_sock_enqueue(svsk);
  451. }
  452. if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
  453. wake_up_interruptible(sk->sk_sleep);
  454. }
  455. /*
  456. * INET callback when space is newly available on the socket.
  457. */
  458. static void
  459. svc_write_space(struct sock *sk)
  460. {
  461. struct svc_sock *svsk = (struct svc_sock *)(sk->sk_user_data);
  462. if (svsk) {
  463. dprintk("svc: socket %p(inet %p), write_space busy=%d\n",
  464. svsk, sk, test_bit(SK_BUSY, &svsk->sk_flags));
  465. svc_sock_enqueue(svsk);
  466. }
  467. if (sk->sk_sleep && waitqueue_active(sk->sk_sleep)) {
  468. dprintk("RPC svc_write_space: someone sleeping on %p\n",
  469. svsk);
  470. wake_up_interruptible(sk->sk_sleep);
  471. }
  472. }
  473. /*
  474. * Receive a datagram from a UDP socket.
  475. */
  476. static int
  477. svc_udp_recvfrom(struct svc_rqst *rqstp)
  478. {
  479. struct svc_sock *svsk = rqstp->rq_sock;
  480. struct svc_serv *serv = svsk->sk_server;
  481. struct sk_buff *skb;
  482. int err, len;
  483. if (test_and_clear_bit(SK_CHNGBUF, &svsk->sk_flags))
  484. /* udp sockets need large rcvbuf as all pending
  485. * requests are still in that buffer. sndbuf must
  486. * also be large enough that there is enough space
  487. * for one reply per thread.
  488. */
  489. svc_sock_setbufsize(svsk->sk_sock,
  490. (serv->sv_nrthreads+3) * serv->sv_bufsz,
  491. (serv->sv_nrthreads+3) * serv->sv_bufsz);
  492. if ((rqstp->rq_deferred = svc_deferred_dequeue(svsk))) {
  493. svc_sock_received(svsk);
  494. return svc_deferred_recv(rqstp);
  495. }
  496. clear_bit(SK_DATA, &svsk->sk_flags);
  497. while ((skb = skb_recv_datagram(svsk->sk_sk, 0, 1, &err)) == NULL) {
  498. if (err == -EAGAIN) {
  499. svc_sock_received(svsk);
  500. return err;
  501. }
  502. /* possibly an icmp error */
  503. dprintk("svc: recvfrom returned error %d\n", -err);
  504. }
  505. if (skb->tstamp.off_sec == 0) {
  506. struct timeval tv;
  507. tv.tv_sec = xtime.tv_sec;
  508. tv.tv_usec = xtime.tv_nsec / NSEC_PER_USEC;
  509. skb_set_timestamp(skb, &tv);
  510. /* Don't enable netstamp, sunrpc doesn't
  511. need that much accuracy */
  512. }
  513. skb_get_timestamp(skb, &svsk->sk_sk->sk_stamp);
  514. set_bit(SK_DATA, &svsk->sk_flags); /* there may be more data... */
  515. /*
  516. * Maybe more packets - kick another thread ASAP.
  517. */
  518. svc_sock_received(svsk);
  519. len = skb->len - sizeof(struct udphdr);
  520. rqstp->rq_arg.len = len;
  521. rqstp->rq_prot = IPPROTO_UDP;
  522. /* Get sender address */
  523. rqstp->rq_addr.sin_family = AF_INET;
  524. rqstp->rq_addr.sin_port = skb->h.uh->source;
  525. rqstp->rq_addr.sin_addr.s_addr = skb->nh.iph->saddr;
  526. rqstp->rq_daddr = skb->nh.iph->daddr;
  527. if (skb_is_nonlinear(skb)) {
  528. /* we have to copy */
  529. local_bh_disable();
  530. if (csum_partial_copy_to_xdr(&rqstp->rq_arg, skb)) {
  531. local_bh_enable();
  532. /* checksum error */
  533. skb_free_datagram(svsk->sk_sk, skb);
  534. return 0;
  535. }
  536. local_bh_enable();
  537. skb_free_datagram(svsk->sk_sk, skb);
  538. } else {
  539. /* we can use it in-place */
  540. rqstp->rq_arg.head[0].iov_base = skb->data + sizeof(struct udphdr);
  541. rqstp->rq_arg.head[0].iov_len = len;
  542. if (skb_checksum_complete(skb)) {
  543. skb_free_datagram(svsk->sk_sk, skb);
  544. return 0;
  545. }
  546. rqstp->rq_skbuff = skb;
  547. }
  548. rqstp->rq_arg.page_base = 0;
  549. if (len <= rqstp->rq_arg.head[0].iov_len) {
  550. rqstp->rq_arg.head[0].iov_len = len;
  551. rqstp->rq_arg.page_len = 0;
  552. } else {
  553. rqstp->rq_arg.page_len = len - rqstp->rq_arg.head[0].iov_len;
  554. rqstp->rq_argused += (rqstp->rq_arg.page_len + PAGE_SIZE - 1)/ PAGE_SIZE;
  555. }
  556. if (serv->sv_stats)
  557. serv->sv_stats->netudpcnt++;
  558. return len;
  559. }
  560. static int
  561. svc_udp_sendto(struct svc_rqst *rqstp)
  562. {
  563. int error;
  564. error = svc_sendto(rqstp, &rqstp->rq_res);
  565. if (error == -ECONNREFUSED)
  566. /* ICMP error on earlier request. */
  567. error = svc_sendto(rqstp, &rqstp->rq_res);
  568. return error;
  569. }
  570. static void
  571. svc_udp_init(struct svc_sock *svsk)
  572. {
  573. svsk->sk_sk->sk_data_ready = svc_udp_data_ready;
  574. svsk->sk_sk->sk_write_space = svc_write_space;
  575. svsk->sk_recvfrom = svc_udp_recvfrom;
  576. svsk->sk_sendto = svc_udp_sendto;
  577. /* initialise setting must have enough space to
  578. * receive and respond to one request.
  579. * svc_udp_recvfrom will re-adjust if necessary
  580. */
  581. svc_sock_setbufsize(svsk->sk_sock,
  582. 3 * svsk->sk_server->sv_bufsz,
  583. 3 * svsk->sk_server->sv_bufsz);
  584. set_bit(SK_DATA, &svsk->sk_flags); /* might have come in before data_ready set up */
  585. set_bit(SK_CHNGBUF, &svsk->sk_flags);
  586. }
  587. /*
  588. * A data_ready event on a listening socket means there's a connection
  589. * pending. Do not use state_change as a substitute for it.
  590. */
  591. static void
  592. svc_tcp_listen_data_ready(struct sock *sk, int count_unused)
  593. {
  594. struct svc_sock *svsk = (struct svc_sock *)sk->sk_user_data;
  595. dprintk("svc: socket %p TCP (listen) state change %d\n",
  596. sk, sk->sk_state);
  597. /*
  598. * This callback may called twice when a new connection
  599. * is established as a child socket inherits everything
  600. * from a parent LISTEN socket.
  601. * 1) data_ready method of the parent socket will be called
  602. * when one of child sockets become ESTABLISHED.
  603. * 2) data_ready method of the child socket may be called
  604. * when it receives data before the socket is accepted.
  605. * In case of 2, we should ignore it silently.
  606. */
  607. if (sk->sk_state == TCP_LISTEN) {
  608. if (svsk) {
  609. set_bit(SK_CONN, &svsk->sk_flags);
  610. svc_sock_enqueue(svsk);
  611. } else
  612. printk("svc: socket %p: no user data\n", sk);
  613. }
  614. if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
  615. wake_up_interruptible_all(sk->sk_sleep);
  616. }
  617. /*
  618. * A state change on a connected socket means it's dying or dead.
  619. */
  620. static void
  621. svc_tcp_state_change(struct sock *sk)
  622. {
  623. struct svc_sock *svsk = (struct svc_sock *)sk->sk_user_data;
  624. dprintk("svc: socket %p TCP (connected) state change %d (svsk %p)\n",
  625. sk, sk->sk_state, sk->sk_user_data);
  626. if (!svsk)
  627. printk("svc: socket %p: no user data\n", sk);
  628. else {
  629. set_bit(SK_CLOSE, &svsk->sk_flags);
  630. svc_sock_enqueue(svsk);
  631. }
  632. if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
  633. wake_up_interruptible_all(sk->sk_sleep);
  634. }
  635. static void
  636. svc_tcp_data_ready(struct sock *sk, int count)
  637. {
  638. struct svc_sock *svsk = (struct svc_sock *)sk->sk_user_data;
  639. dprintk("svc: socket %p TCP data ready (svsk %p)\n",
  640. sk, sk->sk_user_data);
  641. if (svsk) {
  642. set_bit(SK_DATA, &svsk->sk_flags);
  643. svc_sock_enqueue(svsk);
  644. }
  645. if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
  646. wake_up_interruptible(sk->sk_sleep);
  647. }
  648. /*
  649. * Accept a TCP connection
  650. */
  651. static void
  652. svc_tcp_accept(struct svc_sock *svsk)
  653. {
  654. struct sockaddr_in sin;
  655. struct svc_serv *serv = svsk->sk_server;
  656. struct socket *sock = svsk->sk_sock;
  657. struct socket *newsock;
  658. struct svc_sock *newsvsk;
  659. int err, slen;
  660. dprintk("svc: tcp_accept %p sock %p\n", svsk, sock);
  661. if (!sock)
  662. return;
  663. clear_bit(SK_CONN, &svsk->sk_flags);
  664. err = kernel_accept(sock, &newsock, O_NONBLOCK);
  665. if (err < 0) {
  666. if (err == -ENOMEM)
  667. printk(KERN_WARNING "%s: no more sockets!\n",
  668. serv->sv_name);
  669. else if (err != -EAGAIN && net_ratelimit())
  670. printk(KERN_WARNING "%s: accept failed (err %d)!\n",
  671. serv->sv_name, -err);
  672. return;
  673. }
  674. set_bit(SK_CONN, &svsk->sk_flags);
  675. svc_sock_enqueue(svsk);
  676. slen = sizeof(sin);
  677. err = kernel_getpeername(newsock, (struct sockaddr *) &sin, &slen);
  678. if (err < 0) {
  679. if (net_ratelimit())
  680. printk(KERN_WARNING "%s: peername failed (err %d)!\n",
  681. serv->sv_name, -err);
  682. goto failed; /* aborted connection or whatever */
  683. }
  684. /* Ideally, we would want to reject connections from unauthorized
  685. * hosts here, but when we get encription, the IP of the host won't
  686. * tell us anything. For now just warn about unpriv connections.
  687. */
  688. if (ntohs(sin.sin_port) >= 1024) {
  689. dprintk(KERN_WARNING
  690. "%s: connect from unprivileged port: %u.%u.%u.%u:%d\n",
  691. serv->sv_name,
  692. NIPQUAD(sin.sin_addr.s_addr), ntohs(sin.sin_port));
  693. }
  694. dprintk("%s: connect from %u.%u.%u.%u:%04x\n", serv->sv_name,
  695. NIPQUAD(sin.sin_addr.s_addr), ntohs(sin.sin_port));
  696. /* make sure that a write doesn't block forever when
  697. * low on memory
  698. */
  699. newsock->sk->sk_sndtimeo = HZ*30;
  700. if (!(newsvsk = svc_setup_socket(serv, newsock, &err, 0)))
  701. goto failed;
  702. /* make sure that we don't have too many active connections.
  703. * If we have, something must be dropped.
  704. *
  705. * There's no point in trying to do random drop here for
  706. * DoS prevention. The NFS clients does 1 reconnect in 15
  707. * seconds. An attacker can easily beat that.
  708. *
  709. * The only somewhat efficient mechanism would be if drop
  710. * old connections from the same IP first. But right now
  711. * we don't even record the client IP in svc_sock.
  712. */
  713. if (serv->sv_tmpcnt > (serv->sv_nrthreads+3)*20) {
  714. struct svc_sock *svsk = NULL;
  715. spin_lock_bh(&serv->sv_lock);
  716. if (!list_empty(&serv->sv_tempsocks)) {
  717. if (net_ratelimit()) {
  718. /* Try to help the admin */
  719. printk(KERN_NOTICE "%s: too many open TCP "
  720. "sockets, consider increasing the "
  721. "number of nfsd threads\n",
  722. serv->sv_name);
  723. printk(KERN_NOTICE "%s: last TCP connect from "
  724. "%u.%u.%u.%u:%d\n",
  725. serv->sv_name,
  726. NIPQUAD(sin.sin_addr.s_addr),
  727. ntohs(sin.sin_port));
  728. }
  729. /*
  730. * Always select the oldest socket. It's not fair,
  731. * but so is life
  732. */
  733. svsk = list_entry(serv->sv_tempsocks.prev,
  734. struct svc_sock,
  735. sk_list);
  736. set_bit(SK_CLOSE, &svsk->sk_flags);
  737. svsk->sk_inuse ++;
  738. }
  739. spin_unlock_bh(&serv->sv_lock);
  740. if (svsk) {
  741. svc_sock_enqueue(svsk);
  742. svc_sock_put(svsk);
  743. }
  744. }
  745. if (serv->sv_stats)
  746. serv->sv_stats->nettcpconn++;
  747. return;
  748. failed:
  749. sock_release(newsock);
  750. return;
  751. }
  752. /*
  753. * Receive data from a TCP socket.
  754. */
  755. static int
  756. svc_tcp_recvfrom(struct svc_rqst *rqstp)
  757. {
  758. struct svc_sock *svsk = rqstp->rq_sock;
  759. struct svc_serv *serv = svsk->sk_server;
  760. int len;
  761. struct kvec vec[RPCSVC_MAXPAGES];
  762. int pnum, vlen;
  763. dprintk("svc: tcp_recv %p data %d conn %d close %d\n",
  764. svsk, test_bit(SK_DATA, &svsk->sk_flags),
  765. test_bit(SK_CONN, &svsk->sk_flags),
  766. test_bit(SK_CLOSE, &svsk->sk_flags));
  767. if ((rqstp->rq_deferred = svc_deferred_dequeue(svsk))) {
  768. svc_sock_received(svsk);
  769. return svc_deferred_recv(rqstp);
  770. }
  771. if (test_bit(SK_CLOSE, &svsk->sk_flags)) {
  772. svc_delete_socket(svsk);
  773. return 0;
  774. }
  775. if (test_bit(SK_CONN, &svsk->sk_flags)) {
  776. svc_tcp_accept(svsk);
  777. svc_sock_received(svsk);
  778. return 0;
  779. }
  780. if (test_and_clear_bit(SK_CHNGBUF, &svsk->sk_flags))
  781. /* sndbuf needs to have room for one request
  782. * per thread, otherwise we can stall even when the
  783. * network isn't a bottleneck.
  784. * rcvbuf just needs to be able to hold a few requests.
  785. * Normally they will be removed from the queue
  786. * as soon a a complete request arrives.
  787. */
  788. svc_sock_setbufsize(svsk->sk_sock,
  789. (serv->sv_nrthreads+3) * serv->sv_bufsz,
  790. 3 * serv->sv_bufsz);
  791. clear_bit(SK_DATA, &svsk->sk_flags);
  792. /* Receive data. If we haven't got the record length yet, get
  793. * the next four bytes. Otherwise try to gobble up as much as
  794. * possible up to the complete record length.
  795. */
  796. if (svsk->sk_tcplen < 4) {
  797. unsigned long want = 4 - svsk->sk_tcplen;
  798. struct kvec iov;
  799. iov.iov_base = ((char *) &svsk->sk_reclen) + svsk->sk_tcplen;
  800. iov.iov_len = want;
  801. if ((len = svc_recvfrom(rqstp, &iov, 1, want)) < 0)
  802. goto error;
  803. svsk->sk_tcplen += len;
  804. if (len < want) {
  805. dprintk("svc: short recvfrom while reading record length (%d of %lu)\n",
  806. len, want);
  807. svc_sock_received(svsk);
  808. return -EAGAIN; /* record header not complete */
  809. }
  810. svsk->sk_reclen = ntohl(svsk->sk_reclen);
  811. if (!(svsk->sk_reclen & 0x80000000)) {
  812. /* FIXME: technically, a record can be fragmented,
  813. * and non-terminal fragments will not have the top
  814. * bit set in the fragment length header.
  815. * But apparently no known nfs clients send fragmented
  816. * records. */
  817. printk(KERN_NOTICE "RPC: bad TCP reclen 0x%08lx (non-terminal)\n",
  818. (unsigned long) svsk->sk_reclen);
  819. goto err_delete;
  820. }
  821. svsk->sk_reclen &= 0x7fffffff;
  822. dprintk("svc: TCP record, %d bytes\n", svsk->sk_reclen);
  823. if (svsk->sk_reclen > serv->sv_bufsz) {
  824. printk(KERN_NOTICE "RPC: bad TCP reclen 0x%08lx (large)\n",
  825. (unsigned long) svsk->sk_reclen);
  826. goto err_delete;
  827. }
  828. }
  829. /* Check whether enough data is available */
  830. len = svc_recv_available(svsk);
  831. if (len < 0)
  832. goto error;
  833. if (len < svsk->sk_reclen) {
  834. dprintk("svc: incomplete TCP record (%d of %d)\n",
  835. len, svsk->sk_reclen);
  836. svc_sock_received(svsk);
  837. return -EAGAIN; /* record not complete */
  838. }
  839. len = svsk->sk_reclen;
  840. set_bit(SK_DATA, &svsk->sk_flags);
  841. vec[0] = rqstp->rq_arg.head[0];
  842. vlen = PAGE_SIZE;
  843. pnum = 1;
  844. while (vlen < len) {
  845. vec[pnum].iov_base = page_address(rqstp->rq_argpages[rqstp->rq_argused++]);
  846. vec[pnum].iov_len = PAGE_SIZE;
  847. pnum++;
  848. vlen += PAGE_SIZE;
  849. }
  850. /* Now receive data */
  851. len = svc_recvfrom(rqstp, vec, pnum, len);
  852. if (len < 0)
  853. goto error;
  854. dprintk("svc: TCP complete record (%d bytes)\n", len);
  855. rqstp->rq_arg.len = len;
  856. rqstp->rq_arg.page_base = 0;
  857. if (len <= rqstp->rq_arg.head[0].iov_len) {
  858. rqstp->rq_arg.head[0].iov_len = len;
  859. rqstp->rq_arg.page_len = 0;
  860. } else {
  861. rqstp->rq_arg.page_len = len - rqstp->rq_arg.head[0].iov_len;
  862. }
  863. rqstp->rq_skbuff = NULL;
  864. rqstp->rq_prot = IPPROTO_TCP;
  865. /* Reset TCP read info */
  866. svsk->sk_reclen = 0;
  867. svsk->sk_tcplen = 0;
  868. svc_sock_received(svsk);
  869. if (serv->sv_stats)
  870. serv->sv_stats->nettcpcnt++;
  871. return len;
  872. err_delete:
  873. svc_delete_socket(svsk);
  874. return -EAGAIN;
  875. error:
  876. if (len == -EAGAIN) {
  877. dprintk("RPC: TCP recvfrom got EAGAIN\n");
  878. svc_sock_received(svsk);
  879. } else {
  880. printk(KERN_NOTICE "%s: recvfrom returned errno %d\n",
  881. svsk->sk_server->sv_name, -len);
  882. goto err_delete;
  883. }
  884. return len;
  885. }
  886. /*
  887. * Send out data on TCP socket.
  888. */
  889. static int
  890. svc_tcp_sendto(struct svc_rqst *rqstp)
  891. {
  892. struct xdr_buf *xbufp = &rqstp->rq_res;
  893. int sent;
  894. __be32 reclen;
  895. /* Set up the first element of the reply kvec.
  896. * Any other kvecs that may be in use have been taken
  897. * care of by the server implementation itself.
  898. */
  899. reclen = htonl(0x80000000|((xbufp->len ) - 4));
  900. memcpy(xbufp->head[0].iov_base, &reclen, 4);
  901. if (test_bit(SK_DEAD, &rqstp->rq_sock->sk_flags))
  902. return -ENOTCONN;
  903. sent = svc_sendto(rqstp, &rqstp->rq_res);
  904. if (sent != xbufp->len) {
  905. printk(KERN_NOTICE "rpc-srv/tcp: %s: %s %d when sending %d bytes - shutting down socket\n",
  906. rqstp->rq_sock->sk_server->sv_name,
  907. (sent<0)?"got error":"sent only",
  908. sent, xbufp->len);
  909. svc_delete_socket(rqstp->rq_sock);
  910. sent = -EAGAIN;
  911. }
  912. return sent;
  913. }
  914. static void
  915. svc_tcp_init(struct svc_sock *svsk)
  916. {
  917. struct sock *sk = svsk->sk_sk;
  918. struct tcp_sock *tp = tcp_sk(sk);
  919. svsk->sk_recvfrom = svc_tcp_recvfrom;
  920. svsk->sk_sendto = svc_tcp_sendto;
  921. if (sk->sk_state == TCP_LISTEN) {
  922. dprintk("setting up TCP socket for listening\n");
  923. sk->sk_data_ready = svc_tcp_listen_data_ready;
  924. set_bit(SK_CONN, &svsk->sk_flags);
  925. } else {
  926. dprintk("setting up TCP socket for reading\n");
  927. sk->sk_state_change = svc_tcp_state_change;
  928. sk->sk_data_ready = svc_tcp_data_ready;
  929. sk->sk_write_space = svc_write_space;
  930. svsk->sk_reclen = 0;
  931. svsk->sk_tcplen = 0;
  932. tp->nonagle = 1; /* disable Nagle's algorithm */
  933. /* initialise setting must have enough space to
  934. * receive and respond to one request.
  935. * svc_tcp_recvfrom will re-adjust if necessary
  936. */
  937. svc_sock_setbufsize(svsk->sk_sock,
  938. 3 * svsk->sk_server->sv_bufsz,
  939. 3 * svsk->sk_server->sv_bufsz);
  940. set_bit(SK_CHNGBUF, &svsk->sk_flags);
  941. set_bit(SK_DATA, &svsk->sk_flags);
  942. if (sk->sk_state != TCP_ESTABLISHED)
  943. set_bit(SK_CLOSE, &svsk->sk_flags);
  944. }
  945. }
  946. void
  947. svc_sock_update_bufs(struct svc_serv *serv)
  948. {
  949. /*
  950. * The number of server threads has changed. Update
  951. * rcvbuf and sndbuf accordingly on all sockets
  952. */
  953. struct list_head *le;
  954. spin_lock_bh(&serv->sv_lock);
  955. list_for_each(le, &serv->sv_permsocks) {
  956. struct svc_sock *svsk =
  957. list_entry(le, struct svc_sock, sk_list);
  958. set_bit(SK_CHNGBUF, &svsk->sk_flags);
  959. }
  960. list_for_each(le, &serv->sv_tempsocks) {
  961. struct svc_sock *svsk =
  962. list_entry(le, struct svc_sock, sk_list);
  963. set_bit(SK_CHNGBUF, &svsk->sk_flags);
  964. }
  965. spin_unlock_bh(&serv->sv_lock);
  966. }
  967. /*
  968. * Receive the next request on any socket.
  969. */
  970. int
  971. svc_recv(struct svc_serv *serv, struct svc_rqst *rqstp, long timeout)
  972. {
  973. struct svc_sock *svsk =NULL;
  974. int len;
  975. int pages;
  976. struct xdr_buf *arg;
  977. DECLARE_WAITQUEUE(wait, current);
  978. dprintk("svc: server %p waiting for data (to = %ld)\n",
  979. rqstp, timeout);
  980. if (rqstp->rq_sock)
  981. printk(KERN_ERR
  982. "svc_recv: service %p, socket not NULL!\n",
  983. rqstp);
  984. if (waitqueue_active(&rqstp->rq_wait))
  985. printk(KERN_ERR
  986. "svc_recv: service %p, wait queue active!\n",
  987. rqstp);
  988. /* Initialize the buffers */
  989. /* first reclaim pages that were moved to response list */
  990. svc_pushback_allpages(rqstp);
  991. /* now allocate needed pages. If we get a failure, sleep briefly */
  992. pages = 2 + (serv->sv_bufsz + PAGE_SIZE -1) / PAGE_SIZE;
  993. while (rqstp->rq_arghi < pages) {
  994. struct page *p = alloc_page(GFP_KERNEL);
  995. if (!p) {
  996. schedule_timeout_uninterruptible(msecs_to_jiffies(500));
  997. continue;
  998. }
  999. rqstp->rq_argpages[rqstp->rq_arghi++] = p;
  1000. }
  1001. /* Make arg->head point to first page and arg->pages point to rest */
  1002. arg = &rqstp->rq_arg;
  1003. arg->head[0].iov_base = page_address(rqstp->rq_argpages[0]);
  1004. arg->head[0].iov_len = PAGE_SIZE;
  1005. rqstp->rq_argused = 1;
  1006. arg->pages = rqstp->rq_argpages + 1;
  1007. arg->page_base = 0;
  1008. /* save at least one page for response */
  1009. arg->page_len = (pages-2)*PAGE_SIZE;
  1010. arg->len = (pages-1)*PAGE_SIZE;
  1011. arg->tail[0].iov_len = 0;
  1012. try_to_freeze();
  1013. cond_resched();
  1014. if (signalled())
  1015. return -EINTR;
  1016. spin_lock_bh(&serv->sv_lock);
  1017. if (!list_empty(&serv->sv_tempsocks)) {
  1018. svsk = list_entry(serv->sv_tempsocks.next,
  1019. struct svc_sock, sk_list);
  1020. /* apparently the "standard" is that clients close
  1021. * idle connections after 5 minutes, servers after
  1022. * 6 minutes
  1023. * http://www.connectathon.org/talks96/nfstcp.pdf
  1024. */
  1025. if (get_seconds() - svsk->sk_lastrecv < 6*60
  1026. || test_bit(SK_BUSY, &svsk->sk_flags))
  1027. svsk = NULL;
  1028. }
  1029. if (svsk) {
  1030. set_bit(SK_BUSY, &svsk->sk_flags);
  1031. set_bit(SK_CLOSE, &svsk->sk_flags);
  1032. rqstp->rq_sock = svsk;
  1033. svsk->sk_inuse++;
  1034. } else if ((svsk = svc_sock_dequeue(serv)) != NULL) {
  1035. rqstp->rq_sock = svsk;
  1036. svsk->sk_inuse++;
  1037. rqstp->rq_reserved = serv->sv_bufsz;
  1038. svsk->sk_reserved += rqstp->rq_reserved;
  1039. } else {
  1040. /* No data pending. Go to sleep */
  1041. svc_serv_enqueue(serv, rqstp);
  1042. /*
  1043. * We have to be able to interrupt this wait
  1044. * to bring down the daemons ...
  1045. */
  1046. set_current_state(TASK_INTERRUPTIBLE);
  1047. add_wait_queue(&rqstp->rq_wait, &wait);
  1048. spin_unlock_bh(&serv->sv_lock);
  1049. schedule_timeout(timeout);
  1050. try_to_freeze();
  1051. spin_lock_bh(&serv->sv_lock);
  1052. remove_wait_queue(&rqstp->rq_wait, &wait);
  1053. if (!(svsk = rqstp->rq_sock)) {
  1054. svc_serv_dequeue(serv, rqstp);
  1055. spin_unlock_bh(&serv->sv_lock);
  1056. dprintk("svc: server %p, no data yet\n", rqstp);
  1057. return signalled()? -EINTR : -EAGAIN;
  1058. }
  1059. }
  1060. spin_unlock_bh(&serv->sv_lock);
  1061. dprintk("svc: server %p, socket %p, inuse=%d\n",
  1062. rqstp, svsk, svsk->sk_inuse);
  1063. len = svsk->sk_recvfrom(rqstp);
  1064. dprintk("svc: got len=%d\n", len);
  1065. /* No data, incomplete (TCP) read, or accept() */
  1066. if (len == 0 || len == -EAGAIN) {
  1067. rqstp->rq_res.len = 0;
  1068. svc_sock_release(rqstp);
  1069. return -EAGAIN;
  1070. }
  1071. svsk->sk_lastrecv = get_seconds();
  1072. if (test_bit(SK_TEMP, &svsk->sk_flags)) {
  1073. /* push active sockets to end of list */
  1074. spin_lock_bh(&serv->sv_lock);
  1075. if (!list_empty(&svsk->sk_list))
  1076. list_move_tail(&svsk->sk_list, &serv->sv_tempsocks);
  1077. spin_unlock_bh(&serv->sv_lock);
  1078. }
  1079. rqstp->rq_secure = ntohs(rqstp->rq_addr.sin_port) < 1024;
  1080. rqstp->rq_chandle.defer = svc_defer;
  1081. if (serv->sv_stats)
  1082. serv->sv_stats->netcnt++;
  1083. return len;
  1084. }
  1085. /*
  1086. * Drop request
  1087. */
  1088. void
  1089. svc_drop(struct svc_rqst *rqstp)
  1090. {
  1091. dprintk("svc: socket %p dropped request\n", rqstp->rq_sock);
  1092. svc_sock_release(rqstp);
  1093. }
  1094. /*
  1095. * Return reply to client.
  1096. */
  1097. int
  1098. svc_send(struct svc_rqst *rqstp)
  1099. {
  1100. struct svc_sock *svsk;
  1101. int len;
  1102. struct xdr_buf *xb;
  1103. if ((svsk = rqstp->rq_sock) == NULL) {
  1104. printk(KERN_WARNING "NULL socket pointer in %s:%d\n",
  1105. __FILE__, __LINE__);
  1106. return -EFAULT;
  1107. }
  1108. /* release the receive skb before sending the reply */
  1109. svc_release_skb(rqstp);
  1110. /* calculate over-all length */
  1111. xb = & rqstp->rq_res;
  1112. xb->len = xb->head[0].iov_len +
  1113. xb->page_len +
  1114. xb->tail[0].iov_len;
  1115. /* Grab svsk->sk_mutex to serialize outgoing data. */
  1116. mutex_lock(&svsk->sk_mutex);
  1117. if (test_bit(SK_DEAD, &svsk->sk_flags))
  1118. len = -ENOTCONN;
  1119. else
  1120. len = svsk->sk_sendto(rqstp);
  1121. mutex_unlock(&svsk->sk_mutex);
  1122. svc_sock_release(rqstp);
  1123. if (len == -ECONNREFUSED || len == -ENOTCONN || len == -EAGAIN)
  1124. return 0;
  1125. return len;
  1126. }
  1127. /*
  1128. * Initialize socket for RPC use and create svc_sock struct
  1129. * XXX: May want to setsockopt SO_SNDBUF and SO_RCVBUF.
  1130. */
  1131. static struct svc_sock *
  1132. svc_setup_socket(struct svc_serv *serv, struct socket *sock,
  1133. int *errp, int pmap_register)
  1134. {
  1135. struct svc_sock *svsk;
  1136. struct sock *inet;
  1137. dprintk("svc: svc_setup_socket %p\n", sock);
  1138. if (!(svsk = kzalloc(sizeof(*svsk), GFP_KERNEL))) {
  1139. *errp = -ENOMEM;
  1140. return NULL;
  1141. }
  1142. inet = sock->sk;
  1143. /* Register socket with portmapper */
  1144. if (*errp >= 0 && pmap_register)
  1145. *errp = svc_register(serv, inet->sk_protocol,
  1146. ntohs(inet_sk(inet)->sport));
  1147. if (*errp < 0) {
  1148. kfree(svsk);
  1149. return NULL;
  1150. }
  1151. set_bit(SK_BUSY, &svsk->sk_flags);
  1152. inet->sk_user_data = svsk;
  1153. svsk->sk_sock = sock;
  1154. svsk->sk_sk = inet;
  1155. svsk->sk_ostate = inet->sk_state_change;
  1156. svsk->sk_odata = inet->sk_data_ready;
  1157. svsk->sk_owspace = inet->sk_write_space;
  1158. svsk->sk_server = serv;
  1159. svsk->sk_lastrecv = get_seconds();
  1160. INIT_LIST_HEAD(&svsk->sk_deferred);
  1161. INIT_LIST_HEAD(&svsk->sk_ready);
  1162. mutex_init(&svsk->sk_mutex);
  1163. /* Initialize the socket */
  1164. if (sock->type == SOCK_DGRAM)
  1165. svc_udp_init(svsk);
  1166. else
  1167. svc_tcp_init(svsk);
  1168. spin_lock_bh(&serv->sv_lock);
  1169. if (!pmap_register) {
  1170. set_bit(SK_TEMP, &svsk->sk_flags);
  1171. list_add(&svsk->sk_list, &serv->sv_tempsocks);
  1172. serv->sv_tmpcnt++;
  1173. } else {
  1174. clear_bit(SK_TEMP, &svsk->sk_flags);
  1175. list_add(&svsk->sk_list, &serv->sv_permsocks);
  1176. }
  1177. spin_unlock_bh(&serv->sv_lock);
  1178. dprintk("svc: svc_setup_socket created %p (inet %p)\n",
  1179. svsk, svsk->sk_sk);
  1180. clear_bit(SK_BUSY, &svsk->sk_flags);
  1181. svc_sock_enqueue(svsk);
  1182. return svsk;
  1183. }
  1184. /*
  1185. * Create socket for RPC service.
  1186. */
  1187. static int
  1188. svc_create_socket(struct svc_serv *serv, int protocol, struct sockaddr_in *sin)
  1189. {
  1190. struct svc_sock *svsk;
  1191. struct socket *sock;
  1192. int error;
  1193. int type;
  1194. dprintk("svc: svc_create_socket(%s, %d, %u.%u.%u.%u:%d)\n",
  1195. serv->sv_program->pg_name, protocol,
  1196. NIPQUAD(sin->sin_addr.s_addr),
  1197. ntohs(sin->sin_port));
  1198. if (protocol != IPPROTO_UDP && protocol != IPPROTO_TCP) {
  1199. printk(KERN_WARNING "svc: only UDP and TCP "
  1200. "sockets supported\n");
  1201. return -EINVAL;
  1202. }
  1203. type = (protocol == IPPROTO_UDP)? SOCK_DGRAM : SOCK_STREAM;
  1204. if ((error = sock_create_kern(PF_INET, type, protocol, &sock)) < 0)
  1205. return error;
  1206. if (type == SOCK_STREAM)
  1207. sock->sk->sk_reuse = 1; /* allow address reuse */
  1208. error = kernel_bind(sock, (struct sockaddr *) sin,
  1209. sizeof(*sin));
  1210. if (error < 0)
  1211. goto bummer;
  1212. if (protocol == IPPROTO_TCP) {
  1213. if ((error = kernel_listen(sock, 64)) < 0)
  1214. goto bummer;
  1215. }
  1216. if ((svsk = svc_setup_socket(serv, sock, &error, 1)) != NULL)
  1217. return 0;
  1218. bummer:
  1219. dprintk("svc: svc_create_socket error = %d\n", -error);
  1220. sock_release(sock);
  1221. return error;
  1222. }
  1223. /*
  1224. * Remove a dead socket
  1225. */
  1226. void
  1227. svc_delete_socket(struct svc_sock *svsk)
  1228. {
  1229. struct svc_serv *serv;
  1230. struct sock *sk;
  1231. dprintk("svc: svc_delete_socket(%p)\n", svsk);
  1232. serv = svsk->sk_server;
  1233. sk = svsk->sk_sk;
  1234. sk->sk_state_change = svsk->sk_ostate;
  1235. sk->sk_data_ready = svsk->sk_odata;
  1236. sk->sk_write_space = svsk->sk_owspace;
  1237. spin_lock_bh(&serv->sv_lock);
  1238. list_del_init(&svsk->sk_list);
  1239. list_del_init(&svsk->sk_ready);
  1240. if (!test_and_set_bit(SK_DEAD, &svsk->sk_flags))
  1241. if (test_bit(SK_TEMP, &svsk->sk_flags))
  1242. serv->sv_tmpcnt--;
  1243. if (!svsk->sk_inuse) {
  1244. spin_unlock_bh(&serv->sv_lock);
  1245. sock_release(svsk->sk_sock);
  1246. kfree(svsk);
  1247. } else {
  1248. spin_unlock_bh(&serv->sv_lock);
  1249. dprintk(KERN_NOTICE "svc: server socket destroy delayed\n");
  1250. /* svsk->sk_server = NULL; */
  1251. }
  1252. }
  1253. /*
  1254. * Make a socket for nfsd and lockd
  1255. */
  1256. int
  1257. svc_makesock(struct svc_serv *serv, int protocol, unsigned short port)
  1258. {
  1259. struct sockaddr_in sin;
  1260. dprintk("svc: creating socket proto = %d\n", protocol);
  1261. sin.sin_family = AF_INET;
  1262. sin.sin_addr.s_addr = INADDR_ANY;
  1263. sin.sin_port = htons(port);
  1264. return svc_create_socket(serv, protocol, &sin);
  1265. }
  1266. /*
  1267. * Handle defer and revisit of requests
  1268. */
  1269. static void svc_revisit(struct cache_deferred_req *dreq, int too_many)
  1270. {
  1271. struct svc_deferred_req *dr = container_of(dreq, struct svc_deferred_req, handle);
  1272. struct svc_serv *serv = dreq->owner;
  1273. struct svc_sock *svsk;
  1274. if (too_many) {
  1275. svc_sock_put(dr->svsk);
  1276. kfree(dr);
  1277. return;
  1278. }
  1279. dprintk("revisit queued\n");
  1280. svsk = dr->svsk;
  1281. dr->svsk = NULL;
  1282. spin_lock_bh(&serv->sv_lock);
  1283. list_add(&dr->handle.recent, &svsk->sk_deferred);
  1284. spin_unlock_bh(&serv->sv_lock);
  1285. set_bit(SK_DEFERRED, &svsk->sk_flags);
  1286. svc_sock_enqueue(svsk);
  1287. svc_sock_put(svsk);
  1288. }
  1289. static struct cache_deferred_req *
  1290. svc_defer(struct cache_req *req)
  1291. {
  1292. struct svc_rqst *rqstp = container_of(req, struct svc_rqst, rq_chandle);
  1293. int size = sizeof(struct svc_deferred_req) + (rqstp->rq_arg.len);
  1294. struct svc_deferred_req *dr;
  1295. if (rqstp->rq_arg.page_len)
  1296. return NULL; /* if more than a page, give up FIXME */
  1297. if (rqstp->rq_deferred) {
  1298. dr = rqstp->rq_deferred;
  1299. rqstp->rq_deferred = NULL;
  1300. } else {
  1301. int skip = rqstp->rq_arg.len - rqstp->rq_arg.head[0].iov_len;
  1302. /* FIXME maybe discard if size too large */
  1303. dr = kmalloc(size, GFP_KERNEL);
  1304. if (dr == NULL)
  1305. return NULL;
  1306. dr->handle.owner = rqstp->rq_server;
  1307. dr->prot = rqstp->rq_prot;
  1308. dr->addr = rqstp->rq_addr;
  1309. dr->daddr = rqstp->rq_daddr;
  1310. dr->argslen = rqstp->rq_arg.len >> 2;
  1311. memcpy(dr->args, rqstp->rq_arg.head[0].iov_base-skip, dr->argslen<<2);
  1312. }
  1313. spin_lock_bh(&rqstp->rq_server->sv_lock);
  1314. rqstp->rq_sock->sk_inuse++;
  1315. dr->svsk = rqstp->rq_sock;
  1316. spin_unlock_bh(&rqstp->rq_server->sv_lock);
  1317. dr->handle.revisit = svc_revisit;
  1318. return &dr->handle;
  1319. }
  1320. /*
  1321. * recv data from a deferred request into an active one
  1322. */
  1323. static int svc_deferred_recv(struct svc_rqst *rqstp)
  1324. {
  1325. struct svc_deferred_req *dr = rqstp->rq_deferred;
  1326. rqstp->rq_arg.head[0].iov_base = dr->args;
  1327. rqstp->rq_arg.head[0].iov_len = dr->argslen<<2;
  1328. rqstp->rq_arg.page_len = 0;
  1329. rqstp->rq_arg.len = dr->argslen<<2;
  1330. rqstp->rq_prot = dr->prot;
  1331. rqstp->rq_addr = dr->addr;
  1332. rqstp->rq_daddr = dr->daddr;
  1333. return dr->argslen<<2;
  1334. }
  1335. static struct svc_deferred_req *svc_deferred_dequeue(struct svc_sock *svsk)
  1336. {
  1337. struct svc_deferred_req *dr = NULL;
  1338. struct svc_serv *serv = svsk->sk_server;
  1339. if (!test_bit(SK_DEFERRED, &svsk->sk_flags))
  1340. return NULL;
  1341. spin_lock_bh(&serv->sv_lock);
  1342. clear_bit(SK_DEFERRED, &svsk->sk_flags);
  1343. if (!list_empty(&svsk->sk_deferred)) {
  1344. dr = list_entry(svsk->sk_deferred.next,
  1345. struct svc_deferred_req,
  1346. handle.recent);
  1347. list_del_init(&dr->handle.recent);
  1348. set_bit(SK_DEFERRED, &svsk->sk_flags);
  1349. }
  1350. spin_unlock_bh(&serv->sv_lock);
  1351. return dr;
  1352. }