ieee80211_crypt_tkip.c 21 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791
  1. /*
  2. * Host AP crypt: host-based TKIP encryption implementation for Host AP driver
  3. *
  4. * Copyright (c) 2003-2004, Jouni Malinen <jkmaline@cc.hut.fi>
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License version 2 as
  8. * published by the Free Software Foundation. See README and COPYING for
  9. * more details.
  10. */
  11. #include <linux/err.h>
  12. #include <linux/module.h>
  13. #include <linux/init.h>
  14. #include <linux/slab.h>
  15. #include <linux/random.h>
  16. #include <linux/skbuff.h>
  17. #include <linux/netdevice.h>
  18. #include <linux/if_ether.h>
  19. #include <linux/if_arp.h>
  20. #include <asm/string.h>
  21. #include <net/ieee80211.h>
  22. #include <linux/crypto.h>
  23. #include <asm/scatterlist.h>
  24. #include <linux/crc32.h>
  25. MODULE_AUTHOR("Jouni Malinen");
  26. MODULE_DESCRIPTION("Host AP crypt: TKIP");
  27. MODULE_LICENSE("GPL");
  28. struct ieee80211_tkip_data {
  29. #define TKIP_KEY_LEN 32
  30. u8 key[TKIP_KEY_LEN];
  31. int key_set;
  32. u32 tx_iv32;
  33. u16 tx_iv16;
  34. u16 tx_ttak[5];
  35. int tx_phase1_done;
  36. u32 rx_iv32;
  37. u16 rx_iv16;
  38. u16 rx_ttak[5];
  39. int rx_phase1_done;
  40. u32 rx_iv32_new;
  41. u16 rx_iv16_new;
  42. u32 dot11RSNAStatsTKIPReplays;
  43. u32 dot11RSNAStatsTKIPICVErrors;
  44. u32 dot11RSNAStatsTKIPLocalMICFailures;
  45. int key_idx;
  46. struct crypto_blkcipher *rx_tfm_arc4;
  47. struct crypto_hash *rx_tfm_michael;
  48. struct crypto_blkcipher *tx_tfm_arc4;
  49. struct crypto_hash *tx_tfm_michael;
  50. /* scratch buffers for virt_to_page() (crypto API) */
  51. u8 rx_hdr[16], tx_hdr[16];
  52. unsigned long flags;
  53. };
  54. static unsigned long ieee80211_tkip_set_flags(unsigned long flags, void *priv)
  55. {
  56. struct ieee80211_tkip_data *_priv = priv;
  57. unsigned long old_flags = _priv->flags;
  58. _priv->flags = flags;
  59. return old_flags;
  60. }
  61. static unsigned long ieee80211_tkip_get_flags(void *priv)
  62. {
  63. struct ieee80211_tkip_data *_priv = priv;
  64. return _priv->flags;
  65. }
  66. static void *ieee80211_tkip_init(int key_idx)
  67. {
  68. struct ieee80211_tkip_data *priv;
  69. priv = kzalloc(sizeof(*priv), GFP_ATOMIC);
  70. if (priv == NULL)
  71. goto fail;
  72. priv->key_idx = key_idx;
  73. priv->tx_tfm_arc4 = crypto_alloc_blkcipher("ecb(arc4)", 0,
  74. CRYPTO_ALG_ASYNC);
  75. if (IS_ERR(priv->tx_tfm_arc4)) {
  76. printk(KERN_DEBUG "ieee80211_crypt_tkip: could not allocate "
  77. "crypto API arc4\n");
  78. priv->tx_tfm_arc4 = NULL;
  79. goto fail;
  80. }
  81. priv->tx_tfm_michael = crypto_alloc_hash("michael_mic", 0,
  82. CRYPTO_ALG_ASYNC);
  83. if (IS_ERR(priv->tx_tfm_michael)) {
  84. printk(KERN_DEBUG "ieee80211_crypt_tkip: could not allocate "
  85. "crypto API michael_mic\n");
  86. priv->tx_tfm_michael = NULL;
  87. goto fail;
  88. }
  89. priv->rx_tfm_arc4 = crypto_alloc_blkcipher("ecb(arc4)", 0,
  90. CRYPTO_ALG_ASYNC);
  91. if (IS_ERR(priv->rx_tfm_arc4)) {
  92. printk(KERN_DEBUG "ieee80211_crypt_tkip: could not allocate "
  93. "crypto API arc4\n");
  94. priv->rx_tfm_arc4 = NULL;
  95. goto fail;
  96. }
  97. priv->rx_tfm_michael = crypto_alloc_hash("michael_mic", 0,
  98. CRYPTO_ALG_ASYNC);
  99. if (IS_ERR(priv->rx_tfm_michael)) {
  100. printk(KERN_DEBUG "ieee80211_crypt_tkip: could not allocate "
  101. "crypto API michael_mic\n");
  102. priv->rx_tfm_michael = NULL;
  103. goto fail;
  104. }
  105. return priv;
  106. fail:
  107. if (priv) {
  108. if (priv->tx_tfm_michael)
  109. crypto_free_hash(priv->tx_tfm_michael);
  110. if (priv->tx_tfm_arc4)
  111. crypto_free_blkcipher(priv->tx_tfm_arc4);
  112. if (priv->rx_tfm_michael)
  113. crypto_free_hash(priv->rx_tfm_michael);
  114. if (priv->rx_tfm_arc4)
  115. crypto_free_blkcipher(priv->rx_tfm_arc4);
  116. kfree(priv);
  117. }
  118. return NULL;
  119. }
  120. static void ieee80211_tkip_deinit(void *priv)
  121. {
  122. struct ieee80211_tkip_data *_priv = priv;
  123. if (_priv) {
  124. if (_priv->tx_tfm_michael)
  125. crypto_free_hash(_priv->tx_tfm_michael);
  126. if (_priv->tx_tfm_arc4)
  127. crypto_free_blkcipher(_priv->tx_tfm_arc4);
  128. if (_priv->rx_tfm_michael)
  129. crypto_free_hash(_priv->rx_tfm_michael);
  130. if (_priv->rx_tfm_arc4)
  131. crypto_free_blkcipher(_priv->rx_tfm_arc4);
  132. }
  133. kfree(priv);
  134. }
  135. static inline u16 RotR1(u16 val)
  136. {
  137. return (val >> 1) | (val << 15);
  138. }
  139. static inline u8 Lo8(u16 val)
  140. {
  141. return val & 0xff;
  142. }
  143. static inline u8 Hi8(u16 val)
  144. {
  145. return val >> 8;
  146. }
  147. static inline u16 Lo16(u32 val)
  148. {
  149. return val & 0xffff;
  150. }
  151. static inline u16 Hi16(u32 val)
  152. {
  153. return val >> 16;
  154. }
  155. static inline u16 Mk16(u8 hi, u8 lo)
  156. {
  157. return lo | (((u16) hi) << 8);
  158. }
  159. static inline u16 Mk16_le(u16 * v)
  160. {
  161. return le16_to_cpu(*v);
  162. }
  163. static const u16 Sbox[256] = {
  164. 0xC6A5, 0xF884, 0xEE99, 0xF68D, 0xFF0D, 0xD6BD, 0xDEB1, 0x9154,
  165. 0x6050, 0x0203, 0xCEA9, 0x567D, 0xE719, 0xB562, 0x4DE6, 0xEC9A,
  166. 0x8F45, 0x1F9D, 0x8940, 0xFA87, 0xEF15, 0xB2EB, 0x8EC9, 0xFB0B,
  167. 0x41EC, 0xB367, 0x5FFD, 0x45EA, 0x23BF, 0x53F7, 0xE496, 0x9B5B,
  168. 0x75C2, 0xE11C, 0x3DAE, 0x4C6A, 0x6C5A, 0x7E41, 0xF502, 0x834F,
  169. 0x685C, 0x51F4, 0xD134, 0xF908, 0xE293, 0xAB73, 0x6253, 0x2A3F,
  170. 0x080C, 0x9552, 0x4665, 0x9D5E, 0x3028, 0x37A1, 0x0A0F, 0x2FB5,
  171. 0x0E09, 0x2436, 0x1B9B, 0xDF3D, 0xCD26, 0x4E69, 0x7FCD, 0xEA9F,
  172. 0x121B, 0x1D9E, 0x5874, 0x342E, 0x362D, 0xDCB2, 0xB4EE, 0x5BFB,
  173. 0xA4F6, 0x764D, 0xB761, 0x7DCE, 0x527B, 0xDD3E, 0x5E71, 0x1397,
  174. 0xA6F5, 0xB968, 0x0000, 0xC12C, 0x4060, 0xE31F, 0x79C8, 0xB6ED,
  175. 0xD4BE, 0x8D46, 0x67D9, 0x724B, 0x94DE, 0x98D4, 0xB0E8, 0x854A,
  176. 0xBB6B, 0xC52A, 0x4FE5, 0xED16, 0x86C5, 0x9AD7, 0x6655, 0x1194,
  177. 0x8ACF, 0xE910, 0x0406, 0xFE81, 0xA0F0, 0x7844, 0x25BA, 0x4BE3,
  178. 0xA2F3, 0x5DFE, 0x80C0, 0x058A, 0x3FAD, 0x21BC, 0x7048, 0xF104,
  179. 0x63DF, 0x77C1, 0xAF75, 0x4263, 0x2030, 0xE51A, 0xFD0E, 0xBF6D,
  180. 0x814C, 0x1814, 0x2635, 0xC32F, 0xBEE1, 0x35A2, 0x88CC, 0x2E39,
  181. 0x9357, 0x55F2, 0xFC82, 0x7A47, 0xC8AC, 0xBAE7, 0x322B, 0xE695,
  182. 0xC0A0, 0x1998, 0x9ED1, 0xA37F, 0x4466, 0x547E, 0x3BAB, 0x0B83,
  183. 0x8CCA, 0xC729, 0x6BD3, 0x283C, 0xA779, 0xBCE2, 0x161D, 0xAD76,
  184. 0xDB3B, 0x6456, 0x744E, 0x141E, 0x92DB, 0x0C0A, 0x486C, 0xB8E4,
  185. 0x9F5D, 0xBD6E, 0x43EF, 0xC4A6, 0x39A8, 0x31A4, 0xD337, 0xF28B,
  186. 0xD532, 0x8B43, 0x6E59, 0xDAB7, 0x018C, 0xB164, 0x9CD2, 0x49E0,
  187. 0xD8B4, 0xACFA, 0xF307, 0xCF25, 0xCAAF, 0xF48E, 0x47E9, 0x1018,
  188. 0x6FD5, 0xF088, 0x4A6F, 0x5C72, 0x3824, 0x57F1, 0x73C7, 0x9751,
  189. 0xCB23, 0xA17C, 0xE89C, 0x3E21, 0x96DD, 0x61DC, 0x0D86, 0x0F85,
  190. 0xE090, 0x7C42, 0x71C4, 0xCCAA, 0x90D8, 0x0605, 0xF701, 0x1C12,
  191. 0xC2A3, 0x6A5F, 0xAEF9, 0x69D0, 0x1791, 0x9958, 0x3A27, 0x27B9,
  192. 0xD938, 0xEB13, 0x2BB3, 0x2233, 0xD2BB, 0xA970, 0x0789, 0x33A7,
  193. 0x2DB6, 0x3C22, 0x1592, 0xC920, 0x8749, 0xAAFF, 0x5078, 0xA57A,
  194. 0x038F, 0x59F8, 0x0980, 0x1A17, 0x65DA, 0xD731, 0x84C6, 0xD0B8,
  195. 0x82C3, 0x29B0, 0x5A77, 0x1E11, 0x7BCB, 0xA8FC, 0x6DD6, 0x2C3A,
  196. };
  197. static inline u16 _S_(u16 v)
  198. {
  199. u16 t = Sbox[Hi8(v)];
  200. return Sbox[Lo8(v)] ^ ((t << 8) | (t >> 8));
  201. }
  202. #define PHASE1_LOOP_COUNT 8
  203. static void tkip_mixing_phase1(u16 * TTAK, const u8 * TK, const u8 * TA,
  204. u32 IV32)
  205. {
  206. int i, j;
  207. /* Initialize the 80-bit TTAK from TSC (IV32) and TA[0..5] */
  208. TTAK[0] = Lo16(IV32);
  209. TTAK[1] = Hi16(IV32);
  210. TTAK[2] = Mk16(TA[1], TA[0]);
  211. TTAK[3] = Mk16(TA[3], TA[2]);
  212. TTAK[4] = Mk16(TA[5], TA[4]);
  213. for (i = 0; i < PHASE1_LOOP_COUNT; i++) {
  214. j = 2 * (i & 1);
  215. TTAK[0] += _S_(TTAK[4] ^ Mk16(TK[1 + j], TK[0 + j]));
  216. TTAK[1] += _S_(TTAK[0] ^ Mk16(TK[5 + j], TK[4 + j]));
  217. TTAK[2] += _S_(TTAK[1] ^ Mk16(TK[9 + j], TK[8 + j]));
  218. TTAK[3] += _S_(TTAK[2] ^ Mk16(TK[13 + j], TK[12 + j]));
  219. TTAK[4] += _S_(TTAK[3] ^ Mk16(TK[1 + j], TK[0 + j])) + i;
  220. }
  221. }
  222. static void tkip_mixing_phase2(u8 * WEPSeed, const u8 * TK, const u16 * TTAK,
  223. u16 IV16)
  224. {
  225. /* Make temporary area overlap WEP seed so that the final copy can be
  226. * avoided on little endian hosts. */
  227. u16 *PPK = (u16 *) & WEPSeed[4];
  228. /* Step 1 - make copy of TTAK and bring in TSC */
  229. PPK[0] = TTAK[0];
  230. PPK[1] = TTAK[1];
  231. PPK[2] = TTAK[2];
  232. PPK[3] = TTAK[3];
  233. PPK[4] = TTAK[4];
  234. PPK[5] = TTAK[4] + IV16;
  235. /* Step 2 - 96-bit bijective mixing using S-box */
  236. PPK[0] += _S_(PPK[5] ^ Mk16_le((u16 *) & TK[0]));
  237. PPK[1] += _S_(PPK[0] ^ Mk16_le((u16 *) & TK[2]));
  238. PPK[2] += _S_(PPK[1] ^ Mk16_le((u16 *) & TK[4]));
  239. PPK[3] += _S_(PPK[2] ^ Mk16_le((u16 *) & TK[6]));
  240. PPK[4] += _S_(PPK[3] ^ Mk16_le((u16 *) & TK[8]));
  241. PPK[5] += _S_(PPK[4] ^ Mk16_le((u16 *) & TK[10]));
  242. PPK[0] += RotR1(PPK[5] ^ Mk16_le((u16 *) & TK[12]));
  243. PPK[1] += RotR1(PPK[0] ^ Mk16_le((u16 *) & TK[14]));
  244. PPK[2] += RotR1(PPK[1]);
  245. PPK[3] += RotR1(PPK[2]);
  246. PPK[4] += RotR1(PPK[3]);
  247. PPK[5] += RotR1(PPK[4]);
  248. /* Step 3 - bring in last of TK bits, assign 24-bit WEP IV value
  249. * WEPSeed[0..2] is transmitted as WEP IV */
  250. WEPSeed[0] = Hi8(IV16);
  251. WEPSeed[1] = (Hi8(IV16) | 0x20) & 0x7F;
  252. WEPSeed[2] = Lo8(IV16);
  253. WEPSeed[3] = Lo8((PPK[5] ^ Mk16_le((u16 *) & TK[0])) >> 1);
  254. #ifdef __BIG_ENDIAN
  255. {
  256. int i;
  257. for (i = 0; i < 6; i++)
  258. PPK[i] = (PPK[i] << 8) | (PPK[i] >> 8);
  259. }
  260. #endif
  261. }
  262. static int ieee80211_tkip_hdr(struct sk_buff *skb, int hdr_len,
  263. u8 * rc4key, int keylen, void *priv)
  264. {
  265. struct ieee80211_tkip_data *tkey = priv;
  266. int len;
  267. u8 *pos;
  268. struct ieee80211_hdr_4addr *hdr;
  269. hdr = (struct ieee80211_hdr_4addr *)skb->data;
  270. if (skb_headroom(skb) < 8 || skb->len < hdr_len)
  271. return -1;
  272. if (rc4key == NULL || keylen < 16)
  273. return -1;
  274. if (!tkey->tx_phase1_done) {
  275. tkip_mixing_phase1(tkey->tx_ttak, tkey->key, hdr->addr2,
  276. tkey->tx_iv32);
  277. tkey->tx_phase1_done = 1;
  278. }
  279. tkip_mixing_phase2(rc4key, tkey->key, tkey->tx_ttak, tkey->tx_iv16);
  280. len = skb->len - hdr_len;
  281. pos = skb_push(skb, 8);
  282. memmove(pos, pos + 8, hdr_len);
  283. pos += hdr_len;
  284. *pos++ = *rc4key;
  285. *pos++ = *(rc4key + 1);
  286. *pos++ = *(rc4key + 2);
  287. *pos++ = (tkey->key_idx << 6) | (1 << 5) /* Ext IV included */ ;
  288. *pos++ = tkey->tx_iv32 & 0xff;
  289. *pos++ = (tkey->tx_iv32 >> 8) & 0xff;
  290. *pos++ = (tkey->tx_iv32 >> 16) & 0xff;
  291. *pos++ = (tkey->tx_iv32 >> 24) & 0xff;
  292. tkey->tx_iv16++;
  293. if (tkey->tx_iv16 == 0) {
  294. tkey->tx_phase1_done = 0;
  295. tkey->tx_iv32++;
  296. }
  297. return 8;
  298. }
  299. static int ieee80211_tkip_encrypt(struct sk_buff *skb, int hdr_len, void *priv)
  300. {
  301. struct ieee80211_tkip_data *tkey = priv;
  302. struct blkcipher_desc desc = { .tfm = tkey->tx_tfm_arc4 };
  303. int len;
  304. u8 rc4key[16], *pos, *icv;
  305. u32 crc;
  306. struct scatterlist sg;
  307. if (tkey->flags & IEEE80211_CRYPTO_TKIP_COUNTERMEASURES) {
  308. if (net_ratelimit()) {
  309. struct ieee80211_hdr_4addr *hdr =
  310. (struct ieee80211_hdr_4addr *)skb->data;
  311. printk(KERN_DEBUG ": TKIP countermeasures: dropped "
  312. "TX packet to " MAC_FMT "\n",
  313. MAC_ARG(hdr->addr1));
  314. }
  315. return -1;
  316. }
  317. if (skb_tailroom(skb) < 4 || skb->len < hdr_len)
  318. return -1;
  319. len = skb->len - hdr_len;
  320. pos = skb->data + hdr_len;
  321. if ((ieee80211_tkip_hdr(skb, hdr_len, rc4key, 16, priv)) < 0)
  322. return -1;
  323. icv = skb_put(skb, 4);
  324. crc = ~crc32_le(~0, pos, len);
  325. icv[0] = crc;
  326. icv[1] = crc >> 8;
  327. icv[2] = crc >> 16;
  328. icv[3] = crc >> 24;
  329. crypto_blkcipher_setkey(tkey->tx_tfm_arc4, rc4key, 16);
  330. sg.page = virt_to_page(pos);
  331. sg.offset = offset_in_page(pos);
  332. sg.length = len + 4;
  333. return crypto_blkcipher_encrypt(&desc, &sg, &sg, len + 4);
  334. }
  335. /*
  336. * deal with seq counter wrapping correctly.
  337. * refer to timer_after() for jiffies wrapping handling
  338. */
  339. static inline int tkip_replay_check(u32 iv32_n, u16 iv16_n,
  340. u32 iv32_o, u16 iv16_o)
  341. {
  342. if ((s32)iv32_n - (s32)iv32_o < 0 ||
  343. (iv32_n == iv32_o && iv16_n <= iv16_o))
  344. return 1;
  345. return 0;
  346. }
  347. static int ieee80211_tkip_decrypt(struct sk_buff *skb, int hdr_len, void *priv)
  348. {
  349. struct ieee80211_tkip_data *tkey = priv;
  350. struct blkcipher_desc desc = { .tfm = tkey->rx_tfm_arc4 };
  351. u8 rc4key[16];
  352. u8 keyidx, *pos;
  353. u32 iv32;
  354. u16 iv16;
  355. struct ieee80211_hdr_4addr *hdr;
  356. u8 icv[4];
  357. u32 crc;
  358. struct scatterlist sg;
  359. int plen;
  360. hdr = (struct ieee80211_hdr_4addr *)skb->data;
  361. if (tkey->flags & IEEE80211_CRYPTO_TKIP_COUNTERMEASURES) {
  362. if (net_ratelimit()) {
  363. printk(KERN_DEBUG ": TKIP countermeasures: dropped "
  364. "received packet from " MAC_FMT "\n",
  365. MAC_ARG(hdr->addr2));
  366. }
  367. return -1;
  368. }
  369. if (skb->len < hdr_len + 8 + 4)
  370. return -1;
  371. pos = skb->data + hdr_len;
  372. keyidx = pos[3];
  373. if (!(keyidx & (1 << 5))) {
  374. if (net_ratelimit()) {
  375. printk(KERN_DEBUG "TKIP: received packet without ExtIV"
  376. " flag from " MAC_FMT "\n", MAC_ARG(hdr->addr2));
  377. }
  378. return -2;
  379. }
  380. keyidx >>= 6;
  381. if (tkey->key_idx != keyidx) {
  382. printk(KERN_DEBUG "TKIP: RX tkey->key_idx=%d frame "
  383. "keyidx=%d priv=%p\n", tkey->key_idx, keyidx, priv);
  384. return -6;
  385. }
  386. if (!tkey->key_set) {
  387. if (net_ratelimit()) {
  388. printk(KERN_DEBUG "TKIP: received packet from " MAC_FMT
  389. " with keyid=%d that does not have a configured"
  390. " key\n", MAC_ARG(hdr->addr2), keyidx);
  391. }
  392. return -3;
  393. }
  394. iv16 = (pos[0] << 8) | pos[2];
  395. iv32 = pos[4] | (pos[5] << 8) | (pos[6] << 16) | (pos[7] << 24);
  396. pos += 8;
  397. if (tkip_replay_check(iv32, iv16, tkey->rx_iv32, tkey->rx_iv16)) {
  398. if (net_ratelimit()) {
  399. printk(KERN_DEBUG "TKIP: replay detected: STA=" MAC_FMT
  400. " previous TSC %08x%04x received TSC "
  401. "%08x%04x\n", MAC_ARG(hdr->addr2),
  402. tkey->rx_iv32, tkey->rx_iv16, iv32, iv16);
  403. }
  404. tkey->dot11RSNAStatsTKIPReplays++;
  405. return -4;
  406. }
  407. if (iv32 != tkey->rx_iv32 || !tkey->rx_phase1_done) {
  408. tkip_mixing_phase1(tkey->rx_ttak, tkey->key, hdr->addr2, iv32);
  409. tkey->rx_phase1_done = 1;
  410. }
  411. tkip_mixing_phase2(rc4key, tkey->key, tkey->rx_ttak, iv16);
  412. plen = skb->len - hdr_len - 12;
  413. crypto_blkcipher_setkey(tkey->rx_tfm_arc4, rc4key, 16);
  414. sg.page = virt_to_page(pos);
  415. sg.offset = offset_in_page(pos);
  416. sg.length = plen + 4;
  417. if (crypto_blkcipher_decrypt(&desc, &sg, &sg, plen + 4)) {
  418. if (net_ratelimit()) {
  419. printk(KERN_DEBUG ": TKIP: failed to decrypt "
  420. "received packet from " MAC_FMT "\n",
  421. MAC_ARG(hdr->addr2));
  422. }
  423. return -7;
  424. }
  425. crc = ~crc32_le(~0, pos, plen);
  426. icv[0] = crc;
  427. icv[1] = crc >> 8;
  428. icv[2] = crc >> 16;
  429. icv[3] = crc >> 24;
  430. if (memcmp(icv, pos + plen, 4) != 0) {
  431. if (iv32 != tkey->rx_iv32) {
  432. /* Previously cached Phase1 result was already lost, so
  433. * it needs to be recalculated for the next packet. */
  434. tkey->rx_phase1_done = 0;
  435. }
  436. if (net_ratelimit()) {
  437. printk(KERN_DEBUG "TKIP: ICV error detected: STA="
  438. MAC_FMT "\n", MAC_ARG(hdr->addr2));
  439. }
  440. tkey->dot11RSNAStatsTKIPICVErrors++;
  441. return -5;
  442. }
  443. /* Update real counters only after Michael MIC verification has
  444. * completed */
  445. tkey->rx_iv32_new = iv32;
  446. tkey->rx_iv16_new = iv16;
  447. /* Remove IV and ICV */
  448. memmove(skb->data + 8, skb->data, hdr_len);
  449. skb_pull(skb, 8);
  450. skb_trim(skb, skb->len - 4);
  451. return keyidx;
  452. }
  453. static int michael_mic(struct crypto_hash *tfm_michael, u8 * key, u8 * hdr,
  454. u8 * data, size_t data_len, u8 * mic)
  455. {
  456. struct hash_desc desc;
  457. struct scatterlist sg[2];
  458. if (tfm_michael == NULL) {
  459. printk(KERN_WARNING "michael_mic: tfm_michael == NULL\n");
  460. return -1;
  461. }
  462. sg[0].page = virt_to_page(hdr);
  463. sg[0].offset = offset_in_page(hdr);
  464. sg[0].length = 16;
  465. sg[1].page = virt_to_page(data);
  466. sg[1].offset = offset_in_page(data);
  467. sg[1].length = data_len;
  468. if (crypto_hash_setkey(tfm_michael, key, 8))
  469. return -1;
  470. desc.tfm = tfm_michael;
  471. desc.flags = 0;
  472. return crypto_hash_digest(&desc, sg, data_len + 16, mic);
  473. }
  474. static void michael_mic_hdr(struct sk_buff *skb, u8 * hdr)
  475. {
  476. struct ieee80211_hdr_4addr *hdr11;
  477. u16 stype;
  478. hdr11 = (struct ieee80211_hdr_4addr *)skb->data;
  479. stype = WLAN_FC_GET_STYPE(le16_to_cpu(hdr11->frame_ctl));
  480. switch (le16_to_cpu(hdr11->frame_ctl) &
  481. (IEEE80211_FCTL_FROMDS | IEEE80211_FCTL_TODS)) {
  482. case IEEE80211_FCTL_TODS:
  483. memcpy(hdr, hdr11->addr3, ETH_ALEN); /* DA */
  484. memcpy(hdr + ETH_ALEN, hdr11->addr2, ETH_ALEN); /* SA */
  485. break;
  486. case IEEE80211_FCTL_FROMDS:
  487. memcpy(hdr, hdr11->addr1, ETH_ALEN); /* DA */
  488. memcpy(hdr + ETH_ALEN, hdr11->addr3, ETH_ALEN); /* SA */
  489. break;
  490. case IEEE80211_FCTL_FROMDS | IEEE80211_FCTL_TODS:
  491. memcpy(hdr, hdr11->addr3, ETH_ALEN); /* DA */
  492. memcpy(hdr + ETH_ALEN, hdr11->addr4, ETH_ALEN); /* SA */
  493. break;
  494. case 0:
  495. memcpy(hdr, hdr11->addr1, ETH_ALEN); /* DA */
  496. memcpy(hdr + ETH_ALEN, hdr11->addr2, ETH_ALEN); /* SA */
  497. break;
  498. }
  499. if (stype & IEEE80211_STYPE_QOS_DATA) {
  500. const struct ieee80211_hdr_3addrqos *qoshdr =
  501. (struct ieee80211_hdr_3addrqos *)skb->data;
  502. hdr[12] = qoshdr->qos_ctl & cpu_to_le16(IEEE80211_QCTL_TID);
  503. } else
  504. hdr[12] = 0; /* priority */
  505. hdr[13] = hdr[14] = hdr[15] = 0; /* reserved */
  506. }
  507. static int ieee80211_michael_mic_add(struct sk_buff *skb, int hdr_len,
  508. void *priv)
  509. {
  510. struct ieee80211_tkip_data *tkey = priv;
  511. u8 *pos;
  512. if (skb_tailroom(skb) < 8 || skb->len < hdr_len) {
  513. printk(KERN_DEBUG "Invalid packet for Michael MIC add "
  514. "(tailroom=%d hdr_len=%d skb->len=%d)\n",
  515. skb_tailroom(skb), hdr_len, skb->len);
  516. return -1;
  517. }
  518. michael_mic_hdr(skb, tkey->tx_hdr);
  519. pos = skb_put(skb, 8);
  520. if (michael_mic(tkey->tx_tfm_michael, &tkey->key[16], tkey->tx_hdr,
  521. skb->data + hdr_len, skb->len - 8 - hdr_len, pos))
  522. return -1;
  523. return 0;
  524. }
  525. static void ieee80211_michael_mic_failure(struct net_device *dev,
  526. struct ieee80211_hdr_4addr *hdr,
  527. int keyidx)
  528. {
  529. union iwreq_data wrqu;
  530. struct iw_michaelmicfailure ev;
  531. /* TODO: needed parameters: count, keyid, key type, TSC */
  532. memset(&ev, 0, sizeof(ev));
  533. ev.flags = keyidx & IW_MICFAILURE_KEY_ID;
  534. if (hdr->addr1[0] & 0x01)
  535. ev.flags |= IW_MICFAILURE_GROUP;
  536. else
  537. ev.flags |= IW_MICFAILURE_PAIRWISE;
  538. ev.src_addr.sa_family = ARPHRD_ETHER;
  539. memcpy(ev.src_addr.sa_data, hdr->addr2, ETH_ALEN);
  540. memset(&wrqu, 0, sizeof(wrqu));
  541. wrqu.data.length = sizeof(ev);
  542. wireless_send_event(dev, IWEVMICHAELMICFAILURE, &wrqu, (char *)&ev);
  543. }
  544. static int ieee80211_michael_mic_verify(struct sk_buff *skb, int keyidx,
  545. int hdr_len, void *priv)
  546. {
  547. struct ieee80211_tkip_data *tkey = priv;
  548. u8 mic[8];
  549. if (!tkey->key_set)
  550. return -1;
  551. michael_mic_hdr(skb, tkey->rx_hdr);
  552. if (michael_mic(tkey->rx_tfm_michael, &tkey->key[24], tkey->rx_hdr,
  553. skb->data + hdr_len, skb->len - 8 - hdr_len, mic))
  554. return -1;
  555. if (memcmp(mic, skb->data + skb->len - 8, 8) != 0) {
  556. struct ieee80211_hdr_4addr *hdr;
  557. hdr = (struct ieee80211_hdr_4addr *)skb->data;
  558. printk(KERN_DEBUG "%s: Michael MIC verification failed for "
  559. "MSDU from " MAC_FMT " keyidx=%d\n",
  560. skb->dev ? skb->dev->name : "N/A", MAC_ARG(hdr->addr2),
  561. keyidx);
  562. if (skb->dev)
  563. ieee80211_michael_mic_failure(skb->dev, hdr, keyidx);
  564. tkey->dot11RSNAStatsTKIPLocalMICFailures++;
  565. return -1;
  566. }
  567. /* Update TSC counters for RX now that the packet verification has
  568. * completed. */
  569. tkey->rx_iv32 = tkey->rx_iv32_new;
  570. tkey->rx_iv16 = tkey->rx_iv16_new;
  571. skb_trim(skb, skb->len - 8);
  572. return 0;
  573. }
  574. static int ieee80211_tkip_set_key(void *key, int len, u8 * seq, void *priv)
  575. {
  576. struct ieee80211_tkip_data *tkey = priv;
  577. int keyidx;
  578. struct crypto_hash *tfm = tkey->tx_tfm_michael;
  579. struct crypto_blkcipher *tfm2 = tkey->tx_tfm_arc4;
  580. struct crypto_hash *tfm3 = tkey->rx_tfm_michael;
  581. struct crypto_blkcipher *tfm4 = tkey->rx_tfm_arc4;
  582. keyidx = tkey->key_idx;
  583. memset(tkey, 0, sizeof(*tkey));
  584. tkey->key_idx = keyidx;
  585. tkey->tx_tfm_michael = tfm;
  586. tkey->tx_tfm_arc4 = tfm2;
  587. tkey->rx_tfm_michael = tfm3;
  588. tkey->rx_tfm_arc4 = tfm4;
  589. if (len == TKIP_KEY_LEN) {
  590. memcpy(tkey->key, key, TKIP_KEY_LEN);
  591. tkey->key_set = 1;
  592. tkey->tx_iv16 = 1; /* TSC is initialized to 1 */
  593. if (seq) {
  594. tkey->rx_iv32 = (seq[5] << 24) | (seq[4] << 16) |
  595. (seq[3] << 8) | seq[2];
  596. tkey->rx_iv16 = (seq[1] << 8) | seq[0];
  597. }
  598. } else if (len == 0)
  599. tkey->key_set = 0;
  600. else
  601. return -1;
  602. return 0;
  603. }
  604. static int ieee80211_tkip_get_key(void *key, int len, u8 * seq, void *priv)
  605. {
  606. struct ieee80211_tkip_data *tkey = priv;
  607. if (len < TKIP_KEY_LEN)
  608. return -1;
  609. if (!tkey->key_set)
  610. return 0;
  611. memcpy(key, tkey->key, TKIP_KEY_LEN);
  612. if (seq) {
  613. /* Return the sequence number of the last transmitted frame. */
  614. u16 iv16 = tkey->tx_iv16;
  615. u32 iv32 = tkey->tx_iv32;
  616. if (iv16 == 0)
  617. iv32--;
  618. iv16--;
  619. seq[0] = tkey->tx_iv16;
  620. seq[1] = tkey->tx_iv16 >> 8;
  621. seq[2] = tkey->tx_iv32;
  622. seq[3] = tkey->tx_iv32 >> 8;
  623. seq[4] = tkey->tx_iv32 >> 16;
  624. seq[5] = tkey->tx_iv32 >> 24;
  625. }
  626. return TKIP_KEY_LEN;
  627. }
  628. static char *ieee80211_tkip_print_stats(char *p, void *priv)
  629. {
  630. struct ieee80211_tkip_data *tkip = priv;
  631. p += sprintf(p, "key[%d] alg=TKIP key_set=%d "
  632. "tx_pn=%02x%02x%02x%02x%02x%02x "
  633. "rx_pn=%02x%02x%02x%02x%02x%02x "
  634. "replays=%d icv_errors=%d local_mic_failures=%d\n",
  635. tkip->key_idx, tkip->key_set,
  636. (tkip->tx_iv32 >> 24) & 0xff,
  637. (tkip->tx_iv32 >> 16) & 0xff,
  638. (tkip->tx_iv32 >> 8) & 0xff,
  639. tkip->tx_iv32 & 0xff,
  640. (tkip->tx_iv16 >> 8) & 0xff,
  641. tkip->tx_iv16 & 0xff,
  642. (tkip->rx_iv32 >> 24) & 0xff,
  643. (tkip->rx_iv32 >> 16) & 0xff,
  644. (tkip->rx_iv32 >> 8) & 0xff,
  645. tkip->rx_iv32 & 0xff,
  646. (tkip->rx_iv16 >> 8) & 0xff,
  647. tkip->rx_iv16 & 0xff,
  648. tkip->dot11RSNAStatsTKIPReplays,
  649. tkip->dot11RSNAStatsTKIPICVErrors,
  650. tkip->dot11RSNAStatsTKIPLocalMICFailures);
  651. return p;
  652. }
  653. static struct ieee80211_crypto_ops ieee80211_crypt_tkip = {
  654. .name = "TKIP",
  655. .init = ieee80211_tkip_init,
  656. .deinit = ieee80211_tkip_deinit,
  657. .build_iv = ieee80211_tkip_hdr,
  658. .encrypt_mpdu = ieee80211_tkip_encrypt,
  659. .decrypt_mpdu = ieee80211_tkip_decrypt,
  660. .encrypt_msdu = ieee80211_michael_mic_add,
  661. .decrypt_msdu = ieee80211_michael_mic_verify,
  662. .set_key = ieee80211_tkip_set_key,
  663. .get_key = ieee80211_tkip_get_key,
  664. .print_stats = ieee80211_tkip_print_stats,
  665. .extra_mpdu_prefix_len = 4 + 4, /* IV + ExtIV */
  666. .extra_mpdu_postfix_len = 4, /* ICV */
  667. .extra_msdu_postfix_len = 8, /* MIC */
  668. .get_flags = ieee80211_tkip_get_flags,
  669. .set_flags = ieee80211_tkip_set_flags,
  670. .owner = THIS_MODULE,
  671. };
  672. static int __init ieee80211_crypto_tkip_init(void)
  673. {
  674. return ieee80211_register_crypto_ops(&ieee80211_crypt_tkip);
  675. }
  676. static void __exit ieee80211_crypto_tkip_exit(void)
  677. {
  678. ieee80211_unregister_crypto_ops(&ieee80211_crypt_tkip);
  679. }
  680. module_init(ieee80211_crypto_tkip_init);
  681. module_exit(ieee80211_crypto_tkip_exit);