dn_table.c 20 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876
  1. /*
  2. * DECnet An implementation of the DECnet protocol suite for the LINUX
  3. * operating system. DECnet is implemented using the BSD Socket
  4. * interface as the means of communication with the user level.
  5. *
  6. * DECnet Routing Forwarding Information Base (Routing Tables)
  7. *
  8. * Author: Steve Whitehouse <SteveW@ACM.org>
  9. * Mostly copied from the IPv4 routing code
  10. *
  11. *
  12. * Changes:
  13. *
  14. */
  15. #include <linux/string.h>
  16. #include <linux/net.h>
  17. #include <linux/socket.h>
  18. #include <linux/sockios.h>
  19. #include <linux/init.h>
  20. #include <linux/skbuff.h>
  21. #include <linux/netlink.h>
  22. #include <linux/rtnetlink.h>
  23. #include <linux/proc_fs.h>
  24. #include <linux/netdevice.h>
  25. #include <linux/timer.h>
  26. #include <linux/spinlock.h>
  27. #include <asm/atomic.h>
  28. #include <asm/uaccess.h>
  29. #include <linux/route.h> /* RTF_xxx */
  30. #include <net/neighbour.h>
  31. #include <net/dst.h>
  32. #include <net/flow.h>
  33. #include <net/fib_rules.h>
  34. #include <net/dn.h>
  35. #include <net/dn_route.h>
  36. #include <net/dn_fib.h>
  37. #include <net/dn_neigh.h>
  38. #include <net/dn_dev.h>
  39. struct dn_zone
  40. {
  41. struct dn_zone *dz_next;
  42. struct dn_fib_node **dz_hash;
  43. int dz_nent;
  44. int dz_divisor;
  45. u32 dz_hashmask;
  46. #define DZ_HASHMASK(dz) ((dz)->dz_hashmask)
  47. int dz_order;
  48. __le16 dz_mask;
  49. #define DZ_MASK(dz) ((dz)->dz_mask)
  50. };
  51. struct dn_hash
  52. {
  53. struct dn_zone *dh_zones[17];
  54. struct dn_zone *dh_zone_list;
  55. };
  56. #define dz_key_0(key) ((key).datum = 0)
  57. #define dz_prefix(key,dz) ((key).datum)
  58. #define for_nexthops(fi) { int nhsel; const struct dn_fib_nh *nh;\
  59. for(nhsel = 0, nh = (fi)->fib_nh; nhsel < (fi)->fib_nhs; nh++, nhsel++)
  60. #define endfor_nexthops(fi) }
  61. #define DN_MAX_DIVISOR 1024
  62. #define DN_S_ZOMBIE 1
  63. #define DN_S_ACCESSED 2
  64. #define DN_FIB_SCAN(f, fp) \
  65. for( ; ((f) = *(fp)) != NULL; (fp) = &(f)->fn_next)
  66. #define DN_FIB_SCAN_KEY(f, fp, key) \
  67. for( ; ((f) = *(fp)) != NULL && dn_key_eq((f)->fn_key, (key)); (fp) = &(f)->fn_next)
  68. #define RT_TABLE_MIN 1
  69. #define DN_FIB_TABLE_HASHSZ 256
  70. static struct hlist_head dn_fib_table_hash[DN_FIB_TABLE_HASHSZ];
  71. static DEFINE_RWLOCK(dn_fib_tables_lock);
  72. static kmem_cache_t *dn_hash_kmem __read_mostly;
  73. static int dn_fib_hash_zombies;
  74. static inline dn_fib_idx_t dn_hash(dn_fib_key_t key, struct dn_zone *dz)
  75. {
  76. u16 h = dn_ntohs(key.datum)>>(16 - dz->dz_order);
  77. h ^= (h >> 10);
  78. h ^= (h >> 6);
  79. h &= DZ_HASHMASK(dz);
  80. return *(dn_fib_idx_t *)&h;
  81. }
  82. static inline dn_fib_key_t dz_key(__le16 dst, struct dn_zone *dz)
  83. {
  84. dn_fib_key_t k;
  85. k.datum = dst & DZ_MASK(dz);
  86. return k;
  87. }
  88. static inline struct dn_fib_node **dn_chain_p(dn_fib_key_t key, struct dn_zone *dz)
  89. {
  90. return &dz->dz_hash[dn_hash(key, dz).datum];
  91. }
  92. static inline struct dn_fib_node *dz_chain(dn_fib_key_t key, struct dn_zone *dz)
  93. {
  94. return dz->dz_hash[dn_hash(key, dz).datum];
  95. }
  96. static inline int dn_key_eq(dn_fib_key_t a, dn_fib_key_t b)
  97. {
  98. return a.datum == b.datum;
  99. }
  100. static inline int dn_key_leq(dn_fib_key_t a, dn_fib_key_t b)
  101. {
  102. return a.datum <= b.datum;
  103. }
  104. static inline void dn_rebuild_zone(struct dn_zone *dz,
  105. struct dn_fib_node **old_ht,
  106. int old_divisor)
  107. {
  108. int i;
  109. struct dn_fib_node *f, **fp, *next;
  110. for(i = 0; i < old_divisor; i++) {
  111. for(f = old_ht[i]; f; f = f->fn_next) {
  112. next = f->fn_next;
  113. for(fp = dn_chain_p(f->fn_key, dz);
  114. *fp && dn_key_leq((*fp)->fn_key, f->fn_key);
  115. fp = &(*fp)->fn_next)
  116. /* NOTHING */;
  117. f->fn_next = *fp;
  118. *fp = f;
  119. }
  120. }
  121. }
  122. static void dn_rehash_zone(struct dn_zone *dz)
  123. {
  124. struct dn_fib_node **ht, **old_ht;
  125. int old_divisor, new_divisor;
  126. u32 new_hashmask;
  127. old_divisor = dz->dz_divisor;
  128. switch(old_divisor) {
  129. case 16:
  130. new_divisor = 256;
  131. new_hashmask = 0xFF;
  132. break;
  133. default:
  134. printk(KERN_DEBUG "DECnet: dn_rehash_zone: BUG! %d\n", old_divisor);
  135. case 256:
  136. new_divisor = 1024;
  137. new_hashmask = 0x3FF;
  138. break;
  139. }
  140. ht = kcalloc(new_divisor, sizeof(struct dn_fib_node*), GFP_KERNEL);
  141. if (ht == NULL)
  142. return;
  143. write_lock_bh(&dn_fib_tables_lock);
  144. old_ht = dz->dz_hash;
  145. dz->dz_hash = ht;
  146. dz->dz_hashmask = new_hashmask;
  147. dz->dz_divisor = new_divisor;
  148. dn_rebuild_zone(dz, old_ht, old_divisor);
  149. write_unlock_bh(&dn_fib_tables_lock);
  150. kfree(old_ht);
  151. }
  152. static void dn_free_node(struct dn_fib_node *f)
  153. {
  154. dn_fib_release_info(DN_FIB_INFO(f));
  155. kmem_cache_free(dn_hash_kmem, f);
  156. }
  157. static struct dn_zone *dn_new_zone(struct dn_hash *table, int z)
  158. {
  159. int i;
  160. struct dn_zone *dz = kzalloc(sizeof(struct dn_zone), GFP_KERNEL);
  161. if (!dz)
  162. return NULL;
  163. if (z) {
  164. dz->dz_divisor = 16;
  165. dz->dz_hashmask = 0x0F;
  166. } else {
  167. dz->dz_divisor = 1;
  168. dz->dz_hashmask = 0;
  169. }
  170. dz->dz_hash = kcalloc(dz->dz_divisor, sizeof(struct dn_fib_node *), GFP_KERNEL);
  171. if (!dz->dz_hash) {
  172. kfree(dz);
  173. return NULL;
  174. }
  175. dz->dz_order = z;
  176. dz->dz_mask = dnet_make_mask(z);
  177. for(i = z + 1; i <= 16; i++)
  178. if (table->dh_zones[i])
  179. break;
  180. write_lock_bh(&dn_fib_tables_lock);
  181. if (i>16) {
  182. dz->dz_next = table->dh_zone_list;
  183. table->dh_zone_list = dz;
  184. } else {
  185. dz->dz_next = table->dh_zones[i]->dz_next;
  186. table->dh_zones[i]->dz_next = dz;
  187. }
  188. table->dh_zones[z] = dz;
  189. write_unlock_bh(&dn_fib_tables_lock);
  190. return dz;
  191. }
  192. static int dn_fib_nh_match(struct rtmsg *r, struct nlmsghdr *nlh, struct dn_kern_rta *rta, struct dn_fib_info *fi)
  193. {
  194. struct rtnexthop *nhp;
  195. int nhlen;
  196. if (rta->rta_priority && *rta->rta_priority != fi->fib_priority)
  197. return 1;
  198. if (rta->rta_oif || rta->rta_gw) {
  199. if ((!rta->rta_oif || *rta->rta_oif == fi->fib_nh->nh_oif) &&
  200. (!rta->rta_gw || memcmp(rta->rta_gw, &fi->fib_nh->nh_gw, 2) == 0))
  201. return 0;
  202. return 1;
  203. }
  204. if (rta->rta_mp == NULL)
  205. return 0;
  206. nhp = RTA_DATA(rta->rta_mp);
  207. nhlen = RTA_PAYLOAD(rta->rta_mp);
  208. for_nexthops(fi) {
  209. int attrlen = nhlen - sizeof(struct rtnexthop);
  210. __le16 gw;
  211. if (attrlen < 0 || (nhlen -= nhp->rtnh_len) < 0)
  212. return -EINVAL;
  213. if (nhp->rtnh_ifindex && nhp->rtnh_ifindex != nh->nh_oif)
  214. return 1;
  215. if (attrlen) {
  216. gw = dn_fib_get_attr16(RTNH_DATA(nhp), attrlen, RTA_GATEWAY);
  217. if (gw && gw != nh->nh_gw)
  218. return 1;
  219. }
  220. nhp = RTNH_NEXT(nhp);
  221. } endfor_nexthops(fi);
  222. return 0;
  223. }
  224. static int dn_fib_dump_info(struct sk_buff *skb, u32 pid, u32 seq, int event,
  225. u32 tb_id, u8 type, u8 scope, void *dst, int dst_len,
  226. struct dn_fib_info *fi, unsigned int flags)
  227. {
  228. struct rtmsg *rtm;
  229. struct nlmsghdr *nlh;
  230. unsigned char *b = skb->tail;
  231. nlh = NLMSG_NEW(skb, pid, seq, event, sizeof(*rtm), flags);
  232. rtm = NLMSG_DATA(nlh);
  233. rtm->rtm_family = AF_DECnet;
  234. rtm->rtm_dst_len = dst_len;
  235. rtm->rtm_src_len = 0;
  236. rtm->rtm_tos = 0;
  237. rtm->rtm_table = tb_id;
  238. RTA_PUT_U32(skb, RTA_TABLE, tb_id);
  239. rtm->rtm_flags = fi->fib_flags;
  240. rtm->rtm_scope = scope;
  241. rtm->rtm_type = type;
  242. if (rtm->rtm_dst_len)
  243. RTA_PUT(skb, RTA_DST, 2, dst);
  244. rtm->rtm_protocol = fi->fib_protocol;
  245. if (fi->fib_priority)
  246. RTA_PUT(skb, RTA_PRIORITY, 4, &fi->fib_priority);
  247. if (rtnetlink_put_metrics(skb, fi->fib_metrics) < 0)
  248. goto rtattr_failure;
  249. if (fi->fib_nhs == 1) {
  250. if (fi->fib_nh->nh_gw)
  251. RTA_PUT(skb, RTA_GATEWAY, 2, &fi->fib_nh->nh_gw);
  252. if (fi->fib_nh->nh_oif)
  253. RTA_PUT(skb, RTA_OIF, sizeof(int), &fi->fib_nh->nh_oif);
  254. }
  255. if (fi->fib_nhs > 1) {
  256. struct rtnexthop *nhp;
  257. struct rtattr *mp_head;
  258. if (skb_tailroom(skb) <= RTA_SPACE(0))
  259. goto rtattr_failure;
  260. mp_head = (struct rtattr *)skb_put(skb, RTA_SPACE(0));
  261. for_nexthops(fi) {
  262. if (skb_tailroom(skb) < RTA_ALIGN(RTA_ALIGN(sizeof(*nhp)) + 4))
  263. goto rtattr_failure;
  264. nhp = (struct rtnexthop *)skb_put(skb, RTA_ALIGN(sizeof(*nhp)));
  265. nhp->rtnh_flags = nh->nh_flags & 0xFF;
  266. nhp->rtnh_hops = nh->nh_weight - 1;
  267. nhp->rtnh_ifindex = nh->nh_oif;
  268. if (nh->nh_gw)
  269. RTA_PUT(skb, RTA_GATEWAY, 2, &nh->nh_gw);
  270. nhp->rtnh_len = skb->tail - (unsigned char *)nhp;
  271. } endfor_nexthops(fi);
  272. mp_head->rta_type = RTA_MULTIPATH;
  273. mp_head->rta_len = skb->tail - (u8*)mp_head;
  274. }
  275. nlh->nlmsg_len = skb->tail - b;
  276. return skb->len;
  277. nlmsg_failure:
  278. rtattr_failure:
  279. skb_trim(skb, b - skb->data);
  280. return -1;
  281. }
  282. static void dn_rtmsg_fib(int event, struct dn_fib_node *f, int z, u32 tb_id,
  283. struct nlmsghdr *nlh, struct netlink_skb_parms *req)
  284. {
  285. struct sk_buff *skb;
  286. u32 pid = req ? req->pid : 0;
  287. int err = -ENOBUFS;
  288. skb = nlmsg_new(NLMSG_GOODSIZE, GFP_KERNEL);
  289. if (skb == NULL)
  290. goto errout;
  291. err = dn_fib_dump_info(skb, pid, nlh->nlmsg_seq, event, tb_id,
  292. f->fn_type, f->fn_scope, &f->fn_key, z,
  293. DN_FIB_INFO(f), 0);
  294. if (err < 0) {
  295. kfree_skb(skb);
  296. goto errout;
  297. }
  298. err = rtnl_notify(skb, pid, RTNLGRP_DECnet_ROUTE, nlh, GFP_KERNEL);
  299. errout:
  300. if (err < 0)
  301. rtnl_set_sk_err(RTNLGRP_DECnet_ROUTE, err);
  302. }
  303. static __inline__ int dn_hash_dump_bucket(struct sk_buff *skb,
  304. struct netlink_callback *cb,
  305. struct dn_fib_table *tb,
  306. struct dn_zone *dz,
  307. struct dn_fib_node *f)
  308. {
  309. int i, s_i;
  310. s_i = cb->args[4];
  311. for(i = 0; f; i++, f = f->fn_next) {
  312. if (i < s_i)
  313. continue;
  314. if (f->fn_state & DN_S_ZOMBIE)
  315. continue;
  316. if (dn_fib_dump_info(skb, NETLINK_CB(cb->skb).pid,
  317. cb->nlh->nlmsg_seq,
  318. RTM_NEWROUTE,
  319. tb->n,
  320. (f->fn_state & DN_S_ZOMBIE) ? 0 : f->fn_type,
  321. f->fn_scope, &f->fn_key, dz->dz_order,
  322. f->fn_info, NLM_F_MULTI) < 0) {
  323. cb->args[4] = i;
  324. return -1;
  325. }
  326. }
  327. cb->args[4] = i;
  328. return skb->len;
  329. }
  330. static __inline__ int dn_hash_dump_zone(struct sk_buff *skb,
  331. struct netlink_callback *cb,
  332. struct dn_fib_table *tb,
  333. struct dn_zone *dz)
  334. {
  335. int h, s_h;
  336. s_h = cb->args[3];
  337. for(h = 0; h < dz->dz_divisor; h++) {
  338. if (h < s_h)
  339. continue;
  340. if (h > s_h)
  341. memset(&cb->args[4], 0, sizeof(cb->args) - 4*sizeof(cb->args[0]));
  342. if (dz->dz_hash == NULL || dz->dz_hash[h] == NULL)
  343. continue;
  344. if (dn_hash_dump_bucket(skb, cb, tb, dz, dz->dz_hash[h]) < 0) {
  345. cb->args[3] = h;
  346. return -1;
  347. }
  348. }
  349. cb->args[3] = h;
  350. return skb->len;
  351. }
  352. static int dn_fib_table_dump(struct dn_fib_table *tb, struct sk_buff *skb,
  353. struct netlink_callback *cb)
  354. {
  355. int m, s_m;
  356. struct dn_zone *dz;
  357. struct dn_hash *table = (struct dn_hash *)tb->data;
  358. s_m = cb->args[2];
  359. read_lock(&dn_fib_tables_lock);
  360. for(dz = table->dh_zone_list, m = 0; dz; dz = dz->dz_next, m++) {
  361. if (m < s_m)
  362. continue;
  363. if (m > s_m)
  364. memset(&cb->args[3], 0, sizeof(cb->args) - 3*sizeof(cb->args[0]));
  365. if (dn_hash_dump_zone(skb, cb, tb, dz) < 0) {
  366. cb->args[2] = m;
  367. read_unlock(&dn_fib_tables_lock);
  368. return -1;
  369. }
  370. }
  371. read_unlock(&dn_fib_tables_lock);
  372. cb->args[2] = m;
  373. return skb->len;
  374. }
  375. int dn_fib_dump(struct sk_buff *skb, struct netlink_callback *cb)
  376. {
  377. unsigned int h, s_h;
  378. unsigned int e = 0, s_e;
  379. struct dn_fib_table *tb;
  380. struct hlist_node *node;
  381. int dumped = 0;
  382. if (NLMSG_PAYLOAD(cb->nlh, 0) >= sizeof(struct rtmsg) &&
  383. ((struct rtmsg *)NLMSG_DATA(cb->nlh))->rtm_flags&RTM_F_CLONED)
  384. return dn_cache_dump(skb, cb);
  385. s_h = cb->args[0];
  386. s_e = cb->args[1];
  387. for (h = s_h; h < DN_FIB_TABLE_HASHSZ; h++, s_h = 0) {
  388. e = 0;
  389. hlist_for_each_entry(tb, node, &dn_fib_table_hash[h], hlist) {
  390. if (e < s_e)
  391. goto next;
  392. if (dumped)
  393. memset(&cb->args[2], 0, sizeof(cb->args) -
  394. 2 * sizeof(cb->args[0]));
  395. if (tb->dump(tb, skb, cb) < 0)
  396. goto out;
  397. dumped = 1;
  398. next:
  399. e++;
  400. }
  401. }
  402. out:
  403. cb->args[1] = e;
  404. cb->args[0] = h;
  405. return skb->len;
  406. }
  407. static int dn_fib_table_insert(struct dn_fib_table *tb, struct rtmsg *r, struct dn_kern_rta *rta, struct nlmsghdr *n, struct netlink_skb_parms *req)
  408. {
  409. struct dn_hash *table = (struct dn_hash *)tb->data;
  410. struct dn_fib_node *new_f, *f, **fp, **del_fp;
  411. struct dn_zone *dz;
  412. struct dn_fib_info *fi;
  413. int z = r->rtm_dst_len;
  414. int type = r->rtm_type;
  415. dn_fib_key_t key;
  416. int err;
  417. if (z > 16)
  418. return -EINVAL;
  419. dz = table->dh_zones[z];
  420. if (!dz && !(dz = dn_new_zone(table, z)))
  421. return -ENOBUFS;
  422. dz_key_0(key);
  423. if (rta->rta_dst) {
  424. __le16 dst;
  425. memcpy(&dst, rta->rta_dst, 2);
  426. if (dst & ~DZ_MASK(dz))
  427. return -EINVAL;
  428. key = dz_key(dst, dz);
  429. }
  430. if ((fi = dn_fib_create_info(r, rta, n, &err)) == NULL)
  431. return err;
  432. if (dz->dz_nent > (dz->dz_divisor << 2) &&
  433. dz->dz_divisor > DN_MAX_DIVISOR &&
  434. (z==16 || (1<<z) > dz->dz_divisor))
  435. dn_rehash_zone(dz);
  436. fp = dn_chain_p(key, dz);
  437. DN_FIB_SCAN(f, fp) {
  438. if (dn_key_leq(key, f->fn_key))
  439. break;
  440. }
  441. del_fp = NULL;
  442. if (f && (f->fn_state & DN_S_ZOMBIE) &&
  443. dn_key_eq(f->fn_key, key)) {
  444. del_fp = fp;
  445. fp = &f->fn_next;
  446. f = *fp;
  447. goto create;
  448. }
  449. DN_FIB_SCAN_KEY(f, fp, key) {
  450. if (fi->fib_priority <= DN_FIB_INFO(f)->fib_priority)
  451. break;
  452. }
  453. if (f && dn_key_eq(f->fn_key, key) &&
  454. fi->fib_priority == DN_FIB_INFO(f)->fib_priority) {
  455. struct dn_fib_node **ins_fp;
  456. err = -EEXIST;
  457. if (n->nlmsg_flags & NLM_F_EXCL)
  458. goto out;
  459. if (n->nlmsg_flags & NLM_F_REPLACE) {
  460. del_fp = fp;
  461. fp = &f->fn_next;
  462. f = *fp;
  463. goto replace;
  464. }
  465. ins_fp = fp;
  466. err = -EEXIST;
  467. DN_FIB_SCAN_KEY(f, fp, key) {
  468. if (fi->fib_priority != DN_FIB_INFO(f)->fib_priority)
  469. break;
  470. if (f->fn_type == type && f->fn_scope == r->rtm_scope
  471. && DN_FIB_INFO(f) == fi)
  472. goto out;
  473. }
  474. if (!(n->nlmsg_flags & NLM_F_APPEND)) {
  475. fp = ins_fp;
  476. f = *fp;
  477. }
  478. }
  479. create:
  480. err = -ENOENT;
  481. if (!(n->nlmsg_flags & NLM_F_CREATE))
  482. goto out;
  483. replace:
  484. err = -ENOBUFS;
  485. new_f = kmem_cache_alloc(dn_hash_kmem, SLAB_KERNEL);
  486. if (new_f == NULL)
  487. goto out;
  488. memset(new_f, 0, sizeof(struct dn_fib_node));
  489. new_f->fn_key = key;
  490. new_f->fn_type = type;
  491. new_f->fn_scope = r->rtm_scope;
  492. DN_FIB_INFO(new_f) = fi;
  493. new_f->fn_next = f;
  494. write_lock_bh(&dn_fib_tables_lock);
  495. *fp = new_f;
  496. write_unlock_bh(&dn_fib_tables_lock);
  497. dz->dz_nent++;
  498. if (del_fp) {
  499. f = *del_fp;
  500. write_lock_bh(&dn_fib_tables_lock);
  501. *del_fp = f->fn_next;
  502. write_unlock_bh(&dn_fib_tables_lock);
  503. if (!(f->fn_state & DN_S_ZOMBIE))
  504. dn_rtmsg_fib(RTM_DELROUTE, f, z, tb->n, n, req);
  505. if (f->fn_state & DN_S_ACCESSED)
  506. dn_rt_cache_flush(-1);
  507. dn_free_node(f);
  508. dz->dz_nent--;
  509. } else {
  510. dn_rt_cache_flush(-1);
  511. }
  512. dn_rtmsg_fib(RTM_NEWROUTE, new_f, z, tb->n, n, req);
  513. return 0;
  514. out:
  515. dn_fib_release_info(fi);
  516. return err;
  517. }
  518. static int dn_fib_table_delete(struct dn_fib_table *tb, struct rtmsg *r, struct dn_kern_rta *rta, struct nlmsghdr *n, struct netlink_skb_parms *req)
  519. {
  520. struct dn_hash *table = (struct dn_hash*)tb->data;
  521. struct dn_fib_node **fp, **del_fp, *f;
  522. int z = r->rtm_dst_len;
  523. struct dn_zone *dz;
  524. dn_fib_key_t key;
  525. int matched;
  526. if (z > 16)
  527. return -EINVAL;
  528. if ((dz = table->dh_zones[z]) == NULL)
  529. return -ESRCH;
  530. dz_key_0(key);
  531. if (rta->rta_dst) {
  532. __le16 dst;
  533. memcpy(&dst, rta->rta_dst, 2);
  534. if (dst & ~DZ_MASK(dz))
  535. return -EINVAL;
  536. key = dz_key(dst, dz);
  537. }
  538. fp = dn_chain_p(key, dz);
  539. DN_FIB_SCAN(f, fp) {
  540. if (dn_key_eq(f->fn_key, key))
  541. break;
  542. if (dn_key_leq(key, f->fn_key))
  543. return -ESRCH;
  544. }
  545. matched = 0;
  546. del_fp = NULL;
  547. DN_FIB_SCAN_KEY(f, fp, key) {
  548. struct dn_fib_info *fi = DN_FIB_INFO(f);
  549. if (f->fn_state & DN_S_ZOMBIE)
  550. return -ESRCH;
  551. matched++;
  552. if (del_fp == NULL &&
  553. (!r->rtm_type || f->fn_type == r->rtm_type) &&
  554. (r->rtm_scope == RT_SCOPE_NOWHERE || f->fn_scope == r->rtm_scope) &&
  555. (!r->rtm_protocol ||
  556. fi->fib_protocol == r->rtm_protocol) &&
  557. dn_fib_nh_match(r, n, rta, fi) == 0)
  558. del_fp = fp;
  559. }
  560. if (del_fp) {
  561. f = *del_fp;
  562. dn_rtmsg_fib(RTM_DELROUTE, f, z, tb->n, n, req);
  563. if (matched != 1) {
  564. write_lock_bh(&dn_fib_tables_lock);
  565. *del_fp = f->fn_next;
  566. write_unlock_bh(&dn_fib_tables_lock);
  567. if (f->fn_state & DN_S_ACCESSED)
  568. dn_rt_cache_flush(-1);
  569. dn_free_node(f);
  570. dz->dz_nent--;
  571. } else {
  572. f->fn_state |= DN_S_ZOMBIE;
  573. if (f->fn_state & DN_S_ACCESSED) {
  574. f->fn_state &= ~DN_S_ACCESSED;
  575. dn_rt_cache_flush(-1);
  576. }
  577. if (++dn_fib_hash_zombies > 128)
  578. dn_fib_flush();
  579. }
  580. return 0;
  581. }
  582. return -ESRCH;
  583. }
  584. static inline int dn_flush_list(struct dn_fib_node **fp, int z, struct dn_hash *table)
  585. {
  586. int found = 0;
  587. struct dn_fib_node *f;
  588. while((f = *fp) != NULL) {
  589. struct dn_fib_info *fi = DN_FIB_INFO(f);
  590. if (fi && ((f->fn_state & DN_S_ZOMBIE) || (fi->fib_flags & RTNH_F_DEAD))) {
  591. write_lock_bh(&dn_fib_tables_lock);
  592. *fp = f->fn_next;
  593. write_unlock_bh(&dn_fib_tables_lock);
  594. dn_free_node(f);
  595. found++;
  596. continue;
  597. }
  598. fp = &f->fn_next;
  599. }
  600. return found;
  601. }
  602. static int dn_fib_table_flush(struct dn_fib_table *tb)
  603. {
  604. struct dn_hash *table = (struct dn_hash *)tb->data;
  605. struct dn_zone *dz;
  606. int found = 0;
  607. dn_fib_hash_zombies = 0;
  608. for(dz = table->dh_zone_list; dz; dz = dz->dz_next) {
  609. int i;
  610. int tmp = 0;
  611. for(i = dz->dz_divisor-1; i >= 0; i--)
  612. tmp += dn_flush_list(&dz->dz_hash[i], dz->dz_order, table);
  613. dz->dz_nent -= tmp;
  614. found += tmp;
  615. }
  616. return found;
  617. }
  618. static int dn_fib_table_lookup(struct dn_fib_table *tb, const struct flowi *flp, struct dn_fib_res *res)
  619. {
  620. int err;
  621. struct dn_zone *dz;
  622. struct dn_hash *t = (struct dn_hash *)tb->data;
  623. read_lock(&dn_fib_tables_lock);
  624. for(dz = t->dh_zone_list; dz; dz = dz->dz_next) {
  625. struct dn_fib_node *f;
  626. dn_fib_key_t k = dz_key(flp->fld_dst, dz);
  627. for(f = dz_chain(k, dz); f; f = f->fn_next) {
  628. if (!dn_key_eq(k, f->fn_key)) {
  629. if (dn_key_leq(k, f->fn_key))
  630. break;
  631. else
  632. continue;
  633. }
  634. f->fn_state |= DN_S_ACCESSED;
  635. if (f->fn_state&DN_S_ZOMBIE)
  636. continue;
  637. if (f->fn_scope < flp->fld_scope)
  638. continue;
  639. err = dn_fib_semantic_match(f->fn_type, DN_FIB_INFO(f), flp, res);
  640. if (err == 0) {
  641. res->type = f->fn_type;
  642. res->scope = f->fn_scope;
  643. res->prefixlen = dz->dz_order;
  644. goto out;
  645. }
  646. if (err < 0)
  647. goto out;
  648. }
  649. }
  650. err = 1;
  651. out:
  652. read_unlock(&dn_fib_tables_lock);
  653. return err;
  654. }
  655. struct dn_fib_table *dn_fib_get_table(u32 n, int create)
  656. {
  657. struct dn_fib_table *t;
  658. struct hlist_node *node;
  659. unsigned int h;
  660. if (n < RT_TABLE_MIN)
  661. return NULL;
  662. if (n > RT_TABLE_MAX)
  663. return NULL;
  664. h = n & (DN_FIB_TABLE_HASHSZ - 1);
  665. rcu_read_lock();
  666. hlist_for_each_entry_rcu(t, node, &dn_fib_table_hash[h], hlist) {
  667. if (t->n == n) {
  668. rcu_read_unlock();
  669. return t;
  670. }
  671. }
  672. rcu_read_unlock();
  673. if (!create)
  674. return NULL;
  675. if (in_interrupt() && net_ratelimit()) {
  676. printk(KERN_DEBUG "DECnet: BUG! Attempt to create routing table from interrupt\n");
  677. return NULL;
  678. }
  679. if ((t = kmalloc(sizeof(struct dn_fib_table) + sizeof(struct dn_hash), GFP_KERNEL)) == NULL)
  680. return NULL;
  681. memset(t, 0, sizeof(struct dn_fib_table));
  682. t->n = n;
  683. t->insert = dn_fib_table_insert;
  684. t->delete = dn_fib_table_delete;
  685. t->lookup = dn_fib_table_lookup;
  686. t->flush = dn_fib_table_flush;
  687. t->dump = dn_fib_table_dump;
  688. memset(t->data, 0, sizeof(struct dn_hash));
  689. hlist_add_head_rcu(&t->hlist, &dn_fib_table_hash[h]);
  690. return t;
  691. }
  692. struct dn_fib_table *dn_fib_empty_table(void)
  693. {
  694. u32 id;
  695. for(id = RT_TABLE_MIN; id <= RT_TABLE_MAX; id++)
  696. if (dn_fib_get_table(id, 0) == NULL)
  697. return dn_fib_get_table(id, 1);
  698. return NULL;
  699. }
  700. void dn_fib_flush(void)
  701. {
  702. int flushed = 0;
  703. struct dn_fib_table *tb;
  704. struct hlist_node *node;
  705. unsigned int h;
  706. for (h = 0; h < DN_FIB_TABLE_HASHSZ; h++) {
  707. hlist_for_each_entry(tb, node, &dn_fib_table_hash[h], hlist)
  708. flushed += tb->flush(tb);
  709. }
  710. if (flushed)
  711. dn_rt_cache_flush(-1);
  712. }
  713. void __init dn_fib_table_init(void)
  714. {
  715. dn_hash_kmem = kmem_cache_create("dn_fib_info_cache",
  716. sizeof(struct dn_fib_info),
  717. 0, SLAB_HWCACHE_ALIGN,
  718. NULL, NULL);
  719. }
  720. void __exit dn_fib_table_cleanup(void)
  721. {
  722. struct dn_fib_table *t;
  723. struct hlist_node *node, *next;
  724. unsigned int h;
  725. write_lock(&dn_fib_tables_lock);
  726. for (h = 0; h < DN_FIB_TABLE_HASHSZ; h++) {
  727. hlist_for_each_entry_safe(t, node, next, &dn_fib_table_hash[h],
  728. hlist) {
  729. hlist_del(&t->hlist);
  730. kfree(t);
  731. }
  732. }
  733. write_unlock(&dn_fib_tables_lock);
  734. }