dn_dev.c 34 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481
  1. /*
  2. * DECnet An implementation of the DECnet protocol suite for the LINUX
  3. * operating system. DECnet is implemented using the BSD Socket
  4. * interface as the means of communication with the user level.
  5. *
  6. * DECnet Device Layer
  7. *
  8. * Authors: Steve Whitehouse <SteveW@ACM.org>
  9. * Eduardo Marcelo Serrat <emserrat@geocities.com>
  10. *
  11. * Changes:
  12. * Steve Whitehouse : Devices now see incoming frames so they
  13. * can mark on who it came from.
  14. * Steve Whitehouse : Fixed bug in creating neighbours. Each neighbour
  15. * can now have a device specific setup func.
  16. * Steve Whitehouse : Added /proc/sys/net/decnet/conf/<dev>/
  17. * Steve Whitehouse : Fixed bug which sometimes killed timer
  18. * Steve Whitehouse : Multiple ifaddr support
  19. * Steve Whitehouse : SIOCGIFCONF is now a compile time option
  20. * Steve Whitehouse : /proc/sys/net/decnet/conf/<sys>/forwarding
  21. * Steve Whitehouse : Removed timer1 - it's a user space issue now
  22. * Patrick Caulfield : Fixed router hello message format
  23. * Steve Whitehouse : Got rid of constant sizes for blksize for
  24. * devices. All mtu based now.
  25. */
  26. #include <linux/capability.h>
  27. #include <linux/module.h>
  28. #include <linux/moduleparam.h>
  29. #include <linux/init.h>
  30. #include <linux/net.h>
  31. #include <linux/netdevice.h>
  32. #include <linux/proc_fs.h>
  33. #include <linux/seq_file.h>
  34. #include <linux/timer.h>
  35. #include <linux/string.h>
  36. #include <linux/if_addr.h>
  37. #include <linux/if_arp.h>
  38. #include <linux/if_ether.h>
  39. #include <linux/skbuff.h>
  40. #include <linux/rtnetlink.h>
  41. #include <linux/sysctl.h>
  42. #include <linux/notifier.h>
  43. #include <asm/uaccess.h>
  44. #include <asm/system.h>
  45. #include <net/neighbour.h>
  46. #include <net/dst.h>
  47. #include <net/flow.h>
  48. #include <net/fib_rules.h>
  49. #include <net/dn.h>
  50. #include <net/dn_dev.h>
  51. #include <net/dn_route.h>
  52. #include <net/dn_neigh.h>
  53. #include <net/dn_fib.h>
  54. #define DN_IFREQ_SIZE (sizeof(struct ifreq) - sizeof(struct sockaddr) + sizeof(struct sockaddr_dn))
  55. static char dn_rt_all_end_mcast[ETH_ALEN] = {0xAB,0x00,0x00,0x04,0x00,0x00};
  56. static char dn_rt_all_rt_mcast[ETH_ALEN] = {0xAB,0x00,0x00,0x03,0x00,0x00};
  57. static char dn_hiord[ETH_ALEN] = {0xAA,0x00,0x04,0x00,0x00,0x00};
  58. static unsigned char dn_eco_version[3] = {0x02,0x00,0x00};
  59. extern struct neigh_table dn_neigh_table;
  60. /*
  61. * decnet_address is kept in network order.
  62. */
  63. __le16 decnet_address = 0;
  64. static DEFINE_RWLOCK(dndev_lock);
  65. static struct net_device *decnet_default_device;
  66. static BLOCKING_NOTIFIER_HEAD(dnaddr_chain);
  67. static struct dn_dev *dn_dev_create(struct net_device *dev, int *err);
  68. static void dn_dev_delete(struct net_device *dev);
  69. static void rtmsg_ifa(int event, struct dn_ifaddr *ifa);
  70. static int dn_eth_up(struct net_device *);
  71. static void dn_eth_down(struct net_device *);
  72. static void dn_send_brd_hello(struct net_device *dev, struct dn_ifaddr *ifa);
  73. static void dn_send_ptp_hello(struct net_device *dev, struct dn_ifaddr *ifa);
  74. static struct dn_dev_parms dn_dev_list[] = {
  75. {
  76. .type = ARPHRD_ETHER, /* Ethernet */
  77. .mode = DN_DEV_BCAST,
  78. .state = DN_DEV_S_RU,
  79. .t2 = 1,
  80. .t3 = 10,
  81. .name = "ethernet",
  82. .ctl_name = NET_DECNET_CONF_ETHER,
  83. .up = dn_eth_up,
  84. .down = dn_eth_down,
  85. .timer3 = dn_send_brd_hello,
  86. },
  87. {
  88. .type = ARPHRD_IPGRE, /* DECnet tunneled over GRE in IP */
  89. .mode = DN_DEV_BCAST,
  90. .state = DN_DEV_S_RU,
  91. .t2 = 1,
  92. .t3 = 10,
  93. .name = "ipgre",
  94. .ctl_name = NET_DECNET_CONF_GRE,
  95. .timer3 = dn_send_brd_hello,
  96. },
  97. #if 0
  98. {
  99. .type = ARPHRD_X25, /* Bog standard X.25 */
  100. .mode = DN_DEV_UCAST,
  101. .state = DN_DEV_S_DS,
  102. .t2 = 1,
  103. .t3 = 120,
  104. .name = "x25",
  105. .ctl_name = NET_DECNET_CONF_X25,
  106. .timer3 = dn_send_ptp_hello,
  107. },
  108. #endif
  109. #if 0
  110. {
  111. .type = ARPHRD_PPP, /* DECnet over PPP */
  112. .mode = DN_DEV_BCAST,
  113. .state = DN_DEV_S_RU,
  114. .t2 = 1,
  115. .t3 = 10,
  116. .name = "ppp",
  117. .ctl_name = NET_DECNET_CONF_PPP,
  118. .timer3 = dn_send_brd_hello,
  119. },
  120. #endif
  121. {
  122. .type = ARPHRD_DDCMP, /* DECnet over DDCMP */
  123. .mode = DN_DEV_UCAST,
  124. .state = DN_DEV_S_DS,
  125. .t2 = 1,
  126. .t3 = 120,
  127. .name = "ddcmp",
  128. .ctl_name = NET_DECNET_CONF_DDCMP,
  129. .timer3 = dn_send_ptp_hello,
  130. },
  131. {
  132. .type = ARPHRD_LOOPBACK, /* Loopback interface - always last */
  133. .mode = DN_DEV_BCAST,
  134. .state = DN_DEV_S_RU,
  135. .t2 = 1,
  136. .t3 = 10,
  137. .name = "loopback",
  138. .ctl_name = NET_DECNET_CONF_LOOPBACK,
  139. .timer3 = dn_send_brd_hello,
  140. }
  141. };
  142. #define DN_DEV_LIST_SIZE (sizeof(dn_dev_list)/sizeof(struct dn_dev_parms))
  143. #define DN_DEV_PARMS_OFFSET(x) ((int) ((char *) &((struct dn_dev_parms *)0)->x))
  144. #ifdef CONFIG_SYSCTL
  145. static int min_t2[] = { 1 };
  146. static int max_t2[] = { 60 }; /* No max specified, but this seems sensible */
  147. static int min_t3[] = { 1 };
  148. static int max_t3[] = { 8191 }; /* Must fit in 16 bits when multiplied by BCT3MULT or T3MULT */
  149. static int min_priority[1];
  150. static int max_priority[] = { 127 }; /* From DECnet spec */
  151. static int dn_forwarding_proc(ctl_table *, int, struct file *,
  152. void __user *, size_t *, loff_t *);
  153. static int dn_forwarding_sysctl(ctl_table *table, int __user *name, int nlen,
  154. void __user *oldval, size_t __user *oldlenp,
  155. void __user *newval, size_t newlen,
  156. void **context);
  157. static struct dn_dev_sysctl_table {
  158. struct ctl_table_header *sysctl_header;
  159. ctl_table dn_dev_vars[5];
  160. ctl_table dn_dev_dev[2];
  161. ctl_table dn_dev_conf_dir[2];
  162. ctl_table dn_dev_proto_dir[2];
  163. ctl_table dn_dev_root_dir[2];
  164. } dn_dev_sysctl = {
  165. NULL,
  166. {
  167. {
  168. .ctl_name = NET_DECNET_CONF_DEV_FORWARDING,
  169. .procname = "forwarding",
  170. .data = (void *)DN_DEV_PARMS_OFFSET(forwarding),
  171. .maxlen = sizeof(int),
  172. .mode = 0644,
  173. .proc_handler = dn_forwarding_proc,
  174. .strategy = dn_forwarding_sysctl,
  175. },
  176. {
  177. .ctl_name = NET_DECNET_CONF_DEV_PRIORITY,
  178. .procname = "priority",
  179. .data = (void *)DN_DEV_PARMS_OFFSET(priority),
  180. .maxlen = sizeof(int),
  181. .mode = 0644,
  182. .proc_handler = proc_dointvec_minmax,
  183. .strategy = sysctl_intvec,
  184. .extra1 = &min_priority,
  185. .extra2 = &max_priority
  186. },
  187. {
  188. .ctl_name = NET_DECNET_CONF_DEV_T2,
  189. .procname = "t2",
  190. .data = (void *)DN_DEV_PARMS_OFFSET(t2),
  191. .maxlen = sizeof(int),
  192. .mode = 0644,
  193. .proc_handler = proc_dointvec_minmax,
  194. .strategy = sysctl_intvec,
  195. .extra1 = &min_t2,
  196. .extra2 = &max_t2
  197. },
  198. {
  199. .ctl_name = NET_DECNET_CONF_DEV_T3,
  200. .procname = "t3",
  201. .data = (void *)DN_DEV_PARMS_OFFSET(t3),
  202. .maxlen = sizeof(int),
  203. .mode = 0644,
  204. .proc_handler = proc_dointvec_minmax,
  205. .strategy = sysctl_intvec,
  206. .extra1 = &min_t3,
  207. .extra2 = &max_t3
  208. },
  209. {0}
  210. },
  211. {{
  212. .ctl_name = 0,
  213. .procname = "",
  214. .mode = 0555,
  215. .child = dn_dev_sysctl.dn_dev_vars
  216. }, {0}},
  217. {{
  218. .ctl_name = NET_DECNET_CONF,
  219. .procname = "conf",
  220. .mode = 0555,
  221. .child = dn_dev_sysctl.dn_dev_dev
  222. }, {0}},
  223. {{
  224. .ctl_name = NET_DECNET,
  225. .procname = "decnet",
  226. .mode = 0555,
  227. .child = dn_dev_sysctl.dn_dev_conf_dir
  228. }, {0}},
  229. {{
  230. .ctl_name = CTL_NET,
  231. .procname = "net",
  232. .mode = 0555,
  233. .child = dn_dev_sysctl.dn_dev_proto_dir
  234. }, {0}}
  235. };
  236. static void dn_dev_sysctl_register(struct net_device *dev, struct dn_dev_parms *parms)
  237. {
  238. struct dn_dev_sysctl_table *t;
  239. int i;
  240. t = kmalloc(sizeof(*t), GFP_KERNEL);
  241. if (t == NULL)
  242. return;
  243. memcpy(t, &dn_dev_sysctl, sizeof(*t));
  244. for(i = 0; i < ARRAY_SIZE(t->dn_dev_vars) - 1; i++) {
  245. long offset = (long)t->dn_dev_vars[i].data;
  246. t->dn_dev_vars[i].data = ((char *)parms) + offset;
  247. t->dn_dev_vars[i].de = NULL;
  248. }
  249. if (dev) {
  250. t->dn_dev_dev[0].procname = dev->name;
  251. t->dn_dev_dev[0].ctl_name = dev->ifindex;
  252. } else {
  253. t->dn_dev_dev[0].procname = parms->name;
  254. t->dn_dev_dev[0].ctl_name = parms->ctl_name;
  255. }
  256. t->dn_dev_dev[0].child = t->dn_dev_vars;
  257. t->dn_dev_dev[0].de = NULL;
  258. t->dn_dev_conf_dir[0].child = t->dn_dev_dev;
  259. t->dn_dev_conf_dir[0].de = NULL;
  260. t->dn_dev_proto_dir[0].child = t->dn_dev_conf_dir;
  261. t->dn_dev_proto_dir[0].de = NULL;
  262. t->dn_dev_root_dir[0].child = t->dn_dev_proto_dir;
  263. t->dn_dev_root_dir[0].de = NULL;
  264. t->dn_dev_vars[0].extra1 = (void *)dev;
  265. t->sysctl_header = register_sysctl_table(t->dn_dev_root_dir, 0);
  266. if (t->sysctl_header == NULL)
  267. kfree(t);
  268. else
  269. parms->sysctl = t;
  270. }
  271. static void dn_dev_sysctl_unregister(struct dn_dev_parms *parms)
  272. {
  273. if (parms->sysctl) {
  274. struct dn_dev_sysctl_table *t = parms->sysctl;
  275. parms->sysctl = NULL;
  276. unregister_sysctl_table(t->sysctl_header);
  277. kfree(t);
  278. }
  279. }
  280. static int dn_forwarding_proc(ctl_table *table, int write,
  281. struct file *filep,
  282. void __user *buffer,
  283. size_t *lenp, loff_t *ppos)
  284. {
  285. #ifdef CONFIG_DECNET_ROUTER
  286. struct net_device *dev = table->extra1;
  287. struct dn_dev *dn_db;
  288. int err;
  289. int tmp, old;
  290. if (table->extra1 == NULL)
  291. return -EINVAL;
  292. dn_db = dev->dn_ptr;
  293. old = dn_db->parms.forwarding;
  294. err = proc_dointvec(table, write, filep, buffer, lenp, ppos);
  295. if ((err >= 0) && write) {
  296. if (dn_db->parms.forwarding < 0)
  297. dn_db->parms.forwarding = 0;
  298. if (dn_db->parms.forwarding > 2)
  299. dn_db->parms.forwarding = 2;
  300. /*
  301. * What an ugly hack this is... its works, just. It
  302. * would be nice if sysctl/proc were just that little
  303. * bit more flexible so I don't have to write a special
  304. * routine, or suffer hacks like this - SJW
  305. */
  306. tmp = dn_db->parms.forwarding;
  307. dn_db->parms.forwarding = old;
  308. if (dn_db->parms.down)
  309. dn_db->parms.down(dev);
  310. dn_db->parms.forwarding = tmp;
  311. if (dn_db->parms.up)
  312. dn_db->parms.up(dev);
  313. }
  314. return err;
  315. #else
  316. return -EINVAL;
  317. #endif
  318. }
  319. static int dn_forwarding_sysctl(ctl_table *table, int __user *name, int nlen,
  320. void __user *oldval, size_t __user *oldlenp,
  321. void __user *newval, size_t newlen,
  322. void **context)
  323. {
  324. #ifdef CONFIG_DECNET_ROUTER
  325. struct net_device *dev = table->extra1;
  326. struct dn_dev *dn_db;
  327. int value;
  328. if (table->extra1 == NULL)
  329. return -EINVAL;
  330. dn_db = dev->dn_ptr;
  331. if (newval && newlen) {
  332. if (newlen != sizeof(int))
  333. return -EINVAL;
  334. if (get_user(value, (int __user *)newval))
  335. return -EFAULT;
  336. if (value < 0)
  337. return -EINVAL;
  338. if (value > 2)
  339. return -EINVAL;
  340. if (dn_db->parms.down)
  341. dn_db->parms.down(dev);
  342. dn_db->parms.forwarding = value;
  343. if (dn_db->parms.up)
  344. dn_db->parms.up(dev);
  345. }
  346. return 0;
  347. #else
  348. return -EINVAL;
  349. #endif
  350. }
  351. #else /* CONFIG_SYSCTL */
  352. static void dn_dev_sysctl_unregister(struct dn_dev_parms *parms)
  353. {
  354. }
  355. static void dn_dev_sysctl_register(struct net_device *dev, struct dn_dev_parms *parms)
  356. {
  357. }
  358. #endif /* CONFIG_SYSCTL */
  359. static inline __u16 mtu2blksize(struct net_device *dev)
  360. {
  361. u32 blksize = dev->mtu;
  362. if (blksize > 0xffff)
  363. blksize = 0xffff;
  364. if (dev->type == ARPHRD_ETHER ||
  365. dev->type == ARPHRD_PPP ||
  366. dev->type == ARPHRD_IPGRE ||
  367. dev->type == ARPHRD_LOOPBACK)
  368. blksize -= 2;
  369. return (__u16)blksize;
  370. }
  371. static struct dn_ifaddr *dn_dev_alloc_ifa(void)
  372. {
  373. struct dn_ifaddr *ifa;
  374. ifa = kzalloc(sizeof(*ifa), GFP_KERNEL);
  375. return ifa;
  376. }
  377. static __inline__ void dn_dev_free_ifa(struct dn_ifaddr *ifa)
  378. {
  379. kfree(ifa);
  380. }
  381. static void dn_dev_del_ifa(struct dn_dev *dn_db, struct dn_ifaddr **ifap, int destroy)
  382. {
  383. struct dn_ifaddr *ifa1 = *ifap;
  384. unsigned char mac_addr[6];
  385. struct net_device *dev = dn_db->dev;
  386. ASSERT_RTNL();
  387. *ifap = ifa1->ifa_next;
  388. if (dn_db->dev->type == ARPHRD_ETHER) {
  389. if (ifa1->ifa_local != dn_eth2dn(dev->dev_addr)) {
  390. dn_dn2eth(mac_addr, ifa1->ifa_local);
  391. dev_mc_delete(dev, mac_addr, ETH_ALEN, 0);
  392. }
  393. }
  394. rtmsg_ifa(RTM_DELADDR, ifa1);
  395. blocking_notifier_call_chain(&dnaddr_chain, NETDEV_DOWN, ifa1);
  396. if (destroy) {
  397. dn_dev_free_ifa(ifa1);
  398. if (dn_db->ifa_list == NULL)
  399. dn_dev_delete(dn_db->dev);
  400. }
  401. }
  402. static int dn_dev_insert_ifa(struct dn_dev *dn_db, struct dn_ifaddr *ifa)
  403. {
  404. struct net_device *dev = dn_db->dev;
  405. struct dn_ifaddr *ifa1;
  406. unsigned char mac_addr[6];
  407. ASSERT_RTNL();
  408. /* Check for duplicates */
  409. for(ifa1 = dn_db->ifa_list; ifa1; ifa1 = ifa1->ifa_next) {
  410. if (ifa1->ifa_local == ifa->ifa_local)
  411. return -EEXIST;
  412. }
  413. if (dev->type == ARPHRD_ETHER) {
  414. if (ifa->ifa_local != dn_eth2dn(dev->dev_addr)) {
  415. dn_dn2eth(mac_addr, ifa->ifa_local);
  416. dev_mc_add(dev, mac_addr, ETH_ALEN, 0);
  417. dev_mc_upload(dev);
  418. }
  419. }
  420. ifa->ifa_next = dn_db->ifa_list;
  421. dn_db->ifa_list = ifa;
  422. rtmsg_ifa(RTM_NEWADDR, ifa);
  423. blocking_notifier_call_chain(&dnaddr_chain, NETDEV_UP, ifa);
  424. return 0;
  425. }
  426. static int dn_dev_set_ifa(struct net_device *dev, struct dn_ifaddr *ifa)
  427. {
  428. struct dn_dev *dn_db = dev->dn_ptr;
  429. int rv;
  430. if (dn_db == NULL) {
  431. int err;
  432. dn_db = dn_dev_create(dev, &err);
  433. if (dn_db == NULL)
  434. return err;
  435. }
  436. ifa->ifa_dev = dn_db;
  437. if (dev->flags & IFF_LOOPBACK)
  438. ifa->ifa_scope = RT_SCOPE_HOST;
  439. rv = dn_dev_insert_ifa(dn_db, ifa);
  440. if (rv)
  441. dn_dev_free_ifa(ifa);
  442. return rv;
  443. }
  444. int dn_dev_ioctl(unsigned int cmd, void __user *arg)
  445. {
  446. char buffer[DN_IFREQ_SIZE];
  447. struct ifreq *ifr = (struct ifreq *)buffer;
  448. struct sockaddr_dn *sdn = (struct sockaddr_dn *)&ifr->ifr_addr;
  449. struct dn_dev *dn_db;
  450. struct net_device *dev;
  451. struct dn_ifaddr *ifa = NULL, **ifap = NULL;
  452. int ret = 0;
  453. if (copy_from_user(ifr, arg, DN_IFREQ_SIZE))
  454. return -EFAULT;
  455. ifr->ifr_name[IFNAMSIZ-1] = 0;
  456. #ifdef CONFIG_KMOD
  457. dev_load(ifr->ifr_name);
  458. #endif
  459. switch(cmd) {
  460. case SIOCGIFADDR:
  461. break;
  462. case SIOCSIFADDR:
  463. if (!capable(CAP_NET_ADMIN))
  464. return -EACCES;
  465. if (sdn->sdn_family != AF_DECnet)
  466. return -EINVAL;
  467. break;
  468. default:
  469. return -EINVAL;
  470. }
  471. rtnl_lock();
  472. if ((dev = __dev_get_by_name(ifr->ifr_name)) == NULL) {
  473. ret = -ENODEV;
  474. goto done;
  475. }
  476. if ((dn_db = dev->dn_ptr) != NULL) {
  477. for (ifap = &dn_db->ifa_list; (ifa=*ifap) != NULL; ifap = &ifa->ifa_next)
  478. if (strcmp(ifr->ifr_name, ifa->ifa_label) == 0)
  479. break;
  480. }
  481. if (ifa == NULL && cmd != SIOCSIFADDR) {
  482. ret = -EADDRNOTAVAIL;
  483. goto done;
  484. }
  485. switch(cmd) {
  486. case SIOCGIFADDR:
  487. *((__le16 *)sdn->sdn_nodeaddr) = ifa->ifa_local;
  488. goto rarok;
  489. case SIOCSIFADDR:
  490. if (!ifa) {
  491. if ((ifa = dn_dev_alloc_ifa()) == NULL) {
  492. ret = -ENOBUFS;
  493. break;
  494. }
  495. memcpy(ifa->ifa_label, dev->name, IFNAMSIZ);
  496. } else {
  497. if (ifa->ifa_local == dn_saddr2dn(sdn))
  498. break;
  499. dn_dev_del_ifa(dn_db, ifap, 0);
  500. }
  501. ifa->ifa_local = ifa->ifa_address = dn_saddr2dn(sdn);
  502. ret = dn_dev_set_ifa(dev, ifa);
  503. }
  504. done:
  505. rtnl_unlock();
  506. return ret;
  507. rarok:
  508. if (copy_to_user(arg, ifr, DN_IFREQ_SIZE))
  509. ret = -EFAULT;
  510. goto done;
  511. }
  512. struct net_device *dn_dev_get_default(void)
  513. {
  514. struct net_device *dev;
  515. read_lock(&dndev_lock);
  516. dev = decnet_default_device;
  517. if (dev) {
  518. if (dev->dn_ptr)
  519. dev_hold(dev);
  520. else
  521. dev = NULL;
  522. }
  523. read_unlock(&dndev_lock);
  524. return dev;
  525. }
  526. int dn_dev_set_default(struct net_device *dev, int force)
  527. {
  528. struct net_device *old = NULL;
  529. int rv = -EBUSY;
  530. if (!dev->dn_ptr)
  531. return -ENODEV;
  532. write_lock(&dndev_lock);
  533. if (force || decnet_default_device == NULL) {
  534. old = decnet_default_device;
  535. decnet_default_device = dev;
  536. rv = 0;
  537. }
  538. write_unlock(&dndev_lock);
  539. if (old)
  540. dev_put(old);
  541. return rv;
  542. }
  543. static void dn_dev_check_default(struct net_device *dev)
  544. {
  545. write_lock(&dndev_lock);
  546. if (dev == decnet_default_device) {
  547. decnet_default_device = NULL;
  548. } else {
  549. dev = NULL;
  550. }
  551. write_unlock(&dndev_lock);
  552. if (dev)
  553. dev_put(dev);
  554. }
  555. static struct dn_dev *dn_dev_by_index(int ifindex)
  556. {
  557. struct net_device *dev;
  558. struct dn_dev *dn_dev = NULL;
  559. dev = dev_get_by_index(ifindex);
  560. if (dev) {
  561. dn_dev = dev->dn_ptr;
  562. dev_put(dev);
  563. }
  564. return dn_dev;
  565. }
  566. static int dn_dev_rtm_deladdr(struct sk_buff *skb, struct nlmsghdr *nlh, void *arg)
  567. {
  568. struct rtattr **rta = arg;
  569. struct dn_dev *dn_db;
  570. struct ifaddrmsg *ifm = NLMSG_DATA(nlh);
  571. struct dn_ifaddr *ifa, **ifap;
  572. if ((dn_db = dn_dev_by_index(ifm->ifa_index)) == NULL)
  573. return -EADDRNOTAVAIL;
  574. for(ifap = &dn_db->ifa_list; (ifa=*ifap) != NULL; ifap = &ifa->ifa_next) {
  575. void *tmp = rta[IFA_LOCAL-1];
  576. if ((tmp && memcmp(RTA_DATA(tmp), &ifa->ifa_local, 2)) ||
  577. (rta[IFA_LABEL-1] && rtattr_strcmp(rta[IFA_LABEL-1], ifa->ifa_label)))
  578. continue;
  579. dn_dev_del_ifa(dn_db, ifap, 1);
  580. return 0;
  581. }
  582. return -EADDRNOTAVAIL;
  583. }
  584. static int dn_dev_rtm_newaddr(struct sk_buff *skb, struct nlmsghdr *nlh, void *arg)
  585. {
  586. struct rtattr **rta = arg;
  587. struct net_device *dev;
  588. struct dn_dev *dn_db;
  589. struct ifaddrmsg *ifm = NLMSG_DATA(nlh);
  590. struct dn_ifaddr *ifa;
  591. int rv;
  592. if (rta[IFA_LOCAL-1] == NULL)
  593. return -EINVAL;
  594. if ((dev = __dev_get_by_index(ifm->ifa_index)) == NULL)
  595. return -ENODEV;
  596. if ((dn_db = dev->dn_ptr) == NULL) {
  597. int err;
  598. dn_db = dn_dev_create(dev, &err);
  599. if (!dn_db)
  600. return err;
  601. }
  602. if ((ifa = dn_dev_alloc_ifa()) == NULL)
  603. return -ENOBUFS;
  604. if (!rta[IFA_ADDRESS - 1])
  605. rta[IFA_ADDRESS - 1] = rta[IFA_LOCAL - 1];
  606. memcpy(&ifa->ifa_local, RTA_DATA(rta[IFA_LOCAL-1]), 2);
  607. memcpy(&ifa->ifa_address, RTA_DATA(rta[IFA_ADDRESS-1]), 2);
  608. ifa->ifa_flags = ifm->ifa_flags;
  609. ifa->ifa_scope = ifm->ifa_scope;
  610. ifa->ifa_dev = dn_db;
  611. if (rta[IFA_LABEL-1])
  612. rtattr_strlcpy(ifa->ifa_label, rta[IFA_LABEL-1], IFNAMSIZ);
  613. else
  614. memcpy(ifa->ifa_label, dev->name, IFNAMSIZ);
  615. rv = dn_dev_insert_ifa(dn_db, ifa);
  616. if (rv)
  617. dn_dev_free_ifa(ifa);
  618. return rv;
  619. }
  620. static int dn_dev_fill_ifaddr(struct sk_buff *skb, struct dn_ifaddr *ifa,
  621. u32 pid, u32 seq, int event, unsigned int flags)
  622. {
  623. struct ifaddrmsg *ifm;
  624. struct nlmsghdr *nlh;
  625. unsigned char *b = skb->tail;
  626. nlh = NLMSG_NEW(skb, pid, seq, event, sizeof(*ifm), flags);
  627. ifm = NLMSG_DATA(nlh);
  628. ifm->ifa_family = AF_DECnet;
  629. ifm->ifa_prefixlen = 16;
  630. ifm->ifa_flags = ifa->ifa_flags | IFA_F_PERMANENT;
  631. ifm->ifa_scope = ifa->ifa_scope;
  632. ifm->ifa_index = ifa->ifa_dev->dev->ifindex;
  633. if (ifa->ifa_address)
  634. RTA_PUT(skb, IFA_ADDRESS, 2, &ifa->ifa_address);
  635. if (ifa->ifa_local)
  636. RTA_PUT(skb, IFA_LOCAL, 2, &ifa->ifa_local);
  637. if (ifa->ifa_label[0])
  638. RTA_PUT(skb, IFA_LABEL, IFNAMSIZ, &ifa->ifa_label);
  639. nlh->nlmsg_len = skb->tail - b;
  640. return skb->len;
  641. nlmsg_failure:
  642. rtattr_failure:
  643. skb_trim(skb, b - skb->data);
  644. return -1;
  645. }
  646. static void rtmsg_ifa(int event, struct dn_ifaddr *ifa)
  647. {
  648. struct sk_buff *skb;
  649. int payload = sizeof(struct ifaddrmsg) + 128;
  650. int err = -ENOBUFS;
  651. skb = alloc_skb(nlmsg_total_size(payload), GFP_KERNEL);
  652. if (skb == NULL)
  653. goto errout;
  654. err = dn_dev_fill_ifaddr(skb, ifa, 0, 0, event, 0);
  655. if (err < 0) {
  656. kfree_skb(skb);
  657. goto errout;
  658. }
  659. err = rtnl_notify(skb, 0, RTNLGRP_DECnet_IFADDR, NULL, GFP_KERNEL);
  660. errout:
  661. if (err < 0)
  662. rtnl_set_sk_err(RTNLGRP_DECnet_IFADDR, err);
  663. }
  664. static int dn_dev_dump_ifaddr(struct sk_buff *skb, struct netlink_callback *cb)
  665. {
  666. int idx, dn_idx;
  667. int s_idx, s_dn_idx;
  668. struct net_device *dev;
  669. struct dn_dev *dn_db;
  670. struct dn_ifaddr *ifa;
  671. s_idx = cb->args[0];
  672. s_dn_idx = dn_idx = cb->args[1];
  673. read_lock(&dev_base_lock);
  674. for(dev = dev_base, idx = 0; dev; dev = dev->next, idx++) {
  675. if (idx < s_idx)
  676. continue;
  677. if (idx > s_idx)
  678. s_dn_idx = 0;
  679. if ((dn_db = dev->dn_ptr) == NULL)
  680. continue;
  681. for(ifa = dn_db->ifa_list, dn_idx = 0; ifa; ifa = ifa->ifa_next, dn_idx++) {
  682. if (dn_idx < s_dn_idx)
  683. continue;
  684. if (dn_dev_fill_ifaddr(skb, ifa,
  685. NETLINK_CB(cb->skb).pid,
  686. cb->nlh->nlmsg_seq,
  687. RTM_NEWADDR,
  688. NLM_F_MULTI) <= 0)
  689. goto done;
  690. }
  691. }
  692. done:
  693. read_unlock(&dev_base_lock);
  694. cb->args[0] = idx;
  695. cb->args[1] = dn_idx;
  696. return skb->len;
  697. }
  698. static int dn_dev_get_first(struct net_device *dev, __le16 *addr)
  699. {
  700. struct dn_dev *dn_db = (struct dn_dev *)dev->dn_ptr;
  701. struct dn_ifaddr *ifa;
  702. int rv = -ENODEV;
  703. if (dn_db == NULL)
  704. goto out;
  705. ifa = dn_db->ifa_list;
  706. if (ifa != NULL) {
  707. *addr = ifa->ifa_local;
  708. rv = 0;
  709. }
  710. out:
  711. return rv;
  712. }
  713. /*
  714. * Find a default address to bind to.
  715. *
  716. * This is one of those areas where the initial VMS concepts don't really
  717. * map onto the Linux concepts, and since we introduced multiple addresses
  718. * per interface we have to cope with slightly odd ways of finding out what
  719. * "our address" really is. Mostly it's not a problem; for this we just guess
  720. * a sensible default. Eventually the routing code will take care of all the
  721. * nasties for us I hope.
  722. */
  723. int dn_dev_bind_default(__le16 *addr)
  724. {
  725. struct net_device *dev;
  726. int rv;
  727. dev = dn_dev_get_default();
  728. last_chance:
  729. if (dev) {
  730. read_lock(&dev_base_lock);
  731. rv = dn_dev_get_first(dev, addr);
  732. read_unlock(&dev_base_lock);
  733. dev_put(dev);
  734. if (rv == 0 || dev == &loopback_dev)
  735. return rv;
  736. }
  737. dev = &loopback_dev;
  738. dev_hold(dev);
  739. goto last_chance;
  740. }
  741. static void dn_send_endnode_hello(struct net_device *dev, struct dn_ifaddr *ifa)
  742. {
  743. struct endnode_hello_message *msg;
  744. struct sk_buff *skb = NULL;
  745. __le16 *pktlen;
  746. struct dn_dev *dn_db = (struct dn_dev *)dev->dn_ptr;
  747. if ((skb = dn_alloc_skb(NULL, sizeof(*msg), GFP_ATOMIC)) == NULL)
  748. return;
  749. skb->dev = dev;
  750. msg = (struct endnode_hello_message *)skb_put(skb,sizeof(*msg));
  751. msg->msgflg = 0x0D;
  752. memcpy(msg->tiver, dn_eco_version, 3);
  753. dn_dn2eth(msg->id, ifa->ifa_local);
  754. msg->iinfo = DN_RT_INFO_ENDN;
  755. msg->blksize = dn_htons(mtu2blksize(dev));
  756. msg->area = 0x00;
  757. memset(msg->seed, 0, 8);
  758. memcpy(msg->neighbor, dn_hiord, ETH_ALEN);
  759. if (dn_db->router) {
  760. struct dn_neigh *dn = (struct dn_neigh *)dn_db->router;
  761. dn_dn2eth(msg->neighbor, dn->addr);
  762. }
  763. msg->timer = dn_htons((unsigned short)dn_db->parms.t3);
  764. msg->mpd = 0x00;
  765. msg->datalen = 0x02;
  766. memset(msg->data, 0xAA, 2);
  767. pktlen = (__le16 *)skb_push(skb,2);
  768. *pktlen = dn_htons(skb->len - 2);
  769. skb->nh.raw = skb->data;
  770. dn_rt_finish_output(skb, dn_rt_all_rt_mcast, msg->id);
  771. }
  772. #define DRDELAY (5 * HZ)
  773. static int dn_am_i_a_router(struct dn_neigh *dn, struct dn_dev *dn_db, struct dn_ifaddr *ifa)
  774. {
  775. /* First check time since device went up */
  776. if ((jiffies - dn_db->uptime) < DRDELAY)
  777. return 0;
  778. /* If there is no router, then yes... */
  779. if (!dn_db->router)
  780. return 1;
  781. /* otherwise only if we have a higher priority or.. */
  782. if (dn->priority < dn_db->parms.priority)
  783. return 1;
  784. /* if we have equal priority and a higher node number */
  785. if (dn->priority != dn_db->parms.priority)
  786. return 0;
  787. if (dn_ntohs(dn->addr) < dn_ntohs(ifa->ifa_local))
  788. return 1;
  789. return 0;
  790. }
  791. static void dn_send_router_hello(struct net_device *dev, struct dn_ifaddr *ifa)
  792. {
  793. int n;
  794. struct dn_dev *dn_db = dev->dn_ptr;
  795. struct dn_neigh *dn = (struct dn_neigh *)dn_db->router;
  796. struct sk_buff *skb;
  797. size_t size;
  798. unsigned char *ptr;
  799. unsigned char *i1, *i2;
  800. __le16 *pktlen;
  801. char *src;
  802. if (mtu2blksize(dev) < (26 + 7))
  803. return;
  804. n = mtu2blksize(dev) - 26;
  805. n /= 7;
  806. if (n > 32)
  807. n = 32;
  808. size = 2 + 26 + 7 * n;
  809. if ((skb = dn_alloc_skb(NULL, size, GFP_ATOMIC)) == NULL)
  810. return;
  811. skb->dev = dev;
  812. ptr = skb_put(skb, size);
  813. *ptr++ = DN_RT_PKT_CNTL | DN_RT_PKT_ERTH;
  814. *ptr++ = 2; /* ECO */
  815. *ptr++ = 0;
  816. *ptr++ = 0;
  817. dn_dn2eth(ptr, ifa->ifa_local);
  818. src = ptr;
  819. ptr += ETH_ALEN;
  820. *ptr++ = dn_db->parms.forwarding == 1 ?
  821. DN_RT_INFO_L1RT : DN_RT_INFO_L2RT;
  822. *((__le16 *)ptr) = dn_htons(mtu2blksize(dev));
  823. ptr += 2;
  824. *ptr++ = dn_db->parms.priority; /* Priority */
  825. *ptr++ = 0; /* Area: Reserved */
  826. *((__le16 *)ptr) = dn_htons((unsigned short)dn_db->parms.t3);
  827. ptr += 2;
  828. *ptr++ = 0; /* MPD: Reserved */
  829. i1 = ptr++;
  830. memset(ptr, 0, 7); /* Name: Reserved */
  831. ptr += 7;
  832. i2 = ptr++;
  833. n = dn_neigh_elist(dev, ptr, n);
  834. *i2 = 7 * n;
  835. *i1 = 8 + *i2;
  836. skb_trim(skb, (27 + *i2));
  837. pktlen = (__le16 *)skb_push(skb, 2);
  838. *pktlen = dn_htons(skb->len - 2);
  839. skb->nh.raw = skb->data;
  840. if (dn_am_i_a_router(dn, dn_db, ifa)) {
  841. struct sk_buff *skb2 = skb_copy(skb, GFP_ATOMIC);
  842. if (skb2) {
  843. dn_rt_finish_output(skb2, dn_rt_all_end_mcast, src);
  844. }
  845. }
  846. dn_rt_finish_output(skb, dn_rt_all_rt_mcast, src);
  847. }
  848. static void dn_send_brd_hello(struct net_device *dev, struct dn_ifaddr *ifa)
  849. {
  850. struct dn_dev *dn_db = (struct dn_dev *)dev->dn_ptr;
  851. if (dn_db->parms.forwarding == 0)
  852. dn_send_endnode_hello(dev, ifa);
  853. else
  854. dn_send_router_hello(dev, ifa);
  855. }
  856. static void dn_send_ptp_hello(struct net_device *dev, struct dn_ifaddr *ifa)
  857. {
  858. int tdlen = 16;
  859. int size = dev->hard_header_len + 2 + 4 + tdlen;
  860. struct sk_buff *skb = dn_alloc_skb(NULL, size, GFP_ATOMIC);
  861. int i;
  862. unsigned char *ptr;
  863. char src[ETH_ALEN];
  864. if (skb == NULL)
  865. return ;
  866. skb->dev = dev;
  867. skb_push(skb, dev->hard_header_len);
  868. ptr = skb_put(skb, 2 + 4 + tdlen);
  869. *ptr++ = DN_RT_PKT_HELO;
  870. *((__le16 *)ptr) = ifa->ifa_local;
  871. ptr += 2;
  872. *ptr++ = tdlen;
  873. for(i = 0; i < tdlen; i++)
  874. *ptr++ = 0252;
  875. dn_dn2eth(src, ifa->ifa_local);
  876. dn_rt_finish_output(skb, dn_rt_all_rt_mcast, src);
  877. }
  878. static int dn_eth_up(struct net_device *dev)
  879. {
  880. struct dn_dev *dn_db = dev->dn_ptr;
  881. if (dn_db->parms.forwarding == 0)
  882. dev_mc_add(dev, dn_rt_all_end_mcast, ETH_ALEN, 0);
  883. else
  884. dev_mc_add(dev, dn_rt_all_rt_mcast, ETH_ALEN, 0);
  885. dev_mc_upload(dev);
  886. dn_db->use_long = 1;
  887. return 0;
  888. }
  889. static void dn_eth_down(struct net_device *dev)
  890. {
  891. struct dn_dev *dn_db = dev->dn_ptr;
  892. if (dn_db->parms.forwarding == 0)
  893. dev_mc_delete(dev, dn_rt_all_end_mcast, ETH_ALEN, 0);
  894. else
  895. dev_mc_delete(dev, dn_rt_all_rt_mcast, ETH_ALEN, 0);
  896. }
  897. static void dn_dev_set_timer(struct net_device *dev);
  898. static void dn_dev_timer_func(unsigned long arg)
  899. {
  900. struct net_device *dev = (struct net_device *)arg;
  901. struct dn_dev *dn_db = dev->dn_ptr;
  902. struct dn_ifaddr *ifa;
  903. if (dn_db->t3 <= dn_db->parms.t2) {
  904. if (dn_db->parms.timer3) {
  905. for(ifa = dn_db->ifa_list; ifa; ifa = ifa->ifa_next) {
  906. if (!(ifa->ifa_flags & IFA_F_SECONDARY))
  907. dn_db->parms.timer3(dev, ifa);
  908. }
  909. }
  910. dn_db->t3 = dn_db->parms.t3;
  911. } else {
  912. dn_db->t3 -= dn_db->parms.t2;
  913. }
  914. dn_dev_set_timer(dev);
  915. }
  916. static void dn_dev_set_timer(struct net_device *dev)
  917. {
  918. struct dn_dev *dn_db = dev->dn_ptr;
  919. if (dn_db->parms.t2 > dn_db->parms.t3)
  920. dn_db->parms.t2 = dn_db->parms.t3;
  921. dn_db->timer.data = (unsigned long)dev;
  922. dn_db->timer.function = dn_dev_timer_func;
  923. dn_db->timer.expires = jiffies + (dn_db->parms.t2 * HZ);
  924. add_timer(&dn_db->timer);
  925. }
  926. struct dn_dev *dn_dev_create(struct net_device *dev, int *err)
  927. {
  928. int i;
  929. struct dn_dev_parms *p = dn_dev_list;
  930. struct dn_dev *dn_db;
  931. for(i = 0; i < DN_DEV_LIST_SIZE; i++, p++) {
  932. if (p->type == dev->type)
  933. break;
  934. }
  935. *err = -ENODEV;
  936. if (i == DN_DEV_LIST_SIZE)
  937. return NULL;
  938. *err = -ENOBUFS;
  939. if ((dn_db = kzalloc(sizeof(struct dn_dev), GFP_ATOMIC)) == NULL)
  940. return NULL;
  941. memcpy(&dn_db->parms, p, sizeof(struct dn_dev_parms));
  942. smp_wmb();
  943. dev->dn_ptr = dn_db;
  944. dn_db->dev = dev;
  945. init_timer(&dn_db->timer);
  946. dn_db->uptime = jiffies;
  947. if (dn_db->parms.up) {
  948. if (dn_db->parms.up(dev) < 0) {
  949. dev->dn_ptr = NULL;
  950. kfree(dn_db);
  951. return NULL;
  952. }
  953. }
  954. dn_db->neigh_parms = neigh_parms_alloc(dev, &dn_neigh_table);
  955. dn_dev_sysctl_register(dev, &dn_db->parms);
  956. dn_dev_set_timer(dev);
  957. *err = 0;
  958. return dn_db;
  959. }
  960. /*
  961. * This processes a device up event. We only start up
  962. * the loopback device & ethernet devices with correct
  963. * MAC addreses automatically. Others must be started
  964. * specifically.
  965. *
  966. * FIXME: How should we configure the loopback address ? If we could dispense
  967. * with using decnet_address here and for autobind, it will be one less thing
  968. * for users to worry about setting up.
  969. */
  970. void dn_dev_up(struct net_device *dev)
  971. {
  972. struct dn_ifaddr *ifa;
  973. __le16 addr = decnet_address;
  974. int maybe_default = 0;
  975. struct dn_dev *dn_db = (struct dn_dev *)dev->dn_ptr;
  976. if ((dev->type != ARPHRD_ETHER) && (dev->type != ARPHRD_LOOPBACK))
  977. return;
  978. /*
  979. * Need to ensure that loopback device has a dn_db attached to it
  980. * to allow creation of neighbours against it, even though it might
  981. * not have a local address of its own. Might as well do the same for
  982. * all autoconfigured interfaces.
  983. */
  984. if (dn_db == NULL) {
  985. int err;
  986. dn_db = dn_dev_create(dev, &err);
  987. if (dn_db == NULL)
  988. return;
  989. }
  990. if (dev->type == ARPHRD_ETHER) {
  991. if (memcmp(dev->dev_addr, dn_hiord, 4) != 0)
  992. return;
  993. addr = dn_eth2dn(dev->dev_addr);
  994. maybe_default = 1;
  995. }
  996. if (addr == 0)
  997. return;
  998. if ((ifa = dn_dev_alloc_ifa()) == NULL)
  999. return;
  1000. ifa->ifa_local = ifa->ifa_address = addr;
  1001. ifa->ifa_flags = 0;
  1002. ifa->ifa_scope = RT_SCOPE_UNIVERSE;
  1003. strcpy(ifa->ifa_label, dev->name);
  1004. dn_dev_set_ifa(dev, ifa);
  1005. /*
  1006. * Automagically set the default device to the first automatically
  1007. * configured ethernet card in the system.
  1008. */
  1009. if (maybe_default) {
  1010. dev_hold(dev);
  1011. if (dn_dev_set_default(dev, 0))
  1012. dev_put(dev);
  1013. }
  1014. }
  1015. static void dn_dev_delete(struct net_device *dev)
  1016. {
  1017. struct dn_dev *dn_db = dev->dn_ptr;
  1018. if (dn_db == NULL)
  1019. return;
  1020. del_timer_sync(&dn_db->timer);
  1021. dn_dev_sysctl_unregister(&dn_db->parms);
  1022. dn_dev_check_default(dev);
  1023. neigh_ifdown(&dn_neigh_table, dev);
  1024. if (dn_db->parms.down)
  1025. dn_db->parms.down(dev);
  1026. dev->dn_ptr = NULL;
  1027. neigh_parms_release(&dn_neigh_table, dn_db->neigh_parms);
  1028. neigh_ifdown(&dn_neigh_table, dev);
  1029. if (dn_db->router)
  1030. neigh_release(dn_db->router);
  1031. if (dn_db->peer)
  1032. neigh_release(dn_db->peer);
  1033. kfree(dn_db);
  1034. }
  1035. void dn_dev_down(struct net_device *dev)
  1036. {
  1037. struct dn_dev *dn_db = dev->dn_ptr;
  1038. struct dn_ifaddr *ifa;
  1039. if (dn_db == NULL)
  1040. return;
  1041. while((ifa = dn_db->ifa_list) != NULL) {
  1042. dn_dev_del_ifa(dn_db, &dn_db->ifa_list, 0);
  1043. dn_dev_free_ifa(ifa);
  1044. }
  1045. dn_dev_delete(dev);
  1046. }
  1047. void dn_dev_init_pkt(struct sk_buff *skb)
  1048. {
  1049. return;
  1050. }
  1051. void dn_dev_veri_pkt(struct sk_buff *skb)
  1052. {
  1053. return;
  1054. }
  1055. void dn_dev_hello(struct sk_buff *skb)
  1056. {
  1057. return;
  1058. }
  1059. void dn_dev_devices_off(void)
  1060. {
  1061. struct net_device *dev;
  1062. rtnl_lock();
  1063. for(dev = dev_base; dev; dev = dev->next)
  1064. dn_dev_down(dev);
  1065. rtnl_unlock();
  1066. }
  1067. void dn_dev_devices_on(void)
  1068. {
  1069. struct net_device *dev;
  1070. rtnl_lock();
  1071. for(dev = dev_base; dev; dev = dev->next) {
  1072. if (dev->flags & IFF_UP)
  1073. dn_dev_up(dev);
  1074. }
  1075. rtnl_unlock();
  1076. }
  1077. int register_dnaddr_notifier(struct notifier_block *nb)
  1078. {
  1079. return blocking_notifier_chain_register(&dnaddr_chain, nb);
  1080. }
  1081. int unregister_dnaddr_notifier(struct notifier_block *nb)
  1082. {
  1083. return blocking_notifier_chain_unregister(&dnaddr_chain, nb);
  1084. }
  1085. #ifdef CONFIG_PROC_FS
  1086. static inline struct net_device *dn_dev_get_next(struct seq_file *seq, struct net_device *dev)
  1087. {
  1088. do {
  1089. dev = dev->next;
  1090. } while(dev && !dev->dn_ptr);
  1091. return dev;
  1092. }
  1093. static struct net_device *dn_dev_get_idx(struct seq_file *seq, loff_t pos)
  1094. {
  1095. struct net_device *dev;
  1096. dev = dev_base;
  1097. if (dev && !dev->dn_ptr)
  1098. dev = dn_dev_get_next(seq, dev);
  1099. if (pos) {
  1100. while(dev && (dev = dn_dev_get_next(seq, dev)))
  1101. --pos;
  1102. }
  1103. return dev;
  1104. }
  1105. static void *dn_dev_seq_start(struct seq_file *seq, loff_t *pos)
  1106. {
  1107. if (*pos) {
  1108. struct net_device *dev;
  1109. read_lock(&dev_base_lock);
  1110. dev = dn_dev_get_idx(seq, *pos - 1);
  1111. if (dev == NULL)
  1112. read_unlock(&dev_base_lock);
  1113. return dev;
  1114. }
  1115. return SEQ_START_TOKEN;
  1116. }
  1117. static void *dn_dev_seq_next(struct seq_file *seq, void *v, loff_t *pos)
  1118. {
  1119. struct net_device *dev = v;
  1120. loff_t one = 1;
  1121. if (v == SEQ_START_TOKEN) {
  1122. dev = dn_dev_seq_start(seq, &one);
  1123. } else {
  1124. dev = dn_dev_get_next(seq, dev);
  1125. if (dev == NULL)
  1126. read_unlock(&dev_base_lock);
  1127. }
  1128. ++*pos;
  1129. return dev;
  1130. }
  1131. static void dn_dev_seq_stop(struct seq_file *seq, void *v)
  1132. {
  1133. if (v && v != SEQ_START_TOKEN)
  1134. read_unlock(&dev_base_lock);
  1135. }
  1136. static char *dn_type2asc(char type)
  1137. {
  1138. switch(type) {
  1139. case DN_DEV_BCAST:
  1140. return "B";
  1141. case DN_DEV_UCAST:
  1142. return "U";
  1143. case DN_DEV_MPOINT:
  1144. return "M";
  1145. }
  1146. return "?";
  1147. }
  1148. static int dn_dev_seq_show(struct seq_file *seq, void *v)
  1149. {
  1150. if (v == SEQ_START_TOKEN)
  1151. seq_puts(seq, "Name Flags T1 Timer1 T3 Timer3 BlkSize Pri State DevType Router Peer\n");
  1152. else {
  1153. struct net_device *dev = v;
  1154. char peer_buf[DN_ASCBUF_LEN];
  1155. char router_buf[DN_ASCBUF_LEN];
  1156. struct dn_dev *dn_db = dev->dn_ptr;
  1157. seq_printf(seq, "%-8s %1s %04u %04u %04lu %04lu"
  1158. " %04hu %03d %02x %-10s %-7s %-7s\n",
  1159. dev->name ? dev->name : "???",
  1160. dn_type2asc(dn_db->parms.mode),
  1161. 0, 0,
  1162. dn_db->t3, dn_db->parms.t3,
  1163. mtu2blksize(dev),
  1164. dn_db->parms.priority,
  1165. dn_db->parms.state, dn_db->parms.name,
  1166. dn_db->router ? dn_addr2asc(dn_ntohs(*(__le16 *)dn_db->router->primary_key), router_buf) : "",
  1167. dn_db->peer ? dn_addr2asc(dn_ntohs(*(__le16 *)dn_db->peer->primary_key), peer_buf) : "");
  1168. }
  1169. return 0;
  1170. }
  1171. static struct seq_operations dn_dev_seq_ops = {
  1172. .start = dn_dev_seq_start,
  1173. .next = dn_dev_seq_next,
  1174. .stop = dn_dev_seq_stop,
  1175. .show = dn_dev_seq_show,
  1176. };
  1177. static int dn_dev_seq_open(struct inode *inode, struct file *file)
  1178. {
  1179. return seq_open(file, &dn_dev_seq_ops);
  1180. }
  1181. static struct file_operations dn_dev_seq_fops = {
  1182. .owner = THIS_MODULE,
  1183. .open = dn_dev_seq_open,
  1184. .read = seq_read,
  1185. .llseek = seq_lseek,
  1186. .release = seq_release,
  1187. };
  1188. #endif /* CONFIG_PROC_FS */
  1189. static struct rtnetlink_link dnet_rtnetlink_table[RTM_NR_MSGTYPES] =
  1190. {
  1191. [RTM_NEWADDR - RTM_BASE] = { .doit = dn_dev_rtm_newaddr, },
  1192. [RTM_DELADDR - RTM_BASE] = { .doit = dn_dev_rtm_deladdr, },
  1193. [RTM_GETADDR - RTM_BASE] = { .dumpit = dn_dev_dump_ifaddr, },
  1194. #ifdef CONFIG_DECNET_ROUTER
  1195. [RTM_NEWROUTE - RTM_BASE] = { .doit = dn_fib_rtm_newroute, },
  1196. [RTM_DELROUTE - RTM_BASE] = { .doit = dn_fib_rtm_delroute, },
  1197. [RTM_GETROUTE - RTM_BASE] = { .doit = dn_cache_getroute,
  1198. .dumpit = dn_fib_dump, },
  1199. [RTM_GETRULE - RTM_BASE] = { .dumpit = dn_fib_dump_rules, },
  1200. #else
  1201. [RTM_GETROUTE - RTM_BASE] = { .doit = dn_cache_getroute,
  1202. .dumpit = dn_cache_dump, },
  1203. #endif
  1204. };
  1205. static int __initdata addr[2];
  1206. module_param_array(addr, int, NULL, 0444);
  1207. MODULE_PARM_DESC(addr, "The DECnet address of this machine: area,node");
  1208. void __init dn_dev_init(void)
  1209. {
  1210. if (addr[0] > 63 || addr[0] < 0) {
  1211. printk(KERN_ERR "DECnet: Area must be between 0 and 63");
  1212. return;
  1213. }
  1214. if (addr[1] > 1023 || addr[1] < 0) {
  1215. printk(KERN_ERR "DECnet: Node must be between 0 and 1023");
  1216. return;
  1217. }
  1218. decnet_address = dn_htons((addr[0] << 10) | addr[1]);
  1219. dn_dev_devices_on();
  1220. rtnetlink_links[PF_DECnet] = dnet_rtnetlink_table;
  1221. proc_net_fops_create("decnet_dev", S_IRUGO, &dn_dev_seq_fops);
  1222. #ifdef CONFIG_SYSCTL
  1223. {
  1224. int i;
  1225. for(i = 0; i < DN_DEV_LIST_SIZE; i++)
  1226. dn_dev_sysctl_register(NULL, &dn_dev_list[i]);
  1227. }
  1228. #endif /* CONFIG_SYSCTL */
  1229. }
  1230. void __exit dn_dev_cleanup(void)
  1231. {
  1232. rtnetlink_links[PF_DECnet] = NULL;
  1233. #ifdef CONFIG_SYSCTL
  1234. {
  1235. int i;
  1236. for(i = 0; i < DN_DEV_LIST_SIZE; i++)
  1237. dn_dev_sysctl_unregister(&dn_dev_list[i]);
  1238. }
  1239. #endif /* CONFIG_SYSCTL */
  1240. proc_net_remove("decnet_dev");
  1241. dn_dev_devices_off();
  1242. }