skbuff.c 51 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092
  1. /*
  2. * Routines having to do with the 'struct sk_buff' memory handlers.
  3. *
  4. * Authors: Alan Cox <iiitac@pyr.swan.ac.uk>
  5. * Florian La Roche <rzsfl@rz.uni-sb.de>
  6. *
  7. * Version: $Id: skbuff.c,v 1.90 2001/11/07 05:56:19 davem Exp $
  8. *
  9. * Fixes:
  10. * Alan Cox : Fixed the worst of the load
  11. * balancer bugs.
  12. * Dave Platt : Interrupt stacking fix.
  13. * Richard Kooijman : Timestamp fixes.
  14. * Alan Cox : Changed buffer format.
  15. * Alan Cox : destructor hook for AF_UNIX etc.
  16. * Linus Torvalds : Better skb_clone.
  17. * Alan Cox : Added skb_copy.
  18. * Alan Cox : Added all the changed routines Linus
  19. * only put in the headers
  20. * Ray VanTassle : Fixed --skb->lock in free
  21. * Alan Cox : skb_copy copy arp field
  22. * Andi Kleen : slabified it.
  23. * Robert Olsson : Removed skb_head_pool
  24. *
  25. * NOTE:
  26. * The __skb_ routines should be called with interrupts
  27. * disabled, or you better be *real* sure that the operation is atomic
  28. * with respect to whatever list is being frobbed (e.g. via lock_sock()
  29. * or via disabling bottom half handlers, etc).
  30. *
  31. * This program is free software; you can redistribute it and/or
  32. * modify it under the terms of the GNU General Public License
  33. * as published by the Free Software Foundation; either version
  34. * 2 of the License, or (at your option) any later version.
  35. */
  36. /*
  37. * The functions in this file will not compile correctly with gcc 2.4.x
  38. */
  39. #include <linux/module.h>
  40. #include <linux/types.h>
  41. #include <linux/kernel.h>
  42. #include <linux/sched.h>
  43. #include <linux/mm.h>
  44. #include <linux/interrupt.h>
  45. #include <linux/in.h>
  46. #include <linux/inet.h>
  47. #include <linux/slab.h>
  48. #include <linux/netdevice.h>
  49. #ifdef CONFIG_NET_CLS_ACT
  50. #include <net/pkt_sched.h>
  51. #endif
  52. #include <linux/string.h>
  53. #include <linux/skbuff.h>
  54. #include <linux/cache.h>
  55. #include <linux/rtnetlink.h>
  56. #include <linux/init.h>
  57. #include <linux/highmem.h>
  58. #include <net/protocol.h>
  59. #include <net/dst.h>
  60. #include <net/sock.h>
  61. #include <net/checksum.h>
  62. #include <net/xfrm.h>
  63. #include <asm/uaccess.h>
  64. #include <asm/system.h>
  65. static kmem_cache_t *skbuff_head_cache __read_mostly;
  66. static kmem_cache_t *skbuff_fclone_cache __read_mostly;
  67. /*
  68. * Keep out-of-line to prevent kernel bloat.
  69. * __builtin_return_address is not used because it is not always
  70. * reliable.
  71. */
  72. /**
  73. * skb_over_panic - private function
  74. * @skb: buffer
  75. * @sz: size
  76. * @here: address
  77. *
  78. * Out of line support code for skb_put(). Not user callable.
  79. */
  80. void skb_over_panic(struct sk_buff *skb, int sz, void *here)
  81. {
  82. printk(KERN_EMERG "skb_over_panic: text:%p len:%d put:%d head:%p "
  83. "data:%p tail:%p end:%p dev:%s\n",
  84. here, skb->len, sz, skb->head, skb->data, skb->tail, skb->end,
  85. skb->dev ? skb->dev->name : "<NULL>");
  86. BUG();
  87. }
  88. /**
  89. * skb_under_panic - private function
  90. * @skb: buffer
  91. * @sz: size
  92. * @here: address
  93. *
  94. * Out of line support code for skb_push(). Not user callable.
  95. */
  96. void skb_under_panic(struct sk_buff *skb, int sz, void *here)
  97. {
  98. printk(KERN_EMERG "skb_under_panic: text:%p len:%d put:%d head:%p "
  99. "data:%p tail:%p end:%p dev:%s\n",
  100. here, skb->len, sz, skb->head, skb->data, skb->tail, skb->end,
  101. skb->dev ? skb->dev->name : "<NULL>");
  102. BUG();
  103. }
  104. void skb_truesize_bug(struct sk_buff *skb)
  105. {
  106. printk(KERN_ERR "SKB BUG: Invalid truesize (%u) "
  107. "len=%u, sizeof(sk_buff)=%Zd\n",
  108. skb->truesize, skb->len, sizeof(struct sk_buff));
  109. }
  110. EXPORT_SYMBOL(skb_truesize_bug);
  111. /* Allocate a new skbuff. We do this ourselves so we can fill in a few
  112. * 'private' fields and also do memory statistics to find all the
  113. * [BEEP] leaks.
  114. *
  115. */
  116. /**
  117. * __alloc_skb - allocate a network buffer
  118. * @size: size to allocate
  119. * @gfp_mask: allocation mask
  120. * @fclone: allocate from fclone cache instead of head cache
  121. * and allocate a cloned (child) skb
  122. *
  123. * Allocate a new &sk_buff. The returned buffer has no headroom and a
  124. * tail room of size bytes. The object has a reference count of one.
  125. * The return is the buffer. On a failure the return is %NULL.
  126. *
  127. * Buffers may only be allocated from interrupts using a @gfp_mask of
  128. * %GFP_ATOMIC.
  129. */
  130. struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
  131. int fclone)
  132. {
  133. kmem_cache_t *cache;
  134. struct skb_shared_info *shinfo;
  135. struct sk_buff *skb;
  136. u8 *data;
  137. cache = fclone ? skbuff_fclone_cache : skbuff_head_cache;
  138. /* Get the HEAD */
  139. skb = kmem_cache_alloc(cache, gfp_mask & ~__GFP_DMA);
  140. if (!skb)
  141. goto out;
  142. /* Get the DATA. Size must match skb_add_mtu(). */
  143. size = SKB_DATA_ALIGN(size);
  144. data = ____kmalloc(size + sizeof(struct skb_shared_info), gfp_mask);
  145. if (!data)
  146. goto nodata;
  147. memset(skb, 0, offsetof(struct sk_buff, truesize));
  148. skb->truesize = size + sizeof(struct sk_buff);
  149. atomic_set(&skb->users, 1);
  150. skb->head = data;
  151. skb->data = data;
  152. skb->tail = data;
  153. skb->end = data + size;
  154. /* make sure we initialize shinfo sequentially */
  155. shinfo = skb_shinfo(skb);
  156. atomic_set(&shinfo->dataref, 1);
  157. shinfo->nr_frags = 0;
  158. shinfo->gso_size = 0;
  159. shinfo->gso_segs = 0;
  160. shinfo->gso_type = 0;
  161. shinfo->ip6_frag_id = 0;
  162. shinfo->frag_list = NULL;
  163. if (fclone) {
  164. struct sk_buff *child = skb + 1;
  165. atomic_t *fclone_ref = (atomic_t *) (child + 1);
  166. skb->fclone = SKB_FCLONE_ORIG;
  167. atomic_set(fclone_ref, 1);
  168. child->fclone = SKB_FCLONE_UNAVAILABLE;
  169. }
  170. out:
  171. return skb;
  172. nodata:
  173. kmem_cache_free(cache, skb);
  174. skb = NULL;
  175. goto out;
  176. }
  177. /**
  178. * alloc_skb_from_cache - allocate a network buffer
  179. * @cp: kmem_cache from which to allocate the data area
  180. * (object size must be big enough for @size bytes + skb overheads)
  181. * @size: size to allocate
  182. * @gfp_mask: allocation mask
  183. *
  184. * Allocate a new &sk_buff. The returned buffer has no headroom and
  185. * tail room of size bytes. The object has a reference count of one.
  186. * The return is the buffer. On a failure the return is %NULL.
  187. *
  188. * Buffers may only be allocated from interrupts using a @gfp_mask of
  189. * %GFP_ATOMIC.
  190. */
  191. struct sk_buff *alloc_skb_from_cache(kmem_cache_t *cp,
  192. unsigned int size,
  193. gfp_t gfp_mask)
  194. {
  195. struct sk_buff *skb;
  196. u8 *data;
  197. /* Get the HEAD */
  198. skb = kmem_cache_alloc(skbuff_head_cache,
  199. gfp_mask & ~__GFP_DMA);
  200. if (!skb)
  201. goto out;
  202. /* Get the DATA. */
  203. size = SKB_DATA_ALIGN(size);
  204. data = kmem_cache_alloc(cp, gfp_mask);
  205. if (!data)
  206. goto nodata;
  207. memset(skb, 0, offsetof(struct sk_buff, truesize));
  208. skb->truesize = size + sizeof(struct sk_buff);
  209. atomic_set(&skb->users, 1);
  210. skb->head = data;
  211. skb->data = data;
  212. skb->tail = data;
  213. skb->end = data + size;
  214. atomic_set(&(skb_shinfo(skb)->dataref), 1);
  215. skb_shinfo(skb)->nr_frags = 0;
  216. skb_shinfo(skb)->gso_size = 0;
  217. skb_shinfo(skb)->gso_segs = 0;
  218. skb_shinfo(skb)->gso_type = 0;
  219. skb_shinfo(skb)->frag_list = NULL;
  220. out:
  221. return skb;
  222. nodata:
  223. kmem_cache_free(skbuff_head_cache, skb);
  224. skb = NULL;
  225. goto out;
  226. }
  227. /**
  228. * __netdev_alloc_skb - allocate an skbuff for rx on a specific device
  229. * @dev: network device to receive on
  230. * @length: length to allocate
  231. * @gfp_mask: get_free_pages mask, passed to alloc_skb
  232. *
  233. * Allocate a new &sk_buff and assign it a usage count of one. The
  234. * buffer has unspecified headroom built in. Users should allocate
  235. * the headroom they think they need without accounting for the
  236. * built in space. The built in space is used for optimisations.
  237. *
  238. * %NULL is returned if there is no free memory.
  239. */
  240. struct sk_buff *__netdev_alloc_skb(struct net_device *dev,
  241. unsigned int length, gfp_t gfp_mask)
  242. {
  243. struct sk_buff *skb;
  244. skb = alloc_skb(length + NET_SKB_PAD, gfp_mask);
  245. if (likely(skb)) {
  246. skb_reserve(skb, NET_SKB_PAD);
  247. skb->dev = dev;
  248. }
  249. return skb;
  250. }
  251. static void skb_drop_list(struct sk_buff **listp)
  252. {
  253. struct sk_buff *list = *listp;
  254. *listp = NULL;
  255. do {
  256. struct sk_buff *this = list;
  257. list = list->next;
  258. kfree_skb(this);
  259. } while (list);
  260. }
  261. static inline void skb_drop_fraglist(struct sk_buff *skb)
  262. {
  263. skb_drop_list(&skb_shinfo(skb)->frag_list);
  264. }
  265. static void skb_clone_fraglist(struct sk_buff *skb)
  266. {
  267. struct sk_buff *list;
  268. for (list = skb_shinfo(skb)->frag_list; list; list = list->next)
  269. skb_get(list);
  270. }
  271. static void skb_release_data(struct sk_buff *skb)
  272. {
  273. if (!skb->cloned ||
  274. !atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
  275. &skb_shinfo(skb)->dataref)) {
  276. if (skb_shinfo(skb)->nr_frags) {
  277. int i;
  278. for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
  279. put_page(skb_shinfo(skb)->frags[i].page);
  280. }
  281. if (skb_shinfo(skb)->frag_list)
  282. skb_drop_fraglist(skb);
  283. kfree(skb->head);
  284. }
  285. }
  286. /*
  287. * Free an skbuff by memory without cleaning the state.
  288. */
  289. void kfree_skbmem(struct sk_buff *skb)
  290. {
  291. struct sk_buff *other;
  292. atomic_t *fclone_ref;
  293. skb_release_data(skb);
  294. switch (skb->fclone) {
  295. case SKB_FCLONE_UNAVAILABLE:
  296. kmem_cache_free(skbuff_head_cache, skb);
  297. break;
  298. case SKB_FCLONE_ORIG:
  299. fclone_ref = (atomic_t *) (skb + 2);
  300. if (atomic_dec_and_test(fclone_ref))
  301. kmem_cache_free(skbuff_fclone_cache, skb);
  302. break;
  303. case SKB_FCLONE_CLONE:
  304. fclone_ref = (atomic_t *) (skb + 1);
  305. other = skb - 1;
  306. /* The clone portion is available for
  307. * fast-cloning again.
  308. */
  309. skb->fclone = SKB_FCLONE_UNAVAILABLE;
  310. if (atomic_dec_and_test(fclone_ref))
  311. kmem_cache_free(skbuff_fclone_cache, other);
  312. break;
  313. };
  314. }
  315. /**
  316. * __kfree_skb - private function
  317. * @skb: buffer
  318. *
  319. * Free an sk_buff. Release anything attached to the buffer.
  320. * Clean the state. This is an internal helper function. Users should
  321. * always call kfree_skb
  322. */
  323. void __kfree_skb(struct sk_buff *skb)
  324. {
  325. dst_release(skb->dst);
  326. #ifdef CONFIG_XFRM
  327. secpath_put(skb->sp);
  328. #endif
  329. if (skb->destructor) {
  330. WARN_ON(in_irq());
  331. skb->destructor(skb);
  332. }
  333. #ifdef CONFIG_NETFILTER
  334. nf_conntrack_put(skb->nfct);
  335. #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
  336. nf_conntrack_put_reasm(skb->nfct_reasm);
  337. #endif
  338. #ifdef CONFIG_BRIDGE_NETFILTER
  339. nf_bridge_put(skb->nf_bridge);
  340. #endif
  341. #endif
  342. /* XXX: IS this still necessary? - JHS */
  343. #ifdef CONFIG_NET_SCHED
  344. skb->tc_index = 0;
  345. #ifdef CONFIG_NET_CLS_ACT
  346. skb->tc_verd = 0;
  347. #endif
  348. #endif
  349. kfree_skbmem(skb);
  350. }
  351. /**
  352. * kfree_skb - free an sk_buff
  353. * @skb: buffer to free
  354. *
  355. * Drop a reference to the buffer and free it if the usage count has
  356. * hit zero.
  357. */
  358. void kfree_skb(struct sk_buff *skb)
  359. {
  360. if (unlikely(!skb))
  361. return;
  362. if (likely(atomic_read(&skb->users) == 1))
  363. smp_rmb();
  364. else if (likely(!atomic_dec_and_test(&skb->users)))
  365. return;
  366. __kfree_skb(skb);
  367. }
  368. /**
  369. * skb_clone - duplicate an sk_buff
  370. * @skb: buffer to clone
  371. * @gfp_mask: allocation priority
  372. *
  373. * Duplicate an &sk_buff. The new one is not owned by a socket. Both
  374. * copies share the same packet data but not structure. The new
  375. * buffer has a reference count of 1. If the allocation fails the
  376. * function returns %NULL otherwise the new buffer is returned.
  377. *
  378. * If this function is called from an interrupt gfp_mask() must be
  379. * %GFP_ATOMIC.
  380. */
  381. struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
  382. {
  383. struct sk_buff *n;
  384. n = skb + 1;
  385. if (skb->fclone == SKB_FCLONE_ORIG &&
  386. n->fclone == SKB_FCLONE_UNAVAILABLE) {
  387. atomic_t *fclone_ref = (atomic_t *) (n + 1);
  388. n->fclone = SKB_FCLONE_CLONE;
  389. atomic_inc(fclone_ref);
  390. } else {
  391. n = kmem_cache_alloc(skbuff_head_cache, gfp_mask);
  392. if (!n)
  393. return NULL;
  394. n->fclone = SKB_FCLONE_UNAVAILABLE;
  395. }
  396. #define C(x) n->x = skb->x
  397. n->next = n->prev = NULL;
  398. n->sk = NULL;
  399. C(tstamp);
  400. C(dev);
  401. C(h);
  402. C(nh);
  403. C(mac);
  404. C(dst);
  405. dst_clone(skb->dst);
  406. C(sp);
  407. #ifdef CONFIG_INET
  408. secpath_get(skb->sp);
  409. #endif
  410. memcpy(n->cb, skb->cb, sizeof(skb->cb));
  411. C(len);
  412. C(data_len);
  413. C(csum);
  414. C(local_df);
  415. n->cloned = 1;
  416. n->nohdr = 0;
  417. C(pkt_type);
  418. C(ip_summed);
  419. C(priority);
  420. #if defined(CONFIG_IP_VS) || defined(CONFIG_IP_VS_MODULE)
  421. C(ipvs_property);
  422. #endif
  423. C(protocol);
  424. n->destructor = NULL;
  425. #ifdef CONFIG_NETFILTER
  426. C(nfmark);
  427. C(nfct);
  428. nf_conntrack_get(skb->nfct);
  429. C(nfctinfo);
  430. #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
  431. C(nfct_reasm);
  432. nf_conntrack_get_reasm(skb->nfct_reasm);
  433. #endif
  434. #ifdef CONFIG_BRIDGE_NETFILTER
  435. C(nf_bridge);
  436. nf_bridge_get(skb->nf_bridge);
  437. #endif
  438. #endif /*CONFIG_NETFILTER*/
  439. #ifdef CONFIG_NET_SCHED
  440. C(tc_index);
  441. #ifdef CONFIG_NET_CLS_ACT
  442. n->tc_verd = SET_TC_VERD(skb->tc_verd,0);
  443. n->tc_verd = CLR_TC_OK2MUNGE(n->tc_verd);
  444. n->tc_verd = CLR_TC_MUNGED(n->tc_verd);
  445. C(input_dev);
  446. #endif
  447. skb_copy_secmark(n, skb);
  448. #endif
  449. C(truesize);
  450. atomic_set(&n->users, 1);
  451. C(head);
  452. C(data);
  453. C(tail);
  454. C(end);
  455. atomic_inc(&(skb_shinfo(skb)->dataref));
  456. skb->cloned = 1;
  457. return n;
  458. }
  459. static void copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
  460. {
  461. /*
  462. * Shift between the two data areas in bytes
  463. */
  464. unsigned long offset = new->data - old->data;
  465. new->sk = NULL;
  466. new->dev = old->dev;
  467. new->priority = old->priority;
  468. new->protocol = old->protocol;
  469. new->dst = dst_clone(old->dst);
  470. #ifdef CONFIG_INET
  471. new->sp = secpath_get(old->sp);
  472. #endif
  473. new->h.raw = old->h.raw + offset;
  474. new->nh.raw = old->nh.raw + offset;
  475. new->mac.raw = old->mac.raw + offset;
  476. memcpy(new->cb, old->cb, sizeof(old->cb));
  477. new->local_df = old->local_df;
  478. new->fclone = SKB_FCLONE_UNAVAILABLE;
  479. new->pkt_type = old->pkt_type;
  480. new->tstamp = old->tstamp;
  481. new->destructor = NULL;
  482. #ifdef CONFIG_NETFILTER
  483. new->nfmark = old->nfmark;
  484. new->nfct = old->nfct;
  485. nf_conntrack_get(old->nfct);
  486. new->nfctinfo = old->nfctinfo;
  487. #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
  488. new->nfct_reasm = old->nfct_reasm;
  489. nf_conntrack_get_reasm(old->nfct_reasm);
  490. #endif
  491. #if defined(CONFIG_IP_VS) || defined(CONFIG_IP_VS_MODULE)
  492. new->ipvs_property = old->ipvs_property;
  493. #endif
  494. #ifdef CONFIG_BRIDGE_NETFILTER
  495. new->nf_bridge = old->nf_bridge;
  496. nf_bridge_get(old->nf_bridge);
  497. #endif
  498. #endif
  499. #ifdef CONFIG_NET_SCHED
  500. #ifdef CONFIG_NET_CLS_ACT
  501. new->tc_verd = old->tc_verd;
  502. #endif
  503. new->tc_index = old->tc_index;
  504. #endif
  505. skb_copy_secmark(new, old);
  506. atomic_set(&new->users, 1);
  507. skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
  508. skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
  509. skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
  510. }
  511. /**
  512. * skb_copy - create private copy of an sk_buff
  513. * @skb: buffer to copy
  514. * @gfp_mask: allocation priority
  515. *
  516. * Make a copy of both an &sk_buff and its data. This is used when the
  517. * caller wishes to modify the data and needs a private copy of the
  518. * data to alter. Returns %NULL on failure or the pointer to the buffer
  519. * on success. The returned buffer has a reference count of 1.
  520. *
  521. * As by-product this function converts non-linear &sk_buff to linear
  522. * one, so that &sk_buff becomes completely private and caller is allowed
  523. * to modify all the data of returned buffer. This means that this
  524. * function is not recommended for use in circumstances when only
  525. * header is going to be modified. Use pskb_copy() instead.
  526. */
  527. struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
  528. {
  529. int headerlen = skb->data - skb->head;
  530. /*
  531. * Allocate the copy buffer
  532. */
  533. struct sk_buff *n = alloc_skb(skb->end - skb->head + skb->data_len,
  534. gfp_mask);
  535. if (!n)
  536. return NULL;
  537. /* Set the data pointer */
  538. skb_reserve(n, headerlen);
  539. /* Set the tail pointer and length */
  540. skb_put(n, skb->len);
  541. n->csum = skb->csum;
  542. n->ip_summed = skb->ip_summed;
  543. if (skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len))
  544. BUG();
  545. copy_skb_header(n, skb);
  546. return n;
  547. }
  548. /**
  549. * pskb_copy - create copy of an sk_buff with private head.
  550. * @skb: buffer to copy
  551. * @gfp_mask: allocation priority
  552. *
  553. * Make a copy of both an &sk_buff and part of its data, located
  554. * in header. Fragmented data remain shared. This is used when
  555. * the caller wishes to modify only header of &sk_buff and needs
  556. * private copy of the header to alter. Returns %NULL on failure
  557. * or the pointer to the buffer on success.
  558. * The returned buffer has a reference count of 1.
  559. */
  560. struct sk_buff *pskb_copy(struct sk_buff *skb, gfp_t gfp_mask)
  561. {
  562. /*
  563. * Allocate the copy buffer
  564. */
  565. struct sk_buff *n = alloc_skb(skb->end - skb->head, gfp_mask);
  566. if (!n)
  567. goto out;
  568. /* Set the data pointer */
  569. skb_reserve(n, skb->data - skb->head);
  570. /* Set the tail pointer and length */
  571. skb_put(n, skb_headlen(skb));
  572. /* Copy the bytes */
  573. memcpy(n->data, skb->data, n->len);
  574. n->csum = skb->csum;
  575. n->ip_summed = skb->ip_summed;
  576. n->data_len = skb->data_len;
  577. n->len = skb->len;
  578. if (skb_shinfo(skb)->nr_frags) {
  579. int i;
  580. for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
  581. skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
  582. get_page(skb_shinfo(n)->frags[i].page);
  583. }
  584. skb_shinfo(n)->nr_frags = i;
  585. }
  586. if (skb_shinfo(skb)->frag_list) {
  587. skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
  588. skb_clone_fraglist(n);
  589. }
  590. copy_skb_header(n, skb);
  591. out:
  592. return n;
  593. }
  594. /**
  595. * pskb_expand_head - reallocate header of &sk_buff
  596. * @skb: buffer to reallocate
  597. * @nhead: room to add at head
  598. * @ntail: room to add at tail
  599. * @gfp_mask: allocation priority
  600. *
  601. * Expands (or creates identical copy, if &nhead and &ntail are zero)
  602. * header of skb. &sk_buff itself is not changed. &sk_buff MUST have
  603. * reference count of 1. Returns zero in the case of success or error,
  604. * if expansion failed. In the last case, &sk_buff is not changed.
  605. *
  606. * All the pointers pointing into skb header may change and must be
  607. * reloaded after call to this function.
  608. */
  609. int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
  610. gfp_t gfp_mask)
  611. {
  612. int i;
  613. u8 *data;
  614. int size = nhead + (skb->end - skb->head) + ntail;
  615. long off;
  616. if (skb_shared(skb))
  617. BUG();
  618. size = SKB_DATA_ALIGN(size);
  619. data = kmalloc(size + sizeof(struct skb_shared_info), gfp_mask);
  620. if (!data)
  621. goto nodata;
  622. /* Copy only real data... and, alas, header. This should be
  623. * optimized for the cases when header is void. */
  624. memcpy(data + nhead, skb->head, skb->tail - skb->head);
  625. memcpy(data + size, skb->end, sizeof(struct skb_shared_info));
  626. for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
  627. get_page(skb_shinfo(skb)->frags[i].page);
  628. if (skb_shinfo(skb)->frag_list)
  629. skb_clone_fraglist(skb);
  630. skb_release_data(skb);
  631. off = (data + nhead) - skb->head;
  632. skb->head = data;
  633. skb->end = data + size;
  634. skb->data += off;
  635. skb->tail += off;
  636. skb->mac.raw += off;
  637. skb->h.raw += off;
  638. skb->nh.raw += off;
  639. skb->cloned = 0;
  640. skb->nohdr = 0;
  641. atomic_set(&skb_shinfo(skb)->dataref, 1);
  642. return 0;
  643. nodata:
  644. return -ENOMEM;
  645. }
  646. /* Make private copy of skb with writable head and some headroom */
  647. struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
  648. {
  649. struct sk_buff *skb2;
  650. int delta = headroom - skb_headroom(skb);
  651. if (delta <= 0)
  652. skb2 = pskb_copy(skb, GFP_ATOMIC);
  653. else {
  654. skb2 = skb_clone(skb, GFP_ATOMIC);
  655. if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
  656. GFP_ATOMIC)) {
  657. kfree_skb(skb2);
  658. skb2 = NULL;
  659. }
  660. }
  661. return skb2;
  662. }
  663. /**
  664. * skb_copy_expand - copy and expand sk_buff
  665. * @skb: buffer to copy
  666. * @newheadroom: new free bytes at head
  667. * @newtailroom: new free bytes at tail
  668. * @gfp_mask: allocation priority
  669. *
  670. * Make a copy of both an &sk_buff and its data and while doing so
  671. * allocate additional space.
  672. *
  673. * This is used when the caller wishes to modify the data and needs a
  674. * private copy of the data to alter as well as more space for new fields.
  675. * Returns %NULL on failure or the pointer to the buffer
  676. * on success. The returned buffer has a reference count of 1.
  677. *
  678. * You must pass %GFP_ATOMIC as the allocation priority if this function
  679. * is called from an interrupt.
  680. *
  681. * BUG ALERT: ip_summed is not copied. Why does this work? Is it used
  682. * only by netfilter in the cases when checksum is recalculated? --ANK
  683. */
  684. struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
  685. int newheadroom, int newtailroom,
  686. gfp_t gfp_mask)
  687. {
  688. /*
  689. * Allocate the copy buffer
  690. */
  691. struct sk_buff *n = alloc_skb(newheadroom + skb->len + newtailroom,
  692. gfp_mask);
  693. int head_copy_len, head_copy_off;
  694. if (!n)
  695. return NULL;
  696. skb_reserve(n, newheadroom);
  697. /* Set the tail pointer and length */
  698. skb_put(n, skb->len);
  699. head_copy_len = skb_headroom(skb);
  700. head_copy_off = 0;
  701. if (newheadroom <= head_copy_len)
  702. head_copy_len = newheadroom;
  703. else
  704. head_copy_off = newheadroom - head_copy_len;
  705. /* Copy the linear header and data. */
  706. if (skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
  707. skb->len + head_copy_len))
  708. BUG();
  709. copy_skb_header(n, skb);
  710. return n;
  711. }
  712. /**
  713. * skb_pad - zero pad the tail of an skb
  714. * @skb: buffer to pad
  715. * @pad: space to pad
  716. *
  717. * Ensure that a buffer is followed by a padding area that is zero
  718. * filled. Used by network drivers which may DMA or transfer data
  719. * beyond the buffer end onto the wire.
  720. *
  721. * May return error in out of memory cases. The skb is freed on error.
  722. */
  723. int skb_pad(struct sk_buff *skb, int pad)
  724. {
  725. int err;
  726. int ntail;
  727. /* If the skbuff is non linear tailroom is always zero.. */
  728. if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
  729. memset(skb->data+skb->len, 0, pad);
  730. return 0;
  731. }
  732. ntail = skb->data_len + pad - (skb->end - skb->tail);
  733. if (likely(skb_cloned(skb) || ntail > 0)) {
  734. err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
  735. if (unlikely(err))
  736. goto free_skb;
  737. }
  738. /* FIXME: The use of this function with non-linear skb's really needs
  739. * to be audited.
  740. */
  741. err = skb_linearize(skb);
  742. if (unlikely(err))
  743. goto free_skb;
  744. memset(skb->data + skb->len, 0, pad);
  745. return 0;
  746. free_skb:
  747. kfree_skb(skb);
  748. return err;
  749. }
  750. /* Trims skb to length len. It can change skb pointers.
  751. */
  752. int ___pskb_trim(struct sk_buff *skb, unsigned int len)
  753. {
  754. struct sk_buff **fragp;
  755. struct sk_buff *frag;
  756. int offset = skb_headlen(skb);
  757. int nfrags = skb_shinfo(skb)->nr_frags;
  758. int i;
  759. int err;
  760. if (skb_cloned(skb) &&
  761. unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
  762. return err;
  763. i = 0;
  764. if (offset >= len)
  765. goto drop_pages;
  766. for (; i < nfrags; i++) {
  767. int end = offset + skb_shinfo(skb)->frags[i].size;
  768. if (end < len) {
  769. offset = end;
  770. continue;
  771. }
  772. skb_shinfo(skb)->frags[i++].size = len - offset;
  773. drop_pages:
  774. skb_shinfo(skb)->nr_frags = i;
  775. for (; i < nfrags; i++)
  776. put_page(skb_shinfo(skb)->frags[i].page);
  777. if (skb_shinfo(skb)->frag_list)
  778. skb_drop_fraglist(skb);
  779. goto done;
  780. }
  781. for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
  782. fragp = &frag->next) {
  783. int end = offset + frag->len;
  784. if (skb_shared(frag)) {
  785. struct sk_buff *nfrag;
  786. nfrag = skb_clone(frag, GFP_ATOMIC);
  787. if (unlikely(!nfrag))
  788. return -ENOMEM;
  789. nfrag->next = frag->next;
  790. kfree_skb(frag);
  791. frag = nfrag;
  792. *fragp = frag;
  793. }
  794. if (end < len) {
  795. offset = end;
  796. continue;
  797. }
  798. if (end > len &&
  799. unlikely((err = pskb_trim(frag, len - offset))))
  800. return err;
  801. if (frag->next)
  802. skb_drop_list(&frag->next);
  803. break;
  804. }
  805. done:
  806. if (len > skb_headlen(skb)) {
  807. skb->data_len -= skb->len - len;
  808. skb->len = len;
  809. } else {
  810. skb->len = len;
  811. skb->data_len = 0;
  812. skb->tail = skb->data + len;
  813. }
  814. return 0;
  815. }
  816. /**
  817. * __pskb_pull_tail - advance tail of skb header
  818. * @skb: buffer to reallocate
  819. * @delta: number of bytes to advance tail
  820. *
  821. * The function makes a sense only on a fragmented &sk_buff,
  822. * it expands header moving its tail forward and copying necessary
  823. * data from fragmented part.
  824. *
  825. * &sk_buff MUST have reference count of 1.
  826. *
  827. * Returns %NULL (and &sk_buff does not change) if pull failed
  828. * or value of new tail of skb in the case of success.
  829. *
  830. * All the pointers pointing into skb header may change and must be
  831. * reloaded after call to this function.
  832. */
  833. /* Moves tail of skb head forward, copying data from fragmented part,
  834. * when it is necessary.
  835. * 1. It may fail due to malloc failure.
  836. * 2. It may change skb pointers.
  837. *
  838. * It is pretty complicated. Luckily, it is called only in exceptional cases.
  839. */
  840. unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta)
  841. {
  842. /* If skb has not enough free space at tail, get new one
  843. * plus 128 bytes for future expansions. If we have enough
  844. * room at tail, reallocate without expansion only if skb is cloned.
  845. */
  846. int i, k, eat = (skb->tail + delta) - skb->end;
  847. if (eat > 0 || skb_cloned(skb)) {
  848. if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
  849. GFP_ATOMIC))
  850. return NULL;
  851. }
  852. if (skb_copy_bits(skb, skb_headlen(skb), skb->tail, delta))
  853. BUG();
  854. /* Optimization: no fragments, no reasons to preestimate
  855. * size of pulled pages. Superb.
  856. */
  857. if (!skb_shinfo(skb)->frag_list)
  858. goto pull_pages;
  859. /* Estimate size of pulled pages. */
  860. eat = delta;
  861. for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
  862. if (skb_shinfo(skb)->frags[i].size >= eat)
  863. goto pull_pages;
  864. eat -= skb_shinfo(skb)->frags[i].size;
  865. }
  866. /* If we need update frag list, we are in troubles.
  867. * Certainly, it possible to add an offset to skb data,
  868. * but taking into account that pulling is expected to
  869. * be very rare operation, it is worth to fight against
  870. * further bloating skb head and crucify ourselves here instead.
  871. * Pure masohism, indeed. 8)8)
  872. */
  873. if (eat) {
  874. struct sk_buff *list = skb_shinfo(skb)->frag_list;
  875. struct sk_buff *clone = NULL;
  876. struct sk_buff *insp = NULL;
  877. do {
  878. BUG_ON(!list);
  879. if (list->len <= eat) {
  880. /* Eaten as whole. */
  881. eat -= list->len;
  882. list = list->next;
  883. insp = list;
  884. } else {
  885. /* Eaten partially. */
  886. if (skb_shared(list)) {
  887. /* Sucks! We need to fork list. :-( */
  888. clone = skb_clone(list, GFP_ATOMIC);
  889. if (!clone)
  890. return NULL;
  891. insp = list->next;
  892. list = clone;
  893. } else {
  894. /* This may be pulled without
  895. * problems. */
  896. insp = list;
  897. }
  898. if (!pskb_pull(list, eat)) {
  899. if (clone)
  900. kfree_skb(clone);
  901. return NULL;
  902. }
  903. break;
  904. }
  905. } while (eat);
  906. /* Free pulled out fragments. */
  907. while ((list = skb_shinfo(skb)->frag_list) != insp) {
  908. skb_shinfo(skb)->frag_list = list->next;
  909. kfree_skb(list);
  910. }
  911. /* And insert new clone at head. */
  912. if (clone) {
  913. clone->next = list;
  914. skb_shinfo(skb)->frag_list = clone;
  915. }
  916. }
  917. /* Success! Now we may commit changes to skb data. */
  918. pull_pages:
  919. eat = delta;
  920. k = 0;
  921. for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
  922. if (skb_shinfo(skb)->frags[i].size <= eat) {
  923. put_page(skb_shinfo(skb)->frags[i].page);
  924. eat -= skb_shinfo(skb)->frags[i].size;
  925. } else {
  926. skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i];
  927. if (eat) {
  928. skb_shinfo(skb)->frags[k].page_offset += eat;
  929. skb_shinfo(skb)->frags[k].size -= eat;
  930. eat = 0;
  931. }
  932. k++;
  933. }
  934. }
  935. skb_shinfo(skb)->nr_frags = k;
  936. skb->tail += delta;
  937. skb->data_len -= delta;
  938. return skb->tail;
  939. }
  940. /* Copy some data bits from skb to kernel buffer. */
  941. int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
  942. {
  943. int i, copy;
  944. int start = skb_headlen(skb);
  945. if (offset > (int)skb->len - len)
  946. goto fault;
  947. /* Copy header. */
  948. if ((copy = start - offset) > 0) {
  949. if (copy > len)
  950. copy = len;
  951. memcpy(to, skb->data + offset, copy);
  952. if ((len -= copy) == 0)
  953. return 0;
  954. offset += copy;
  955. to += copy;
  956. }
  957. for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
  958. int end;
  959. BUG_TRAP(start <= offset + len);
  960. end = start + skb_shinfo(skb)->frags[i].size;
  961. if ((copy = end - offset) > 0) {
  962. u8 *vaddr;
  963. if (copy > len)
  964. copy = len;
  965. vaddr = kmap_skb_frag(&skb_shinfo(skb)->frags[i]);
  966. memcpy(to,
  967. vaddr + skb_shinfo(skb)->frags[i].page_offset+
  968. offset - start, copy);
  969. kunmap_skb_frag(vaddr);
  970. if ((len -= copy) == 0)
  971. return 0;
  972. offset += copy;
  973. to += copy;
  974. }
  975. start = end;
  976. }
  977. if (skb_shinfo(skb)->frag_list) {
  978. struct sk_buff *list = skb_shinfo(skb)->frag_list;
  979. for (; list; list = list->next) {
  980. int end;
  981. BUG_TRAP(start <= offset + len);
  982. end = start + list->len;
  983. if ((copy = end - offset) > 0) {
  984. if (copy > len)
  985. copy = len;
  986. if (skb_copy_bits(list, offset - start,
  987. to, copy))
  988. goto fault;
  989. if ((len -= copy) == 0)
  990. return 0;
  991. offset += copy;
  992. to += copy;
  993. }
  994. start = end;
  995. }
  996. }
  997. if (!len)
  998. return 0;
  999. fault:
  1000. return -EFAULT;
  1001. }
  1002. /**
  1003. * skb_store_bits - store bits from kernel buffer to skb
  1004. * @skb: destination buffer
  1005. * @offset: offset in destination
  1006. * @from: source buffer
  1007. * @len: number of bytes to copy
  1008. *
  1009. * Copy the specified number of bytes from the source buffer to the
  1010. * destination skb. This function handles all the messy bits of
  1011. * traversing fragment lists and such.
  1012. */
  1013. int skb_store_bits(const struct sk_buff *skb, int offset, void *from, int len)
  1014. {
  1015. int i, copy;
  1016. int start = skb_headlen(skb);
  1017. if (offset > (int)skb->len - len)
  1018. goto fault;
  1019. if ((copy = start - offset) > 0) {
  1020. if (copy > len)
  1021. copy = len;
  1022. memcpy(skb->data + offset, from, copy);
  1023. if ((len -= copy) == 0)
  1024. return 0;
  1025. offset += copy;
  1026. from += copy;
  1027. }
  1028. for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
  1029. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  1030. int end;
  1031. BUG_TRAP(start <= offset + len);
  1032. end = start + frag->size;
  1033. if ((copy = end - offset) > 0) {
  1034. u8 *vaddr;
  1035. if (copy > len)
  1036. copy = len;
  1037. vaddr = kmap_skb_frag(frag);
  1038. memcpy(vaddr + frag->page_offset + offset - start,
  1039. from, copy);
  1040. kunmap_skb_frag(vaddr);
  1041. if ((len -= copy) == 0)
  1042. return 0;
  1043. offset += copy;
  1044. from += copy;
  1045. }
  1046. start = end;
  1047. }
  1048. if (skb_shinfo(skb)->frag_list) {
  1049. struct sk_buff *list = skb_shinfo(skb)->frag_list;
  1050. for (; list; list = list->next) {
  1051. int end;
  1052. BUG_TRAP(start <= offset + len);
  1053. end = start + list->len;
  1054. if ((copy = end - offset) > 0) {
  1055. if (copy > len)
  1056. copy = len;
  1057. if (skb_store_bits(list, offset - start,
  1058. from, copy))
  1059. goto fault;
  1060. if ((len -= copy) == 0)
  1061. return 0;
  1062. offset += copy;
  1063. from += copy;
  1064. }
  1065. start = end;
  1066. }
  1067. }
  1068. if (!len)
  1069. return 0;
  1070. fault:
  1071. return -EFAULT;
  1072. }
  1073. EXPORT_SYMBOL(skb_store_bits);
  1074. /* Checksum skb data. */
  1075. unsigned int skb_checksum(const struct sk_buff *skb, int offset,
  1076. int len, unsigned int csum)
  1077. {
  1078. int start = skb_headlen(skb);
  1079. int i, copy = start - offset;
  1080. int pos = 0;
  1081. /* Checksum header. */
  1082. if (copy > 0) {
  1083. if (copy > len)
  1084. copy = len;
  1085. csum = csum_partial(skb->data + offset, copy, csum);
  1086. if ((len -= copy) == 0)
  1087. return csum;
  1088. offset += copy;
  1089. pos = copy;
  1090. }
  1091. for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
  1092. int end;
  1093. BUG_TRAP(start <= offset + len);
  1094. end = start + skb_shinfo(skb)->frags[i].size;
  1095. if ((copy = end - offset) > 0) {
  1096. unsigned int csum2;
  1097. u8 *vaddr;
  1098. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  1099. if (copy > len)
  1100. copy = len;
  1101. vaddr = kmap_skb_frag(frag);
  1102. csum2 = csum_partial(vaddr + frag->page_offset +
  1103. offset - start, copy, 0);
  1104. kunmap_skb_frag(vaddr);
  1105. csum = csum_block_add(csum, csum2, pos);
  1106. if (!(len -= copy))
  1107. return csum;
  1108. offset += copy;
  1109. pos += copy;
  1110. }
  1111. start = end;
  1112. }
  1113. if (skb_shinfo(skb)->frag_list) {
  1114. struct sk_buff *list = skb_shinfo(skb)->frag_list;
  1115. for (; list; list = list->next) {
  1116. int end;
  1117. BUG_TRAP(start <= offset + len);
  1118. end = start + list->len;
  1119. if ((copy = end - offset) > 0) {
  1120. unsigned int csum2;
  1121. if (copy > len)
  1122. copy = len;
  1123. csum2 = skb_checksum(list, offset - start,
  1124. copy, 0);
  1125. csum = csum_block_add(csum, csum2, pos);
  1126. if ((len -= copy) == 0)
  1127. return csum;
  1128. offset += copy;
  1129. pos += copy;
  1130. }
  1131. start = end;
  1132. }
  1133. }
  1134. BUG_ON(len);
  1135. return csum;
  1136. }
  1137. /* Both of above in one bottle. */
  1138. unsigned int skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
  1139. u8 *to, int len, unsigned int csum)
  1140. {
  1141. int start = skb_headlen(skb);
  1142. int i, copy = start - offset;
  1143. int pos = 0;
  1144. /* Copy header. */
  1145. if (copy > 0) {
  1146. if (copy > len)
  1147. copy = len;
  1148. csum = csum_partial_copy_nocheck(skb->data + offset, to,
  1149. copy, csum);
  1150. if ((len -= copy) == 0)
  1151. return csum;
  1152. offset += copy;
  1153. to += copy;
  1154. pos = copy;
  1155. }
  1156. for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
  1157. int end;
  1158. BUG_TRAP(start <= offset + len);
  1159. end = start + skb_shinfo(skb)->frags[i].size;
  1160. if ((copy = end - offset) > 0) {
  1161. unsigned int csum2;
  1162. u8 *vaddr;
  1163. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  1164. if (copy > len)
  1165. copy = len;
  1166. vaddr = kmap_skb_frag(frag);
  1167. csum2 = csum_partial_copy_nocheck(vaddr +
  1168. frag->page_offset +
  1169. offset - start, to,
  1170. copy, 0);
  1171. kunmap_skb_frag(vaddr);
  1172. csum = csum_block_add(csum, csum2, pos);
  1173. if (!(len -= copy))
  1174. return csum;
  1175. offset += copy;
  1176. to += copy;
  1177. pos += copy;
  1178. }
  1179. start = end;
  1180. }
  1181. if (skb_shinfo(skb)->frag_list) {
  1182. struct sk_buff *list = skb_shinfo(skb)->frag_list;
  1183. for (; list; list = list->next) {
  1184. unsigned int csum2;
  1185. int end;
  1186. BUG_TRAP(start <= offset + len);
  1187. end = start + list->len;
  1188. if ((copy = end - offset) > 0) {
  1189. if (copy > len)
  1190. copy = len;
  1191. csum2 = skb_copy_and_csum_bits(list,
  1192. offset - start,
  1193. to, copy, 0);
  1194. csum = csum_block_add(csum, csum2, pos);
  1195. if ((len -= copy) == 0)
  1196. return csum;
  1197. offset += copy;
  1198. to += copy;
  1199. pos += copy;
  1200. }
  1201. start = end;
  1202. }
  1203. }
  1204. BUG_ON(len);
  1205. return csum;
  1206. }
  1207. void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
  1208. {
  1209. unsigned int csum;
  1210. long csstart;
  1211. if (skb->ip_summed == CHECKSUM_PARTIAL)
  1212. csstart = skb->h.raw - skb->data;
  1213. else
  1214. csstart = skb_headlen(skb);
  1215. BUG_ON(csstart > skb_headlen(skb));
  1216. memcpy(to, skb->data, csstart);
  1217. csum = 0;
  1218. if (csstart != skb->len)
  1219. csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
  1220. skb->len - csstart, 0);
  1221. if (skb->ip_summed == CHECKSUM_PARTIAL) {
  1222. long csstuff = csstart + skb->csum;
  1223. *((unsigned short *)(to + csstuff)) = csum_fold(csum);
  1224. }
  1225. }
  1226. /**
  1227. * skb_dequeue - remove from the head of the queue
  1228. * @list: list to dequeue from
  1229. *
  1230. * Remove the head of the list. The list lock is taken so the function
  1231. * may be used safely with other locking list functions. The head item is
  1232. * returned or %NULL if the list is empty.
  1233. */
  1234. struct sk_buff *skb_dequeue(struct sk_buff_head *list)
  1235. {
  1236. unsigned long flags;
  1237. struct sk_buff *result;
  1238. spin_lock_irqsave(&list->lock, flags);
  1239. result = __skb_dequeue(list);
  1240. spin_unlock_irqrestore(&list->lock, flags);
  1241. return result;
  1242. }
  1243. /**
  1244. * skb_dequeue_tail - remove from the tail of the queue
  1245. * @list: list to dequeue from
  1246. *
  1247. * Remove the tail of the list. The list lock is taken so the function
  1248. * may be used safely with other locking list functions. The tail item is
  1249. * returned or %NULL if the list is empty.
  1250. */
  1251. struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
  1252. {
  1253. unsigned long flags;
  1254. struct sk_buff *result;
  1255. spin_lock_irqsave(&list->lock, flags);
  1256. result = __skb_dequeue_tail(list);
  1257. spin_unlock_irqrestore(&list->lock, flags);
  1258. return result;
  1259. }
  1260. /**
  1261. * skb_queue_purge - empty a list
  1262. * @list: list to empty
  1263. *
  1264. * Delete all buffers on an &sk_buff list. Each buffer is removed from
  1265. * the list and one reference dropped. This function takes the list
  1266. * lock and is atomic with respect to other list locking functions.
  1267. */
  1268. void skb_queue_purge(struct sk_buff_head *list)
  1269. {
  1270. struct sk_buff *skb;
  1271. while ((skb = skb_dequeue(list)) != NULL)
  1272. kfree_skb(skb);
  1273. }
  1274. /**
  1275. * skb_queue_head - queue a buffer at the list head
  1276. * @list: list to use
  1277. * @newsk: buffer to queue
  1278. *
  1279. * Queue a buffer at the start of the list. This function takes the
  1280. * list lock and can be used safely with other locking &sk_buff functions
  1281. * safely.
  1282. *
  1283. * A buffer cannot be placed on two lists at the same time.
  1284. */
  1285. void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
  1286. {
  1287. unsigned long flags;
  1288. spin_lock_irqsave(&list->lock, flags);
  1289. __skb_queue_head(list, newsk);
  1290. spin_unlock_irqrestore(&list->lock, flags);
  1291. }
  1292. /**
  1293. * skb_queue_tail - queue a buffer at the list tail
  1294. * @list: list to use
  1295. * @newsk: buffer to queue
  1296. *
  1297. * Queue a buffer at the tail of the list. This function takes the
  1298. * list lock and can be used safely with other locking &sk_buff functions
  1299. * safely.
  1300. *
  1301. * A buffer cannot be placed on two lists at the same time.
  1302. */
  1303. void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
  1304. {
  1305. unsigned long flags;
  1306. spin_lock_irqsave(&list->lock, flags);
  1307. __skb_queue_tail(list, newsk);
  1308. spin_unlock_irqrestore(&list->lock, flags);
  1309. }
  1310. /**
  1311. * skb_unlink - remove a buffer from a list
  1312. * @skb: buffer to remove
  1313. * @list: list to use
  1314. *
  1315. * Remove a packet from a list. The list locks are taken and this
  1316. * function is atomic with respect to other list locked calls
  1317. *
  1318. * You must know what list the SKB is on.
  1319. */
  1320. void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
  1321. {
  1322. unsigned long flags;
  1323. spin_lock_irqsave(&list->lock, flags);
  1324. __skb_unlink(skb, list);
  1325. spin_unlock_irqrestore(&list->lock, flags);
  1326. }
  1327. /**
  1328. * skb_append - append a buffer
  1329. * @old: buffer to insert after
  1330. * @newsk: buffer to insert
  1331. * @list: list to use
  1332. *
  1333. * Place a packet after a given packet in a list. The list locks are taken
  1334. * and this function is atomic with respect to other list locked calls.
  1335. * A buffer cannot be placed on two lists at the same time.
  1336. */
  1337. void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
  1338. {
  1339. unsigned long flags;
  1340. spin_lock_irqsave(&list->lock, flags);
  1341. __skb_append(old, newsk, list);
  1342. spin_unlock_irqrestore(&list->lock, flags);
  1343. }
  1344. /**
  1345. * skb_insert - insert a buffer
  1346. * @old: buffer to insert before
  1347. * @newsk: buffer to insert
  1348. * @list: list to use
  1349. *
  1350. * Place a packet before a given packet in a list. The list locks are
  1351. * taken and this function is atomic with respect to other list locked
  1352. * calls.
  1353. *
  1354. * A buffer cannot be placed on two lists at the same time.
  1355. */
  1356. void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
  1357. {
  1358. unsigned long flags;
  1359. spin_lock_irqsave(&list->lock, flags);
  1360. __skb_insert(newsk, old->prev, old, list);
  1361. spin_unlock_irqrestore(&list->lock, flags);
  1362. }
  1363. #if 0
  1364. /*
  1365. * Tune the memory allocator for a new MTU size.
  1366. */
  1367. void skb_add_mtu(int mtu)
  1368. {
  1369. /* Must match allocation in alloc_skb */
  1370. mtu = SKB_DATA_ALIGN(mtu) + sizeof(struct skb_shared_info);
  1371. kmem_add_cache_size(mtu);
  1372. }
  1373. #endif
  1374. static inline void skb_split_inside_header(struct sk_buff *skb,
  1375. struct sk_buff* skb1,
  1376. const u32 len, const int pos)
  1377. {
  1378. int i;
  1379. memcpy(skb_put(skb1, pos - len), skb->data + len, pos - len);
  1380. /* And move data appendix as is. */
  1381. for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
  1382. skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
  1383. skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
  1384. skb_shinfo(skb)->nr_frags = 0;
  1385. skb1->data_len = skb->data_len;
  1386. skb1->len += skb1->data_len;
  1387. skb->data_len = 0;
  1388. skb->len = len;
  1389. skb->tail = skb->data + len;
  1390. }
  1391. static inline void skb_split_no_header(struct sk_buff *skb,
  1392. struct sk_buff* skb1,
  1393. const u32 len, int pos)
  1394. {
  1395. int i, k = 0;
  1396. const int nfrags = skb_shinfo(skb)->nr_frags;
  1397. skb_shinfo(skb)->nr_frags = 0;
  1398. skb1->len = skb1->data_len = skb->len - len;
  1399. skb->len = len;
  1400. skb->data_len = len - pos;
  1401. for (i = 0; i < nfrags; i++) {
  1402. int size = skb_shinfo(skb)->frags[i].size;
  1403. if (pos + size > len) {
  1404. skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
  1405. if (pos < len) {
  1406. /* Split frag.
  1407. * We have two variants in this case:
  1408. * 1. Move all the frag to the second
  1409. * part, if it is possible. F.e.
  1410. * this approach is mandatory for TUX,
  1411. * where splitting is expensive.
  1412. * 2. Split is accurately. We make this.
  1413. */
  1414. get_page(skb_shinfo(skb)->frags[i].page);
  1415. skb_shinfo(skb1)->frags[0].page_offset += len - pos;
  1416. skb_shinfo(skb1)->frags[0].size -= len - pos;
  1417. skb_shinfo(skb)->frags[i].size = len - pos;
  1418. skb_shinfo(skb)->nr_frags++;
  1419. }
  1420. k++;
  1421. } else
  1422. skb_shinfo(skb)->nr_frags++;
  1423. pos += size;
  1424. }
  1425. skb_shinfo(skb1)->nr_frags = k;
  1426. }
  1427. /**
  1428. * skb_split - Split fragmented skb to two parts at length len.
  1429. * @skb: the buffer to split
  1430. * @skb1: the buffer to receive the second part
  1431. * @len: new length for skb
  1432. */
  1433. void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
  1434. {
  1435. int pos = skb_headlen(skb);
  1436. if (len < pos) /* Split line is inside header. */
  1437. skb_split_inside_header(skb, skb1, len, pos);
  1438. else /* Second chunk has no header, nothing to copy. */
  1439. skb_split_no_header(skb, skb1, len, pos);
  1440. }
  1441. /**
  1442. * skb_prepare_seq_read - Prepare a sequential read of skb data
  1443. * @skb: the buffer to read
  1444. * @from: lower offset of data to be read
  1445. * @to: upper offset of data to be read
  1446. * @st: state variable
  1447. *
  1448. * Initializes the specified state variable. Must be called before
  1449. * invoking skb_seq_read() for the first time.
  1450. */
  1451. void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
  1452. unsigned int to, struct skb_seq_state *st)
  1453. {
  1454. st->lower_offset = from;
  1455. st->upper_offset = to;
  1456. st->root_skb = st->cur_skb = skb;
  1457. st->frag_idx = st->stepped_offset = 0;
  1458. st->frag_data = NULL;
  1459. }
  1460. /**
  1461. * skb_seq_read - Sequentially read skb data
  1462. * @consumed: number of bytes consumed by the caller so far
  1463. * @data: destination pointer for data to be returned
  1464. * @st: state variable
  1465. *
  1466. * Reads a block of skb data at &consumed relative to the
  1467. * lower offset specified to skb_prepare_seq_read(). Assigns
  1468. * the head of the data block to &data and returns the length
  1469. * of the block or 0 if the end of the skb data or the upper
  1470. * offset has been reached.
  1471. *
  1472. * The caller is not required to consume all of the data
  1473. * returned, i.e. &consumed is typically set to the number
  1474. * of bytes already consumed and the next call to
  1475. * skb_seq_read() will return the remaining part of the block.
  1476. *
  1477. * Note: The size of each block of data returned can be arbitary,
  1478. * this limitation is the cost for zerocopy seqeuental
  1479. * reads of potentially non linear data.
  1480. *
  1481. * Note: Fragment lists within fragments are not implemented
  1482. * at the moment, state->root_skb could be replaced with
  1483. * a stack for this purpose.
  1484. */
  1485. unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
  1486. struct skb_seq_state *st)
  1487. {
  1488. unsigned int block_limit, abs_offset = consumed + st->lower_offset;
  1489. skb_frag_t *frag;
  1490. if (unlikely(abs_offset >= st->upper_offset))
  1491. return 0;
  1492. next_skb:
  1493. block_limit = skb_headlen(st->cur_skb);
  1494. if (abs_offset < block_limit) {
  1495. *data = st->cur_skb->data + abs_offset;
  1496. return block_limit - abs_offset;
  1497. }
  1498. if (st->frag_idx == 0 && !st->frag_data)
  1499. st->stepped_offset += skb_headlen(st->cur_skb);
  1500. while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
  1501. frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
  1502. block_limit = frag->size + st->stepped_offset;
  1503. if (abs_offset < block_limit) {
  1504. if (!st->frag_data)
  1505. st->frag_data = kmap_skb_frag(frag);
  1506. *data = (u8 *) st->frag_data + frag->page_offset +
  1507. (abs_offset - st->stepped_offset);
  1508. return block_limit - abs_offset;
  1509. }
  1510. if (st->frag_data) {
  1511. kunmap_skb_frag(st->frag_data);
  1512. st->frag_data = NULL;
  1513. }
  1514. st->frag_idx++;
  1515. st->stepped_offset += frag->size;
  1516. }
  1517. if (st->cur_skb->next) {
  1518. st->cur_skb = st->cur_skb->next;
  1519. st->frag_idx = 0;
  1520. goto next_skb;
  1521. } else if (st->root_skb == st->cur_skb &&
  1522. skb_shinfo(st->root_skb)->frag_list) {
  1523. st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
  1524. goto next_skb;
  1525. }
  1526. return 0;
  1527. }
  1528. /**
  1529. * skb_abort_seq_read - Abort a sequential read of skb data
  1530. * @st: state variable
  1531. *
  1532. * Must be called if skb_seq_read() was not called until it
  1533. * returned 0.
  1534. */
  1535. void skb_abort_seq_read(struct skb_seq_state *st)
  1536. {
  1537. if (st->frag_data)
  1538. kunmap_skb_frag(st->frag_data);
  1539. }
  1540. #define TS_SKB_CB(state) ((struct skb_seq_state *) &((state)->cb))
  1541. static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
  1542. struct ts_config *conf,
  1543. struct ts_state *state)
  1544. {
  1545. return skb_seq_read(offset, text, TS_SKB_CB(state));
  1546. }
  1547. static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
  1548. {
  1549. skb_abort_seq_read(TS_SKB_CB(state));
  1550. }
  1551. /**
  1552. * skb_find_text - Find a text pattern in skb data
  1553. * @skb: the buffer to look in
  1554. * @from: search offset
  1555. * @to: search limit
  1556. * @config: textsearch configuration
  1557. * @state: uninitialized textsearch state variable
  1558. *
  1559. * Finds a pattern in the skb data according to the specified
  1560. * textsearch configuration. Use textsearch_next() to retrieve
  1561. * subsequent occurrences of the pattern. Returns the offset
  1562. * to the first occurrence or UINT_MAX if no match was found.
  1563. */
  1564. unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
  1565. unsigned int to, struct ts_config *config,
  1566. struct ts_state *state)
  1567. {
  1568. unsigned int ret;
  1569. config->get_next_block = skb_ts_get_next_block;
  1570. config->finish = skb_ts_finish;
  1571. skb_prepare_seq_read(skb, from, to, TS_SKB_CB(state));
  1572. ret = textsearch_find(config, state);
  1573. return (ret <= to - from ? ret : UINT_MAX);
  1574. }
  1575. /**
  1576. * skb_append_datato_frags: - append the user data to a skb
  1577. * @sk: sock structure
  1578. * @skb: skb structure to be appened with user data.
  1579. * @getfrag: call back function to be used for getting the user data
  1580. * @from: pointer to user message iov
  1581. * @length: length of the iov message
  1582. *
  1583. * Description: This procedure append the user data in the fragment part
  1584. * of the skb if any page alloc fails user this procedure returns -ENOMEM
  1585. */
  1586. int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
  1587. int (*getfrag)(void *from, char *to, int offset,
  1588. int len, int odd, struct sk_buff *skb),
  1589. void *from, int length)
  1590. {
  1591. int frg_cnt = 0;
  1592. skb_frag_t *frag = NULL;
  1593. struct page *page = NULL;
  1594. int copy, left;
  1595. int offset = 0;
  1596. int ret;
  1597. do {
  1598. /* Return error if we don't have space for new frag */
  1599. frg_cnt = skb_shinfo(skb)->nr_frags;
  1600. if (frg_cnt >= MAX_SKB_FRAGS)
  1601. return -EFAULT;
  1602. /* allocate a new page for next frag */
  1603. page = alloc_pages(sk->sk_allocation, 0);
  1604. /* If alloc_page fails just return failure and caller will
  1605. * free previous allocated pages by doing kfree_skb()
  1606. */
  1607. if (page == NULL)
  1608. return -ENOMEM;
  1609. /* initialize the next frag */
  1610. sk->sk_sndmsg_page = page;
  1611. sk->sk_sndmsg_off = 0;
  1612. skb_fill_page_desc(skb, frg_cnt, page, 0, 0);
  1613. skb->truesize += PAGE_SIZE;
  1614. atomic_add(PAGE_SIZE, &sk->sk_wmem_alloc);
  1615. /* get the new initialized frag */
  1616. frg_cnt = skb_shinfo(skb)->nr_frags;
  1617. frag = &skb_shinfo(skb)->frags[frg_cnt - 1];
  1618. /* copy the user data to page */
  1619. left = PAGE_SIZE - frag->page_offset;
  1620. copy = (length > left)? left : length;
  1621. ret = getfrag(from, (page_address(frag->page) +
  1622. frag->page_offset + frag->size),
  1623. offset, copy, 0, skb);
  1624. if (ret < 0)
  1625. return -EFAULT;
  1626. /* copy was successful so update the size parameters */
  1627. sk->sk_sndmsg_off += copy;
  1628. frag->size += copy;
  1629. skb->len += copy;
  1630. skb->data_len += copy;
  1631. offset += copy;
  1632. length -= copy;
  1633. } while (length > 0);
  1634. return 0;
  1635. }
  1636. /**
  1637. * skb_pull_rcsum - pull skb and update receive checksum
  1638. * @skb: buffer to update
  1639. * @start: start of data before pull
  1640. * @len: length of data pulled
  1641. *
  1642. * This function performs an skb_pull on the packet and updates
  1643. * update the CHECKSUM_COMPLETE checksum. It should be used on
  1644. * receive path processing instead of skb_pull unless you know
  1645. * that the checksum difference is zero (e.g., a valid IP header)
  1646. * or you are setting ip_summed to CHECKSUM_NONE.
  1647. */
  1648. unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
  1649. {
  1650. BUG_ON(len > skb->len);
  1651. skb->len -= len;
  1652. BUG_ON(skb->len < skb->data_len);
  1653. skb_postpull_rcsum(skb, skb->data, len);
  1654. return skb->data += len;
  1655. }
  1656. EXPORT_SYMBOL_GPL(skb_pull_rcsum);
  1657. /**
  1658. * skb_segment - Perform protocol segmentation on skb.
  1659. * @skb: buffer to segment
  1660. * @features: features for the output path (see dev->features)
  1661. *
  1662. * This function performs segmentation on the given skb. It returns
  1663. * the segment at the given position. It returns NULL if there are
  1664. * no more segments to generate, or when an error is encountered.
  1665. */
  1666. struct sk_buff *skb_segment(struct sk_buff *skb, int features)
  1667. {
  1668. struct sk_buff *segs = NULL;
  1669. struct sk_buff *tail = NULL;
  1670. unsigned int mss = skb_shinfo(skb)->gso_size;
  1671. unsigned int doffset = skb->data - skb->mac.raw;
  1672. unsigned int offset = doffset;
  1673. unsigned int headroom;
  1674. unsigned int len;
  1675. int sg = features & NETIF_F_SG;
  1676. int nfrags = skb_shinfo(skb)->nr_frags;
  1677. int err = -ENOMEM;
  1678. int i = 0;
  1679. int pos;
  1680. __skb_push(skb, doffset);
  1681. headroom = skb_headroom(skb);
  1682. pos = skb_headlen(skb);
  1683. do {
  1684. struct sk_buff *nskb;
  1685. skb_frag_t *frag;
  1686. int hsize, nsize;
  1687. int k;
  1688. int size;
  1689. len = skb->len - offset;
  1690. if (len > mss)
  1691. len = mss;
  1692. hsize = skb_headlen(skb) - offset;
  1693. if (hsize < 0)
  1694. hsize = 0;
  1695. nsize = hsize + doffset;
  1696. if (nsize > len + doffset || !sg)
  1697. nsize = len + doffset;
  1698. nskb = alloc_skb(nsize + headroom, GFP_ATOMIC);
  1699. if (unlikely(!nskb))
  1700. goto err;
  1701. if (segs)
  1702. tail->next = nskb;
  1703. else
  1704. segs = nskb;
  1705. tail = nskb;
  1706. nskb->dev = skb->dev;
  1707. nskb->priority = skb->priority;
  1708. nskb->protocol = skb->protocol;
  1709. nskb->dst = dst_clone(skb->dst);
  1710. memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
  1711. nskb->pkt_type = skb->pkt_type;
  1712. nskb->mac_len = skb->mac_len;
  1713. skb_reserve(nskb, headroom);
  1714. nskb->mac.raw = nskb->data;
  1715. nskb->nh.raw = nskb->data + skb->mac_len;
  1716. nskb->h.raw = nskb->nh.raw + (skb->h.raw - skb->nh.raw);
  1717. memcpy(skb_put(nskb, doffset), skb->data, doffset);
  1718. if (!sg) {
  1719. nskb->csum = skb_copy_and_csum_bits(skb, offset,
  1720. skb_put(nskb, len),
  1721. len, 0);
  1722. continue;
  1723. }
  1724. frag = skb_shinfo(nskb)->frags;
  1725. k = 0;
  1726. nskb->ip_summed = CHECKSUM_PARTIAL;
  1727. nskb->csum = skb->csum;
  1728. memcpy(skb_put(nskb, hsize), skb->data + offset, hsize);
  1729. while (pos < offset + len) {
  1730. BUG_ON(i >= nfrags);
  1731. *frag = skb_shinfo(skb)->frags[i];
  1732. get_page(frag->page);
  1733. size = frag->size;
  1734. if (pos < offset) {
  1735. frag->page_offset += offset - pos;
  1736. frag->size -= offset - pos;
  1737. }
  1738. k++;
  1739. if (pos + size <= offset + len) {
  1740. i++;
  1741. pos += size;
  1742. } else {
  1743. frag->size -= pos + size - (offset + len);
  1744. break;
  1745. }
  1746. frag++;
  1747. }
  1748. skb_shinfo(nskb)->nr_frags = k;
  1749. nskb->data_len = len - hsize;
  1750. nskb->len += nskb->data_len;
  1751. nskb->truesize += nskb->data_len;
  1752. } while ((offset += len) < skb->len);
  1753. return segs;
  1754. err:
  1755. while ((skb = segs)) {
  1756. segs = skb->next;
  1757. kfree(skb);
  1758. }
  1759. return ERR_PTR(err);
  1760. }
  1761. EXPORT_SYMBOL_GPL(skb_segment);
  1762. void __init skb_init(void)
  1763. {
  1764. skbuff_head_cache = kmem_cache_create("skbuff_head_cache",
  1765. sizeof(struct sk_buff),
  1766. 0,
  1767. SLAB_HWCACHE_ALIGN|SLAB_PANIC,
  1768. NULL, NULL);
  1769. skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
  1770. (2*sizeof(struct sk_buff)) +
  1771. sizeof(atomic_t),
  1772. 0,
  1773. SLAB_HWCACHE_ALIGN|SLAB_PANIC,
  1774. NULL, NULL);
  1775. }
  1776. EXPORT_SYMBOL(___pskb_trim);
  1777. EXPORT_SYMBOL(__kfree_skb);
  1778. EXPORT_SYMBOL(kfree_skb);
  1779. EXPORT_SYMBOL(__pskb_pull_tail);
  1780. EXPORT_SYMBOL(__alloc_skb);
  1781. EXPORT_SYMBOL(__netdev_alloc_skb);
  1782. EXPORT_SYMBOL(pskb_copy);
  1783. EXPORT_SYMBOL(pskb_expand_head);
  1784. EXPORT_SYMBOL(skb_checksum);
  1785. EXPORT_SYMBOL(skb_clone);
  1786. EXPORT_SYMBOL(skb_clone_fraglist);
  1787. EXPORT_SYMBOL(skb_copy);
  1788. EXPORT_SYMBOL(skb_copy_and_csum_bits);
  1789. EXPORT_SYMBOL(skb_copy_and_csum_dev);
  1790. EXPORT_SYMBOL(skb_copy_bits);
  1791. EXPORT_SYMBOL(skb_copy_expand);
  1792. EXPORT_SYMBOL(skb_over_panic);
  1793. EXPORT_SYMBOL(skb_pad);
  1794. EXPORT_SYMBOL(skb_realloc_headroom);
  1795. EXPORT_SYMBOL(skb_under_panic);
  1796. EXPORT_SYMBOL(skb_dequeue);
  1797. EXPORT_SYMBOL(skb_dequeue_tail);
  1798. EXPORT_SYMBOL(skb_insert);
  1799. EXPORT_SYMBOL(skb_queue_purge);
  1800. EXPORT_SYMBOL(skb_queue_head);
  1801. EXPORT_SYMBOL(skb_queue_tail);
  1802. EXPORT_SYMBOL(skb_unlink);
  1803. EXPORT_SYMBOL(skb_append);
  1804. EXPORT_SYMBOL(skb_split);
  1805. EXPORT_SYMBOL(skb_prepare_seq_read);
  1806. EXPORT_SYMBOL(skb_seq_read);
  1807. EXPORT_SYMBOL(skb_abort_seq_read);
  1808. EXPORT_SYMBOL(skb_find_text);
  1809. EXPORT_SYMBOL(skb_append_datato_frags);