vmscan.c 45 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690
  1. /*
  2. * linux/mm/vmscan.c
  3. *
  4. * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
  5. *
  6. * Swap reorganised 29.12.95, Stephen Tweedie.
  7. * kswapd added: 7.1.96 sct
  8. * Removed kswapd_ctl limits, and swap out as many pages as needed
  9. * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
  10. * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
  11. * Multiqueue VM started 5.8.00, Rik van Riel.
  12. */
  13. #include <linux/mm.h>
  14. #include <linux/module.h>
  15. #include <linux/slab.h>
  16. #include <linux/kernel_stat.h>
  17. #include <linux/swap.h>
  18. #include <linux/pagemap.h>
  19. #include <linux/init.h>
  20. #include <linux/highmem.h>
  21. #include <linux/vmstat.h>
  22. #include <linux/file.h>
  23. #include <linux/writeback.h>
  24. #include <linux/blkdev.h>
  25. #include <linux/buffer_head.h> /* for try_to_release_page(),
  26. buffer_heads_over_limit */
  27. #include <linux/mm_inline.h>
  28. #include <linux/pagevec.h>
  29. #include <linux/backing-dev.h>
  30. #include <linux/rmap.h>
  31. #include <linux/topology.h>
  32. #include <linux/cpu.h>
  33. #include <linux/cpuset.h>
  34. #include <linux/notifier.h>
  35. #include <linux/rwsem.h>
  36. #include <linux/delay.h>
  37. #include <linux/kthread.h>
  38. #include <asm/tlbflush.h>
  39. #include <asm/div64.h>
  40. #include <linux/swapops.h>
  41. #include "internal.h"
  42. struct scan_control {
  43. /* Incremented by the number of inactive pages that were scanned */
  44. unsigned long nr_scanned;
  45. /* This context's GFP mask */
  46. gfp_t gfp_mask;
  47. int may_writepage;
  48. /* Can pages be swapped as part of reclaim? */
  49. int may_swap;
  50. /* This context's SWAP_CLUSTER_MAX. If freeing memory for
  51. * suspend, we effectively ignore SWAP_CLUSTER_MAX.
  52. * In this context, it doesn't matter that we scan the
  53. * whole list at once. */
  54. int swap_cluster_max;
  55. int swappiness;
  56. int all_unreclaimable;
  57. };
  58. /*
  59. * The list of shrinker callbacks used by to apply pressure to
  60. * ageable caches.
  61. */
  62. struct shrinker {
  63. shrinker_t shrinker;
  64. struct list_head list;
  65. int seeks; /* seeks to recreate an obj */
  66. long nr; /* objs pending delete */
  67. };
  68. #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
  69. #ifdef ARCH_HAS_PREFETCH
  70. #define prefetch_prev_lru_page(_page, _base, _field) \
  71. do { \
  72. if ((_page)->lru.prev != _base) { \
  73. struct page *prev; \
  74. \
  75. prev = lru_to_page(&(_page->lru)); \
  76. prefetch(&prev->_field); \
  77. } \
  78. } while (0)
  79. #else
  80. #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
  81. #endif
  82. #ifdef ARCH_HAS_PREFETCHW
  83. #define prefetchw_prev_lru_page(_page, _base, _field) \
  84. do { \
  85. if ((_page)->lru.prev != _base) { \
  86. struct page *prev; \
  87. \
  88. prev = lru_to_page(&(_page->lru)); \
  89. prefetchw(&prev->_field); \
  90. } \
  91. } while (0)
  92. #else
  93. #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
  94. #endif
  95. /*
  96. * From 0 .. 100. Higher means more swappy.
  97. */
  98. int vm_swappiness = 60;
  99. long vm_total_pages; /* The total number of pages which the VM controls */
  100. static LIST_HEAD(shrinker_list);
  101. static DECLARE_RWSEM(shrinker_rwsem);
  102. /*
  103. * Add a shrinker callback to be called from the vm
  104. */
  105. struct shrinker *set_shrinker(int seeks, shrinker_t theshrinker)
  106. {
  107. struct shrinker *shrinker;
  108. shrinker = kmalloc(sizeof(*shrinker), GFP_KERNEL);
  109. if (shrinker) {
  110. shrinker->shrinker = theshrinker;
  111. shrinker->seeks = seeks;
  112. shrinker->nr = 0;
  113. down_write(&shrinker_rwsem);
  114. list_add_tail(&shrinker->list, &shrinker_list);
  115. up_write(&shrinker_rwsem);
  116. }
  117. return shrinker;
  118. }
  119. EXPORT_SYMBOL(set_shrinker);
  120. /*
  121. * Remove one
  122. */
  123. void remove_shrinker(struct shrinker *shrinker)
  124. {
  125. down_write(&shrinker_rwsem);
  126. list_del(&shrinker->list);
  127. up_write(&shrinker_rwsem);
  128. kfree(shrinker);
  129. }
  130. EXPORT_SYMBOL(remove_shrinker);
  131. #define SHRINK_BATCH 128
  132. /*
  133. * Call the shrink functions to age shrinkable caches
  134. *
  135. * Here we assume it costs one seek to replace a lru page and that it also
  136. * takes a seek to recreate a cache object. With this in mind we age equal
  137. * percentages of the lru and ageable caches. This should balance the seeks
  138. * generated by these structures.
  139. *
  140. * If the vm encounted mapped pages on the LRU it increase the pressure on
  141. * slab to avoid swapping.
  142. *
  143. * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
  144. *
  145. * `lru_pages' represents the number of on-LRU pages in all the zones which
  146. * are eligible for the caller's allocation attempt. It is used for balancing
  147. * slab reclaim versus page reclaim.
  148. *
  149. * Returns the number of slab objects which we shrunk.
  150. */
  151. unsigned long shrink_slab(unsigned long scanned, gfp_t gfp_mask,
  152. unsigned long lru_pages)
  153. {
  154. struct shrinker *shrinker;
  155. unsigned long ret = 0;
  156. if (scanned == 0)
  157. scanned = SWAP_CLUSTER_MAX;
  158. if (!down_read_trylock(&shrinker_rwsem))
  159. return 1; /* Assume we'll be able to shrink next time */
  160. list_for_each_entry(shrinker, &shrinker_list, list) {
  161. unsigned long long delta;
  162. unsigned long total_scan;
  163. unsigned long max_pass = (*shrinker->shrinker)(0, gfp_mask);
  164. delta = (4 * scanned) / shrinker->seeks;
  165. delta *= max_pass;
  166. do_div(delta, lru_pages + 1);
  167. shrinker->nr += delta;
  168. if (shrinker->nr < 0) {
  169. printk(KERN_ERR "%s: nr=%ld\n",
  170. __FUNCTION__, shrinker->nr);
  171. shrinker->nr = max_pass;
  172. }
  173. /*
  174. * Avoid risking looping forever due to too large nr value:
  175. * never try to free more than twice the estimate number of
  176. * freeable entries.
  177. */
  178. if (shrinker->nr > max_pass * 2)
  179. shrinker->nr = max_pass * 2;
  180. total_scan = shrinker->nr;
  181. shrinker->nr = 0;
  182. while (total_scan >= SHRINK_BATCH) {
  183. long this_scan = SHRINK_BATCH;
  184. int shrink_ret;
  185. int nr_before;
  186. nr_before = (*shrinker->shrinker)(0, gfp_mask);
  187. shrink_ret = (*shrinker->shrinker)(this_scan, gfp_mask);
  188. if (shrink_ret == -1)
  189. break;
  190. if (shrink_ret < nr_before)
  191. ret += nr_before - shrink_ret;
  192. count_vm_events(SLABS_SCANNED, this_scan);
  193. total_scan -= this_scan;
  194. cond_resched();
  195. }
  196. shrinker->nr += total_scan;
  197. }
  198. up_read(&shrinker_rwsem);
  199. return ret;
  200. }
  201. /* Called without lock on whether page is mapped, so answer is unstable */
  202. static inline int page_mapping_inuse(struct page *page)
  203. {
  204. struct address_space *mapping;
  205. /* Page is in somebody's page tables. */
  206. if (page_mapped(page))
  207. return 1;
  208. /* Be more reluctant to reclaim swapcache than pagecache */
  209. if (PageSwapCache(page))
  210. return 1;
  211. mapping = page_mapping(page);
  212. if (!mapping)
  213. return 0;
  214. /* File is mmap'd by somebody? */
  215. return mapping_mapped(mapping);
  216. }
  217. static inline int is_page_cache_freeable(struct page *page)
  218. {
  219. return page_count(page) - !!PagePrivate(page) == 2;
  220. }
  221. static int may_write_to_queue(struct backing_dev_info *bdi)
  222. {
  223. if (current->flags & PF_SWAPWRITE)
  224. return 1;
  225. if (!bdi_write_congested(bdi))
  226. return 1;
  227. if (bdi == current->backing_dev_info)
  228. return 1;
  229. return 0;
  230. }
  231. /*
  232. * We detected a synchronous write error writing a page out. Probably
  233. * -ENOSPC. We need to propagate that into the address_space for a subsequent
  234. * fsync(), msync() or close().
  235. *
  236. * The tricky part is that after writepage we cannot touch the mapping: nothing
  237. * prevents it from being freed up. But we have a ref on the page and once
  238. * that page is locked, the mapping is pinned.
  239. *
  240. * We're allowed to run sleeping lock_page() here because we know the caller has
  241. * __GFP_FS.
  242. */
  243. static void handle_write_error(struct address_space *mapping,
  244. struct page *page, int error)
  245. {
  246. lock_page(page);
  247. if (page_mapping(page) == mapping) {
  248. if (error == -ENOSPC)
  249. set_bit(AS_ENOSPC, &mapping->flags);
  250. else
  251. set_bit(AS_EIO, &mapping->flags);
  252. }
  253. unlock_page(page);
  254. }
  255. /* possible outcome of pageout() */
  256. typedef enum {
  257. /* failed to write page out, page is locked */
  258. PAGE_KEEP,
  259. /* move page to the active list, page is locked */
  260. PAGE_ACTIVATE,
  261. /* page has been sent to the disk successfully, page is unlocked */
  262. PAGE_SUCCESS,
  263. /* page is clean and locked */
  264. PAGE_CLEAN,
  265. } pageout_t;
  266. /*
  267. * pageout is called by shrink_page_list() for each dirty page.
  268. * Calls ->writepage().
  269. */
  270. static pageout_t pageout(struct page *page, struct address_space *mapping)
  271. {
  272. /*
  273. * If the page is dirty, only perform writeback if that write
  274. * will be non-blocking. To prevent this allocation from being
  275. * stalled by pagecache activity. But note that there may be
  276. * stalls if we need to run get_block(). We could test
  277. * PagePrivate for that.
  278. *
  279. * If this process is currently in generic_file_write() against
  280. * this page's queue, we can perform writeback even if that
  281. * will block.
  282. *
  283. * If the page is swapcache, write it back even if that would
  284. * block, for some throttling. This happens by accident, because
  285. * swap_backing_dev_info is bust: it doesn't reflect the
  286. * congestion state of the swapdevs. Easy to fix, if needed.
  287. * See swapfile.c:page_queue_congested().
  288. */
  289. if (!is_page_cache_freeable(page))
  290. return PAGE_KEEP;
  291. if (!mapping) {
  292. /*
  293. * Some data journaling orphaned pages can have
  294. * page->mapping == NULL while being dirty with clean buffers.
  295. */
  296. if (PagePrivate(page)) {
  297. if (try_to_free_buffers(page)) {
  298. ClearPageDirty(page);
  299. printk("%s: orphaned page\n", __FUNCTION__);
  300. return PAGE_CLEAN;
  301. }
  302. }
  303. return PAGE_KEEP;
  304. }
  305. if (mapping->a_ops->writepage == NULL)
  306. return PAGE_ACTIVATE;
  307. if (!may_write_to_queue(mapping->backing_dev_info))
  308. return PAGE_KEEP;
  309. if (clear_page_dirty_for_io(page)) {
  310. int res;
  311. struct writeback_control wbc = {
  312. .sync_mode = WB_SYNC_NONE,
  313. .nr_to_write = SWAP_CLUSTER_MAX,
  314. .range_start = 0,
  315. .range_end = LLONG_MAX,
  316. .nonblocking = 1,
  317. .for_reclaim = 1,
  318. };
  319. SetPageReclaim(page);
  320. res = mapping->a_ops->writepage(page, &wbc);
  321. if (res < 0)
  322. handle_write_error(mapping, page, res);
  323. if (res == AOP_WRITEPAGE_ACTIVATE) {
  324. ClearPageReclaim(page);
  325. return PAGE_ACTIVATE;
  326. }
  327. if (!PageWriteback(page)) {
  328. /* synchronous write or broken a_ops? */
  329. ClearPageReclaim(page);
  330. }
  331. inc_zone_page_state(page, NR_VMSCAN_WRITE);
  332. return PAGE_SUCCESS;
  333. }
  334. return PAGE_CLEAN;
  335. }
  336. int remove_mapping(struct address_space *mapping, struct page *page)
  337. {
  338. BUG_ON(!PageLocked(page));
  339. BUG_ON(mapping != page_mapping(page));
  340. write_lock_irq(&mapping->tree_lock);
  341. /*
  342. * The non racy check for a busy page.
  343. *
  344. * Must be careful with the order of the tests. When someone has
  345. * a ref to the page, it may be possible that they dirty it then
  346. * drop the reference. So if PageDirty is tested before page_count
  347. * here, then the following race may occur:
  348. *
  349. * get_user_pages(&page);
  350. * [user mapping goes away]
  351. * write_to(page);
  352. * !PageDirty(page) [good]
  353. * SetPageDirty(page);
  354. * put_page(page);
  355. * !page_count(page) [good, discard it]
  356. *
  357. * [oops, our write_to data is lost]
  358. *
  359. * Reversing the order of the tests ensures such a situation cannot
  360. * escape unnoticed. The smp_rmb is needed to ensure the page->flags
  361. * load is not satisfied before that of page->_count.
  362. *
  363. * Note that if SetPageDirty is always performed via set_page_dirty,
  364. * and thus under tree_lock, then this ordering is not required.
  365. */
  366. if (unlikely(page_count(page) != 2))
  367. goto cannot_free;
  368. smp_rmb();
  369. if (unlikely(PageDirty(page)))
  370. goto cannot_free;
  371. if (PageSwapCache(page)) {
  372. swp_entry_t swap = { .val = page_private(page) };
  373. __delete_from_swap_cache(page);
  374. write_unlock_irq(&mapping->tree_lock);
  375. swap_free(swap);
  376. __put_page(page); /* The pagecache ref */
  377. return 1;
  378. }
  379. __remove_from_page_cache(page);
  380. write_unlock_irq(&mapping->tree_lock);
  381. __put_page(page);
  382. return 1;
  383. cannot_free:
  384. write_unlock_irq(&mapping->tree_lock);
  385. return 0;
  386. }
  387. /*
  388. * shrink_page_list() returns the number of reclaimed pages
  389. */
  390. static unsigned long shrink_page_list(struct list_head *page_list,
  391. struct scan_control *sc)
  392. {
  393. LIST_HEAD(ret_pages);
  394. struct pagevec freed_pvec;
  395. int pgactivate = 0;
  396. unsigned long nr_reclaimed = 0;
  397. cond_resched();
  398. pagevec_init(&freed_pvec, 1);
  399. while (!list_empty(page_list)) {
  400. struct address_space *mapping;
  401. struct page *page;
  402. int may_enter_fs;
  403. int referenced;
  404. cond_resched();
  405. page = lru_to_page(page_list);
  406. list_del(&page->lru);
  407. if (TestSetPageLocked(page))
  408. goto keep;
  409. VM_BUG_ON(PageActive(page));
  410. sc->nr_scanned++;
  411. if (!sc->may_swap && page_mapped(page))
  412. goto keep_locked;
  413. /* Double the slab pressure for mapped and swapcache pages */
  414. if (page_mapped(page) || PageSwapCache(page))
  415. sc->nr_scanned++;
  416. if (PageWriteback(page))
  417. goto keep_locked;
  418. referenced = page_referenced(page, 1);
  419. /* In active use or really unfreeable? Activate it. */
  420. if (referenced && page_mapping_inuse(page))
  421. goto activate_locked;
  422. #ifdef CONFIG_SWAP
  423. /*
  424. * Anonymous process memory has backing store?
  425. * Try to allocate it some swap space here.
  426. */
  427. if (PageAnon(page) && !PageSwapCache(page))
  428. if (!add_to_swap(page, GFP_ATOMIC))
  429. goto activate_locked;
  430. #endif /* CONFIG_SWAP */
  431. mapping = page_mapping(page);
  432. may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
  433. (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
  434. /*
  435. * The page is mapped into the page tables of one or more
  436. * processes. Try to unmap it here.
  437. */
  438. if (page_mapped(page) && mapping) {
  439. switch (try_to_unmap(page, 0)) {
  440. case SWAP_FAIL:
  441. goto activate_locked;
  442. case SWAP_AGAIN:
  443. goto keep_locked;
  444. case SWAP_SUCCESS:
  445. ; /* try to free the page below */
  446. }
  447. }
  448. if (PageDirty(page)) {
  449. if (referenced)
  450. goto keep_locked;
  451. if (!may_enter_fs)
  452. goto keep_locked;
  453. if (!sc->may_writepage)
  454. goto keep_locked;
  455. /* Page is dirty, try to write it out here */
  456. switch(pageout(page, mapping)) {
  457. case PAGE_KEEP:
  458. goto keep_locked;
  459. case PAGE_ACTIVATE:
  460. goto activate_locked;
  461. case PAGE_SUCCESS:
  462. if (PageWriteback(page) || PageDirty(page))
  463. goto keep;
  464. /*
  465. * A synchronous write - probably a ramdisk. Go
  466. * ahead and try to reclaim the page.
  467. */
  468. if (TestSetPageLocked(page))
  469. goto keep;
  470. if (PageDirty(page) || PageWriteback(page))
  471. goto keep_locked;
  472. mapping = page_mapping(page);
  473. case PAGE_CLEAN:
  474. ; /* try to free the page below */
  475. }
  476. }
  477. /*
  478. * If the page has buffers, try to free the buffer mappings
  479. * associated with this page. If we succeed we try to free
  480. * the page as well.
  481. *
  482. * We do this even if the page is PageDirty().
  483. * try_to_release_page() does not perform I/O, but it is
  484. * possible for a page to have PageDirty set, but it is actually
  485. * clean (all its buffers are clean). This happens if the
  486. * buffers were written out directly, with submit_bh(). ext3
  487. * will do this, as well as the blockdev mapping.
  488. * try_to_release_page() will discover that cleanness and will
  489. * drop the buffers and mark the page clean - it can be freed.
  490. *
  491. * Rarely, pages can have buffers and no ->mapping. These are
  492. * the pages which were not successfully invalidated in
  493. * truncate_complete_page(). We try to drop those buffers here
  494. * and if that worked, and the page is no longer mapped into
  495. * process address space (page_count == 1) it can be freed.
  496. * Otherwise, leave the page on the LRU so it is swappable.
  497. */
  498. if (PagePrivate(page)) {
  499. if (!try_to_release_page(page, sc->gfp_mask))
  500. goto activate_locked;
  501. if (!mapping && page_count(page) == 1)
  502. goto free_it;
  503. }
  504. if (!mapping || !remove_mapping(mapping, page))
  505. goto keep_locked;
  506. free_it:
  507. unlock_page(page);
  508. nr_reclaimed++;
  509. if (!pagevec_add(&freed_pvec, page))
  510. __pagevec_release_nonlru(&freed_pvec);
  511. continue;
  512. activate_locked:
  513. SetPageActive(page);
  514. pgactivate++;
  515. keep_locked:
  516. unlock_page(page);
  517. keep:
  518. list_add(&page->lru, &ret_pages);
  519. VM_BUG_ON(PageLRU(page));
  520. }
  521. list_splice(&ret_pages, page_list);
  522. if (pagevec_count(&freed_pvec))
  523. __pagevec_release_nonlru(&freed_pvec);
  524. count_vm_events(PGACTIVATE, pgactivate);
  525. return nr_reclaimed;
  526. }
  527. /*
  528. * zone->lru_lock is heavily contended. Some of the functions that
  529. * shrink the lists perform better by taking out a batch of pages
  530. * and working on them outside the LRU lock.
  531. *
  532. * For pagecache intensive workloads, this function is the hottest
  533. * spot in the kernel (apart from copy_*_user functions).
  534. *
  535. * Appropriate locks must be held before calling this function.
  536. *
  537. * @nr_to_scan: The number of pages to look through on the list.
  538. * @src: The LRU list to pull pages off.
  539. * @dst: The temp list to put pages on to.
  540. * @scanned: The number of pages that were scanned.
  541. *
  542. * returns how many pages were moved onto *@dst.
  543. */
  544. static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
  545. struct list_head *src, struct list_head *dst,
  546. unsigned long *scanned)
  547. {
  548. unsigned long nr_taken = 0;
  549. struct page *page;
  550. unsigned long scan;
  551. for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
  552. struct list_head *target;
  553. page = lru_to_page(src);
  554. prefetchw_prev_lru_page(page, src, flags);
  555. VM_BUG_ON(!PageLRU(page));
  556. list_del(&page->lru);
  557. target = src;
  558. if (likely(get_page_unless_zero(page))) {
  559. /*
  560. * Be careful not to clear PageLRU until after we're
  561. * sure the page is not being freed elsewhere -- the
  562. * page release code relies on it.
  563. */
  564. ClearPageLRU(page);
  565. target = dst;
  566. nr_taken++;
  567. } /* else it is being freed elsewhere */
  568. list_add(&page->lru, target);
  569. }
  570. *scanned = scan;
  571. return nr_taken;
  572. }
  573. /*
  574. * shrink_inactive_list() is a helper for shrink_zone(). It returns the number
  575. * of reclaimed pages
  576. */
  577. static unsigned long shrink_inactive_list(unsigned long max_scan,
  578. struct zone *zone, struct scan_control *sc)
  579. {
  580. LIST_HEAD(page_list);
  581. struct pagevec pvec;
  582. unsigned long nr_scanned = 0;
  583. unsigned long nr_reclaimed = 0;
  584. pagevec_init(&pvec, 1);
  585. lru_add_drain();
  586. spin_lock_irq(&zone->lru_lock);
  587. do {
  588. struct page *page;
  589. unsigned long nr_taken;
  590. unsigned long nr_scan;
  591. unsigned long nr_freed;
  592. nr_taken = isolate_lru_pages(sc->swap_cluster_max,
  593. &zone->inactive_list,
  594. &page_list, &nr_scan);
  595. zone->nr_inactive -= nr_taken;
  596. zone->pages_scanned += nr_scan;
  597. spin_unlock_irq(&zone->lru_lock);
  598. nr_scanned += nr_scan;
  599. nr_freed = shrink_page_list(&page_list, sc);
  600. nr_reclaimed += nr_freed;
  601. local_irq_disable();
  602. if (current_is_kswapd()) {
  603. __count_zone_vm_events(PGSCAN_KSWAPD, zone, nr_scan);
  604. __count_vm_events(KSWAPD_STEAL, nr_freed);
  605. } else
  606. __count_zone_vm_events(PGSCAN_DIRECT, zone, nr_scan);
  607. __count_vm_events(PGACTIVATE, nr_freed);
  608. if (nr_taken == 0)
  609. goto done;
  610. spin_lock(&zone->lru_lock);
  611. /*
  612. * Put back any unfreeable pages.
  613. */
  614. while (!list_empty(&page_list)) {
  615. page = lru_to_page(&page_list);
  616. VM_BUG_ON(PageLRU(page));
  617. SetPageLRU(page);
  618. list_del(&page->lru);
  619. if (PageActive(page))
  620. add_page_to_active_list(zone, page);
  621. else
  622. add_page_to_inactive_list(zone, page);
  623. if (!pagevec_add(&pvec, page)) {
  624. spin_unlock_irq(&zone->lru_lock);
  625. __pagevec_release(&pvec);
  626. spin_lock_irq(&zone->lru_lock);
  627. }
  628. }
  629. } while (nr_scanned < max_scan);
  630. spin_unlock(&zone->lru_lock);
  631. done:
  632. local_irq_enable();
  633. pagevec_release(&pvec);
  634. return nr_reclaimed;
  635. }
  636. static inline int zone_is_near_oom(struct zone *zone)
  637. {
  638. return zone->pages_scanned >= (zone->nr_active + zone->nr_inactive)*3;
  639. }
  640. /*
  641. * This moves pages from the active list to the inactive list.
  642. *
  643. * We move them the other way if the page is referenced by one or more
  644. * processes, from rmap.
  645. *
  646. * If the pages are mostly unmapped, the processing is fast and it is
  647. * appropriate to hold zone->lru_lock across the whole operation. But if
  648. * the pages are mapped, the processing is slow (page_referenced()) so we
  649. * should drop zone->lru_lock around each page. It's impossible to balance
  650. * this, so instead we remove the pages from the LRU while processing them.
  651. * It is safe to rely on PG_active against the non-LRU pages in here because
  652. * nobody will play with that bit on a non-LRU page.
  653. *
  654. * The downside is that we have to touch page->_count against each page.
  655. * But we had to alter page->flags anyway.
  656. */
  657. static void shrink_active_list(unsigned long nr_pages, struct zone *zone,
  658. struct scan_control *sc)
  659. {
  660. unsigned long pgmoved;
  661. int pgdeactivate = 0;
  662. unsigned long pgscanned;
  663. LIST_HEAD(l_hold); /* The pages which were snipped off */
  664. LIST_HEAD(l_inactive); /* Pages to go onto the inactive_list */
  665. LIST_HEAD(l_active); /* Pages to go onto the active_list */
  666. struct page *page;
  667. struct pagevec pvec;
  668. int reclaim_mapped = 0;
  669. if (sc->may_swap) {
  670. long mapped_ratio;
  671. long distress;
  672. long swap_tendency;
  673. if (zone_is_near_oom(zone))
  674. goto force_reclaim_mapped;
  675. /*
  676. * `distress' is a measure of how much trouble we're having
  677. * reclaiming pages. 0 -> no problems. 100 -> great trouble.
  678. */
  679. distress = 100 >> zone->prev_priority;
  680. /*
  681. * The point of this algorithm is to decide when to start
  682. * reclaiming mapped memory instead of just pagecache. Work out
  683. * how much memory
  684. * is mapped.
  685. */
  686. mapped_ratio = ((global_page_state(NR_FILE_MAPPED) +
  687. global_page_state(NR_ANON_PAGES)) * 100) /
  688. vm_total_pages;
  689. /*
  690. * Now decide how much we really want to unmap some pages. The
  691. * mapped ratio is downgraded - just because there's a lot of
  692. * mapped memory doesn't necessarily mean that page reclaim
  693. * isn't succeeding.
  694. *
  695. * The distress ratio is important - we don't want to start
  696. * going oom.
  697. *
  698. * A 100% value of vm_swappiness overrides this algorithm
  699. * altogether.
  700. */
  701. swap_tendency = mapped_ratio / 2 + distress + sc->swappiness;
  702. /*
  703. * Now use this metric to decide whether to start moving mapped
  704. * memory onto the inactive list.
  705. */
  706. if (swap_tendency >= 100)
  707. force_reclaim_mapped:
  708. reclaim_mapped = 1;
  709. }
  710. lru_add_drain();
  711. spin_lock_irq(&zone->lru_lock);
  712. pgmoved = isolate_lru_pages(nr_pages, &zone->active_list,
  713. &l_hold, &pgscanned);
  714. zone->pages_scanned += pgscanned;
  715. zone->nr_active -= pgmoved;
  716. spin_unlock_irq(&zone->lru_lock);
  717. while (!list_empty(&l_hold)) {
  718. cond_resched();
  719. page = lru_to_page(&l_hold);
  720. list_del(&page->lru);
  721. if (page_mapped(page)) {
  722. if (!reclaim_mapped ||
  723. (total_swap_pages == 0 && PageAnon(page)) ||
  724. page_referenced(page, 0)) {
  725. list_add(&page->lru, &l_active);
  726. continue;
  727. }
  728. }
  729. list_add(&page->lru, &l_inactive);
  730. }
  731. pagevec_init(&pvec, 1);
  732. pgmoved = 0;
  733. spin_lock_irq(&zone->lru_lock);
  734. while (!list_empty(&l_inactive)) {
  735. page = lru_to_page(&l_inactive);
  736. prefetchw_prev_lru_page(page, &l_inactive, flags);
  737. VM_BUG_ON(PageLRU(page));
  738. SetPageLRU(page);
  739. VM_BUG_ON(!PageActive(page));
  740. ClearPageActive(page);
  741. list_move(&page->lru, &zone->inactive_list);
  742. pgmoved++;
  743. if (!pagevec_add(&pvec, page)) {
  744. zone->nr_inactive += pgmoved;
  745. spin_unlock_irq(&zone->lru_lock);
  746. pgdeactivate += pgmoved;
  747. pgmoved = 0;
  748. if (buffer_heads_over_limit)
  749. pagevec_strip(&pvec);
  750. __pagevec_release(&pvec);
  751. spin_lock_irq(&zone->lru_lock);
  752. }
  753. }
  754. zone->nr_inactive += pgmoved;
  755. pgdeactivate += pgmoved;
  756. if (buffer_heads_over_limit) {
  757. spin_unlock_irq(&zone->lru_lock);
  758. pagevec_strip(&pvec);
  759. spin_lock_irq(&zone->lru_lock);
  760. }
  761. pgmoved = 0;
  762. while (!list_empty(&l_active)) {
  763. page = lru_to_page(&l_active);
  764. prefetchw_prev_lru_page(page, &l_active, flags);
  765. VM_BUG_ON(PageLRU(page));
  766. SetPageLRU(page);
  767. VM_BUG_ON(!PageActive(page));
  768. list_move(&page->lru, &zone->active_list);
  769. pgmoved++;
  770. if (!pagevec_add(&pvec, page)) {
  771. zone->nr_active += pgmoved;
  772. pgmoved = 0;
  773. spin_unlock_irq(&zone->lru_lock);
  774. __pagevec_release(&pvec);
  775. spin_lock_irq(&zone->lru_lock);
  776. }
  777. }
  778. zone->nr_active += pgmoved;
  779. __count_zone_vm_events(PGREFILL, zone, pgscanned);
  780. __count_vm_events(PGDEACTIVATE, pgdeactivate);
  781. spin_unlock_irq(&zone->lru_lock);
  782. pagevec_release(&pvec);
  783. }
  784. /*
  785. * This is a basic per-zone page freer. Used by both kswapd and direct reclaim.
  786. */
  787. static unsigned long shrink_zone(int priority, struct zone *zone,
  788. struct scan_control *sc)
  789. {
  790. unsigned long nr_active;
  791. unsigned long nr_inactive;
  792. unsigned long nr_to_scan;
  793. unsigned long nr_reclaimed = 0;
  794. atomic_inc(&zone->reclaim_in_progress);
  795. /*
  796. * Add one to `nr_to_scan' just to make sure that the kernel will
  797. * slowly sift through the active list.
  798. */
  799. zone->nr_scan_active += (zone->nr_active >> priority) + 1;
  800. nr_active = zone->nr_scan_active;
  801. if (nr_active >= sc->swap_cluster_max)
  802. zone->nr_scan_active = 0;
  803. else
  804. nr_active = 0;
  805. zone->nr_scan_inactive += (zone->nr_inactive >> priority) + 1;
  806. nr_inactive = zone->nr_scan_inactive;
  807. if (nr_inactive >= sc->swap_cluster_max)
  808. zone->nr_scan_inactive = 0;
  809. else
  810. nr_inactive = 0;
  811. while (nr_active || nr_inactive) {
  812. if (nr_active) {
  813. nr_to_scan = min(nr_active,
  814. (unsigned long)sc->swap_cluster_max);
  815. nr_active -= nr_to_scan;
  816. shrink_active_list(nr_to_scan, zone, sc);
  817. }
  818. if (nr_inactive) {
  819. nr_to_scan = min(nr_inactive,
  820. (unsigned long)sc->swap_cluster_max);
  821. nr_inactive -= nr_to_scan;
  822. nr_reclaimed += shrink_inactive_list(nr_to_scan, zone,
  823. sc);
  824. }
  825. }
  826. throttle_vm_writeout();
  827. atomic_dec(&zone->reclaim_in_progress);
  828. return nr_reclaimed;
  829. }
  830. /*
  831. * This is the direct reclaim path, for page-allocating processes. We only
  832. * try to reclaim pages from zones which will satisfy the caller's allocation
  833. * request.
  834. *
  835. * We reclaim from a zone even if that zone is over pages_high. Because:
  836. * a) The caller may be trying to free *extra* pages to satisfy a higher-order
  837. * allocation or
  838. * b) The zones may be over pages_high but they must go *over* pages_high to
  839. * satisfy the `incremental min' zone defense algorithm.
  840. *
  841. * Returns the number of reclaimed pages.
  842. *
  843. * If a zone is deemed to be full of pinned pages then just give it a light
  844. * scan then give up on it.
  845. */
  846. static unsigned long shrink_zones(int priority, struct zone **zones,
  847. struct scan_control *sc)
  848. {
  849. unsigned long nr_reclaimed = 0;
  850. int i;
  851. sc->all_unreclaimable = 1;
  852. for (i = 0; zones[i] != NULL; i++) {
  853. struct zone *zone = zones[i];
  854. if (!populated_zone(zone))
  855. continue;
  856. if (!cpuset_zone_allowed(zone, __GFP_HARDWALL))
  857. continue;
  858. zone->temp_priority = priority;
  859. if (zone->prev_priority > priority)
  860. zone->prev_priority = priority;
  861. if (zone->all_unreclaimable && priority != DEF_PRIORITY)
  862. continue; /* Let kswapd poll it */
  863. sc->all_unreclaimable = 0;
  864. nr_reclaimed += shrink_zone(priority, zone, sc);
  865. }
  866. return nr_reclaimed;
  867. }
  868. /*
  869. * This is the main entry point to direct page reclaim.
  870. *
  871. * If a full scan of the inactive list fails to free enough memory then we
  872. * are "out of memory" and something needs to be killed.
  873. *
  874. * If the caller is !__GFP_FS then the probability of a failure is reasonably
  875. * high - the zone may be full of dirty or under-writeback pages, which this
  876. * caller can't do much about. We kick pdflush and take explicit naps in the
  877. * hope that some of these pages can be written. But if the allocating task
  878. * holds filesystem locks which prevent writeout this might not work, and the
  879. * allocation attempt will fail.
  880. */
  881. unsigned long try_to_free_pages(struct zone **zones, gfp_t gfp_mask)
  882. {
  883. int priority;
  884. int ret = 0;
  885. unsigned long total_scanned = 0;
  886. unsigned long nr_reclaimed = 0;
  887. struct reclaim_state *reclaim_state = current->reclaim_state;
  888. unsigned long lru_pages = 0;
  889. int i;
  890. struct scan_control sc = {
  891. .gfp_mask = gfp_mask,
  892. .may_writepage = !laptop_mode,
  893. .swap_cluster_max = SWAP_CLUSTER_MAX,
  894. .may_swap = 1,
  895. .swappiness = vm_swappiness,
  896. };
  897. count_vm_event(ALLOCSTALL);
  898. for (i = 0; zones[i] != NULL; i++) {
  899. struct zone *zone = zones[i];
  900. if (!cpuset_zone_allowed(zone, __GFP_HARDWALL))
  901. continue;
  902. zone->temp_priority = DEF_PRIORITY;
  903. lru_pages += zone->nr_active + zone->nr_inactive;
  904. }
  905. for (priority = DEF_PRIORITY; priority >= 0; priority--) {
  906. sc.nr_scanned = 0;
  907. if (!priority)
  908. disable_swap_token();
  909. nr_reclaimed += shrink_zones(priority, zones, &sc);
  910. shrink_slab(sc.nr_scanned, gfp_mask, lru_pages);
  911. if (reclaim_state) {
  912. nr_reclaimed += reclaim_state->reclaimed_slab;
  913. reclaim_state->reclaimed_slab = 0;
  914. }
  915. total_scanned += sc.nr_scanned;
  916. if (nr_reclaimed >= sc.swap_cluster_max) {
  917. ret = 1;
  918. goto out;
  919. }
  920. /*
  921. * Try to write back as many pages as we just scanned. This
  922. * tends to cause slow streaming writers to write data to the
  923. * disk smoothly, at the dirtying rate, which is nice. But
  924. * that's undesirable in laptop mode, where we *want* lumpy
  925. * writeout. So in laptop mode, write out the whole world.
  926. */
  927. if (total_scanned > sc.swap_cluster_max +
  928. sc.swap_cluster_max / 2) {
  929. wakeup_pdflush(laptop_mode ? 0 : total_scanned);
  930. sc.may_writepage = 1;
  931. }
  932. /* Take a nap, wait for some writeback to complete */
  933. if (sc.nr_scanned && priority < DEF_PRIORITY - 2)
  934. blk_congestion_wait(WRITE, HZ/10);
  935. }
  936. /* top priority shrink_caches still had more to do? don't OOM, then */
  937. if (!sc.all_unreclaimable)
  938. ret = 1;
  939. out:
  940. for (i = 0; zones[i] != 0; i++) {
  941. struct zone *zone = zones[i];
  942. if (!cpuset_zone_allowed(zone, __GFP_HARDWALL))
  943. continue;
  944. zone->prev_priority = zone->temp_priority;
  945. }
  946. return ret;
  947. }
  948. /*
  949. * For kswapd, balance_pgdat() will work across all this node's zones until
  950. * they are all at pages_high.
  951. *
  952. * Returns the number of pages which were actually freed.
  953. *
  954. * There is special handling here for zones which are full of pinned pages.
  955. * This can happen if the pages are all mlocked, or if they are all used by
  956. * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb.
  957. * What we do is to detect the case where all pages in the zone have been
  958. * scanned twice and there has been zero successful reclaim. Mark the zone as
  959. * dead and from now on, only perform a short scan. Basically we're polling
  960. * the zone for when the problem goes away.
  961. *
  962. * kswapd scans the zones in the highmem->normal->dma direction. It skips
  963. * zones which have free_pages > pages_high, but once a zone is found to have
  964. * free_pages <= pages_high, we scan that zone and the lower zones regardless
  965. * of the number of free pages in the lower zones. This interoperates with
  966. * the page allocator fallback scheme to ensure that aging of pages is balanced
  967. * across the zones.
  968. */
  969. static unsigned long balance_pgdat(pg_data_t *pgdat, int order)
  970. {
  971. int all_zones_ok;
  972. int priority;
  973. int i;
  974. unsigned long total_scanned;
  975. unsigned long nr_reclaimed;
  976. struct reclaim_state *reclaim_state = current->reclaim_state;
  977. struct scan_control sc = {
  978. .gfp_mask = GFP_KERNEL,
  979. .may_swap = 1,
  980. .swap_cluster_max = SWAP_CLUSTER_MAX,
  981. .swappiness = vm_swappiness,
  982. };
  983. loop_again:
  984. total_scanned = 0;
  985. nr_reclaimed = 0;
  986. sc.may_writepage = !laptop_mode;
  987. count_vm_event(PAGEOUTRUN);
  988. for (i = 0; i < pgdat->nr_zones; i++) {
  989. struct zone *zone = pgdat->node_zones + i;
  990. zone->temp_priority = DEF_PRIORITY;
  991. }
  992. for (priority = DEF_PRIORITY; priority >= 0; priority--) {
  993. int end_zone = 0; /* Inclusive. 0 = ZONE_DMA */
  994. unsigned long lru_pages = 0;
  995. /* The swap token gets in the way of swapout... */
  996. if (!priority)
  997. disable_swap_token();
  998. all_zones_ok = 1;
  999. /*
  1000. * Scan in the highmem->dma direction for the highest
  1001. * zone which needs scanning
  1002. */
  1003. for (i = pgdat->nr_zones - 1; i >= 0; i--) {
  1004. struct zone *zone = pgdat->node_zones + i;
  1005. if (!populated_zone(zone))
  1006. continue;
  1007. if (zone->all_unreclaimable && priority != DEF_PRIORITY)
  1008. continue;
  1009. if (!zone_watermark_ok(zone, order, zone->pages_high,
  1010. 0, 0)) {
  1011. end_zone = i;
  1012. goto scan;
  1013. }
  1014. }
  1015. goto out;
  1016. scan:
  1017. for (i = 0; i <= end_zone; i++) {
  1018. struct zone *zone = pgdat->node_zones + i;
  1019. lru_pages += zone->nr_active + zone->nr_inactive;
  1020. }
  1021. /*
  1022. * Now scan the zone in the dma->highmem direction, stopping
  1023. * at the last zone which needs scanning.
  1024. *
  1025. * We do this because the page allocator works in the opposite
  1026. * direction. This prevents the page allocator from allocating
  1027. * pages behind kswapd's direction of progress, which would
  1028. * cause too much scanning of the lower zones.
  1029. */
  1030. for (i = 0; i <= end_zone; i++) {
  1031. struct zone *zone = pgdat->node_zones + i;
  1032. int nr_slab;
  1033. if (!populated_zone(zone))
  1034. continue;
  1035. if (zone->all_unreclaimable && priority != DEF_PRIORITY)
  1036. continue;
  1037. if (!zone_watermark_ok(zone, order, zone->pages_high,
  1038. end_zone, 0))
  1039. all_zones_ok = 0;
  1040. zone->temp_priority = priority;
  1041. if (zone->prev_priority > priority)
  1042. zone->prev_priority = priority;
  1043. sc.nr_scanned = 0;
  1044. nr_reclaimed += shrink_zone(priority, zone, &sc);
  1045. reclaim_state->reclaimed_slab = 0;
  1046. nr_slab = shrink_slab(sc.nr_scanned, GFP_KERNEL,
  1047. lru_pages);
  1048. nr_reclaimed += reclaim_state->reclaimed_slab;
  1049. total_scanned += sc.nr_scanned;
  1050. if (zone->all_unreclaimable)
  1051. continue;
  1052. if (nr_slab == 0 && zone->pages_scanned >=
  1053. (zone->nr_active + zone->nr_inactive) * 6)
  1054. zone->all_unreclaimable = 1;
  1055. /*
  1056. * If we've done a decent amount of scanning and
  1057. * the reclaim ratio is low, start doing writepage
  1058. * even in laptop mode
  1059. */
  1060. if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
  1061. total_scanned > nr_reclaimed + nr_reclaimed / 2)
  1062. sc.may_writepage = 1;
  1063. }
  1064. if (all_zones_ok)
  1065. break; /* kswapd: all done */
  1066. /*
  1067. * OK, kswapd is getting into trouble. Take a nap, then take
  1068. * another pass across the zones.
  1069. */
  1070. if (total_scanned && priority < DEF_PRIORITY - 2)
  1071. blk_congestion_wait(WRITE, HZ/10);
  1072. /*
  1073. * We do this so kswapd doesn't build up large priorities for
  1074. * example when it is freeing in parallel with allocators. It
  1075. * matches the direct reclaim path behaviour in terms of impact
  1076. * on zone->*_priority.
  1077. */
  1078. if (nr_reclaimed >= SWAP_CLUSTER_MAX)
  1079. break;
  1080. }
  1081. out:
  1082. for (i = 0; i < pgdat->nr_zones; i++) {
  1083. struct zone *zone = pgdat->node_zones + i;
  1084. zone->prev_priority = zone->temp_priority;
  1085. }
  1086. if (!all_zones_ok) {
  1087. cond_resched();
  1088. goto loop_again;
  1089. }
  1090. return nr_reclaimed;
  1091. }
  1092. /*
  1093. * The background pageout daemon, started as a kernel thread
  1094. * from the init process.
  1095. *
  1096. * This basically trickles out pages so that we have _some_
  1097. * free memory available even if there is no other activity
  1098. * that frees anything up. This is needed for things like routing
  1099. * etc, where we otherwise might have all activity going on in
  1100. * asynchronous contexts that cannot page things out.
  1101. *
  1102. * If there are applications that are active memory-allocators
  1103. * (most normal use), this basically shouldn't matter.
  1104. */
  1105. static int kswapd(void *p)
  1106. {
  1107. unsigned long order;
  1108. pg_data_t *pgdat = (pg_data_t*)p;
  1109. struct task_struct *tsk = current;
  1110. DEFINE_WAIT(wait);
  1111. struct reclaim_state reclaim_state = {
  1112. .reclaimed_slab = 0,
  1113. };
  1114. cpumask_t cpumask;
  1115. cpumask = node_to_cpumask(pgdat->node_id);
  1116. if (!cpus_empty(cpumask))
  1117. set_cpus_allowed(tsk, cpumask);
  1118. current->reclaim_state = &reclaim_state;
  1119. /*
  1120. * Tell the memory management that we're a "memory allocator",
  1121. * and that if we need more memory we should get access to it
  1122. * regardless (see "__alloc_pages()"). "kswapd" should
  1123. * never get caught in the normal page freeing logic.
  1124. *
  1125. * (Kswapd normally doesn't need memory anyway, but sometimes
  1126. * you need a small amount of memory in order to be able to
  1127. * page out something else, and this flag essentially protects
  1128. * us from recursively trying to free more memory as we're
  1129. * trying to free the first piece of memory in the first place).
  1130. */
  1131. tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
  1132. order = 0;
  1133. for ( ; ; ) {
  1134. unsigned long new_order;
  1135. try_to_freeze();
  1136. prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
  1137. new_order = pgdat->kswapd_max_order;
  1138. pgdat->kswapd_max_order = 0;
  1139. if (order < new_order) {
  1140. /*
  1141. * Don't sleep if someone wants a larger 'order'
  1142. * allocation
  1143. */
  1144. order = new_order;
  1145. } else {
  1146. schedule();
  1147. order = pgdat->kswapd_max_order;
  1148. }
  1149. finish_wait(&pgdat->kswapd_wait, &wait);
  1150. balance_pgdat(pgdat, order);
  1151. }
  1152. return 0;
  1153. }
  1154. /*
  1155. * A zone is low on free memory, so wake its kswapd task to service it.
  1156. */
  1157. void wakeup_kswapd(struct zone *zone, int order)
  1158. {
  1159. pg_data_t *pgdat;
  1160. if (!populated_zone(zone))
  1161. return;
  1162. pgdat = zone->zone_pgdat;
  1163. if (zone_watermark_ok(zone, order, zone->pages_low, 0, 0))
  1164. return;
  1165. if (pgdat->kswapd_max_order < order)
  1166. pgdat->kswapd_max_order = order;
  1167. if (!cpuset_zone_allowed(zone, __GFP_HARDWALL))
  1168. return;
  1169. if (!waitqueue_active(&pgdat->kswapd_wait))
  1170. return;
  1171. wake_up_interruptible(&pgdat->kswapd_wait);
  1172. }
  1173. #ifdef CONFIG_PM
  1174. /*
  1175. * Helper function for shrink_all_memory(). Tries to reclaim 'nr_pages' pages
  1176. * from LRU lists system-wide, for given pass and priority, and returns the
  1177. * number of reclaimed pages
  1178. *
  1179. * For pass > 3 we also try to shrink the LRU lists that contain a few pages
  1180. */
  1181. static unsigned long shrink_all_zones(unsigned long nr_pages, int pass,
  1182. int prio, struct scan_control *sc)
  1183. {
  1184. struct zone *zone;
  1185. unsigned long nr_to_scan, ret = 0;
  1186. for_each_zone(zone) {
  1187. if (!populated_zone(zone))
  1188. continue;
  1189. if (zone->all_unreclaimable && prio != DEF_PRIORITY)
  1190. continue;
  1191. /* For pass = 0 we don't shrink the active list */
  1192. if (pass > 0) {
  1193. zone->nr_scan_active += (zone->nr_active >> prio) + 1;
  1194. if (zone->nr_scan_active >= nr_pages || pass > 3) {
  1195. zone->nr_scan_active = 0;
  1196. nr_to_scan = min(nr_pages, zone->nr_active);
  1197. shrink_active_list(nr_to_scan, zone, sc);
  1198. }
  1199. }
  1200. zone->nr_scan_inactive += (zone->nr_inactive >> prio) + 1;
  1201. if (zone->nr_scan_inactive >= nr_pages || pass > 3) {
  1202. zone->nr_scan_inactive = 0;
  1203. nr_to_scan = min(nr_pages, zone->nr_inactive);
  1204. ret += shrink_inactive_list(nr_to_scan, zone, sc);
  1205. if (ret >= nr_pages)
  1206. return ret;
  1207. }
  1208. }
  1209. return ret;
  1210. }
  1211. /*
  1212. * Try to free `nr_pages' of memory, system-wide, and return the number of
  1213. * freed pages.
  1214. *
  1215. * Rather than trying to age LRUs the aim is to preserve the overall
  1216. * LRU order by reclaiming preferentially
  1217. * inactive > active > active referenced > active mapped
  1218. */
  1219. unsigned long shrink_all_memory(unsigned long nr_pages)
  1220. {
  1221. unsigned long lru_pages, nr_slab;
  1222. unsigned long ret = 0;
  1223. int pass;
  1224. struct reclaim_state reclaim_state;
  1225. struct zone *zone;
  1226. struct scan_control sc = {
  1227. .gfp_mask = GFP_KERNEL,
  1228. .may_swap = 0,
  1229. .swap_cluster_max = nr_pages,
  1230. .may_writepage = 1,
  1231. .swappiness = vm_swappiness,
  1232. };
  1233. current->reclaim_state = &reclaim_state;
  1234. lru_pages = 0;
  1235. for_each_zone(zone)
  1236. lru_pages += zone->nr_active + zone->nr_inactive;
  1237. nr_slab = global_page_state(NR_SLAB_RECLAIMABLE);
  1238. /* If slab caches are huge, it's better to hit them first */
  1239. while (nr_slab >= lru_pages) {
  1240. reclaim_state.reclaimed_slab = 0;
  1241. shrink_slab(nr_pages, sc.gfp_mask, lru_pages);
  1242. if (!reclaim_state.reclaimed_slab)
  1243. break;
  1244. ret += reclaim_state.reclaimed_slab;
  1245. if (ret >= nr_pages)
  1246. goto out;
  1247. nr_slab -= reclaim_state.reclaimed_slab;
  1248. }
  1249. /*
  1250. * We try to shrink LRUs in 5 passes:
  1251. * 0 = Reclaim from inactive_list only
  1252. * 1 = Reclaim from active list but don't reclaim mapped
  1253. * 2 = 2nd pass of type 1
  1254. * 3 = Reclaim mapped (normal reclaim)
  1255. * 4 = 2nd pass of type 3
  1256. */
  1257. for (pass = 0; pass < 5; pass++) {
  1258. int prio;
  1259. /* Needed for shrinking slab caches later on */
  1260. if (!lru_pages)
  1261. for_each_zone(zone) {
  1262. lru_pages += zone->nr_active;
  1263. lru_pages += zone->nr_inactive;
  1264. }
  1265. /* Force reclaiming mapped pages in the passes #3 and #4 */
  1266. if (pass > 2) {
  1267. sc.may_swap = 1;
  1268. sc.swappiness = 100;
  1269. }
  1270. for (prio = DEF_PRIORITY; prio >= 0; prio--) {
  1271. unsigned long nr_to_scan = nr_pages - ret;
  1272. sc.nr_scanned = 0;
  1273. ret += shrink_all_zones(nr_to_scan, prio, pass, &sc);
  1274. if (ret >= nr_pages)
  1275. goto out;
  1276. reclaim_state.reclaimed_slab = 0;
  1277. shrink_slab(sc.nr_scanned, sc.gfp_mask, lru_pages);
  1278. ret += reclaim_state.reclaimed_slab;
  1279. if (ret >= nr_pages)
  1280. goto out;
  1281. if (sc.nr_scanned && prio < DEF_PRIORITY - 2)
  1282. blk_congestion_wait(WRITE, HZ / 10);
  1283. }
  1284. lru_pages = 0;
  1285. }
  1286. /*
  1287. * If ret = 0, we could not shrink LRUs, but there may be something
  1288. * in slab caches
  1289. */
  1290. if (!ret)
  1291. do {
  1292. reclaim_state.reclaimed_slab = 0;
  1293. shrink_slab(nr_pages, sc.gfp_mask, lru_pages);
  1294. ret += reclaim_state.reclaimed_slab;
  1295. } while (ret < nr_pages && reclaim_state.reclaimed_slab > 0);
  1296. out:
  1297. current->reclaim_state = NULL;
  1298. return ret;
  1299. }
  1300. #endif
  1301. #ifdef CONFIG_HOTPLUG_CPU
  1302. /* It's optimal to keep kswapds on the same CPUs as their memory, but
  1303. not required for correctness. So if the last cpu in a node goes
  1304. away, we get changed to run anywhere: as the first one comes back,
  1305. restore their cpu bindings. */
  1306. static int __devinit cpu_callback(struct notifier_block *nfb,
  1307. unsigned long action, void *hcpu)
  1308. {
  1309. pg_data_t *pgdat;
  1310. cpumask_t mask;
  1311. if (action == CPU_ONLINE) {
  1312. for_each_online_pgdat(pgdat) {
  1313. mask = node_to_cpumask(pgdat->node_id);
  1314. if (any_online_cpu(mask) != NR_CPUS)
  1315. /* One of our CPUs online: restore mask */
  1316. set_cpus_allowed(pgdat->kswapd, mask);
  1317. }
  1318. }
  1319. return NOTIFY_OK;
  1320. }
  1321. #endif /* CONFIG_HOTPLUG_CPU */
  1322. /*
  1323. * This kswapd start function will be called by init and node-hot-add.
  1324. * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
  1325. */
  1326. int kswapd_run(int nid)
  1327. {
  1328. pg_data_t *pgdat = NODE_DATA(nid);
  1329. int ret = 0;
  1330. if (pgdat->kswapd)
  1331. return 0;
  1332. pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
  1333. if (IS_ERR(pgdat->kswapd)) {
  1334. /* failure at boot is fatal */
  1335. BUG_ON(system_state == SYSTEM_BOOTING);
  1336. printk("Failed to start kswapd on node %d\n",nid);
  1337. ret = -1;
  1338. }
  1339. return ret;
  1340. }
  1341. static int __init kswapd_init(void)
  1342. {
  1343. int nid;
  1344. swap_setup();
  1345. for_each_online_node(nid)
  1346. kswapd_run(nid);
  1347. hotcpu_notifier(cpu_callback, 0);
  1348. return 0;
  1349. }
  1350. module_init(kswapd_init)
  1351. #ifdef CONFIG_NUMA
  1352. /*
  1353. * Zone reclaim mode
  1354. *
  1355. * If non-zero call zone_reclaim when the number of free pages falls below
  1356. * the watermarks.
  1357. */
  1358. int zone_reclaim_mode __read_mostly;
  1359. #define RECLAIM_OFF 0
  1360. #define RECLAIM_ZONE (1<<0) /* Run shrink_cache on the zone */
  1361. #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
  1362. #define RECLAIM_SWAP (1<<2) /* Swap pages out during reclaim */
  1363. /*
  1364. * Priority for ZONE_RECLAIM. This determines the fraction of pages
  1365. * of a node considered for each zone_reclaim. 4 scans 1/16th of
  1366. * a zone.
  1367. */
  1368. #define ZONE_RECLAIM_PRIORITY 4
  1369. /*
  1370. * Percentage of pages in a zone that must be unmapped for zone_reclaim to
  1371. * occur.
  1372. */
  1373. int sysctl_min_unmapped_ratio = 1;
  1374. /*
  1375. * If the number of slab pages in a zone grows beyond this percentage then
  1376. * slab reclaim needs to occur.
  1377. */
  1378. int sysctl_min_slab_ratio = 5;
  1379. /*
  1380. * Try to free up some pages from this zone through reclaim.
  1381. */
  1382. static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
  1383. {
  1384. /* Minimum pages needed in order to stay on node */
  1385. const unsigned long nr_pages = 1 << order;
  1386. struct task_struct *p = current;
  1387. struct reclaim_state reclaim_state;
  1388. int priority;
  1389. unsigned long nr_reclaimed = 0;
  1390. struct scan_control sc = {
  1391. .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
  1392. .may_swap = !!(zone_reclaim_mode & RECLAIM_SWAP),
  1393. .swap_cluster_max = max_t(unsigned long, nr_pages,
  1394. SWAP_CLUSTER_MAX),
  1395. .gfp_mask = gfp_mask,
  1396. .swappiness = vm_swappiness,
  1397. };
  1398. unsigned long slab_reclaimable;
  1399. disable_swap_token();
  1400. cond_resched();
  1401. /*
  1402. * We need to be able to allocate from the reserves for RECLAIM_SWAP
  1403. * and we also need to be able to write out pages for RECLAIM_WRITE
  1404. * and RECLAIM_SWAP.
  1405. */
  1406. p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
  1407. reclaim_state.reclaimed_slab = 0;
  1408. p->reclaim_state = &reclaim_state;
  1409. if (zone_page_state(zone, NR_FILE_PAGES) -
  1410. zone_page_state(zone, NR_FILE_MAPPED) >
  1411. zone->min_unmapped_pages) {
  1412. /*
  1413. * Free memory by calling shrink zone with increasing
  1414. * priorities until we have enough memory freed.
  1415. */
  1416. priority = ZONE_RECLAIM_PRIORITY;
  1417. do {
  1418. nr_reclaimed += shrink_zone(priority, zone, &sc);
  1419. priority--;
  1420. } while (priority >= 0 && nr_reclaimed < nr_pages);
  1421. }
  1422. slab_reclaimable = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
  1423. if (slab_reclaimable > zone->min_slab_pages) {
  1424. /*
  1425. * shrink_slab() does not currently allow us to determine how
  1426. * many pages were freed in this zone. So we take the current
  1427. * number of slab pages and shake the slab until it is reduced
  1428. * by the same nr_pages that we used for reclaiming unmapped
  1429. * pages.
  1430. *
  1431. * Note that shrink_slab will free memory on all zones and may
  1432. * take a long time.
  1433. */
  1434. while (shrink_slab(sc.nr_scanned, gfp_mask, order) &&
  1435. zone_page_state(zone, NR_SLAB_RECLAIMABLE) >
  1436. slab_reclaimable - nr_pages)
  1437. ;
  1438. /*
  1439. * Update nr_reclaimed by the number of slab pages we
  1440. * reclaimed from this zone.
  1441. */
  1442. nr_reclaimed += slab_reclaimable -
  1443. zone_page_state(zone, NR_SLAB_RECLAIMABLE);
  1444. }
  1445. p->reclaim_state = NULL;
  1446. current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
  1447. return nr_reclaimed >= nr_pages;
  1448. }
  1449. int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
  1450. {
  1451. cpumask_t mask;
  1452. int node_id;
  1453. /*
  1454. * Zone reclaim reclaims unmapped file backed pages and
  1455. * slab pages if we are over the defined limits.
  1456. *
  1457. * A small portion of unmapped file backed pages is needed for
  1458. * file I/O otherwise pages read by file I/O will be immediately
  1459. * thrown out if the zone is overallocated. So we do not reclaim
  1460. * if less than a specified percentage of the zone is used by
  1461. * unmapped file backed pages.
  1462. */
  1463. if (zone_page_state(zone, NR_FILE_PAGES) -
  1464. zone_page_state(zone, NR_FILE_MAPPED) <= zone->min_unmapped_pages
  1465. && zone_page_state(zone, NR_SLAB_RECLAIMABLE)
  1466. <= zone->min_slab_pages)
  1467. return 0;
  1468. /*
  1469. * Avoid concurrent zone reclaims, do not reclaim in a zone that does
  1470. * not have reclaimable pages and if we should not delay the allocation
  1471. * then do not scan.
  1472. */
  1473. if (!(gfp_mask & __GFP_WAIT) ||
  1474. zone->all_unreclaimable ||
  1475. atomic_read(&zone->reclaim_in_progress) > 0 ||
  1476. (current->flags & PF_MEMALLOC))
  1477. return 0;
  1478. /*
  1479. * Only run zone reclaim on the local zone or on zones that do not
  1480. * have associated processors. This will favor the local processor
  1481. * over remote processors and spread off node memory allocations
  1482. * as wide as possible.
  1483. */
  1484. node_id = zone_to_nid(zone);
  1485. mask = node_to_cpumask(node_id);
  1486. if (!cpus_empty(mask) && node_id != numa_node_id())
  1487. return 0;
  1488. return __zone_reclaim(zone, gfp_mask, order);
  1489. }
  1490. #endif