libfs.c 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641
  1. /*
  2. * fs/libfs.c
  3. * Library for filesystems writers.
  4. */
  5. #include <linux/module.h>
  6. #include <linux/pagemap.h>
  7. #include <linux/mount.h>
  8. #include <linux/vfs.h>
  9. #include <linux/mutex.h>
  10. #include <asm/uaccess.h>
  11. int simple_getattr(struct vfsmount *mnt, struct dentry *dentry,
  12. struct kstat *stat)
  13. {
  14. struct inode *inode = dentry->d_inode;
  15. generic_fillattr(inode, stat);
  16. stat->blocks = inode->i_mapping->nrpages << (PAGE_CACHE_SHIFT - 9);
  17. return 0;
  18. }
  19. int simple_statfs(struct dentry *dentry, struct kstatfs *buf)
  20. {
  21. buf->f_type = dentry->d_sb->s_magic;
  22. buf->f_bsize = PAGE_CACHE_SIZE;
  23. buf->f_namelen = NAME_MAX;
  24. return 0;
  25. }
  26. /*
  27. * Retaining negative dentries for an in-memory filesystem just wastes
  28. * memory and lookup time: arrange for them to be deleted immediately.
  29. */
  30. static int simple_delete_dentry(struct dentry *dentry)
  31. {
  32. return 1;
  33. }
  34. /*
  35. * Lookup the data. This is trivial - if the dentry didn't already
  36. * exist, we know it is negative. Set d_op to delete negative dentries.
  37. */
  38. struct dentry *simple_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd)
  39. {
  40. static struct dentry_operations simple_dentry_operations = {
  41. .d_delete = simple_delete_dentry,
  42. };
  43. if (dentry->d_name.len > NAME_MAX)
  44. return ERR_PTR(-ENAMETOOLONG);
  45. dentry->d_op = &simple_dentry_operations;
  46. d_add(dentry, NULL);
  47. return NULL;
  48. }
  49. int simple_sync_file(struct file * file, struct dentry *dentry, int datasync)
  50. {
  51. return 0;
  52. }
  53. int dcache_dir_open(struct inode *inode, struct file *file)
  54. {
  55. static struct qstr cursor_name = {.len = 1, .name = "."};
  56. file->private_data = d_alloc(file->f_dentry, &cursor_name);
  57. return file->private_data ? 0 : -ENOMEM;
  58. }
  59. int dcache_dir_close(struct inode *inode, struct file *file)
  60. {
  61. dput(file->private_data);
  62. return 0;
  63. }
  64. loff_t dcache_dir_lseek(struct file *file, loff_t offset, int origin)
  65. {
  66. mutex_lock(&file->f_dentry->d_inode->i_mutex);
  67. switch (origin) {
  68. case 1:
  69. offset += file->f_pos;
  70. case 0:
  71. if (offset >= 0)
  72. break;
  73. default:
  74. mutex_unlock(&file->f_dentry->d_inode->i_mutex);
  75. return -EINVAL;
  76. }
  77. if (offset != file->f_pos) {
  78. file->f_pos = offset;
  79. if (file->f_pos >= 2) {
  80. struct list_head *p;
  81. struct dentry *cursor = file->private_data;
  82. loff_t n = file->f_pos - 2;
  83. spin_lock(&dcache_lock);
  84. list_del(&cursor->d_u.d_child);
  85. p = file->f_dentry->d_subdirs.next;
  86. while (n && p != &file->f_dentry->d_subdirs) {
  87. struct dentry *next;
  88. next = list_entry(p, struct dentry, d_u.d_child);
  89. if (!d_unhashed(next) && next->d_inode)
  90. n--;
  91. p = p->next;
  92. }
  93. list_add_tail(&cursor->d_u.d_child, p);
  94. spin_unlock(&dcache_lock);
  95. }
  96. }
  97. mutex_unlock(&file->f_dentry->d_inode->i_mutex);
  98. return offset;
  99. }
  100. /* Relationship between i_mode and the DT_xxx types */
  101. static inline unsigned char dt_type(struct inode *inode)
  102. {
  103. return (inode->i_mode >> 12) & 15;
  104. }
  105. /*
  106. * Directory is locked and all positive dentries in it are safe, since
  107. * for ramfs-type trees they can't go away without unlink() or rmdir(),
  108. * both impossible due to the lock on directory.
  109. */
  110. int dcache_readdir(struct file * filp, void * dirent, filldir_t filldir)
  111. {
  112. struct dentry *dentry = filp->f_dentry;
  113. struct dentry *cursor = filp->private_data;
  114. struct list_head *p, *q = &cursor->d_u.d_child;
  115. ino_t ino;
  116. int i = filp->f_pos;
  117. switch (i) {
  118. case 0:
  119. ino = dentry->d_inode->i_ino;
  120. if (filldir(dirent, ".", 1, i, ino, DT_DIR) < 0)
  121. break;
  122. filp->f_pos++;
  123. i++;
  124. /* fallthrough */
  125. case 1:
  126. ino = parent_ino(dentry);
  127. if (filldir(dirent, "..", 2, i, ino, DT_DIR) < 0)
  128. break;
  129. filp->f_pos++;
  130. i++;
  131. /* fallthrough */
  132. default:
  133. spin_lock(&dcache_lock);
  134. if (filp->f_pos == 2)
  135. list_move(q, &dentry->d_subdirs);
  136. for (p=q->next; p != &dentry->d_subdirs; p=p->next) {
  137. struct dentry *next;
  138. next = list_entry(p, struct dentry, d_u.d_child);
  139. if (d_unhashed(next) || !next->d_inode)
  140. continue;
  141. spin_unlock(&dcache_lock);
  142. if (filldir(dirent, next->d_name.name, next->d_name.len, filp->f_pos, next->d_inode->i_ino, dt_type(next->d_inode)) < 0)
  143. return 0;
  144. spin_lock(&dcache_lock);
  145. /* next is still alive */
  146. list_move(q, p);
  147. p = q;
  148. filp->f_pos++;
  149. }
  150. spin_unlock(&dcache_lock);
  151. }
  152. return 0;
  153. }
  154. ssize_t generic_read_dir(struct file *filp, char __user *buf, size_t siz, loff_t *ppos)
  155. {
  156. return -EISDIR;
  157. }
  158. const struct file_operations simple_dir_operations = {
  159. .open = dcache_dir_open,
  160. .release = dcache_dir_close,
  161. .llseek = dcache_dir_lseek,
  162. .read = generic_read_dir,
  163. .readdir = dcache_readdir,
  164. .fsync = simple_sync_file,
  165. };
  166. struct inode_operations simple_dir_inode_operations = {
  167. .lookup = simple_lookup,
  168. };
  169. /*
  170. * Common helper for pseudo-filesystems (sockfs, pipefs, bdev - stuff that
  171. * will never be mountable)
  172. */
  173. int get_sb_pseudo(struct file_system_type *fs_type, char *name,
  174. struct super_operations *ops, unsigned long magic,
  175. struct vfsmount *mnt)
  176. {
  177. struct super_block *s = sget(fs_type, NULL, set_anon_super, NULL);
  178. static struct super_operations default_ops = {.statfs = simple_statfs};
  179. struct dentry *dentry;
  180. struct inode *root;
  181. struct qstr d_name = {.name = name, .len = strlen(name)};
  182. if (IS_ERR(s))
  183. return PTR_ERR(s);
  184. s->s_flags = MS_NOUSER;
  185. s->s_maxbytes = ~0ULL;
  186. s->s_blocksize = 1024;
  187. s->s_blocksize_bits = 10;
  188. s->s_magic = magic;
  189. s->s_op = ops ? ops : &default_ops;
  190. s->s_time_gran = 1;
  191. root = new_inode(s);
  192. if (!root)
  193. goto Enomem;
  194. root->i_mode = S_IFDIR | S_IRUSR | S_IWUSR;
  195. root->i_uid = root->i_gid = 0;
  196. root->i_atime = root->i_mtime = root->i_ctime = CURRENT_TIME;
  197. dentry = d_alloc(NULL, &d_name);
  198. if (!dentry) {
  199. iput(root);
  200. goto Enomem;
  201. }
  202. dentry->d_sb = s;
  203. dentry->d_parent = dentry;
  204. d_instantiate(dentry, root);
  205. s->s_root = dentry;
  206. s->s_flags |= MS_ACTIVE;
  207. return simple_set_mnt(mnt, s);
  208. Enomem:
  209. up_write(&s->s_umount);
  210. deactivate_super(s);
  211. return -ENOMEM;
  212. }
  213. int simple_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
  214. {
  215. struct inode *inode = old_dentry->d_inode;
  216. inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
  217. inode->i_nlink++;
  218. atomic_inc(&inode->i_count);
  219. dget(dentry);
  220. d_instantiate(dentry, inode);
  221. return 0;
  222. }
  223. static inline int simple_positive(struct dentry *dentry)
  224. {
  225. return dentry->d_inode && !d_unhashed(dentry);
  226. }
  227. int simple_empty(struct dentry *dentry)
  228. {
  229. struct dentry *child;
  230. int ret = 0;
  231. spin_lock(&dcache_lock);
  232. list_for_each_entry(child, &dentry->d_subdirs, d_u.d_child)
  233. if (simple_positive(child))
  234. goto out;
  235. ret = 1;
  236. out:
  237. spin_unlock(&dcache_lock);
  238. return ret;
  239. }
  240. int simple_unlink(struct inode *dir, struct dentry *dentry)
  241. {
  242. struct inode *inode = dentry->d_inode;
  243. inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
  244. inode->i_nlink--;
  245. dput(dentry);
  246. return 0;
  247. }
  248. int simple_rmdir(struct inode *dir, struct dentry *dentry)
  249. {
  250. if (!simple_empty(dentry))
  251. return -ENOTEMPTY;
  252. dentry->d_inode->i_nlink--;
  253. simple_unlink(dir, dentry);
  254. dir->i_nlink--;
  255. return 0;
  256. }
  257. int simple_rename(struct inode *old_dir, struct dentry *old_dentry,
  258. struct inode *new_dir, struct dentry *new_dentry)
  259. {
  260. struct inode *inode = old_dentry->d_inode;
  261. int they_are_dirs = S_ISDIR(old_dentry->d_inode->i_mode);
  262. if (!simple_empty(new_dentry))
  263. return -ENOTEMPTY;
  264. if (new_dentry->d_inode) {
  265. simple_unlink(new_dir, new_dentry);
  266. if (they_are_dirs)
  267. old_dir->i_nlink--;
  268. } else if (they_are_dirs) {
  269. old_dir->i_nlink--;
  270. new_dir->i_nlink++;
  271. }
  272. old_dir->i_ctime = old_dir->i_mtime = new_dir->i_ctime =
  273. new_dir->i_mtime = inode->i_ctime = CURRENT_TIME;
  274. return 0;
  275. }
  276. int simple_readpage(struct file *file, struct page *page)
  277. {
  278. clear_highpage(page);
  279. flush_dcache_page(page);
  280. SetPageUptodate(page);
  281. unlock_page(page);
  282. return 0;
  283. }
  284. int simple_prepare_write(struct file *file, struct page *page,
  285. unsigned from, unsigned to)
  286. {
  287. if (!PageUptodate(page)) {
  288. if (to - from != PAGE_CACHE_SIZE) {
  289. void *kaddr = kmap_atomic(page, KM_USER0);
  290. memset(kaddr, 0, from);
  291. memset(kaddr + to, 0, PAGE_CACHE_SIZE - to);
  292. flush_dcache_page(page);
  293. kunmap_atomic(kaddr, KM_USER0);
  294. }
  295. SetPageUptodate(page);
  296. }
  297. return 0;
  298. }
  299. int simple_commit_write(struct file *file, struct page *page,
  300. unsigned offset, unsigned to)
  301. {
  302. struct inode *inode = page->mapping->host;
  303. loff_t pos = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to;
  304. /*
  305. * No need to use i_size_read() here, the i_size
  306. * cannot change under us because we hold the i_mutex.
  307. */
  308. if (pos > inode->i_size)
  309. i_size_write(inode, pos);
  310. set_page_dirty(page);
  311. return 0;
  312. }
  313. int simple_fill_super(struct super_block *s, int magic, struct tree_descr *files)
  314. {
  315. static struct super_operations s_ops = {.statfs = simple_statfs};
  316. struct inode *inode;
  317. struct dentry *root;
  318. struct dentry *dentry;
  319. int i;
  320. s->s_blocksize = PAGE_CACHE_SIZE;
  321. s->s_blocksize_bits = PAGE_CACHE_SHIFT;
  322. s->s_magic = magic;
  323. s->s_op = &s_ops;
  324. s->s_time_gran = 1;
  325. inode = new_inode(s);
  326. if (!inode)
  327. return -ENOMEM;
  328. inode->i_mode = S_IFDIR | 0755;
  329. inode->i_uid = inode->i_gid = 0;
  330. inode->i_blocks = 0;
  331. inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
  332. inode->i_op = &simple_dir_inode_operations;
  333. inode->i_fop = &simple_dir_operations;
  334. inode->i_nlink = 2;
  335. root = d_alloc_root(inode);
  336. if (!root) {
  337. iput(inode);
  338. return -ENOMEM;
  339. }
  340. for (i = 0; !files->name || files->name[0]; i++, files++) {
  341. if (!files->name)
  342. continue;
  343. dentry = d_alloc_name(root, files->name);
  344. if (!dentry)
  345. goto out;
  346. inode = new_inode(s);
  347. if (!inode)
  348. goto out;
  349. inode->i_mode = S_IFREG | files->mode;
  350. inode->i_uid = inode->i_gid = 0;
  351. inode->i_blocks = 0;
  352. inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
  353. inode->i_fop = files->ops;
  354. inode->i_ino = i;
  355. d_add(dentry, inode);
  356. }
  357. s->s_root = root;
  358. return 0;
  359. out:
  360. d_genocide(root);
  361. dput(root);
  362. return -ENOMEM;
  363. }
  364. static DEFINE_SPINLOCK(pin_fs_lock);
  365. int simple_pin_fs(struct file_system_type *type, struct vfsmount **mount, int *count)
  366. {
  367. struct vfsmount *mnt = NULL;
  368. spin_lock(&pin_fs_lock);
  369. if (unlikely(!*mount)) {
  370. spin_unlock(&pin_fs_lock);
  371. mnt = vfs_kern_mount(type, 0, type->name, NULL);
  372. if (IS_ERR(mnt))
  373. return PTR_ERR(mnt);
  374. spin_lock(&pin_fs_lock);
  375. if (!*mount)
  376. *mount = mnt;
  377. }
  378. mntget(*mount);
  379. ++*count;
  380. spin_unlock(&pin_fs_lock);
  381. mntput(mnt);
  382. return 0;
  383. }
  384. void simple_release_fs(struct vfsmount **mount, int *count)
  385. {
  386. struct vfsmount *mnt;
  387. spin_lock(&pin_fs_lock);
  388. mnt = *mount;
  389. if (!--*count)
  390. *mount = NULL;
  391. spin_unlock(&pin_fs_lock);
  392. mntput(mnt);
  393. }
  394. ssize_t simple_read_from_buffer(void __user *to, size_t count, loff_t *ppos,
  395. const void *from, size_t available)
  396. {
  397. loff_t pos = *ppos;
  398. if (pos < 0)
  399. return -EINVAL;
  400. if (pos >= available)
  401. return 0;
  402. if (count > available - pos)
  403. count = available - pos;
  404. if (copy_to_user(to, from + pos, count))
  405. return -EFAULT;
  406. *ppos = pos + count;
  407. return count;
  408. }
  409. /*
  410. * Transaction based IO.
  411. * The file expects a single write which triggers the transaction, and then
  412. * possibly a read which collects the result - which is stored in a
  413. * file-local buffer.
  414. */
  415. char *simple_transaction_get(struct file *file, const char __user *buf, size_t size)
  416. {
  417. struct simple_transaction_argresp *ar;
  418. static DEFINE_SPINLOCK(simple_transaction_lock);
  419. if (size > SIMPLE_TRANSACTION_LIMIT - 1)
  420. return ERR_PTR(-EFBIG);
  421. ar = (struct simple_transaction_argresp *)get_zeroed_page(GFP_KERNEL);
  422. if (!ar)
  423. return ERR_PTR(-ENOMEM);
  424. spin_lock(&simple_transaction_lock);
  425. /* only one write allowed per open */
  426. if (file->private_data) {
  427. spin_unlock(&simple_transaction_lock);
  428. free_page((unsigned long)ar);
  429. return ERR_PTR(-EBUSY);
  430. }
  431. file->private_data = ar;
  432. spin_unlock(&simple_transaction_lock);
  433. if (copy_from_user(ar->data, buf, size))
  434. return ERR_PTR(-EFAULT);
  435. return ar->data;
  436. }
  437. ssize_t simple_transaction_read(struct file *file, char __user *buf, size_t size, loff_t *pos)
  438. {
  439. struct simple_transaction_argresp *ar = file->private_data;
  440. if (!ar)
  441. return 0;
  442. return simple_read_from_buffer(buf, size, pos, ar->data, ar->size);
  443. }
  444. int simple_transaction_release(struct inode *inode, struct file *file)
  445. {
  446. free_page((unsigned long)file->private_data);
  447. return 0;
  448. }
  449. /* Simple attribute files */
  450. struct simple_attr {
  451. u64 (*get)(void *);
  452. void (*set)(void *, u64);
  453. char get_buf[24]; /* enough to store a u64 and "\n\0" */
  454. char set_buf[24];
  455. void *data;
  456. const char *fmt; /* format for read operation */
  457. struct mutex mutex; /* protects access to these buffers */
  458. };
  459. /* simple_attr_open is called by an actual attribute open file operation
  460. * to set the attribute specific access operations. */
  461. int simple_attr_open(struct inode *inode, struct file *file,
  462. u64 (*get)(void *), void (*set)(void *, u64),
  463. const char *fmt)
  464. {
  465. struct simple_attr *attr;
  466. attr = kmalloc(sizeof(*attr), GFP_KERNEL);
  467. if (!attr)
  468. return -ENOMEM;
  469. attr->get = get;
  470. attr->set = set;
  471. attr->data = inode->i_private;
  472. attr->fmt = fmt;
  473. mutex_init(&attr->mutex);
  474. file->private_data = attr;
  475. return nonseekable_open(inode, file);
  476. }
  477. int simple_attr_close(struct inode *inode, struct file *file)
  478. {
  479. kfree(file->private_data);
  480. return 0;
  481. }
  482. /* read from the buffer that is filled with the get function */
  483. ssize_t simple_attr_read(struct file *file, char __user *buf,
  484. size_t len, loff_t *ppos)
  485. {
  486. struct simple_attr *attr;
  487. size_t size;
  488. ssize_t ret;
  489. attr = file->private_data;
  490. if (!attr->get)
  491. return -EACCES;
  492. mutex_lock(&attr->mutex);
  493. if (*ppos) /* continued read */
  494. size = strlen(attr->get_buf);
  495. else /* first read */
  496. size = scnprintf(attr->get_buf, sizeof(attr->get_buf),
  497. attr->fmt,
  498. (unsigned long long)attr->get(attr->data));
  499. ret = simple_read_from_buffer(buf, len, ppos, attr->get_buf, size);
  500. mutex_unlock(&attr->mutex);
  501. return ret;
  502. }
  503. /* interpret the buffer as a number to call the set function with */
  504. ssize_t simple_attr_write(struct file *file, const char __user *buf,
  505. size_t len, loff_t *ppos)
  506. {
  507. struct simple_attr *attr;
  508. u64 val;
  509. size_t size;
  510. ssize_t ret;
  511. attr = file->private_data;
  512. if (!attr->set)
  513. return -EACCES;
  514. mutex_lock(&attr->mutex);
  515. ret = -EFAULT;
  516. size = min(sizeof(attr->set_buf) - 1, len);
  517. if (copy_from_user(attr->set_buf, buf, size))
  518. goto out;
  519. ret = len; /* claim we got the whole input */
  520. attr->set_buf[size] = '\0';
  521. val = simple_strtol(attr->set_buf, NULL, 0);
  522. attr->set(attr->data, val);
  523. out:
  524. mutex_unlock(&attr->mutex);
  525. return ret;
  526. }
  527. EXPORT_SYMBOL(dcache_dir_close);
  528. EXPORT_SYMBOL(dcache_dir_lseek);
  529. EXPORT_SYMBOL(dcache_dir_open);
  530. EXPORT_SYMBOL(dcache_readdir);
  531. EXPORT_SYMBOL(generic_read_dir);
  532. EXPORT_SYMBOL(get_sb_pseudo);
  533. EXPORT_SYMBOL(simple_commit_write);
  534. EXPORT_SYMBOL(simple_dir_inode_operations);
  535. EXPORT_SYMBOL(simple_dir_operations);
  536. EXPORT_SYMBOL(simple_empty);
  537. EXPORT_SYMBOL(d_alloc_name);
  538. EXPORT_SYMBOL(simple_fill_super);
  539. EXPORT_SYMBOL(simple_getattr);
  540. EXPORT_SYMBOL(simple_link);
  541. EXPORT_SYMBOL(simple_lookup);
  542. EXPORT_SYMBOL(simple_pin_fs);
  543. EXPORT_SYMBOL(simple_prepare_write);
  544. EXPORT_SYMBOL(simple_readpage);
  545. EXPORT_SYMBOL(simple_release_fs);
  546. EXPORT_SYMBOL(simple_rename);
  547. EXPORT_SYMBOL(simple_rmdir);
  548. EXPORT_SYMBOL(simple_statfs);
  549. EXPORT_SYMBOL(simple_sync_file);
  550. EXPORT_SYMBOL(simple_unlink);
  551. EXPORT_SYMBOL(simple_read_from_buffer);
  552. EXPORT_SYMBOL(simple_transaction_get);
  553. EXPORT_SYMBOL(simple_transaction_read);
  554. EXPORT_SYMBOL(simple_transaction_release);
  555. EXPORT_SYMBOL_GPL(simple_attr_open);
  556. EXPORT_SYMBOL_GPL(simple_attr_close);
  557. EXPORT_SYMBOL_GPL(simple_attr_read);
  558. EXPORT_SYMBOL_GPL(simple_attr_write);