exec.c 35 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537
  1. /*
  2. * linux/fs/exec.c
  3. *
  4. * Copyright (C) 1991, 1992 Linus Torvalds
  5. */
  6. /*
  7. * #!-checking implemented by tytso.
  8. */
  9. /*
  10. * Demand-loading implemented 01.12.91 - no need to read anything but
  11. * the header into memory. The inode of the executable is put into
  12. * "current->executable", and page faults do the actual loading. Clean.
  13. *
  14. * Once more I can proudly say that linux stood up to being changed: it
  15. * was less than 2 hours work to get demand-loading completely implemented.
  16. *
  17. * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead,
  18. * current->executable is only used by the procfs. This allows a dispatch
  19. * table to check for several different types of binary formats. We keep
  20. * trying until we recognize the file or we run out of supported binary
  21. * formats.
  22. */
  23. #include <linux/slab.h>
  24. #include <linux/file.h>
  25. #include <linux/mman.h>
  26. #include <linux/a.out.h>
  27. #include <linux/stat.h>
  28. #include <linux/fcntl.h>
  29. #include <linux/smp_lock.h>
  30. #include <linux/init.h>
  31. #include <linux/pagemap.h>
  32. #include <linux/highmem.h>
  33. #include <linux/spinlock.h>
  34. #include <linux/key.h>
  35. #include <linux/personality.h>
  36. #include <linux/binfmts.h>
  37. #include <linux/swap.h>
  38. #include <linux/utsname.h>
  39. #include <linux/module.h>
  40. #include <linux/namei.h>
  41. #include <linux/proc_fs.h>
  42. #include <linux/ptrace.h>
  43. #include <linux/mount.h>
  44. #include <linux/security.h>
  45. #include <linux/syscalls.h>
  46. #include <linux/rmap.h>
  47. #include <linux/acct.h>
  48. #include <linux/cn_proc.h>
  49. #include <linux/audit.h>
  50. #include <asm/uaccess.h>
  51. #include <asm/mmu_context.h>
  52. #ifdef CONFIG_KMOD
  53. #include <linux/kmod.h>
  54. #endif
  55. int core_uses_pid;
  56. char core_pattern[65] = "core";
  57. int suid_dumpable = 0;
  58. EXPORT_SYMBOL(suid_dumpable);
  59. /* The maximal length of core_pattern is also specified in sysctl.c */
  60. static struct linux_binfmt *formats;
  61. static DEFINE_RWLOCK(binfmt_lock);
  62. int register_binfmt(struct linux_binfmt * fmt)
  63. {
  64. struct linux_binfmt ** tmp = &formats;
  65. if (!fmt)
  66. return -EINVAL;
  67. if (fmt->next)
  68. return -EBUSY;
  69. write_lock(&binfmt_lock);
  70. while (*tmp) {
  71. if (fmt == *tmp) {
  72. write_unlock(&binfmt_lock);
  73. return -EBUSY;
  74. }
  75. tmp = &(*tmp)->next;
  76. }
  77. fmt->next = formats;
  78. formats = fmt;
  79. write_unlock(&binfmt_lock);
  80. return 0;
  81. }
  82. EXPORT_SYMBOL(register_binfmt);
  83. int unregister_binfmt(struct linux_binfmt * fmt)
  84. {
  85. struct linux_binfmt ** tmp = &formats;
  86. write_lock(&binfmt_lock);
  87. while (*tmp) {
  88. if (fmt == *tmp) {
  89. *tmp = fmt->next;
  90. write_unlock(&binfmt_lock);
  91. return 0;
  92. }
  93. tmp = &(*tmp)->next;
  94. }
  95. write_unlock(&binfmt_lock);
  96. return -EINVAL;
  97. }
  98. EXPORT_SYMBOL(unregister_binfmt);
  99. static inline void put_binfmt(struct linux_binfmt * fmt)
  100. {
  101. module_put(fmt->module);
  102. }
  103. /*
  104. * Note that a shared library must be both readable and executable due to
  105. * security reasons.
  106. *
  107. * Also note that we take the address to load from from the file itself.
  108. */
  109. asmlinkage long sys_uselib(const char __user * library)
  110. {
  111. struct file * file;
  112. struct nameidata nd;
  113. int error;
  114. error = __user_path_lookup_open(library, LOOKUP_FOLLOW, &nd, FMODE_READ|FMODE_EXEC);
  115. if (error)
  116. goto out;
  117. error = -EINVAL;
  118. if (!S_ISREG(nd.dentry->d_inode->i_mode))
  119. goto exit;
  120. error = vfs_permission(&nd, MAY_READ | MAY_EXEC);
  121. if (error)
  122. goto exit;
  123. file = nameidata_to_filp(&nd, O_RDONLY);
  124. error = PTR_ERR(file);
  125. if (IS_ERR(file))
  126. goto out;
  127. error = -ENOEXEC;
  128. if(file->f_op) {
  129. struct linux_binfmt * fmt;
  130. read_lock(&binfmt_lock);
  131. for (fmt = formats ; fmt ; fmt = fmt->next) {
  132. if (!fmt->load_shlib)
  133. continue;
  134. if (!try_module_get(fmt->module))
  135. continue;
  136. read_unlock(&binfmt_lock);
  137. error = fmt->load_shlib(file);
  138. read_lock(&binfmt_lock);
  139. put_binfmt(fmt);
  140. if (error != -ENOEXEC)
  141. break;
  142. }
  143. read_unlock(&binfmt_lock);
  144. }
  145. fput(file);
  146. out:
  147. return error;
  148. exit:
  149. release_open_intent(&nd);
  150. path_release(&nd);
  151. goto out;
  152. }
  153. /*
  154. * count() counts the number of strings in array ARGV.
  155. */
  156. static int count(char __user * __user * argv, int max)
  157. {
  158. int i = 0;
  159. if (argv != NULL) {
  160. for (;;) {
  161. char __user * p;
  162. if (get_user(p, argv))
  163. return -EFAULT;
  164. if (!p)
  165. break;
  166. argv++;
  167. if(++i > max)
  168. return -E2BIG;
  169. cond_resched();
  170. }
  171. }
  172. return i;
  173. }
  174. /*
  175. * 'copy_strings()' copies argument/environment strings from user
  176. * memory to free pages in kernel mem. These are in a format ready
  177. * to be put directly into the top of new user memory.
  178. */
  179. static int copy_strings(int argc, char __user * __user * argv,
  180. struct linux_binprm *bprm)
  181. {
  182. struct page *kmapped_page = NULL;
  183. char *kaddr = NULL;
  184. int ret;
  185. while (argc-- > 0) {
  186. char __user *str;
  187. int len;
  188. unsigned long pos;
  189. if (get_user(str, argv+argc) ||
  190. !(len = strnlen_user(str, bprm->p))) {
  191. ret = -EFAULT;
  192. goto out;
  193. }
  194. if (bprm->p < len) {
  195. ret = -E2BIG;
  196. goto out;
  197. }
  198. bprm->p -= len;
  199. /* XXX: add architecture specific overflow check here. */
  200. pos = bprm->p;
  201. while (len > 0) {
  202. int i, new, err;
  203. int offset, bytes_to_copy;
  204. struct page *page;
  205. offset = pos % PAGE_SIZE;
  206. i = pos/PAGE_SIZE;
  207. page = bprm->page[i];
  208. new = 0;
  209. if (!page) {
  210. page = alloc_page(GFP_HIGHUSER);
  211. bprm->page[i] = page;
  212. if (!page) {
  213. ret = -ENOMEM;
  214. goto out;
  215. }
  216. new = 1;
  217. }
  218. if (page != kmapped_page) {
  219. if (kmapped_page)
  220. kunmap(kmapped_page);
  221. kmapped_page = page;
  222. kaddr = kmap(kmapped_page);
  223. }
  224. if (new && offset)
  225. memset(kaddr, 0, offset);
  226. bytes_to_copy = PAGE_SIZE - offset;
  227. if (bytes_to_copy > len) {
  228. bytes_to_copy = len;
  229. if (new)
  230. memset(kaddr+offset+len, 0,
  231. PAGE_SIZE-offset-len);
  232. }
  233. err = copy_from_user(kaddr+offset, str, bytes_to_copy);
  234. if (err) {
  235. ret = -EFAULT;
  236. goto out;
  237. }
  238. pos += bytes_to_copy;
  239. str += bytes_to_copy;
  240. len -= bytes_to_copy;
  241. }
  242. }
  243. ret = 0;
  244. out:
  245. if (kmapped_page)
  246. kunmap(kmapped_page);
  247. return ret;
  248. }
  249. /*
  250. * Like copy_strings, but get argv and its values from kernel memory.
  251. */
  252. int copy_strings_kernel(int argc,char ** argv, struct linux_binprm *bprm)
  253. {
  254. int r;
  255. mm_segment_t oldfs = get_fs();
  256. set_fs(KERNEL_DS);
  257. r = copy_strings(argc, (char __user * __user *)argv, bprm);
  258. set_fs(oldfs);
  259. return r;
  260. }
  261. EXPORT_SYMBOL(copy_strings_kernel);
  262. #ifdef CONFIG_MMU
  263. /*
  264. * This routine is used to map in a page into an address space: needed by
  265. * execve() for the initial stack and environment pages.
  266. *
  267. * vma->vm_mm->mmap_sem is held for writing.
  268. */
  269. void install_arg_page(struct vm_area_struct *vma,
  270. struct page *page, unsigned long address)
  271. {
  272. struct mm_struct *mm = vma->vm_mm;
  273. pte_t * pte;
  274. spinlock_t *ptl;
  275. if (unlikely(anon_vma_prepare(vma)))
  276. goto out;
  277. flush_dcache_page(page);
  278. pte = get_locked_pte(mm, address, &ptl);
  279. if (!pte)
  280. goto out;
  281. if (!pte_none(*pte)) {
  282. pte_unmap_unlock(pte, ptl);
  283. goto out;
  284. }
  285. inc_mm_counter(mm, anon_rss);
  286. lru_cache_add_active(page);
  287. set_pte_at(mm, address, pte, pte_mkdirty(pte_mkwrite(mk_pte(
  288. page, vma->vm_page_prot))));
  289. page_add_new_anon_rmap(page, vma, address);
  290. pte_unmap_unlock(pte, ptl);
  291. /* no need for flush_tlb */
  292. return;
  293. out:
  294. __free_page(page);
  295. force_sig(SIGKILL, current);
  296. }
  297. #define EXTRA_STACK_VM_PAGES 20 /* random */
  298. int setup_arg_pages(struct linux_binprm *bprm,
  299. unsigned long stack_top,
  300. int executable_stack)
  301. {
  302. unsigned long stack_base;
  303. struct vm_area_struct *mpnt;
  304. struct mm_struct *mm = current->mm;
  305. int i, ret;
  306. long arg_size;
  307. #ifdef CONFIG_STACK_GROWSUP
  308. /* Move the argument and environment strings to the bottom of the
  309. * stack space.
  310. */
  311. int offset, j;
  312. char *to, *from;
  313. /* Start by shifting all the pages down */
  314. i = 0;
  315. for (j = 0; j < MAX_ARG_PAGES; j++) {
  316. struct page *page = bprm->page[j];
  317. if (!page)
  318. continue;
  319. bprm->page[i++] = page;
  320. }
  321. /* Now move them within their pages */
  322. offset = bprm->p % PAGE_SIZE;
  323. to = kmap(bprm->page[0]);
  324. for (j = 1; j < i; j++) {
  325. memmove(to, to + offset, PAGE_SIZE - offset);
  326. from = kmap(bprm->page[j]);
  327. memcpy(to + PAGE_SIZE - offset, from, offset);
  328. kunmap(bprm->page[j - 1]);
  329. to = from;
  330. }
  331. memmove(to, to + offset, PAGE_SIZE - offset);
  332. kunmap(bprm->page[j - 1]);
  333. /* Limit stack size to 1GB */
  334. stack_base = current->signal->rlim[RLIMIT_STACK].rlim_max;
  335. if (stack_base > (1 << 30))
  336. stack_base = 1 << 30;
  337. stack_base = PAGE_ALIGN(stack_top - stack_base);
  338. /* Adjust bprm->p to point to the end of the strings. */
  339. bprm->p = stack_base + PAGE_SIZE * i - offset;
  340. mm->arg_start = stack_base;
  341. arg_size = i << PAGE_SHIFT;
  342. /* zero pages that were copied above */
  343. while (i < MAX_ARG_PAGES)
  344. bprm->page[i++] = NULL;
  345. #else
  346. stack_base = arch_align_stack(stack_top - MAX_ARG_PAGES*PAGE_SIZE);
  347. stack_base = PAGE_ALIGN(stack_base);
  348. bprm->p += stack_base;
  349. mm->arg_start = bprm->p;
  350. arg_size = stack_top - (PAGE_MASK & (unsigned long) mm->arg_start);
  351. #endif
  352. arg_size += EXTRA_STACK_VM_PAGES * PAGE_SIZE;
  353. if (bprm->loader)
  354. bprm->loader += stack_base;
  355. bprm->exec += stack_base;
  356. mpnt = kmem_cache_alloc(vm_area_cachep, SLAB_KERNEL);
  357. if (!mpnt)
  358. return -ENOMEM;
  359. memset(mpnt, 0, sizeof(*mpnt));
  360. down_write(&mm->mmap_sem);
  361. {
  362. mpnt->vm_mm = mm;
  363. #ifdef CONFIG_STACK_GROWSUP
  364. mpnt->vm_start = stack_base;
  365. mpnt->vm_end = stack_base + arg_size;
  366. #else
  367. mpnt->vm_end = stack_top;
  368. mpnt->vm_start = mpnt->vm_end - arg_size;
  369. #endif
  370. /* Adjust stack execute permissions; explicitly enable
  371. * for EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X
  372. * and leave alone (arch default) otherwise. */
  373. if (unlikely(executable_stack == EXSTACK_ENABLE_X))
  374. mpnt->vm_flags = VM_STACK_FLAGS | VM_EXEC;
  375. else if (executable_stack == EXSTACK_DISABLE_X)
  376. mpnt->vm_flags = VM_STACK_FLAGS & ~VM_EXEC;
  377. else
  378. mpnt->vm_flags = VM_STACK_FLAGS;
  379. mpnt->vm_flags |= mm->def_flags;
  380. mpnt->vm_page_prot = protection_map[mpnt->vm_flags & 0x7];
  381. if ((ret = insert_vm_struct(mm, mpnt))) {
  382. up_write(&mm->mmap_sem);
  383. kmem_cache_free(vm_area_cachep, mpnt);
  384. return ret;
  385. }
  386. mm->stack_vm = mm->total_vm = vma_pages(mpnt);
  387. }
  388. for (i = 0 ; i < MAX_ARG_PAGES ; i++) {
  389. struct page *page = bprm->page[i];
  390. if (page) {
  391. bprm->page[i] = NULL;
  392. install_arg_page(mpnt, page, stack_base);
  393. }
  394. stack_base += PAGE_SIZE;
  395. }
  396. up_write(&mm->mmap_sem);
  397. return 0;
  398. }
  399. EXPORT_SYMBOL(setup_arg_pages);
  400. #define free_arg_pages(bprm) do { } while (0)
  401. #else
  402. static inline void free_arg_pages(struct linux_binprm *bprm)
  403. {
  404. int i;
  405. for (i = 0; i < MAX_ARG_PAGES; i++) {
  406. if (bprm->page[i])
  407. __free_page(bprm->page[i]);
  408. bprm->page[i] = NULL;
  409. }
  410. }
  411. #endif /* CONFIG_MMU */
  412. struct file *open_exec(const char *name)
  413. {
  414. struct nameidata nd;
  415. int err;
  416. struct file *file;
  417. err = path_lookup_open(AT_FDCWD, name, LOOKUP_FOLLOW, &nd, FMODE_READ|FMODE_EXEC);
  418. file = ERR_PTR(err);
  419. if (!err) {
  420. struct inode *inode = nd.dentry->d_inode;
  421. file = ERR_PTR(-EACCES);
  422. if (!(nd.mnt->mnt_flags & MNT_NOEXEC) &&
  423. S_ISREG(inode->i_mode)) {
  424. int err = vfs_permission(&nd, MAY_EXEC);
  425. file = ERR_PTR(err);
  426. if (!err) {
  427. file = nameidata_to_filp(&nd, O_RDONLY);
  428. if (!IS_ERR(file)) {
  429. err = deny_write_access(file);
  430. if (err) {
  431. fput(file);
  432. file = ERR_PTR(err);
  433. }
  434. }
  435. out:
  436. return file;
  437. }
  438. }
  439. release_open_intent(&nd);
  440. path_release(&nd);
  441. }
  442. goto out;
  443. }
  444. EXPORT_SYMBOL(open_exec);
  445. int kernel_read(struct file *file, unsigned long offset,
  446. char *addr, unsigned long count)
  447. {
  448. mm_segment_t old_fs;
  449. loff_t pos = offset;
  450. int result;
  451. old_fs = get_fs();
  452. set_fs(get_ds());
  453. /* The cast to a user pointer is valid due to the set_fs() */
  454. result = vfs_read(file, (void __user *)addr, count, &pos);
  455. set_fs(old_fs);
  456. return result;
  457. }
  458. EXPORT_SYMBOL(kernel_read);
  459. static int exec_mmap(struct mm_struct *mm)
  460. {
  461. struct task_struct *tsk;
  462. struct mm_struct * old_mm, *active_mm;
  463. /* Notify parent that we're no longer interested in the old VM */
  464. tsk = current;
  465. old_mm = current->mm;
  466. mm_release(tsk, old_mm);
  467. if (old_mm) {
  468. /*
  469. * Make sure that if there is a core dump in progress
  470. * for the old mm, we get out and die instead of going
  471. * through with the exec. We must hold mmap_sem around
  472. * checking core_waiters and changing tsk->mm. The
  473. * core-inducing thread will increment core_waiters for
  474. * each thread whose ->mm == old_mm.
  475. */
  476. down_read(&old_mm->mmap_sem);
  477. if (unlikely(old_mm->core_waiters)) {
  478. up_read(&old_mm->mmap_sem);
  479. return -EINTR;
  480. }
  481. }
  482. task_lock(tsk);
  483. active_mm = tsk->active_mm;
  484. tsk->mm = mm;
  485. tsk->active_mm = mm;
  486. activate_mm(active_mm, mm);
  487. task_unlock(tsk);
  488. arch_pick_mmap_layout(mm);
  489. if (old_mm) {
  490. up_read(&old_mm->mmap_sem);
  491. BUG_ON(active_mm != old_mm);
  492. mmput(old_mm);
  493. return 0;
  494. }
  495. mmdrop(active_mm);
  496. return 0;
  497. }
  498. /*
  499. * This function makes sure the current process has its own signal table,
  500. * so that flush_signal_handlers can later reset the handlers without
  501. * disturbing other processes. (Other processes might share the signal
  502. * table via the CLONE_SIGHAND option to clone().)
  503. */
  504. static int de_thread(struct task_struct *tsk)
  505. {
  506. struct signal_struct *sig = tsk->signal;
  507. struct sighand_struct *newsighand, *oldsighand = tsk->sighand;
  508. spinlock_t *lock = &oldsighand->siglock;
  509. struct task_struct *leader = NULL;
  510. int count;
  511. /*
  512. * If we don't share sighandlers, then we aren't sharing anything
  513. * and we can just re-use it all.
  514. */
  515. if (atomic_read(&oldsighand->count) <= 1) {
  516. BUG_ON(atomic_read(&sig->count) != 1);
  517. exit_itimers(sig);
  518. return 0;
  519. }
  520. newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
  521. if (!newsighand)
  522. return -ENOMEM;
  523. if (thread_group_empty(tsk))
  524. goto no_thread_group;
  525. /*
  526. * Kill all other threads in the thread group.
  527. * We must hold tasklist_lock to call zap_other_threads.
  528. */
  529. read_lock(&tasklist_lock);
  530. spin_lock_irq(lock);
  531. if (sig->flags & SIGNAL_GROUP_EXIT) {
  532. /*
  533. * Another group action in progress, just
  534. * return so that the signal is processed.
  535. */
  536. spin_unlock_irq(lock);
  537. read_unlock(&tasklist_lock);
  538. kmem_cache_free(sighand_cachep, newsighand);
  539. return -EAGAIN;
  540. }
  541. /*
  542. * child_reaper ignores SIGKILL, change it now.
  543. * Reparenting needs write_lock on tasklist_lock,
  544. * so it is safe to do it under read_lock.
  545. */
  546. if (unlikely(tsk->group_leader == child_reaper))
  547. child_reaper = tsk;
  548. zap_other_threads(tsk);
  549. read_unlock(&tasklist_lock);
  550. /*
  551. * Account for the thread group leader hanging around:
  552. */
  553. count = 1;
  554. if (!thread_group_leader(tsk)) {
  555. count = 2;
  556. /*
  557. * The SIGALRM timer survives the exec, but needs to point
  558. * at us as the new group leader now. We have a race with
  559. * a timer firing now getting the old leader, so we need to
  560. * synchronize with any firing (by calling del_timer_sync)
  561. * before we can safely let the old group leader die.
  562. */
  563. sig->tsk = tsk;
  564. spin_unlock_irq(lock);
  565. if (hrtimer_cancel(&sig->real_timer))
  566. hrtimer_restart(&sig->real_timer);
  567. spin_lock_irq(lock);
  568. }
  569. while (atomic_read(&sig->count) > count) {
  570. sig->group_exit_task = tsk;
  571. sig->notify_count = count;
  572. __set_current_state(TASK_UNINTERRUPTIBLE);
  573. spin_unlock_irq(lock);
  574. schedule();
  575. spin_lock_irq(lock);
  576. }
  577. sig->group_exit_task = NULL;
  578. sig->notify_count = 0;
  579. spin_unlock_irq(lock);
  580. /*
  581. * At this point all other threads have exited, all we have to
  582. * do is to wait for the thread group leader to become inactive,
  583. * and to assume its PID:
  584. */
  585. if (!thread_group_leader(tsk)) {
  586. /*
  587. * Wait for the thread group leader to be a zombie.
  588. * It should already be zombie at this point, most
  589. * of the time.
  590. */
  591. leader = tsk->group_leader;
  592. while (leader->exit_state != EXIT_ZOMBIE)
  593. yield();
  594. /*
  595. * The only record we have of the real-time age of a
  596. * process, regardless of execs it's done, is start_time.
  597. * All the past CPU time is accumulated in signal_struct
  598. * from sister threads now dead. But in this non-leader
  599. * exec, nothing survives from the original leader thread,
  600. * whose birth marks the true age of this process now.
  601. * When we take on its identity by switching to its PID, we
  602. * also take its birthdate (always earlier than our own).
  603. */
  604. tsk->start_time = leader->start_time;
  605. write_lock_irq(&tasklist_lock);
  606. BUG_ON(leader->tgid != tsk->tgid);
  607. BUG_ON(tsk->pid == tsk->tgid);
  608. /*
  609. * An exec() starts a new thread group with the
  610. * TGID of the previous thread group. Rehash the
  611. * two threads with a switched PID, and release
  612. * the former thread group leader:
  613. */
  614. /* Become a process group leader with the old leader's pid.
  615. * The old leader becomes a thread of the this thread group.
  616. * Note: The old leader also uses this pid until release_task
  617. * is called. Odd but simple and correct.
  618. */
  619. detach_pid(tsk, PIDTYPE_PID);
  620. tsk->pid = leader->pid;
  621. attach_pid(tsk, PIDTYPE_PID, tsk->pid);
  622. transfer_pid(leader, tsk, PIDTYPE_PGID);
  623. transfer_pid(leader, tsk, PIDTYPE_SID);
  624. list_replace_rcu(&leader->tasks, &tsk->tasks);
  625. tsk->group_leader = tsk;
  626. leader->group_leader = tsk;
  627. tsk->exit_signal = SIGCHLD;
  628. BUG_ON(leader->exit_state != EXIT_ZOMBIE);
  629. leader->exit_state = EXIT_DEAD;
  630. write_unlock_irq(&tasklist_lock);
  631. }
  632. /*
  633. * There may be one thread left which is just exiting,
  634. * but it's safe to stop telling the group to kill themselves.
  635. */
  636. sig->flags = 0;
  637. no_thread_group:
  638. exit_itimers(sig);
  639. if (leader)
  640. release_task(leader);
  641. BUG_ON(atomic_read(&sig->count) != 1);
  642. if (atomic_read(&oldsighand->count) == 1) {
  643. /*
  644. * Now that we nuked the rest of the thread group,
  645. * it turns out we are not sharing sighand any more either.
  646. * So we can just keep it.
  647. */
  648. kmem_cache_free(sighand_cachep, newsighand);
  649. } else {
  650. /*
  651. * Move our state over to newsighand and switch it in.
  652. */
  653. atomic_set(&newsighand->count, 1);
  654. memcpy(newsighand->action, oldsighand->action,
  655. sizeof(newsighand->action));
  656. write_lock_irq(&tasklist_lock);
  657. spin_lock(&oldsighand->siglock);
  658. spin_lock_nested(&newsighand->siglock, SINGLE_DEPTH_NESTING);
  659. rcu_assign_pointer(tsk->sighand, newsighand);
  660. recalc_sigpending();
  661. spin_unlock(&newsighand->siglock);
  662. spin_unlock(&oldsighand->siglock);
  663. write_unlock_irq(&tasklist_lock);
  664. if (atomic_dec_and_test(&oldsighand->count))
  665. kmem_cache_free(sighand_cachep, oldsighand);
  666. }
  667. BUG_ON(!thread_group_leader(tsk));
  668. return 0;
  669. }
  670. /*
  671. * These functions flushes out all traces of the currently running executable
  672. * so that a new one can be started
  673. */
  674. static void flush_old_files(struct files_struct * files)
  675. {
  676. long j = -1;
  677. struct fdtable *fdt;
  678. spin_lock(&files->file_lock);
  679. for (;;) {
  680. unsigned long set, i;
  681. j++;
  682. i = j * __NFDBITS;
  683. fdt = files_fdtable(files);
  684. if (i >= fdt->max_fds || i >= fdt->max_fdset)
  685. break;
  686. set = fdt->close_on_exec->fds_bits[j];
  687. if (!set)
  688. continue;
  689. fdt->close_on_exec->fds_bits[j] = 0;
  690. spin_unlock(&files->file_lock);
  691. for ( ; set ; i++,set >>= 1) {
  692. if (set & 1) {
  693. sys_close(i);
  694. }
  695. }
  696. spin_lock(&files->file_lock);
  697. }
  698. spin_unlock(&files->file_lock);
  699. }
  700. void get_task_comm(char *buf, struct task_struct *tsk)
  701. {
  702. /* buf must be at least sizeof(tsk->comm) in size */
  703. task_lock(tsk);
  704. strncpy(buf, tsk->comm, sizeof(tsk->comm));
  705. task_unlock(tsk);
  706. }
  707. void set_task_comm(struct task_struct *tsk, char *buf)
  708. {
  709. task_lock(tsk);
  710. strlcpy(tsk->comm, buf, sizeof(tsk->comm));
  711. task_unlock(tsk);
  712. }
  713. int flush_old_exec(struct linux_binprm * bprm)
  714. {
  715. char * name;
  716. int i, ch, retval;
  717. struct files_struct *files;
  718. char tcomm[sizeof(current->comm)];
  719. /*
  720. * Make sure we have a private signal table and that
  721. * we are unassociated from the previous thread group.
  722. */
  723. retval = de_thread(current);
  724. if (retval)
  725. goto out;
  726. /*
  727. * Make sure we have private file handles. Ask the
  728. * fork helper to do the work for us and the exit
  729. * helper to do the cleanup of the old one.
  730. */
  731. files = current->files; /* refcounted so safe to hold */
  732. retval = unshare_files();
  733. if (retval)
  734. goto out;
  735. /*
  736. * Release all of the old mmap stuff
  737. */
  738. retval = exec_mmap(bprm->mm);
  739. if (retval)
  740. goto mmap_failed;
  741. bprm->mm = NULL; /* We're using it now */
  742. /* This is the point of no return */
  743. put_files_struct(files);
  744. current->sas_ss_sp = current->sas_ss_size = 0;
  745. if (current->euid == current->uid && current->egid == current->gid)
  746. current->mm->dumpable = 1;
  747. else
  748. current->mm->dumpable = suid_dumpable;
  749. name = bprm->filename;
  750. /* Copies the binary name from after last slash */
  751. for (i=0; (ch = *(name++)) != '\0';) {
  752. if (ch == '/')
  753. i = 0; /* overwrite what we wrote */
  754. else
  755. if (i < (sizeof(tcomm) - 1))
  756. tcomm[i++] = ch;
  757. }
  758. tcomm[i] = '\0';
  759. set_task_comm(current, tcomm);
  760. current->flags &= ~PF_RANDOMIZE;
  761. flush_thread();
  762. /* Set the new mm task size. We have to do that late because it may
  763. * depend on TIF_32BIT which is only updated in flush_thread() on
  764. * some architectures like powerpc
  765. */
  766. current->mm->task_size = TASK_SIZE;
  767. if (bprm->e_uid != current->euid || bprm->e_gid != current->egid ||
  768. file_permission(bprm->file, MAY_READ) ||
  769. (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP)) {
  770. suid_keys(current);
  771. current->mm->dumpable = suid_dumpable;
  772. }
  773. /* An exec changes our domain. We are no longer part of the thread
  774. group */
  775. current->self_exec_id++;
  776. flush_signal_handlers(current, 0);
  777. flush_old_files(current->files);
  778. return 0;
  779. mmap_failed:
  780. put_files_struct(current->files);
  781. current->files = files;
  782. out:
  783. return retval;
  784. }
  785. EXPORT_SYMBOL(flush_old_exec);
  786. /*
  787. * Fill the binprm structure from the inode.
  788. * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes
  789. */
  790. int prepare_binprm(struct linux_binprm *bprm)
  791. {
  792. int mode;
  793. struct inode * inode = bprm->file->f_dentry->d_inode;
  794. int retval;
  795. mode = inode->i_mode;
  796. if (bprm->file->f_op == NULL)
  797. return -EACCES;
  798. bprm->e_uid = current->euid;
  799. bprm->e_gid = current->egid;
  800. if(!(bprm->file->f_vfsmnt->mnt_flags & MNT_NOSUID)) {
  801. /* Set-uid? */
  802. if (mode & S_ISUID) {
  803. current->personality &= ~PER_CLEAR_ON_SETID;
  804. bprm->e_uid = inode->i_uid;
  805. }
  806. /* Set-gid? */
  807. /*
  808. * If setgid is set but no group execute bit then this
  809. * is a candidate for mandatory locking, not a setgid
  810. * executable.
  811. */
  812. if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
  813. current->personality &= ~PER_CLEAR_ON_SETID;
  814. bprm->e_gid = inode->i_gid;
  815. }
  816. }
  817. /* fill in binprm security blob */
  818. retval = security_bprm_set(bprm);
  819. if (retval)
  820. return retval;
  821. memset(bprm->buf,0,BINPRM_BUF_SIZE);
  822. return kernel_read(bprm->file,0,bprm->buf,BINPRM_BUF_SIZE);
  823. }
  824. EXPORT_SYMBOL(prepare_binprm);
  825. static int unsafe_exec(struct task_struct *p)
  826. {
  827. int unsafe = 0;
  828. if (p->ptrace & PT_PTRACED) {
  829. if (p->ptrace & PT_PTRACE_CAP)
  830. unsafe |= LSM_UNSAFE_PTRACE_CAP;
  831. else
  832. unsafe |= LSM_UNSAFE_PTRACE;
  833. }
  834. if (atomic_read(&p->fs->count) > 1 ||
  835. atomic_read(&p->files->count) > 1 ||
  836. atomic_read(&p->sighand->count) > 1)
  837. unsafe |= LSM_UNSAFE_SHARE;
  838. return unsafe;
  839. }
  840. void compute_creds(struct linux_binprm *bprm)
  841. {
  842. int unsafe;
  843. if (bprm->e_uid != current->uid)
  844. suid_keys(current);
  845. exec_keys(current);
  846. task_lock(current);
  847. unsafe = unsafe_exec(current);
  848. security_bprm_apply_creds(bprm, unsafe);
  849. task_unlock(current);
  850. security_bprm_post_apply_creds(bprm);
  851. }
  852. EXPORT_SYMBOL(compute_creds);
  853. void remove_arg_zero(struct linux_binprm *bprm)
  854. {
  855. if (bprm->argc) {
  856. unsigned long offset;
  857. char * kaddr;
  858. struct page *page;
  859. offset = bprm->p % PAGE_SIZE;
  860. goto inside;
  861. while (bprm->p++, *(kaddr+offset++)) {
  862. if (offset != PAGE_SIZE)
  863. continue;
  864. offset = 0;
  865. kunmap_atomic(kaddr, KM_USER0);
  866. inside:
  867. page = bprm->page[bprm->p/PAGE_SIZE];
  868. kaddr = kmap_atomic(page, KM_USER0);
  869. }
  870. kunmap_atomic(kaddr, KM_USER0);
  871. bprm->argc--;
  872. }
  873. }
  874. EXPORT_SYMBOL(remove_arg_zero);
  875. /*
  876. * cycle the list of binary formats handler, until one recognizes the image
  877. */
  878. int search_binary_handler(struct linux_binprm *bprm,struct pt_regs *regs)
  879. {
  880. int try,retval;
  881. struct linux_binfmt *fmt;
  882. #ifdef __alpha__
  883. /* handle /sbin/loader.. */
  884. {
  885. struct exec * eh = (struct exec *) bprm->buf;
  886. if (!bprm->loader && eh->fh.f_magic == 0x183 &&
  887. (eh->fh.f_flags & 0x3000) == 0x3000)
  888. {
  889. struct file * file;
  890. unsigned long loader;
  891. allow_write_access(bprm->file);
  892. fput(bprm->file);
  893. bprm->file = NULL;
  894. loader = PAGE_SIZE*MAX_ARG_PAGES-sizeof(void *);
  895. file = open_exec("/sbin/loader");
  896. retval = PTR_ERR(file);
  897. if (IS_ERR(file))
  898. return retval;
  899. /* Remember if the application is TASO. */
  900. bprm->sh_bang = eh->ah.entry < 0x100000000UL;
  901. bprm->file = file;
  902. bprm->loader = loader;
  903. retval = prepare_binprm(bprm);
  904. if (retval<0)
  905. return retval;
  906. /* should call search_binary_handler recursively here,
  907. but it does not matter */
  908. }
  909. }
  910. #endif
  911. retval = security_bprm_check(bprm);
  912. if (retval)
  913. return retval;
  914. /* kernel module loader fixup */
  915. /* so we don't try to load run modprobe in kernel space. */
  916. set_fs(USER_DS);
  917. retval = audit_bprm(bprm);
  918. if (retval)
  919. return retval;
  920. retval = -ENOENT;
  921. for (try=0; try<2; try++) {
  922. read_lock(&binfmt_lock);
  923. for (fmt = formats ; fmt ; fmt = fmt->next) {
  924. int (*fn)(struct linux_binprm *, struct pt_regs *) = fmt->load_binary;
  925. if (!fn)
  926. continue;
  927. if (!try_module_get(fmt->module))
  928. continue;
  929. read_unlock(&binfmt_lock);
  930. retval = fn(bprm, regs);
  931. if (retval >= 0) {
  932. put_binfmt(fmt);
  933. allow_write_access(bprm->file);
  934. if (bprm->file)
  935. fput(bprm->file);
  936. bprm->file = NULL;
  937. current->did_exec = 1;
  938. proc_exec_connector(current);
  939. return retval;
  940. }
  941. read_lock(&binfmt_lock);
  942. put_binfmt(fmt);
  943. if (retval != -ENOEXEC || bprm->mm == NULL)
  944. break;
  945. if (!bprm->file) {
  946. read_unlock(&binfmt_lock);
  947. return retval;
  948. }
  949. }
  950. read_unlock(&binfmt_lock);
  951. if (retval != -ENOEXEC || bprm->mm == NULL) {
  952. break;
  953. #ifdef CONFIG_KMOD
  954. }else{
  955. #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
  956. if (printable(bprm->buf[0]) &&
  957. printable(bprm->buf[1]) &&
  958. printable(bprm->buf[2]) &&
  959. printable(bprm->buf[3]))
  960. break; /* -ENOEXEC */
  961. request_module("binfmt-%04x", *(unsigned short *)(&bprm->buf[2]));
  962. #endif
  963. }
  964. }
  965. return retval;
  966. }
  967. EXPORT_SYMBOL(search_binary_handler);
  968. /*
  969. * sys_execve() executes a new program.
  970. */
  971. int do_execve(char * filename,
  972. char __user *__user *argv,
  973. char __user *__user *envp,
  974. struct pt_regs * regs)
  975. {
  976. struct linux_binprm *bprm;
  977. struct file *file;
  978. int retval;
  979. int i;
  980. retval = -ENOMEM;
  981. bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
  982. if (!bprm)
  983. goto out_ret;
  984. file = open_exec(filename);
  985. retval = PTR_ERR(file);
  986. if (IS_ERR(file))
  987. goto out_kfree;
  988. sched_exec();
  989. bprm->p = PAGE_SIZE*MAX_ARG_PAGES-sizeof(void *);
  990. bprm->file = file;
  991. bprm->filename = filename;
  992. bprm->interp = filename;
  993. bprm->mm = mm_alloc();
  994. retval = -ENOMEM;
  995. if (!bprm->mm)
  996. goto out_file;
  997. retval = init_new_context(current, bprm->mm);
  998. if (retval < 0)
  999. goto out_mm;
  1000. bprm->argc = count(argv, bprm->p / sizeof(void *));
  1001. if ((retval = bprm->argc) < 0)
  1002. goto out_mm;
  1003. bprm->envc = count(envp, bprm->p / sizeof(void *));
  1004. if ((retval = bprm->envc) < 0)
  1005. goto out_mm;
  1006. retval = security_bprm_alloc(bprm);
  1007. if (retval)
  1008. goto out;
  1009. retval = prepare_binprm(bprm);
  1010. if (retval < 0)
  1011. goto out;
  1012. retval = copy_strings_kernel(1, &bprm->filename, bprm);
  1013. if (retval < 0)
  1014. goto out;
  1015. bprm->exec = bprm->p;
  1016. retval = copy_strings(bprm->envc, envp, bprm);
  1017. if (retval < 0)
  1018. goto out;
  1019. retval = copy_strings(bprm->argc, argv, bprm);
  1020. if (retval < 0)
  1021. goto out;
  1022. retval = search_binary_handler(bprm,regs);
  1023. if (retval >= 0) {
  1024. free_arg_pages(bprm);
  1025. /* execve success */
  1026. security_bprm_free(bprm);
  1027. acct_update_integrals(current);
  1028. kfree(bprm);
  1029. return retval;
  1030. }
  1031. out:
  1032. /* Something went wrong, return the inode and free the argument pages*/
  1033. for (i = 0 ; i < MAX_ARG_PAGES ; i++) {
  1034. struct page * page = bprm->page[i];
  1035. if (page)
  1036. __free_page(page);
  1037. }
  1038. if (bprm->security)
  1039. security_bprm_free(bprm);
  1040. out_mm:
  1041. if (bprm->mm)
  1042. mmdrop(bprm->mm);
  1043. out_file:
  1044. if (bprm->file) {
  1045. allow_write_access(bprm->file);
  1046. fput(bprm->file);
  1047. }
  1048. out_kfree:
  1049. kfree(bprm);
  1050. out_ret:
  1051. return retval;
  1052. }
  1053. int set_binfmt(struct linux_binfmt *new)
  1054. {
  1055. struct linux_binfmt *old = current->binfmt;
  1056. if (new) {
  1057. if (!try_module_get(new->module))
  1058. return -1;
  1059. }
  1060. current->binfmt = new;
  1061. if (old)
  1062. module_put(old->module);
  1063. return 0;
  1064. }
  1065. EXPORT_SYMBOL(set_binfmt);
  1066. #define CORENAME_MAX_SIZE 64
  1067. /* format_corename will inspect the pattern parameter, and output a
  1068. * name into corename, which must have space for at least
  1069. * CORENAME_MAX_SIZE bytes plus one byte for the zero terminator.
  1070. */
  1071. static void format_corename(char *corename, const char *pattern, long signr)
  1072. {
  1073. const char *pat_ptr = pattern;
  1074. char *out_ptr = corename;
  1075. char *const out_end = corename + CORENAME_MAX_SIZE;
  1076. int rc;
  1077. int pid_in_pattern = 0;
  1078. /* Repeat as long as we have more pattern to process and more output
  1079. space */
  1080. while (*pat_ptr) {
  1081. if (*pat_ptr != '%') {
  1082. if (out_ptr == out_end)
  1083. goto out;
  1084. *out_ptr++ = *pat_ptr++;
  1085. } else {
  1086. switch (*++pat_ptr) {
  1087. case 0:
  1088. goto out;
  1089. /* Double percent, output one percent */
  1090. case '%':
  1091. if (out_ptr == out_end)
  1092. goto out;
  1093. *out_ptr++ = '%';
  1094. break;
  1095. /* pid */
  1096. case 'p':
  1097. pid_in_pattern = 1;
  1098. rc = snprintf(out_ptr, out_end - out_ptr,
  1099. "%d", current->tgid);
  1100. if (rc > out_end - out_ptr)
  1101. goto out;
  1102. out_ptr += rc;
  1103. break;
  1104. /* uid */
  1105. case 'u':
  1106. rc = snprintf(out_ptr, out_end - out_ptr,
  1107. "%d", current->uid);
  1108. if (rc > out_end - out_ptr)
  1109. goto out;
  1110. out_ptr += rc;
  1111. break;
  1112. /* gid */
  1113. case 'g':
  1114. rc = snprintf(out_ptr, out_end - out_ptr,
  1115. "%d", current->gid);
  1116. if (rc > out_end - out_ptr)
  1117. goto out;
  1118. out_ptr += rc;
  1119. break;
  1120. /* signal that caused the coredump */
  1121. case 's':
  1122. rc = snprintf(out_ptr, out_end - out_ptr,
  1123. "%ld", signr);
  1124. if (rc > out_end - out_ptr)
  1125. goto out;
  1126. out_ptr += rc;
  1127. break;
  1128. /* UNIX time of coredump */
  1129. case 't': {
  1130. struct timeval tv;
  1131. do_gettimeofday(&tv);
  1132. rc = snprintf(out_ptr, out_end - out_ptr,
  1133. "%lu", tv.tv_sec);
  1134. if (rc > out_end - out_ptr)
  1135. goto out;
  1136. out_ptr += rc;
  1137. break;
  1138. }
  1139. /* hostname */
  1140. case 'h':
  1141. down_read(&uts_sem);
  1142. rc = snprintf(out_ptr, out_end - out_ptr,
  1143. "%s", system_utsname.nodename);
  1144. up_read(&uts_sem);
  1145. if (rc > out_end - out_ptr)
  1146. goto out;
  1147. out_ptr += rc;
  1148. break;
  1149. /* executable */
  1150. case 'e':
  1151. rc = snprintf(out_ptr, out_end - out_ptr,
  1152. "%s", current->comm);
  1153. if (rc > out_end - out_ptr)
  1154. goto out;
  1155. out_ptr += rc;
  1156. break;
  1157. default:
  1158. break;
  1159. }
  1160. ++pat_ptr;
  1161. }
  1162. }
  1163. /* Backward compatibility with core_uses_pid:
  1164. *
  1165. * If core_pattern does not include a %p (as is the default)
  1166. * and core_uses_pid is set, then .%pid will be appended to
  1167. * the filename */
  1168. if (!pid_in_pattern
  1169. && (core_uses_pid || atomic_read(&current->mm->mm_users) != 1)) {
  1170. rc = snprintf(out_ptr, out_end - out_ptr,
  1171. ".%d", current->tgid);
  1172. if (rc > out_end - out_ptr)
  1173. goto out;
  1174. out_ptr += rc;
  1175. }
  1176. out:
  1177. *out_ptr = 0;
  1178. }
  1179. static void zap_process(struct task_struct *start)
  1180. {
  1181. struct task_struct *t;
  1182. start->signal->flags = SIGNAL_GROUP_EXIT;
  1183. start->signal->group_stop_count = 0;
  1184. t = start;
  1185. do {
  1186. if (t != current && t->mm) {
  1187. t->mm->core_waiters++;
  1188. sigaddset(&t->pending.signal, SIGKILL);
  1189. signal_wake_up(t, 1);
  1190. }
  1191. } while ((t = next_thread(t)) != start);
  1192. }
  1193. static inline int zap_threads(struct task_struct *tsk, struct mm_struct *mm,
  1194. int exit_code)
  1195. {
  1196. struct task_struct *g, *p;
  1197. unsigned long flags;
  1198. int err = -EAGAIN;
  1199. spin_lock_irq(&tsk->sighand->siglock);
  1200. if (!(tsk->signal->flags & SIGNAL_GROUP_EXIT)) {
  1201. tsk->signal->group_exit_code = exit_code;
  1202. zap_process(tsk);
  1203. err = 0;
  1204. }
  1205. spin_unlock_irq(&tsk->sighand->siglock);
  1206. if (err)
  1207. return err;
  1208. if (atomic_read(&mm->mm_users) == mm->core_waiters + 1)
  1209. goto done;
  1210. rcu_read_lock();
  1211. for_each_process(g) {
  1212. if (g == tsk->group_leader)
  1213. continue;
  1214. p = g;
  1215. do {
  1216. if (p->mm) {
  1217. if (p->mm == mm) {
  1218. /*
  1219. * p->sighand can't disappear, but
  1220. * may be changed by de_thread()
  1221. */
  1222. lock_task_sighand(p, &flags);
  1223. zap_process(p);
  1224. unlock_task_sighand(p, &flags);
  1225. }
  1226. break;
  1227. }
  1228. } while ((p = next_thread(p)) != g);
  1229. }
  1230. rcu_read_unlock();
  1231. done:
  1232. return mm->core_waiters;
  1233. }
  1234. static int coredump_wait(int exit_code)
  1235. {
  1236. struct task_struct *tsk = current;
  1237. struct mm_struct *mm = tsk->mm;
  1238. struct completion startup_done;
  1239. struct completion *vfork_done;
  1240. int core_waiters;
  1241. init_completion(&mm->core_done);
  1242. init_completion(&startup_done);
  1243. mm->core_startup_done = &startup_done;
  1244. core_waiters = zap_threads(tsk, mm, exit_code);
  1245. up_write(&mm->mmap_sem);
  1246. if (unlikely(core_waiters < 0))
  1247. goto fail;
  1248. /*
  1249. * Make sure nobody is waiting for us to release the VM,
  1250. * otherwise we can deadlock when we wait on each other
  1251. */
  1252. vfork_done = tsk->vfork_done;
  1253. if (vfork_done) {
  1254. tsk->vfork_done = NULL;
  1255. complete(vfork_done);
  1256. }
  1257. if (core_waiters)
  1258. wait_for_completion(&startup_done);
  1259. fail:
  1260. BUG_ON(mm->core_waiters);
  1261. return core_waiters;
  1262. }
  1263. int do_coredump(long signr, int exit_code, struct pt_regs * regs)
  1264. {
  1265. char corename[CORENAME_MAX_SIZE + 1];
  1266. struct mm_struct *mm = current->mm;
  1267. struct linux_binfmt * binfmt;
  1268. struct inode * inode;
  1269. struct file * file;
  1270. int retval = 0;
  1271. int fsuid = current->fsuid;
  1272. int flag = 0;
  1273. binfmt = current->binfmt;
  1274. if (!binfmt || !binfmt->core_dump)
  1275. goto fail;
  1276. down_write(&mm->mmap_sem);
  1277. if (!mm->dumpable) {
  1278. up_write(&mm->mmap_sem);
  1279. goto fail;
  1280. }
  1281. /*
  1282. * We cannot trust fsuid as being the "true" uid of the
  1283. * process nor do we know its entire history. We only know it
  1284. * was tainted so we dump it as root in mode 2.
  1285. */
  1286. if (mm->dumpable == 2) { /* Setuid core dump mode */
  1287. flag = O_EXCL; /* Stop rewrite attacks */
  1288. current->fsuid = 0; /* Dump root private */
  1289. }
  1290. mm->dumpable = 0;
  1291. retval = coredump_wait(exit_code);
  1292. if (retval < 0)
  1293. goto fail;
  1294. /*
  1295. * Clear any false indication of pending signals that might
  1296. * be seen by the filesystem code called to write the core file.
  1297. */
  1298. clear_thread_flag(TIF_SIGPENDING);
  1299. if (current->signal->rlim[RLIMIT_CORE].rlim_cur < binfmt->min_coredump)
  1300. goto fail_unlock;
  1301. /*
  1302. * lock_kernel() because format_corename() is controlled by sysctl, which
  1303. * uses lock_kernel()
  1304. */
  1305. lock_kernel();
  1306. format_corename(corename, core_pattern, signr);
  1307. unlock_kernel();
  1308. file = filp_open(corename, O_CREAT | 2 | O_NOFOLLOW | O_LARGEFILE | flag, 0600);
  1309. if (IS_ERR(file))
  1310. goto fail_unlock;
  1311. inode = file->f_dentry->d_inode;
  1312. if (inode->i_nlink > 1)
  1313. goto close_fail; /* multiple links - don't dump */
  1314. if (d_unhashed(file->f_dentry))
  1315. goto close_fail;
  1316. if (!S_ISREG(inode->i_mode))
  1317. goto close_fail;
  1318. if (!file->f_op)
  1319. goto close_fail;
  1320. if (!file->f_op->write)
  1321. goto close_fail;
  1322. if (do_truncate(file->f_dentry, 0, 0, file) != 0)
  1323. goto close_fail;
  1324. retval = binfmt->core_dump(signr, regs, file);
  1325. if (retval)
  1326. current->signal->group_exit_code |= 0x80;
  1327. close_fail:
  1328. filp_close(file, NULL);
  1329. fail_unlock:
  1330. current->fsuid = fsuid;
  1331. complete_all(&mm->core_done);
  1332. fail:
  1333. return retval;
  1334. }