sonic.c 23 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769
  1. /*
  2. * sonic.c
  3. *
  4. * (C) 2005 Finn Thain
  5. *
  6. * Converted to DMA API, added zero-copy buffer handling, and
  7. * (from the mac68k project) introduced dhd's support for 16-bit cards.
  8. *
  9. * (C) 1996,1998 by Thomas Bogendoerfer (tsbogend@alpha.franken.de)
  10. *
  11. * This driver is based on work from Andreas Busse, but most of
  12. * the code is rewritten.
  13. *
  14. * (C) 1995 by Andreas Busse (andy@waldorf-gmbh.de)
  15. *
  16. * Core code included by system sonic drivers
  17. *
  18. * And... partially rewritten again by David Huggins-Daines in order
  19. * to cope with screwed up Macintosh NICs that may or may not use
  20. * 16-bit DMA.
  21. *
  22. * (C) 1999 David Huggins-Daines <dhd@debian.org>
  23. *
  24. */
  25. /*
  26. * Sources: Olivetti M700-10 Risc Personal Computer hardware handbook,
  27. * National Semiconductors data sheet for the DP83932B Sonic Ethernet
  28. * controller, and the files "8390.c" and "skeleton.c" in this directory.
  29. *
  30. * Additional sources: Nat Semi data sheet for the DP83932C and Nat Semi
  31. * Application Note AN-746, the files "lance.c" and "ibmlana.c". See also
  32. * the NetBSD file "sys/arch/mac68k/dev/if_sn.c".
  33. */
  34. /*
  35. * Open/initialize the SONIC controller.
  36. *
  37. * This routine should set everything up anew at each open, even
  38. * registers that "should" only need to be set once at boot, so that
  39. * there is non-reboot way to recover if something goes wrong.
  40. */
  41. static int sonic_open(struct net_device *dev)
  42. {
  43. struct sonic_local *lp = netdev_priv(dev);
  44. int i;
  45. if (sonic_debug > 2)
  46. printk("sonic_open: initializing sonic driver.\n");
  47. /*
  48. * We don't need to deal with auto-irq stuff since we
  49. * hardwire the sonic interrupt.
  50. */
  51. /*
  52. * XXX Horrible work around: We install sonic_interrupt as fast interrupt.
  53. * This means that during execution of the handler interrupt are disabled
  54. * covering another bug otherwise corrupting data. This doesn't mean
  55. * this glue works ok under all situations.
  56. *
  57. * Note (dhd): this also appears to prevent lockups on the Macintrash
  58. * when more than one Ethernet card is installed (knock on wood)
  59. *
  60. * Note (fthain): whether the above is still true is anyones guess. Certainly
  61. * the buffer handling algorithms will not tolerate re-entrance without some
  62. * mutual exclusion added. Anyway, the memcpy has now been eliminated from the
  63. * rx code to make this a faster "fast interrupt".
  64. */
  65. if (request_irq(dev->irq, &sonic_interrupt, SONIC_IRQ_FLAG, "sonic", dev)) {
  66. printk(KERN_ERR "\n%s: unable to get IRQ %d .\n", dev->name, dev->irq);
  67. return -EAGAIN;
  68. }
  69. for (i = 0; i < SONIC_NUM_RRS; i++) {
  70. struct sk_buff *skb = dev_alloc_skb(SONIC_RBSIZE + 2);
  71. if (skb == NULL) {
  72. while(i > 0) { /* free any that were allocated successfully */
  73. i--;
  74. dev_kfree_skb(lp->rx_skb[i]);
  75. lp->rx_skb[i] = NULL;
  76. }
  77. printk(KERN_ERR "%s: couldn't allocate receive buffers\n",
  78. dev->name);
  79. return -ENOMEM;
  80. }
  81. skb->dev = dev;
  82. /* align IP header unless DMA requires otherwise */
  83. if (SONIC_BUS_SCALE(lp->dma_bitmode) == 2)
  84. skb_reserve(skb, 2);
  85. lp->rx_skb[i] = skb;
  86. }
  87. for (i = 0; i < SONIC_NUM_RRS; i++) {
  88. dma_addr_t laddr = dma_map_single(lp->device, skb_put(lp->rx_skb[i], SONIC_RBSIZE),
  89. SONIC_RBSIZE, DMA_FROM_DEVICE);
  90. if (!laddr) {
  91. while(i > 0) { /* free any that were mapped successfully */
  92. i--;
  93. dma_unmap_single(lp->device, lp->rx_laddr[i], SONIC_RBSIZE, DMA_FROM_DEVICE);
  94. lp->rx_laddr[i] = (dma_addr_t)0;
  95. }
  96. for (i = 0; i < SONIC_NUM_RRS; i++) {
  97. dev_kfree_skb(lp->rx_skb[i]);
  98. lp->rx_skb[i] = NULL;
  99. }
  100. printk(KERN_ERR "%s: couldn't map rx DMA buffers\n",
  101. dev->name);
  102. return -ENOMEM;
  103. }
  104. lp->rx_laddr[i] = laddr;
  105. }
  106. /*
  107. * Initialize the SONIC
  108. */
  109. sonic_init(dev);
  110. netif_start_queue(dev);
  111. if (sonic_debug > 2)
  112. printk("sonic_open: Initialization done.\n");
  113. return 0;
  114. }
  115. /*
  116. * Close the SONIC device
  117. */
  118. static int sonic_close(struct net_device *dev)
  119. {
  120. struct sonic_local *lp = netdev_priv(dev);
  121. int i;
  122. if (sonic_debug > 2)
  123. printk("sonic_close\n");
  124. netif_stop_queue(dev);
  125. /*
  126. * stop the SONIC, disable interrupts
  127. */
  128. SONIC_WRITE(SONIC_IMR, 0);
  129. SONIC_WRITE(SONIC_ISR, 0x7fff);
  130. SONIC_WRITE(SONIC_CMD, SONIC_CR_RST);
  131. /* unmap and free skbs that haven't been transmitted */
  132. for (i = 0; i < SONIC_NUM_TDS; i++) {
  133. if(lp->tx_laddr[i]) {
  134. dma_unmap_single(lp->device, lp->tx_laddr[i], lp->tx_len[i], DMA_TO_DEVICE);
  135. lp->tx_laddr[i] = (dma_addr_t)0;
  136. }
  137. if(lp->tx_skb[i]) {
  138. dev_kfree_skb(lp->tx_skb[i]);
  139. lp->tx_skb[i] = NULL;
  140. }
  141. }
  142. /* unmap and free the receive buffers */
  143. for (i = 0; i < SONIC_NUM_RRS; i++) {
  144. if(lp->rx_laddr[i]) {
  145. dma_unmap_single(lp->device, lp->rx_laddr[i], SONIC_RBSIZE, DMA_FROM_DEVICE);
  146. lp->rx_laddr[i] = (dma_addr_t)0;
  147. }
  148. if(lp->rx_skb[i]) {
  149. dev_kfree_skb(lp->rx_skb[i]);
  150. lp->rx_skb[i] = NULL;
  151. }
  152. }
  153. free_irq(dev->irq, dev); /* release the IRQ */
  154. return 0;
  155. }
  156. static void sonic_tx_timeout(struct net_device *dev)
  157. {
  158. struct sonic_local *lp = netdev_priv(dev);
  159. int i;
  160. /* Stop the interrupts for this */
  161. SONIC_WRITE(SONIC_IMR, 0);
  162. /* We could resend the original skbs. Easier to re-initialise. */
  163. for (i = 0; i < SONIC_NUM_TDS; i++) {
  164. if(lp->tx_laddr[i]) {
  165. dma_unmap_single(lp->device, lp->tx_laddr[i], lp->tx_len[i], DMA_TO_DEVICE);
  166. lp->tx_laddr[i] = (dma_addr_t)0;
  167. }
  168. if(lp->tx_skb[i]) {
  169. dev_kfree_skb(lp->tx_skb[i]);
  170. lp->tx_skb[i] = NULL;
  171. }
  172. }
  173. /* Try to restart the adaptor. */
  174. sonic_init(dev);
  175. lp->stats.tx_errors++;
  176. dev->trans_start = jiffies;
  177. netif_wake_queue(dev);
  178. }
  179. /*
  180. * transmit packet
  181. *
  182. * Appends new TD during transmission thus avoiding any TX interrupts
  183. * until we run out of TDs.
  184. * This routine interacts closely with the ISR in that it may,
  185. * set tx_skb[i]
  186. * reset the status flags of the new TD
  187. * set and reset EOL flags
  188. * stop the tx queue
  189. * The ISR interacts with this routine in various ways. It may,
  190. * reset tx_skb[i]
  191. * test the EOL and status flags of the TDs
  192. * wake the tx queue
  193. * Concurrently with all of this, the SONIC is potentially writing to
  194. * the status flags of the TDs.
  195. * Until some mutual exclusion is added, this code will not work with SMP. However,
  196. * MIPS Jazz machines and m68k Macs were all uni-processor machines.
  197. */
  198. static int sonic_send_packet(struct sk_buff *skb, struct net_device *dev)
  199. {
  200. struct sonic_local *lp = netdev_priv(dev);
  201. dma_addr_t laddr;
  202. int length;
  203. int entry = lp->next_tx;
  204. if (sonic_debug > 2)
  205. printk("sonic_send_packet: skb=%p, dev=%p\n", skb, dev);
  206. length = skb->len;
  207. if (length < ETH_ZLEN) {
  208. if (skb_padto(skb, ETH_ZLEN))
  209. return 0;
  210. length = ETH_ZLEN;
  211. }
  212. /*
  213. * Map the packet data into the logical DMA address space
  214. */
  215. laddr = dma_map_single(lp->device, skb->data, length, DMA_TO_DEVICE);
  216. if (!laddr) {
  217. printk(KERN_ERR "%s: failed to map tx DMA buffer.\n", dev->name);
  218. dev_kfree_skb(skb);
  219. return 1;
  220. }
  221. sonic_tda_put(dev, entry, SONIC_TD_STATUS, 0); /* clear status */
  222. sonic_tda_put(dev, entry, SONIC_TD_FRAG_COUNT, 1); /* single fragment */
  223. sonic_tda_put(dev, entry, SONIC_TD_PKTSIZE, length); /* length of packet */
  224. sonic_tda_put(dev, entry, SONIC_TD_FRAG_PTR_L, laddr & 0xffff);
  225. sonic_tda_put(dev, entry, SONIC_TD_FRAG_PTR_H, laddr >> 16);
  226. sonic_tda_put(dev, entry, SONIC_TD_FRAG_SIZE, length);
  227. sonic_tda_put(dev, entry, SONIC_TD_LINK,
  228. sonic_tda_get(dev, entry, SONIC_TD_LINK) | SONIC_EOL);
  229. /*
  230. * Must set tx_skb[entry] only after clearing status, and
  231. * before clearing EOL and before stopping queue
  232. */
  233. wmb();
  234. lp->tx_len[entry] = length;
  235. lp->tx_laddr[entry] = laddr;
  236. lp->tx_skb[entry] = skb;
  237. wmb();
  238. sonic_tda_put(dev, lp->eol_tx, SONIC_TD_LINK,
  239. sonic_tda_get(dev, lp->eol_tx, SONIC_TD_LINK) & ~SONIC_EOL);
  240. lp->eol_tx = entry;
  241. lp->next_tx = (entry + 1) & SONIC_TDS_MASK;
  242. if (lp->tx_skb[lp->next_tx] != NULL) {
  243. /* The ring is full, the ISR has yet to process the next TD. */
  244. if (sonic_debug > 3)
  245. printk("%s: stopping queue\n", dev->name);
  246. netif_stop_queue(dev);
  247. /* after this packet, wait for ISR to free up some TDAs */
  248. } else netif_start_queue(dev);
  249. if (sonic_debug > 2)
  250. printk("sonic_send_packet: issuing Tx command\n");
  251. SONIC_WRITE(SONIC_CMD, SONIC_CR_TXP);
  252. dev->trans_start = jiffies;
  253. return 0;
  254. }
  255. /*
  256. * The typical workload of the driver:
  257. * Handle the network interface interrupts.
  258. */
  259. static irqreturn_t sonic_interrupt(int irq, void *dev_id, struct pt_regs *regs)
  260. {
  261. struct net_device *dev = (struct net_device *) dev_id;
  262. struct sonic_local *lp = netdev_priv(dev);
  263. int status;
  264. if (dev == NULL) {
  265. printk(KERN_ERR "sonic_interrupt: irq %d for unknown device.\n", irq);
  266. return IRQ_NONE;
  267. }
  268. if (!(status = SONIC_READ(SONIC_ISR) & SONIC_IMR_DEFAULT))
  269. return IRQ_NONE;
  270. do {
  271. if (status & SONIC_INT_PKTRX) {
  272. if (sonic_debug > 2)
  273. printk("%s: packet rx\n", dev->name);
  274. sonic_rx(dev); /* got packet(s) */
  275. SONIC_WRITE(SONIC_ISR, SONIC_INT_PKTRX); /* clear the interrupt */
  276. }
  277. if (status & SONIC_INT_TXDN) {
  278. int entry = lp->cur_tx;
  279. int td_status;
  280. int freed_some = 0;
  281. /* At this point, cur_tx is the index of a TD that is one of:
  282. * unallocated/freed (status set & tx_skb[entry] clear)
  283. * allocated and sent (status set & tx_skb[entry] set )
  284. * allocated and not yet sent (status clear & tx_skb[entry] set )
  285. * still being allocated by sonic_send_packet (status clear & tx_skb[entry] clear)
  286. */
  287. if (sonic_debug > 2)
  288. printk("%s: tx done\n", dev->name);
  289. while (lp->tx_skb[entry] != NULL) {
  290. if ((td_status = sonic_tda_get(dev, entry, SONIC_TD_STATUS)) == 0)
  291. break;
  292. if (td_status & 0x0001) {
  293. lp->stats.tx_packets++;
  294. lp->stats.tx_bytes += sonic_tda_get(dev, entry, SONIC_TD_PKTSIZE);
  295. } else {
  296. lp->stats.tx_errors++;
  297. if (td_status & 0x0642)
  298. lp->stats.tx_aborted_errors++;
  299. if (td_status & 0x0180)
  300. lp->stats.tx_carrier_errors++;
  301. if (td_status & 0x0020)
  302. lp->stats.tx_window_errors++;
  303. if (td_status & 0x0004)
  304. lp->stats.tx_fifo_errors++;
  305. }
  306. /* We must free the original skb */
  307. dev_kfree_skb_irq(lp->tx_skb[entry]);
  308. lp->tx_skb[entry] = NULL;
  309. /* and unmap DMA buffer */
  310. dma_unmap_single(lp->device, lp->tx_laddr[entry], lp->tx_len[entry], DMA_TO_DEVICE);
  311. lp->tx_laddr[entry] = (dma_addr_t)0;
  312. freed_some = 1;
  313. if (sonic_tda_get(dev, entry, SONIC_TD_LINK) & SONIC_EOL) {
  314. entry = (entry + 1) & SONIC_TDS_MASK;
  315. break;
  316. }
  317. entry = (entry + 1) & SONIC_TDS_MASK;
  318. }
  319. if (freed_some || lp->tx_skb[entry] == NULL)
  320. netif_wake_queue(dev); /* The ring is no longer full */
  321. lp->cur_tx = entry;
  322. SONIC_WRITE(SONIC_ISR, SONIC_INT_TXDN); /* clear the interrupt */
  323. }
  324. /*
  325. * check error conditions
  326. */
  327. if (status & SONIC_INT_RFO) {
  328. if (sonic_debug > 1)
  329. printk("%s: rx fifo overrun\n", dev->name);
  330. lp->stats.rx_fifo_errors++;
  331. SONIC_WRITE(SONIC_ISR, SONIC_INT_RFO); /* clear the interrupt */
  332. }
  333. if (status & SONIC_INT_RDE) {
  334. if (sonic_debug > 1)
  335. printk("%s: rx descriptors exhausted\n", dev->name);
  336. lp->stats.rx_dropped++;
  337. SONIC_WRITE(SONIC_ISR, SONIC_INT_RDE); /* clear the interrupt */
  338. }
  339. if (status & SONIC_INT_RBAE) {
  340. if (sonic_debug > 1)
  341. printk("%s: rx buffer area exceeded\n", dev->name);
  342. lp->stats.rx_dropped++;
  343. SONIC_WRITE(SONIC_ISR, SONIC_INT_RBAE); /* clear the interrupt */
  344. }
  345. /* counter overruns; all counters are 16bit wide */
  346. if (status & SONIC_INT_FAE) {
  347. lp->stats.rx_frame_errors += 65536;
  348. SONIC_WRITE(SONIC_ISR, SONIC_INT_FAE); /* clear the interrupt */
  349. }
  350. if (status & SONIC_INT_CRC) {
  351. lp->stats.rx_crc_errors += 65536;
  352. SONIC_WRITE(SONIC_ISR, SONIC_INT_CRC); /* clear the interrupt */
  353. }
  354. if (status & SONIC_INT_MP) {
  355. lp->stats.rx_missed_errors += 65536;
  356. SONIC_WRITE(SONIC_ISR, SONIC_INT_MP); /* clear the interrupt */
  357. }
  358. /* transmit error */
  359. if (status & SONIC_INT_TXER) {
  360. if ((SONIC_READ(SONIC_TCR) & SONIC_TCR_FU) && (sonic_debug > 2))
  361. printk(KERN_ERR "%s: tx fifo underrun\n", dev->name);
  362. SONIC_WRITE(SONIC_ISR, SONIC_INT_TXER); /* clear the interrupt */
  363. }
  364. /* bus retry */
  365. if (status & SONIC_INT_BR) {
  366. printk(KERN_ERR "%s: Bus retry occurred! Device interrupt disabled.\n",
  367. dev->name);
  368. /* ... to help debug DMA problems causing endless interrupts. */
  369. /* Bounce the eth interface to turn on the interrupt again. */
  370. SONIC_WRITE(SONIC_IMR, 0);
  371. SONIC_WRITE(SONIC_ISR, SONIC_INT_BR); /* clear the interrupt */
  372. }
  373. /* load CAM done */
  374. if (status & SONIC_INT_LCD)
  375. SONIC_WRITE(SONIC_ISR, SONIC_INT_LCD); /* clear the interrupt */
  376. } while((status = SONIC_READ(SONIC_ISR) & SONIC_IMR_DEFAULT));
  377. return IRQ_HANDLED;
  378. }
  379. /*
  380. * We have a good packet(s), pass it/them up the network stack.
  381. */
  382. static void sonic_rx(struct net_device *dev)
  383. {
  384. struct sonic_local *lp = netdev_priv(dev);
  385. int status;
  386. int entry = lp->cur_rx;
  387. while (sonic_rda_get(dev, entry, SONIC_RD_IN_USE) == 0) {
  388. struct sk_buff *used_skb;
  389. struct sk_buff *new_skb;
  390. dma_addr_t new_laddr;
  391. u16 bufadr_l;
  392. u16 bufadr_h;
  393. int pkt_len;
  394. status = sonic_rda_get(dev, entry, SONIC_RD_STATUS);
  395. if (status & SONIC_RCR_PRX) {
  396. /* Malloc up new buffer. */
  397. new_skb = dev_alloc_skb(SONIC_RBSIZE + 2);
  398. if (new_skb == NULL) {
  399. printk(KERN_ERR "%s: Memory squeeze, dropping packet.\n", dev->name);
  400. lp->stats.rx_dropped++;
  401. break;
  402. }
  403. new_skb->dev = dev;
  404. /* provide 16 byte IP header alignment unless DMA requires otherwise */
  405. if(SONIC_BUS_SCALE(lp->dma_bitmode) == 2)
  406. skb_reserve(new_skb, 2);
  407. new_laddr = dma_map_single(lp->device, skb_put(new_skb, SONIC_RBSIZE),
  408. SONIC_RBSIZE, DMA_FROM_DEVICE);
  409. if (!new_laddr) {
  410. dev_kfree_skb(new_skb);
  411. printk(KERN_ERR "%s: Failed to map rx buffer, dropping packet.\n", dev->name);
  412. lp->stats.rx_dropped++;
  413. break;
  414. }
  415. /* now we have a new skb to replace it, pass the used one up the stack */
  416. dma_unmap_single(lp->device, lp->rx_laddr[entry], SONIC_RBSIZE, DMA_FROM_DEVICE);
  417. used_skb = lp->rx_skb[entry];
  418. pkt_len = sonic_rda_get(dev, entry, SONIC_RD_PKTLEN);
  419. skb_trim(used_skb, pkt_len);
  420. used_skb->protocol = eth_type_trans(used_skb, dev);
  421. netif_rx(used_skb);
  422. dev->last_rx = jiffies;
  423. lp->stats.rx_packets++;
  424. lp->stats.rx_bytes += pkt_len;
  425. /* and insert the new skb */
  426. lp->rx_laddr[entry] = new_laddr;
  427. lp->rx_skb[entry] = new_skb;
  428. bufadr_l = (unsigned long)new_laddr & 0xffff;
  429. bufadr_h = (unsigned long)new_laddr >> 16;
  430. sonic_rra_put(dev, entry, SONIC_RR_BUFADR_L, bufadr_l);
  431. sonic_rra_put(dev, entry, SONIC_RR_BUFADR_H, bufadr_h);
  432. } else {
  433. /* This should only happen, if we enable accepting broken packets. */
  434. lp->stats.rx_errors++;
  435. if (status & SONIC_RCR_FAER)
  436. lp->stats.rx_frame_errors++;
  437. if (status & SONIC_RCR_CRCR)
  438. lp->stats.rx_crc_errors++;
  439. }
  440. if (status & SONIC_RCR_LPKT) {
  441. /*
  442. * this was the last packet out of the current receive buffer
  443. * give the buffer back to the SONIC
  444. */
  445. lp->cur_rwp += SIZEOF_SONIC_RR * SONIC_BUS_SCALE(lp->dma_bitmode);
  446. if (lp->cur_rwp >= lp->rra_end) lp->cur_rwp = lp->rra_laddr & 0xffff;
  447. SONIC_WRITE(SONIC_RWP, lp->cur_rwp);
  448. if (SONIC_READ(SONIC_ISR) & SONIC_INT_RBE) {
  449. if (sonic_debug > 2)
  450. printk("%s: rx buffer exhausted\n", dev->name);
  451. SONIC_WRITE(SONIC_ISR, SONIC_INT_RBE); /* clear the flag */
  452. }
  453. } else
  454. printk(KERN_ERR "%s: rx desc without RCR_LPKT. Shouldn't happen !?\n",
  455. dev->name);
  456. /*
  457. * give back the descriptor
  458. */
  459. sonic_rda_put(dev, entry, SONIC_RD_LINK,
  460. sonic_rda_get(dev, entry, SONIC_RD_LINK) | SONIC_EOL);
  461. sonic_rda_put(dev, entry, SONIC_RD_IN_USE, 1);
  462. sonic_rda_put(dev, lp->eol_rx, SONIC_RD_LINK,
  463. sonic_rda_get(dev, lp->eol_rx, SONIC_RD_LINK) & ~SONIC_EOL);
  464. lp->eol_rx = entry;
  465. lp->cur_rx = entry = (entry + 1) & SONIC_RDS_MASK;
  466. }
  467. /*
  468. * If any worth-while packets have been received, netif_rx()
  469. * has done a mark_bh(NET_BH) for us and will work on them
  470. * when we get to the bottom-half routine.
  471. */
  472. }
  473. /*
  474. * Get the current statistics.
  475. * This may be called with the device open or closed.
  476. */
  477. static struct net_device_stats *sonic_get_stats(struct net_device *dev)
  478. {
  479. struct sonic_local *lp = netdev_priv(dev);
  480. /* read the tally counter from the SONIC and reset them */
  481. lp->stats.rx_crc_errors += SONIC_READ(SONIC_CRCT);
  482. SONIC_WRITE(SONIC_CRCT, 0xffff);
  483. lp->stats.rx_frame_errors += SONIC_READ(SONIC_FAET);
  484. SONIC_WRITE(SONIC_FAET, 0xffff);
  485. lp->stats.rx_missed_errors += SONIC_READ(SONIC_MPT);
  486. SONIC_WRITE(SONIC_MPT, 0xffff);
  487. return &lp->stats;
  488. }
  489. /*
  490. * Set or clear the multicast filter for this adaptor.
  491. */
  492. static void sonic_multicast_list(struct net_device *dev)
  493. {
  494. struct sonic_local *lp = netdev_priv(dev);
  495. unsigned int rcr;
  496. struct dev_mc_list *dmi = dev->mc_list;
  497. unsigned char *addr;
  498. int i;
  499. rcr = SONIC_READ(SONIC_RCR) & ~(SONIC_RCR_PRO | SONIC_RCR_AMC);
  500. rcr |= SONIC_RCR_BRD; /* accept broadcast packets */
  501. if (dev->flags & IFF_PROMISC) { /* set promiscuous mode */
  502. rcr |= SONIC_RCR_PRO;
  503. } else {
  504. if ((dev->flags & IFF_ALLMULTI) || (dev->mc_count > 15)) {
  505. rcr |= SONIC_RCR_AMC;
  506. } else {
  507. if (sonic_debug > 2)
  508. printk("sonic_multicast_list: mc_count %d\n", dev->mc_count);
  509. sonic_set_cam_enable(dev, 1); /* always enable our own address */
  510. for (i = 1; i <= dev->mc_count; i++) {
  511. addr = dmi->dmi_addr;
  512. dmi = dmi->next;
  513. sonic_cda_put(dev, i, SONIC_CD_CAP0, addr[1] << 8 | addr[0]);
  514. sonic_cda_put(dev, i, SONIC_CD_CAP1, addr[3] << 8 | addr[2]);
  515. sonic_cda_put(dev, i, SONIC_CD_CAP2, addr[5] << 8 | addr[4]);
  516. sonic_set_cam_enable(dev, sonic_get_cam_enable(dev) | (1 << i));
  517. }
  518. SONIC_WRITE(SONIC_CDC, 16);
  519. /* issue Load CAM command */
  520. SONIC_WRITE(SONIC_CDP, lp->cda_laddr & 0xffff);
  521. SONIC_WRITE(SONIC_CMD, SONIC_CR_LCAM);
  522. }
  523. }
  524. if (sonic_debug > 2)
  525. printk("sonic_multicast_list: setting RCR=%x\n", rcr);
  526. SONIC_WRITE(SONIC_RCR, rcr);
  527. }
  528. /*
  529. * Initialize the SONIC ethernet controller.
  530. */
  531. static int sonic_init(struct net_device *dev)
  532. {
  533. unsigned int cmd;
  534. struct sonic_local *lp = netdev_priv(dev);
  535. int i;
  536. /*
  537. * put the Sonic into software-reset mode and
  538. * disable all interrupts
  539. */
  540. SONIC_WRITE(SONIC_IMR, 0);
  541. SONIC_WRITE(SONIC_ISR, 0x7fff);
  542. SONIC_WRITE(SONIC_CMD, SONIC_CR_RST);
  543. /*
  544. * clear software reset flag, disable receiver, clear and
  545. * enable interrupts, then completely initialize the SONIC
  546. */
  547. SONIC_WRITE(SONIC_CMD, 0);
  548. SONIC_WRITE(SONIC_CMD, SONIC_CR_RXDIS);
  549. /*
  550. * initialize the receive resource area
  551. */
  552. if (sonic_debug > 2)
  553. printk("sonic_init: initialize receive resource area\n");
  554. for (i = 0; i < SONIC_NUM_RRS; i++) {
  555. u16 bufadr_l = (unsigned long)lp->rx_laddr[i] & 0xffff;
  556. u16 bufadr_h = (unsigned long)lp->rx_laddr[i] >> 16;
  557. sonic_rra_put(dev, i, SONIC_RR_BUFADR_L, bufadr_l);
  558. sonic_rra_put(dev, i, SONIC_RR_BUFADR_H, bufadr_h);
  559. sonic_rra_put(dev, i, SONIC_RR_BUFSIZE_L, SONIC_RBSIZE >> 1);
  560. sonic_rra_put(dev, i, SONIC_RR_BUFSIZE_H, 0);
  561. }
  562. /* initialize all RRA registers */
  563. lp->rra_end = (lp->rra_laddr + SONIC_NUM_RRS * SIZEOF_SONIC_RR *
  564. SONIC_BUS_SCALE(lp->dma_bitmode)) & 0xffff;
  565. lp->cur_rwp = (lp->rra_laddr + (SONIC_NUM_RRS - 1) * SIZEOF_SONIC_RR *
  566. SONIC_BUS_SCALE(lp->dma_bitmode)) & 0xffff;
  567. SONIC_WRITE(SONIC_RSA, lp->rra_laddr & 0xffff);
  568. SONIC_WRITE(SONIC_REA, lp->rra_end);
  569. SONIC_WRITE(SONIC_RRP, lp->rra_laddr & 0xffff);
  570. SONIC_WRITE(SONIC_RWP, lp->cur_rwp);
  571. SONIC_WRITE(SONIC_URRA, lp->rra_laddr >> 16);
  572. SONIC_WRITE(SONIC_EOBC, (SONIC_RBSIZE >> 1) - (lp->dma_bitmode ? 2 : 1));
  573. /* load the resource pointers */
  574. if (sonic_debug > 3)
  575. printk("sonic_init: issuing RRRA command\n");
  576. SONIC_WRITE(SONIC_CMD, SONIC_CR_RRRA);
  577. i = 0;
  578. while (i++ < 100) {
  579. if (SONIC_READ(SONIC_CMD) & SONIC_CR_RRRA)
  580. break;
  581. }
  582. if (sonic_debug > 2)
  583. printk("sonic_init: status=%x i=%d\n", SONIC_READ(SONIC_CMD), i);
  584. /*
  585. * Initialize the receive descriptors so that they
  586. * become a circular linked list, ie. let the last
  587. * descriptor point to the first again.
  588. */
  589. if (sonic_debug > 2)
  590. printk("sonic_init: initialize receive descriptors\n");
  591. for (i=0; i<SONIC_NUM_RDS; i++) {
  592. sonic_rda_put(dev, i, SONIC_RD_STATUS, 0);
  593. sonic_rda_put(dev, i, SONIC_RD_PKTLEN, 0);
  594. sonic_rda_put(dev, i, SONIC_RD_PKTPTR_L, 0);
  595. sonic_rda_put(dev, i, SONIC_RD_PKTPTR_H, 0);
  596. sonic_rda_put(dev, i, SONIC_RD_SEQNO, 0);
  597. sonic_rda_put(dev, i, SONIC_RD_IN_USE, 1);
  598. sonic_rda_put(dev, i, SONIC_RD_LINK,
  599. lp->rda_laddr +
  600. ((i+1) * SIZEOF_SONIC_RD * SONIC_BUS_SCALE(lp->dma_bitmode)));
  601. }
  602. /* fix last descriptor */
  603. sonic_rda_put(dev, SONIC_NUM_RDS - 1, SONIC_RD_LINK,
  604. (lp->rda_laddr & 0xffff) | SONIC_EOL);
  605. lp->eol_rx = SONIC_NUM_RDS - 1;
  606. lp->cur_rx = 0;
  607. SONIC_WRITE(SONIC_URDA, lp->rda_laddr >> 16);
  608. SONIC_WRITE(SONIC_CRDA, lp->rda_laddr & 0xffff);
  609. /*
  610. * initialize transmit descriptors
  611. */
  612. if (sonic_debug > 2)
  613. printk("sonic_init: initialize transmit descriptors\n");
  614. for (i = 0; i < SONIC_NUM_TDS; i++) {
  615. sonic_tda_put(dev, i, SONIC_TD_STATUS, 0);
  616. sonic_tda_put(dev, i, SONIC_TD_CONFIG, 0);
  617. sonic_tda_put(dev, i, SONIC_TD_PKTSIZE, 0);
  618. sonic_tda_put(dev, i, SONIC_TD_FRAG_COUNT, 0);
  619. sonic_tda_put(dev, i, SONIC_TD_LINK,
  620. (lp->tda_laddr & 0xffff) +
  621. (i + 1) * SIZEOF_SONIC_TD * SONIC_BUS_SCALE(lp->dma_bitmode));
  622. lp->tx_skb[i] = NULL;
  623. }
  624. /* fix last descriptor */
  625. sonic_tda_put(dev, SONIC_NUM_TDS - 1, SONIC_TD_LINK,
  626. (lp->tda_laddr & 0xffff));
  627. SONIC_WRITE(SONIC_UTDA, lp->tda_laddr >> 16);
  628. SONIC_WRITE(SONIC_CTDA, lp->tda_laddr & 0xffff);
  629. lp->cur_tx = lp->next_tx = 0;
  630. lp->eol_tx = SONIC_NUM_TDS - 1;
  631. /*
  632. * put our own address to CAM desc[0]
  633. */
  634. sonic_cda_put(dev, 0, SONIC_CD_CAP0, dev->dev_addr[1] << 8 | dev->dev_addr[0]);
  635. sonic_cda_put(dev, 0, SONIC_CD_CAP1, dev->dev_addr[3] << 8 | dev->dev_addr[2]);
  636. sonic_cda_put(dev, 0, SONIC_CD_CAP2, dev->dev_addr[5] << 8 | dev->dev_addr[4]);
  637. sonic_set_cam_enable(dev, 1);
  638. for (i = 0; i < 16; i++)
  639. sonic_cda_put(dev, i, SONIC_CD_ENTRY_POINTER, i);
  640. /*
  641. * initialize CAM registers
  642. */
  643. SONIC_WRITE(SONIC_CDP, lp->cda_laddr & 0xffff);
  644. SONIC_WRITE(SONIC_CDC, 16);
  645. /*
  646. * load the CAM
  647. */
  648. SONIC_WRITE(SONIC_CMD, SONIC_CR_LCAM);
  649. i = 0;
  650. while (i++ < 100) {
  651. if (SONIC_READ(SONIC_ISR) & SONIC_INT_LCD)
  652. break;
  653. }
  654. if (sonic_debug > 2) {
  655. printk("sonic_init: CMD=%x, ISR=%x\n, i=%d",
  656. SONIC_READ(SONIC_CMD), SONIC_READ(SONIC_ISR), i);
  657. }
  658. /*
  659. * enable receiver, disable loopback
  660. * and enable all interrupts
  661. */
  662. SONIC_WRITE(SONIC_CMD, SONIC_CR_RXEN | SONIC_CR_STP);
  663. SONIC_WRITE(SONIC_RCR, SONIC_RCR_DEFAULT);
  664. SONIC_WRITE(SONIC_TCR, SONIC_TCR_DEFAULT);
  665. SONIC_WRITE(SONIC_ISR, 0x7fff);
  666. SONIC_WRITE(SONIC_IMR, SONIC_IMR_DEFAULT);
  667. cmd = SONIC_READ(SONIC_CMD);
  668. if ((cmd & SONIC_CR_RXEN) == 0 || (cmd & SONIC_CR_STP) == 0)
  669. printk(KERN_ERR "sonic_init: failed, status=%x\n", cmd);
  670. if (sonic_debug > 2)
  671. printk("sonic_init: new status=%x\n",
  672. SONIC_READ(SONIC_CMD));
  673. return 0;
  674. }
  675. MODULE_LICENSE("GPL");