skge.c 95 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697
  1. /*
  2. * New driver for Marvell Yukon chipset and SysKonnect Gigabit
  3. * Ethernet adapters. Based on earlier sk98lin, e100 and
  4. * FreeBSD if_sk drivers.
  5. *
  6. * This driver intentionally does not support all the features
  7. * of the original driver such as link fail-over and link management because
  8. * those should be done at higher levels.
  9. *
  10. * Copyright (C) 2004, 2005 Stephen Hemminger <shemminger@osdl.org>
  11. *
  12. * This program is free software; you can redistribute it and/or modify
  13. * it under the terms of the GNU General Public License as published by
  14. * the Free Software Foundation; either version 2 of the License, or
  15. * (at your option) any later version.
  16. *
  17. * This program is distributed in the hope that it will be useful,
  18. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  19. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  20. * GNU General Public License for more details.
  21. *
  22. * You should have received a copy of the GNU General Public License
  23. * along with this program; if not, write to the Free Software
  24. * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  25. */
  26. #include <linux/in.h>
  27. #include <linux/kernel.h>
  28. #include <linux/module.h>
  29. #include <linux/moduleparam.h>
  30. #include <linux/netdevice.h>
  31. #include <linux/etherdevice.h>
  32. #include <linux/ethtool.h>
  33. #include <linux/pci.h>
  34. #include <linux/if_vlan.h>
  35. #include <linux/ip.h>
  36. #include <linux/delay.h>
  37. #include <linux/crc32.h>
  38. #include <linux/dma-mapping.h>
  39. #include <linux/mii.h>
  40. #include <asm/irq.h>
  41. #include "skge.h"
  42. #define DRV_NAME "skge"
  43. #define DRV_VERSION "1.8"
  44. #define PFX DRV_NAME " "
  45. #define DEFAULT_TX_RING_SIZE 128
  46. #define DEFAULT_RX_RING_SIZE 512
  47. #define MAX_TX_RING_SIZE 1024
  48. #define TX_LOW_WATER (MAX_SKB_FRAGS + 1)
  49. #define MAX_RX_RING_SIZE 4096
  50. #define RX_COPY_THRESHOLD 128
  51. #define RX_BUF_SIZE 1536
  52. #define PHY_RETRIES 1000
  53. #define ETH_JUMBO_MTU 9000
  54. #define TX_WATCHDOG (5 * HZ)
  55. #define NAPI_WEIGHT 64
  56. #define BLINK_MS 250
  57. #define LINK_HZ (HZ/2)
  58. MODULE_DESCRIPTION("SysKonnect Gigabit Ethernet driver");
  59. MODULE_AUTHOR("Stephen Hemminger <shemminger@osdl.org>");
  60. MODULE_LICENSE("GPL");
  61. MODULE_VERSION(DRV_VERSION);
  62. static const u32 default_msg
  63. = NETIF_MSG_DRV| NETIF_MSG_PROBE| NETIF_MSG_LINK
  64. | NETIF_MSG_IFUP| NETIF_MSG_IFDOWN;
  65. static int debug = -1; /* defaults above */
  66. module_param(debug, int, 0);
  67. MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
  68. static const struct pci_device_id skge_id_table[] = {
  69. { PCI_DEVICE(PCI_VENDOR_ID_3COM, PCI_DEVICE_ID_3COM_3C940) },
  70. { PCI_DEVICE(PCI_VENDOR_ID_3COM, PCI_DEVICE_ID_3COM_3C940B) },
  71. { PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT, PCI_DEVICE_ID_SYSKONNECT_GE) },
  72. { PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT, PCI_DEVICE_ID_SYSKONNECT_YU) },
  73. { PCI_DEVICE(PCI_VENDOR_ID_DLINK, PCI_DEVICE_ID_DLINK_DGE510T), },
  74. { PCI_DEVICE(PCI_VENDOR_ID_DLINK, 0x4b01) }, /* DGE-530T */
  75. { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4320) },
  76. { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x5005) }, /* Belkin */
  77. { PCI_DEVICE(PCI_VENDOR_ID_CNET, PCI_DEVICE_ID_CNET_GIGACARD) },
  78. { PCI_DEVICE(PCI_VENDOR_ID_LINKSYS, PCI_DEVICE_ID_LINKSYS_EG1064) },
  79. { PCI_VENDOR_ID_LINKSYS, 0x1032, PCI_ANY_ID, 0x0015, },
  80. { 0 }
  81. };
  82. MODULE_DEVICE_TABLE(pci, skge_id_table);
  83. static int skge_up(struct net_device *dev);
  84. static int skge_down(struct net_device *dev);
  85. static void skge_phy_reset(struct skge_port *skge);
  86. static void skge_tx_clean(struct net_device *dev);
  87. static int xm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val);
  88. static int gm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val);
  89. static void genesis_get_stats(struct skge_port *skge, u64 *data);
  90. static void yukon_get_stats(struct skge_port *skge, u64 *data);
  91. static void yukon_init(struct skge_hw *hw, int port);
  92. static void genesis_mac_init(struct skge_hw *hw, int port);
  93. static void genesis_link_up(struct skge_port *skge);
  94. /* Avoid conditionals by using array */
  95. static const int txqaddr[] = { Q_XA1, Q_XA2 };
  96. static const int rxqaddr[] = { Q_R1, Q_R2 };
  97. static const u32 rxirqmask[] = { IS_R1_F, IS_R2_F };
  98. static const u32 txirqmask[] = { IS_XA1_F, IS_XA2_F };
  99. static const u32 irqmask[] = { IS_R1_F|IS_XA1_F, IS_R2_F|IS_XA2_F };
  100. static int skge_get_regs_len(struct net_device *dev)
  101. {
  102. return 0x4000;
  103. }
  104. /*
  105. * Returns copy of whole control register region
  106. * Note: skip RAM address register because accessing it will
  107. * cause bus hangs!
  108. */
  109. static void skge_get_regs(struct net_device *dev, struct ethtool_regs *regs,
  110. void *p)
  111. {
  112. const struct skge_port *skge = netdev_priv(dev);
  113. const void __iomem *io = skge->hw->regs;
  114. regs->version = 1;
  115. memset(p, 0, regs->len);
  116. memcpy_fromio(p, io, B3_RAM_ADDR);
  117. memcpy_fromio(p + B3_RI_WTO_R1, io + B3_RI_WTO_R1,
  118. regs->len - B3_RI_WTO_R1);
  119. }
  120. /* Wake on Lan only supported on Yukon chips with rev 1 or above */
  121. static int wol_supported(const struct skge_hw *hw)
  122. {
  123. return !((hw->chip_id == CHIP_ID_GENESIS ||
  124. (hw->chip_id == CHIP_ID_YUKON && hw->chip_rev == 0)));
  125. }
  126. static void skge_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
  127. {
  128. struct skge_port *skge = netdev_priv(dev);
  129. wol->supported = wol_supported(skge->hw) ? WAKE_MAGIC : 0;
  130. wol->wolopts = skge->wol ? WAKE_MAGIC : 0;
  131. }
  132. static int skge_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
  133. {
  134. struct skge_port *skge = netdev_priv(dev);
  135. struct skge_hw *hw = skge->hw;
  136. if (wol->wolopts != WAKE_MAGIC && wol->wolopts != 0)
  137. return -EOPNOTSUPP;
  138. if (wol->wolopts == WAKE_MAGIC && !wol_supported(hw))
  139. return -EOPNOTSUPP;
  140. skge->wol = wol->wolopts == WAKE_MAGIC;
  141. if (skge->wol) {
  142. memcpy_toio(hw->regs + WOL_MAC_ADDR, dev->dev_addr, ETH_ALEN);
  143. skge_write16(hw, WOL_CTRL_STAT,
  144. WOL_CTL_ENA_PME_ON_MAGIC_PKT |
  145. WOL_CTL_ENA_MAGIC_PKT_UNIT);
  146. } else
  147. skge_write16(hw, WOL_CTRL_STAT, WOL_CTL_DEFAULT);
  148. return 0;
  149. }
  150. /* Determine supported/advertised modes based on hardware.
  151. * Note: ethtool ADVERTISED_xxx == SUPPORTED_xxx
  152. */
  153. static u32 skge_supported_modes(const struct skge_hw *hw)
  154. {
  155. u32 supported;
  156. if (hw->copper) {
  157. supported = SUPPORTED_10baseT_Half
  158. | SUPPORTED_10baseT_Full
  159. | SUPPORTED_100baseT_Half
  160. | SUPPORTED_100baseT_Full
  161. | SUPPORTED_1000baseT_Half
  162. | SUPPORTED_1000baseT_Full
  163. | SUPPORTED_Autoneg| SUPPORTED_TP;
  164. if (hw->chip_id == CHIP_ID_GENESIS)
  165. supported &= ~(SUPPORTED_10baseT_Half
  166. | SUPPORTED_10baseT_Full
  167. | SUPPORTED_100baseT_Half
  168. | SUPPORTED_100baseT_Full);
  169. else if (hw->chip_id == CHIP_ID_YUKON)
  170. supported &= ~SUPPORTED_1000baseT_Half;
  171. } else
  172. supported = SUPPORTED_1000baseT_Full | SUPPORTED_FIBRE
  173. | SUPPORTED_Autoneg;
  174. return supported;
  175. }
  176. static int skge_get_settings(struct net_device *dev,
  177. struct ethtool_cmd *ecmd)
  178. {
  179. struct skge_port *skge = netdev_priv(dev);
  180. struct skge_hw *hw = skge->hw;
  181. ecmd->transceiver = XCVR_INTERNAL;
  182. ecmd->supported = skge_supported_modes(hw);
  183. if (hw->copper) {
  184. ecmd->port = PORT_TP;
  185. ecmd->phy_address = hw->phy_addr;
  186. } else
  187. ecmd->port = PORT_FIBRE;
  188. ecmd->advertising = skge->advertising;
  189. ecmd->autoneg = skge->autoneg;
  190. ecmd->speed = skge->speed;
  191. ecmd->duplex = skge->duplex;
  192. return 0;
  193. }
  194. static int skge_set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
  195. {
  196. struct skge_port *skge = netdev_priv(dev);
  197. const struct skge_hw *hw = skge->hw;
  198. u32 supported = skge_supported_modes(hw);
  199. if (ecmd->autoneg == AUTONEG_ENABLE) {
  200. ecmd->advertising = supported;
  201. skge->duplex = -1;
  202. skge->speed = -1;
  203. } else {
  204. u32 setting;
  205. switch (ecmd->speed) {
  206. case SPEED_1000:
  207. if (ecmd->duplex == DUPLEX_FULL)
  208. setting = SUPPORTED_1000baseT_Full;
  209. else if (ecmd->duplex == DUPLEX_HALF)
  210. setting = SUPPORTED_1000baseT_Half;
  211. else
  212. return -EINVAL;
  213. break;
  214. case SPEED_100:
  215. if (ecmd->duplex == DUPLEX_FULL)
  216. setting = SUPPORTED_100baseT_Full;
  217. else if (ecmd->duplex == DUPLEX_HALF)
  218. setting = SUPPORTED_100baseT_Half;
  219. else
  220. return -EINVAL;
  221. break;
  222. case SPEED_10:
  223. if (ecmd->duplex == DUPLEX_FULL)
  224. setting = SUPPORTED_10baseT_Full;
  225. else if (ecmd->duplex == DUPLEX_HALF)
  226. setting = SUPPORTED_10baseT_Half;
  227. else
  228. return -EINVAL;
  229. break;
  230. default:
  231. return -EINVAL;
  232. }
  233. if ((setting & supported) == 0)
  234. return -EINVAL;
  235. skge->speed = ecmd->speed;
  236. skge->duplex = ecmd->duplex;
  237. }
  238. skge->autoneg = ecmd->autoneg;
  239. skge->advertising = ecmd->advertising;
  240. if (netif_running(dev))
  241. skge_phy_reset(skge);
  242. return (0);
  243. }
  244. static void skge_get_drvinfo(struct net_device *dev,
  245. struct ethtool_drvinfo *info)
  246. {
  247. struct skge_port *skge = netdev_priv(dev);
  248. strcpy(info->driver, DRV_NAME);
  249. strcpy(info->version, DRV_VERSION);
  250. strcpy(info->fw_version, "N/A");
  251. strcpy(info->bus_info, pci_name(skge->hw->pdev));
  252. }
  253. static const struct skge_stat {
  254. char name[ETH_GSTRING_LEN];
  255. u16 xmac_offset;
  256. u16 gma_offset;
  257. } skge_stats[] = {
  258. { "tx_bytes", XM_TXO_OK_HI, GM_TXO_OK_HI },
  259. { "rx_bytes", XM_RXO_OK_HI, GM_RXO_OK_HI },
  260. { "tx_broadcast", XM_TXF_BC_OK, GM_TXF_BC_OK },
  261. { "rx_broadcast", XM_RXF_BC_OK, GM_RXF_BC_OK },
  262. { "tx_multicast", XM_TXF_MC_OK, GM_TXF_MC_OK },
  263. { "rx_multicast", XM_RXF_MC_OK, GM_RXF_MC_OK },
  264. { "tx_unicast", XM_TXF_UC_OK, GM_TXF_UC_OK },
  265. { "rx_unicast", XM_RXF_UC_OK, GM_RXF_UC_OK },
  266. { "tx_mac_pause", XM_TXF_MPAUSE, GM_TXF_MPAUSE },
  267. { "rx_mac_pause", XM_RXF_MPAUSE, GM_RXF_MPAUSE },
  268. { "collisions", XM_TXF_SNG_COL, GM_TXF_SNG_COL },
  269. { "multi_collisions", XM_TXF_MUL_COL, GM_TXF_MUL_COL },
  270. { "aborted", XM_TXF_ABO_COL, GM_TXF_ABO_COL },
  271. { "late_collision", XM_TXF_LAT_COL, GM_TXF_LAT_COL },
  272. { "fifo_underrun", XM_TXE_FIFO_UR, GM_TXE_FIFO_UR },
  273. { "fifo_overflow", XM_RXE_FIFO_OV, GM_RXE_FIFO_OV },
  274. { "rx_toolong", XM_RXF_LNG_ERR, GM_RXF_LNG_ERR },
  275. { "rx_jabber", XM_RXF_JAB_PKT, GM_RXF_JAB_PKT },
  276. { "rx_runt", XM_RXE_RUNT, GM_RXE_FRAG },
  277. { "rx_too_long", XM_RXF_LNG_ERR, GM_RXF_LNG_ERR },
  278. { "rx_fcs_error", XM_RXF_FCS_ERR, GM_RXF_FCS_ERR },
  279. };
  280. static int skge_get_stats_count(struct net_device *dev)
  281. {
  282. return ARRAY_SIZE(skge_stats);
  283. }
  284. static void skge_get_ethtool_stats(struct net_device *dev,
  285. struct ethtool_stats *stats, u64 *data)
  286. {
  287. struct skge_port *skge = netdev_priv(dev);
  288. if (skge->hw->chip_id == CHIP_ID_GENESIS)
  289. genesis_get_stats(skge, data);
  290. else
  291. yukon_get_stats(skge, data);
  292. }
  293. /* Use hardware MIB variables for critical path statistics and
  294. * transmit feedback not reported at interrupt.
  295. * Other errors are accounted for in interrupt handler.
  296. */
  297. static struct net_device_stats *skge_get_stats(struct net_device *dev)
  298. {
  299. struct skge_port *skge = netdev_priv(dev);
  300. u64 data[ARRAY_SIZE(skge_stats)];
  301. if (skge->hw->chip_id == CHIP_ID_GENESIS)
  302. genesis_get_stats(skge, data);
  303. else
  304. yukon_get_stats(skge, data);
  305. skge->net_stats.tx_bytes = data[0];
  306. skge->net_stats.rx_bytes = data[1];
  307. skge->net_stats.tx_packets = data[2] + data[4] + data[6];
  308. skge->net_stats.rx_packets = data[3] + data[5] + data[7];
  309. skge->net_stats.multicast = data[3] + data[5];
  310. skge->net_stats.collisions = data[10];
  311. skge->net_stats.tx_aborted_errors = data[12];
  312. return &skge->net_stats;
  313. }
  314. static void skge_get_strings(struct net_device *dev, u32 stringset, u8 *data)
  315. {
  316. int i;
  317. switch (stringset) {
  318. case ETH_SS_STATS:
  319. for (i = 0; i < ARRAY_SIZE(skge_stats); i++)
  320. memcpy(data + i * ETH_GSTRING_LEN,
  321. skge_stats[i].name, ETH_GSTRING_LEN);
  322. break;
  323. }
  324. }
  325. static void skge_get_ring_param(struct net_device *dev,
  326. struct ethtool_ringparam *p)
  327. {
  328. struct skge_port *skge = netdev_priv(dev);
  329. p->rx_max_pending = MAX_RX_RING_SIZE;
  330. p->tx_max_pending = MAX_TX_RING_SIZE;
  331. p->rx_mini_max_pending = 0;
  332. p->rx_jumbo_max_pending = 0;
  333. p->rx_pending = skge->rx_ring.count;
  334. p->tx_pending = skge->tx_ring.count;
  335. p->rx_mini_pending = 0;
  336. p->rx_jumbo_pending = 0;
  337. }
  338. static int skge_set_ring_param(struct net_device *dev,
  339. struct ethtool_ringparam *p)
  340. {
  341. struct skge_port *skge = netdev_priv(dev);
  342. int err;
  343. if (p->rx_pending == 0 || p->rx_pending > MAX_RX_RING_SIZE ||
  344. p->tx_pending < TX_LOW_WATER || p->tx_pending > MAX_TX_RING_SIZE)
  345. return -EINVAL;
  346. skge->rx_ring.count = p->rx_pending;
  347. skge->tx_ring.count = p->tx_pending;
  348. if (netif_running(dev)) {
  349. skge_down(dev);
  350. err = skge_up(dev);
  351. if (err)
  352. dev_close(dev);
  353. }
  354. return 0;
  355. }
  356. static u32 skge_get_msglevel(struct net_device *netdev)
  357. {
  358. struct skge_port *skge = netdev_priv(netdev);
  359. return skge->msg_enable;
  360. }
  361. static void skge_set_msglevel(struct net_device *netdev, u32 value)
  362. {
  363. struct skge_port *skge = netdev_priv(netdev);
  364. skge->msg_enable = value;
  365. }
  366. static int skge_nway_reset(struct net_device *dev)
  367. {
  368. struct skge_port *skge = netdev_priv(dev);
  369. if (skge->autoneg != AUTONEG_ENABLE || !netif_running(dev))
  370. return -EINVAL;
  371. skge_phy_reset(skge);
  372. return 0;
  373. }
  374. static int skge_set_sg(struct net_device *dev, u32 data)
  375. {
  376. struct skge_port *skge = netdev_priv(dev);
  377. struct skge_hw *hw = skge->hw;
  378. if (hw->chip_id == CHIP_ID_GENESIS && data)
  379. return -EOPNOTSUPP;
  380. return ethtool_op_set_sg(dev, data);
  381. }
  382. static int skge_set_tx_csum(struct net_device *dev, u32 data)
  383. {
  384. struct skge_port *skge = netdev_priv(dev);
  385. struct skge_hw *hw = skge->hw;
  386. if (hw->chip_id == CHIP_ID_GENESIS && data)
  387. return -EOPNOTSUPP;
  388. return ethtool_op_set_tx_csum(dev, data);
  389. }
  390. static u32 skge_get_rx_csum(struct net_device *dev)
  391. {
  392. struct skge_port *skge = netdev_priv(dev);
  393. return skge->rx_csum;
  394. }
  395. /* Only Yukon supports checksum offload. */
  396. static int skge_set_rx_csum(struct net_device *dev, u32 data)
  397. {
  398. struct skge_port *skge = netdev_priv(dev);
  399. if (skge->hw->chip_id == CHIP_ID_GENESIS && data)
  400. return -EOPNOTSUPP;
  401. skge->rx_csum = data;
  402. return 0;
  403. }
  404. static void skge_get_pauseparam(struct net_device *dev,
  405. struct ethtool_pauseparam *ecmd)
  406. {
  407. struct skge_port *skge = netdev_priv(dev);
  408. ecmd->tx_pause = (skge->flow_control == FLOW_MODE_LOC_SEND)
  409. || (skge->flow_control == FLOW_MODE_SYMMETRIC);
  410. ecmd->rx_pause = (skge->flow_control == FLOW_MODE_REM_SEND)
  411. || (skge->flow_control == FLOW_MODE_SYMMETRIC);
  412. ecmd->autoneg = skge->autoneg;
  413. }
  414. static int skge_set_pauseparam(struct net_device *dev,
  415. struct ethtool_pauseparam *ecmd)
  416. {
  417. struct skge_port *skge = netdev_priv(dev);
  418. skge->autoneg = ecmd->autoneg;
  419. if (ecmd->rx_pause && ecmd->tx_pause)
  420. skge->flow_control = FLOW_MODE_SYMMETRIC;
  421. else if (ecmd->rx_pause && !ecmd->tx_pause)
  422. skge->flow_control = FLOW_MODE_REM_SEND;
  423. else if (!ecmd->rx_pause && ecmd->tx_pause)
  424. skge->flow_control = FLOW_MODE_LOC_SEND;
  425. else
  426. skge->flow_control = FLOW_MODE_NONE;
  427. if (netif_running(dev))
  428. skge_phy_reset(skge);
  429. return 0;
  430. }
  431. /* Chip internal frequency for clock calculations */
  432. static inline u32 hwkhz(const struct skge_hw *hw)
  433. {
  434. return (hw->chip_id == CHIP_ID_GENESIS) ? 53125 : 78125;
  435. }
  436. /* Chip HZ to microseconds */
  437. static inline u32 skge_clk2usec(const struct skge_hw *hw, u32 ticks)
  438. {
  439. return (ticks * 1000) / hwkhz(hw);
  440. }
  441. /* Microseconds to chip HZ */
  442. static inline u32 skge_usecs2clk(const struct skge_hw *hw, u32 usec)
  443. {
  444. return hwkhz(hw) * usec / 1000;
  445. }
  446. static int skge_get_coalesce(struct net_device *dev,
  447. struct ethtool_coalesce *ecmd)
  448. {
  449. struct skge_port *skge = netdev_priv(dev);
  450. struct skge_hw *hw = skge->hw;
  451. int port = skge->port;
  452. ecmd->rx_coalesce_usecs = 0;
  453. ecmd->tx_coalesce_usecs = 0;
  454. if (skge_read32(hw, B2_IRQM_CTRL) & TIM_START) {
  455. u32 delay = skge_clk2usec(hw, skge_read32(hw, B2_IRQM_INI));
  456. u32 msk = skge_read32(hw, B2_IRQM_MSK);
  457. if (msk & rxirqmask[port])
  458. ecmd->rx_coalesce_usecs = delay;
  459. if (msk & txirqmask[port])
  460. ecmd->tx_coalesce_usecs = delay;
  461. }
  462. return 0;
  463. }
  464. /* Note: interrupt timer is per board, but can turn on/off per port */
  465. static int skge_set_coalesce(struct net_device *dev,
  466. struct ethtool_coalesce *ecmd)
  467. {
  468. struct skge_port *skge = netdev_priv(dev);
  469. struct skge_hw *hw = skge->hw;
  470. int port = skge->port;
  471. u32 msk = skge_read32(hw, B2_IRQM_MSK);
  472. u32 delay = 25;
  473. if (ecmd->rx_coalesce_usecs == 0)
  474. msk &= ~rxirqmask[port];
  475. else if (ecmd->rx_coalesce_usecs < 25 ||
  476. ecmd->rx_coalesce_usecs > 33333)
  477. return -EINVAL;
  478. else {
  479. msk |= rxirqmask[port];
  480. delay = ecmd->rx_coalesce_usecs;
  481. }
  482. if (ecmd->tx_coalesce_usecs == 0)
  483. msk &= ~txirqmask[port];
  484. else if (ecmd->tx_coalesce_usecs < 25 ||
  485. ecmd->tx_coalesce_usecs > 33333)
  486. return -EINVAL;
  487. else {
  488. msk |= txirqmask[port];
  489. delay = min(delay, ecmd->rx_coalesce_usecs);
  490. }
  491. skge_write32(hw, B2_IRQM_MSK, msk);
  492. if (msk == 0)
  493. skge_write32(hw, B2_IRQM_CTRL, TIM_STOP);
  494. else {
  495. skge_write32(hw, B2_IRQM_INI, skge_usecs2clk(hw, delay));
  496. skge_write32(hw, B2_IRQM_CTRL, TIM_START);
  497. }
  498. return 0;
  499. }
  500. enum led_mode { LED_MODE_OFF, LED_MODE_ON, LED_MODE_TST };
  501. static void skge_led(struct skge_port *skge, enum led_mode mode)
  502. {
  503. struct skge_hw *hw = skge->hw;
  504. int port = skge->port;
  505. mutex_lock(&hw->phy_mutex);
  506. if (hw->chip_id == CHIP_ID_GENESIS) {
  507. switch (mode) {
  508. case LED_MODE_OFF:
  509. if (hw->phy_type == SK_PHY_BCOM)
  510. xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, PHY_B_PEC_LED_OFF);
  511. else {
  512. skge_write32(hw, SK_REG(port, TX_LED_VAL), 0);
  513. skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_T_OFF);
  514. }
  515. skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_OFF);
  516. skge_write32(hw, SK_REG(port, RX_LED_VAL), 0);
  517. skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_T_OFF);
  518. break;
  519. case LED_MODE_ON:
  520. skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_ON);
  521. skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_LINKSYNC_ON);
  522. skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_START);
  523. skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_START);
  524. break;
  525. case LED_MODE_TST:
  526. skge_write8(hw, SK_REG(port, RX_LED_TST), LED_T_ON);
  527. skge_write32(hw, SK_REG(port, RX_LED_VAL), 100);
  528. skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_START);
  529. if (hw->phy_type == SK_PHY_BCOM)
  530. xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, PHY_B_PEC_LED_ON);
  531. else {
  532. skge_write8(hw, SK_REG(port, TX_LED_TST), LED_T_ON);
  533. skge_write32(hw, SK_REG(port, TX_LED_VAL), 100);
  534. skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_START);
  535. }
  536. }
  537. } else {
  538. switch (mode) {
  539. case LED_MODE_OFF:
  540. gm_phy_write(hw, port, PHY_MARV_LED_CTRL, 0);
  541. gm_phy_write(hw, port, PHY_MARV_LED_OVER,
  542. PHY_M_LED_MO_DUP(MO_LED_OFF) |
  543. PHY_M_LED_MO_10(MO_LED_OFF) |
  544. PHY_M_LED_MO_100(MO_LED_OFF) |
  545. PHY_M_LED_MO_1000(MO_LED_OFF) |
  546. PHY_M_LED_MO_RX(MO_LED_OFF));
  547. break;
  548. case LED_MODE_ON:
  549. gm_phy_write(hw, port, PHY_MARV_LED_CTRL,
  550. PHY_M_LED_PULS_DUR(PULS_170MS) |
  551. PHY_M_LED_BLINK_RT(BLINK_84MS) |
  552. PHY_M_LEDC_TX_CTRL |
  553. PHY_M_LEDC_DP_CTRL);
  554. gm_phy_write(hw, port, PHY_MARV_LED_OVER,
  555. PHY_M_LED_MO_RX(MO_LED_OFF) |
  556. (skge->speed == SPEED_100 ?
  557. PHY_M_LED_MO_100(MO_LED_ON) : 0));
  558. break;
  559. case LED_MODE_TST:
  560. gm_phy_write(hw, port, PHY_MARV_LED_CTRL, 0);
  561. gm_phy_write(hw, port, PHY_MARV_LED_OVER,
  562. PHY_M_LED_MO_DUP(MO_LED_ON) |
  563. PHY_M_LED_MO_10(MO_LED_ON) |
  564. PHY_M_LED_MO_100(MO_LED_ON) |
  565. PHY_M_LED_MO_1000(MO_LED_ON) |
  566. PHY_M_LED_MO_RX(MO_LED_ON));
  567. }
  568. }
  569. mutex_unlock(&hw->phy_mutex);
  570. }
  571. /* blink LED's for finding board */
  572. static int skge_phys_id(struct net_device *dev, u32 data)
  573. {
  574. struct skge_port *skge = netdev_priv(dev);
  575. unsigned long ms;
  576. enum led_mode mode = LED_MODE_TST;
  577. if (!data || data > (u32)(MAX_SCHEDULE_TIMEOUT / HZ))
  578. ms = jiffies_to_msecs(MAX_SCHEDULE_TIMEOUT / HZ) * 1000;
  579. else
  580. ms = data * 1000;
  581. while (ms > 0) {
  582. skge_led(skge, mode);
  583. mode ^= LED_MODE_TST;
  584. if (msleep_interruptible(BLINK_MS))
  585. break;
  586. ms -= BLINK_MS;
  587. }
  588. /* back to regular LED state */
  589. skge_led(skge, netif_running(dev) ? LED_MODE_ON : LED_MODE_OFF);
  590. return 0;
  591. }
  592. static const struct ethtool_ops skge_ethtool_ops = {
  593. .get_settings = skge_get_settings,
  594. .set_settings = skge_set_settings,
  595. .get_drvinfo = skge_get_drvinfo,
  596. .get_regs_len = skge_get_regs_len,
  597. .get_regs = skge_get_regs,
  598. .get_wol = skge_get_wol,
  599. .set_wol = skge_set_wol,
  600. .get_msglevel = skge_get_msglevel,
  601. .set_msglevel = skge_set_msglevel,
  602. .nway_reset = skge_nway_reset,
  603. .get_link = ethtool_op_get_link,
  604. .get_ringparam = skge_get_ring_param,
  605. .set_ringparam = skge_set_ring_param,
  606. .get_pauseparam = skge_get_pauseparam,
  607. .set_pauseparam = skge_set_pauseparam,
  608. .get_coalesce = skge_get_coalesce,
  609. .set_coalesce = skge_set_coalesce,
  610. .get_sg = ethtool_op_get_sg,
  611. .set_sg = skge_set_sg,
  612. .get_tx_csum = ethtool_op_get_tx_csum,
  613. .set_tx_csum = skge_set_tx_csum,
  614. .get_rx_csum = skge_get_rx_csum,
  615. .set_rx_csum = skge_set_rx_csum,
  616. .get_strings = skge_get_strings,
  617. .phys_id = skge_phys_id,
  618. .get_stats_count = skge_get_stats_count,
  619. .get_ethtool_stats = skge_get_ethtool_stats,
  620. .get_perm_addr = ethtool_op_get_perm_addr,
  621. };
  622. /*
  623. * Allocate ring elements and chain them together
  624. * One-to-one association of board descriptors with ring elements
  625. */
  626. static int skge_ring_alloc(struct skge_ring *ring, void *vaddr, u32 base)
  627. {
  628. struct skge_tx_desc *d;
  629. struct skge_element *e;
  630. int i;
  631. ring->start = kcalloc(sizeof(*e), ring->count, GFP_KERNEL);
  632. if (!ring->start)
  633. return -ENOMEM;
  634. for (i = 0, e = ring->start, d = vaddr; i < ring->count; i++, e++, d++) {
  635. e->desc = d;
  636. if (i == ring->count - 1) {
  637. e->next = ring->start;
  638. d->next_offset = base;
  639. } else {
  640. e->next = e + 1;
  641. d->next_offset = base + (i+1) * sizeof(*d);
  642. }
  643. }
  644. ring->to_use = ring->to_clean = ring->start;
  645. return 0;
  646. }
  647. /* Allocate and setup a new buffer for receiving */
  648. static void skge_rx_setup(struct skge_port *skge, struct skge_element *e,
  649. struct sk_buff *skb, unsigned int bufsize)
  650. {
  651. struct skge_rx_desc *rd = e->desc;
  652. u64 map;
  653. map = pci_map_single(skge->hw->pdev, skb->data, bufsize,
  654. PCI_DMA_FROMDEVICE);
  655. rd->dma_lo = map;
  656. rd->dma_hi = map >> 32;
  657. e->skb = skb;
  658. rd->csum1_start = ETH_HLEN;
  659. rd->csum2_start = ETH_HLEN;
  660. rd->csum1 = 0;
  661. rd->csum2 = 0;
  662. wmb();
  663. rd->control = BMU_OWN | BMU_STF | BMU_IRQ_EOF | BMU_TCP_CHECK | bufsize;
  664. pci_unmap_addr_set(e, mapaddr, map);
  665. pci_unmap_len_set(e, maplen, bufsize);
  666. }
  667. /* Resume receiving using existing skb,
  668. * Note: DMA address is not changed by chip.
  669. * MTU not changed while receiver active.
  670. */
  671. static inline void skge_rx_reuse(struct skge_element *e, unsigned int size)
  672. {
  673. struct skge_rx_desc *rd = e->desc;
  674. rd->csum2 = 0;
  675. rd->csum2_start = ETH_HLEN;
  676. wmb();
  677. rd->control = BMU_OWN | BMU_STF | BMU_IRQ_EOF | BMU_TCP_CHECK | size;
  678. }
  679. /* Free all buffers in receive ring, assumes receiver stopped */
  680. static void skge_rx_clean(struct skge_port *skge)
  681. {
  682. struct skge_hw *hw = skge->hw;
  683. struct skge_ring *ring = &skge->rx_ring;
  684. struct skge_element *e;
  685. e = ring->start;
  686. do {
  687. struct skge_rx_desc *rd = e->desc;
  688. rd->control = 0;
  689. if (e->skb) {
  690. pci_unmap_single(hw->pdev,
  691. pci_unmap_addr(e, mapaddr),
  692. pci_unmap_len(e, maplen),
  693. PCI_DMA_FROMDEVICE);
  694. dev_kfree_skb(e->skb);
  695. e->skb = NULL;
  696. }
  697. } while ((e = e->next) != ring->start);
  698. }
  699. /* Allocate buffers for receive ring
  700. * For receive: to_clean is next received frame.
  701. */
  702. static int skge_rx_fill(struct net_device *dev)
  703. {
  704. struct skge_port *skge = netdev_priv(dev);
  705. struct skge_ring *ring = &skge->rx_ring;
  706. struct skge_element *e;
  707. e = ring->start;
  708. do {
  709. struct sk_buff *skb;
  710. skb = __netdev_alloc_skb(dev, skge->rx_buf_size + NET_IP_ALIGN,
  711. GFP_KERNEL);
  712. if (!skb)
  713. return -ENOMEM;
  714. skb_reserve(skb, NET_IP_ALIGN);
  715. skge_rx_setup(skge, e, skb, skge->rx_buf_size);
  716. } while ( (e = e->next) != ring->start);
  717. ring->to_clean = ring->start;
  718. return 0;
  719. }
  720. static void skge_link_up(struct skge_port *skge)
  721. {
  722. skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG),
  723. LED_BLK_OFF|LED_SYNC_OFF|LED_ON);
  724. netif_carrier_on(skge->netdev);
  725. netif_wake_queue(skge->netdev);
  726. if (netif_msg_link(skge))
  727. printk(KERN_INFO PFX
  728. "%s: Link is up at %d Mbps, %s duplex, flow control %s\n",
  729. skge->netdev->name, skge->speed,
  730. skge->duplex == DUPLEX_FULL ? "full" : "half",
  731. (skge->flow_control == FLOW_MODE_NONE) ? "none" :
  732. (skge->flow_control == FLOW_MODE_LOC_SEND) ? "tx only" :
  733. (skge->flow_control == FLOW_MODE_REM_SEND) ? "rx only" :
  734. (skge->flow_control == FLOW_MODE_SYMMETRIC) ? "tx and rx" :
  735. "unknown");
  736. }
  737. static void skge_link_down(struct skge_port *skge)
  738. {
  739. skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG), LED_OFF);
  740. netif_carrier_off(skge->netdev);
  741. netif_stop_queue(skge->netdev);
  742. if (netif_msg_link(skge))
  743. printk(KERN_INFO PFX "%s: Link is down.\n", skge->netdev->name);
  744. }
  745. static int __xm_phy_read(struct skge_hw *hw, int port, u16 reg, u16 *val)
  746. {
  747. int i;
  748. xm_write16(hw, port, XM_PHY_ADDR, reg | hw->phy_addr);
  749. *val = xm_read16(hw, port, XM_PHY_DATA);
  750. if (hw->phy_type == SK_PHY_XMAC)
  751. goto ready;
  752. for (i = 0; i < PHY_RETRIES; i++) {
  753. if (xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_RDY)
  754. goto ready;
  755. udelay(1);
  756. }
  757. return -ETIMEDOUT;
  758. ready:
  759. *val = xm_read16(hw, port, XM_PHY_DATA);
  760. return 0;
  761. }
  762. static u16 xm_phy_read(struct skge_hw *hw, int port, u16 reg)
  763. {
  764. u16 v = 0;
  765. if (__xm_phy_read(hw, port, reg, &v))
  766. printk(KERN_WARNING PFX "%s: phy read timed out\n",
  767. hw->dev[port]->name);
  768. return v;
  769. }
  770. static int xm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val)
  771. {
  772. int i;
  773. xm_write16(hw, port, XM_PHY_ADDR, reg | hw->phy_addr);
  774. for (i = 0; i < PHY_RETRIES; i++) {
  775. if (!(xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_BUSY))
  776. goto ready;
  777. udelay(1);
  778. }
  779. return -EIO;
  780. ready:
  781. xm_write16(hw, port, XM_PHY_DATA, val);
  782. for (i = 0; i < PHY_RETRIES; i++) {
  783. if (!(xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_BUSY))
  784. return 0;
  785. udelay(1);
  786. }
  787. return -ETIMEDOUT;
  788. }
  789. static void genesis_init(struct skge_hw *hw)
  790. {
  791. /* set blink source counter */
  792. skge_write32(hw, B2_BSC_INI, (SK_BLK_DUR * SK_FACT_53) / 100);
  793. skge_write8(hw, B2_BSC_CTRL, BSC_START);
  794. /* configure mac arbiter */
  795. skge_write16(hw, B3_MA_TO_CTRL, MA_RST_CLR);
  796. /* configure mac arbiter timeout values */
  797. skge_write8(hw, B3_MA_TOINI_RX1, SK_MAC_TO_53);
  798. skge_write8(hw, B3_MA_TOINI_RX2, SK_MAC_TO_53);
  799. skge_write8(hw, B3_MA_TOINI_TX1, SK_MAC_TO_53);
  800. skge_write8(hw, B3_MA_TOINI_TX2, SK_MAC_TO_53);
  801. skge_write8(hw, B3_MA_RCINI_RX1, 0);
  802. skge_write8(hw, B3_MA_RCINI_RX2, 0);
  803. skge_write8(hw, B3_MA_RCINI_TX1, 0);
  804. skge_write8(hw, B3_MA_RCINI_TX2, 0);
  805. /* configure packet arbiter timeout */
  806. skge_write16(hw, B3_PA_CTRL, PA_RST_CLR);
  807. skge_write16(hw, B3_PA_TOINI_RX1, SK_PKT_TO_MAX);
  808. skge_write16(hw, B3_PA_TOINI_TX1, SK_PKT_TO_MAX);
  809. skge_write16(hw, B3_PA_TOINI_RX2, SK_PKT_TO_MAX);
  810. skge_write16(hw, B3_PA_TOINI_TX2, SK_PKT_TO_MAX);
  811. }
  812. static void genesis_reset(struct skge_hw *hw, int port)
  813. {
  814. const u8 zero[8] = { 0 };
  815. skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), 0);
  816. /* reset the statistics module */
  817. xm_write32(hw, port, XM_GP_PORT, XM_GP_RES_STAT);
  818. xm_write16(hw, port, XM_IMSK, 0xffff); /* disable XMAC IRQs */
  819. xm_write32(hw, port, XM_MODE, 0); /* clear Mode Reg */
  820. xm_write16(hw, port, XM_TX_CMD, 0); /* reset TX CMD Reg */
  821. xm_write16(hw, port, XM_RX_CMD, 0); /* reset RX CMD Reg */
  822. /* disable Broadcom PHY IRQ */
  823. if (hw->phy_type == SK_PHY_BCOM)
  824. xm_write16(hw, port, PHY_BCOM_INT_MASK, 0xffff);
  825. xm_outhash(hw, port, XM_HSM, zero);
  826. }
  827. /* Convert mode to MII values */
  828. static const u16 phy_pause_map[] = {
  829. [FLOW_MODE_NONE] = 0,
  830. [FLOW_MODE_LOC_SEND] = PHY_AN_PAUSE_ASYM,
  831. [FLOW_MODE_SYMMETRIC] = PHY_AN_PAUSE_CAP,
  832. [FLOW_MODE_REM_SEND] = PHY_AN_PAUSE_CAP | PHY_AN_PAUSE_ASYM,
  833. };
  834. /* Check status of Broadcom phy link */
  835. static void bcom_check_link(struct skge_hw *hw, int port)
  836. {
  837. struct net_device *dev = hw->dev[port];
  838. struct skge_port *skge = netdev_priv(dev);
  839. u16 status;
  840. /* read twice because of latch */
  841. (void) xm_phy_read(hw, port, PHY_BCOM_STAT);
  842. status = xm_phy_read(hw, port, PHY_BCOM_STAT);
  843. if ((status & PHY_ST_LSYNC) == 0) {
  844. u16 cmd = xm_read16(hw, port, XM_MMU_CMD);
  845. cmd &= ~(XM_MMU_ENA_RX | XM_MMU_ENA_TX);
  846. xm_write16(hw, port, XM_MMU_CMD, cmd);
  847. /* dummy read to ensure writing */
  848. (void) xm_read16(hw, port, XM_MMU_CMD);
  849. if (netif_carrier_ok(dev))
  850. skge_link_down(skge);
  851. return;
  852. }
  853. if (skge->autoneg == AUTONEG_ENABLE) {
  854. u16 lpa, aux;
  855. if (!(status & PHY_ST_AN_OVER))
  856. return;
  857. lpa = xm_phy_read(hw, port, PHY_XMAC_AUNE_LP);
  858. if (lpa & PHY_B_AN_RF) {
  859. printk(KERN_NOTICE PFX "%s: remote fault\n",
  860. dev->name);
  861. return;
  862. }
  863. aux = xm_phy_read(hw, port, PHY_BCOM_AUX_STAT);
  864. /* Check Duplex mismatch */
  865. switch (aux & PHY_B_AS_AN_RES_MSK) {
  866. case PHY_B_RES_1000FD:
  867. skge->duplex = DUPLEX_FULL;
  868. break;
  869. case PHY_B_RES_1000HD:
  870. skge->duplex = DUPLEX_HALF;
  871. break;
  872. default:
  873. printk(KERN_NOTICE PFX "%s: duplex mismatch\n",
  874. dev->name);
  875. return;
  876. }
  877. /* We are using IEEE 802.3z/D5.0 Table 37-4 */
  878. switch (aux & PHY_B_AS_PAUSE_MSK) {
  879. case PHY_B_AS_PAUSE_MSK:
  880. skge->flow_control = FLOW_MODE_SYMMETRIC;
  881. break;
  882. case PHY_B_AS_PRR:
  883. skge->flow_control = FLOW_MODE_REM_SEND;
  884. break;
  885. case PHY_B_AS_PRT:
  886. skge->flow_control = FLOW_MODE_LOC_SEND;
  887. break;
  888. default:
  889. skge->flow_control = FLOW_MODE_NONE;
  890. }
  891. skge->speed = SPEED_1000;
  892. }
  893. if (!netif_carrier_ok(dev))
  894. genesis_link_up(skge);
  895. }
  896. /* Broadcom 5400 only supports giagabit! SysKonnect did not put an additional
  897. * Phy on for 100 or 10Mbit operation
  898. */
  899. static void bcom_phy_init(struct skge_port *skge)
  900. {
  901. struct skge_hw *hw = skge->hw;
  902. int port = skge->port;
  903. int i;
  904. u16 id1, r, ext, ctl;
  905. /* magic workaround patterns for Broadcom */
  906. static const struct {
  907. u16 reg;
  908. u16 val;
  909. } A1hack[] = {
  910. { 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 },
  911. { 0x17, 0x0013 }, { 0x15, 0x0404 }, { 0x17, 0x8006 },
  912. { 0x15, 0x0132 }, { 0x17, 0x8006 }, { 0x15, 0x0232 },
  913. { 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 },
  914. }, C0hack[] = {
  915. { 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1204 },
  916. { 0x17, 0x0013 }, { 0x15, 0x0A04 }, { 0x18, 0x0420 },
  917. };
  918. /* read Id from external PHY (all have the same address) */
  919. id1 = xm_phy_read(hw, port, PHY_XMAC_ID1);
  920. /* Optimize MDIO transfer by suppressing preamble. */
  921. r = xm_read16(hw, port, XM_MMU_CMD);
  922. r |= XM_MMU_NO_PRE;
  923. xm_write16(hw, port, XM_MMU_CMD,r);
  924. switch (id1) {
  925. case PHY_BCOM_ID1_C0:
  926. /*
  927. * Workaround BCOM Errata for the C0 type.
  928. * Write magic patterns to reserved registers.
  929. */
  930. for (i = 0; i < ARRAY_SIZE(C0hack); i++)
  931. xm_phy_write(hw, port,
  932. C0hack[i].reg, C0hack[i].val);
  933. break;
  934. case PHY_BCOM_ID1_A1:
  935. /*
  936. * Workaround BCOM Errata for the A1 type.
  937. * Write magic patterns to reserved registers.
  938. */
  939. for (i = 0; i < ARRAY_SIZE(A1hack); i++)
  940. xm_phy_write(hw, port,
  941. A1hack[i].reg, A1hack[i].val);
  942. break;
  943. }
  944. /*
  945. * Workaround BCOM Errata (#10523) for all BCom PHYs.
  946. * Disable Power Management after reset.
  947. */
  948. r = xm_phy_read(hw, port, PHY_BCOM_AUX_CTRL);
  949. r |= PHY_B_AC_DIS_PM;
  950. xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL, r);
  951. /* Dummy read */
  952. xm_read16(hw, port, XM_ISRC);
  953. ext = PHY_B_PEC_EN_LTR; /* enable tx led */
  954. ctl = PHY_CT_SP1000; /* always 1000mbit */
  955. if (skge->autoneg == AUTONEG_ENABLE) {
  956. /*
  957. * Workaround BCOM Errata #1 for the C5 type.
  958. * 1000Base-T Link Acquisition Failure in Slave Mode
  959. * Set Repeater/DTE bit 10 of the 1000Base-T Control Register
  960. */
  961. u16 adv = PHY_B_1000C_RD;
  962. if (skge->advertising & ADVERTISED_1000baseT_Half)
  963. adv |= PHY_B_1000C_AHD;
  964. if (skge->advertising & ADVERTISED_1000baseT_Full)
  965. adv |= PHY_B_1000C_AFD;
  966. xm_phy_write(hw, port, PHY_BCOM_1000T_CTRL, adv);
  967. ctl |= PHY_CT_ANE | PHY_CT_RE_CFG;
  968. } else {
  969. if (skge->duplex == DUPLEX_FULL)
  970. ctl |= PHY_CT_DUP_MD;
  971. /* Force to slave */
  972. xm_phy_write(hw, port, PHY_BCOM_1000T_CTRL, PHY_B_1000C_MSE);
  973. }
  974. /* Set autonegotiation pause parameters */
  975. xm_phy_write(hw, port, PHY_BCOM_AUNE_ADV,
  976. phy_pause_map[skge->flow_control] | PHY_AN_CSMA);
  977. /* Handle Jumbo frames */
  978. if (hw->dev[port]->mtu > ETH_DATA_LEN) {
  979. xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL,
  980. PHY_B_AC_TX_TST | PHY_B_AC_LONG_PACK);
  981. ext |= PHY_B_PEC_HIGH_LA;
  982. }
  983. xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, ext);
  984. xm_phy_write(hw, port, PHY_BCOM_CTRL, ctl);
  985. /* Use link status change interrupt */
  986. xm_phy_write(hw, port, PHY_BCOM_INT_MASK, PHY_B_DEF_MSK);
  987. }
  988. static void xm_phy_init(struct skge_port *skge)
  989. {
  990. struct skge_hw *hw = skge->hw;
  991. int port = skge->port;
  992. u16 ctrl = 0;
  993. if (skge->autoneg == AUTONEG_ENABLE) {
  994. if (skge->advertising & ADVERTISED_1000baseT_Half)
  995. ctrl |= PHY_X_AN_HD;
  996. if (skge->advertising & ADVERTISED_1000baseT_Full)
  997. ctrl |= PHY_X_AN_FD;
  998. switch(skge->flow_control) {
  999. case FLOW_MODE_NONE:
  1000. ctrl |= PHY_X_P_NO_PAUSE;
  1001. break;
  1002. case FLOW_MODE_LOC_SEND:
  1003. ctrl |= PHY_X_P_ASYM_MD;
  1004. break;
  1005. case FLOW_MODE_SYMMETRIC:
  1006. ctrl |= PHY_X_P_BOTH_MD;
  1007. break;
  1008. }
  1009. xm_phy_write(hw, port, PHY_XMAC_AUNE_ADV, ctrl);
  1010. /* Restart Auto-negotiation */
  1011. ctrl = PHY_CT_ANE | PHY_CT_RE_CFG;
  1012. } else {
  1013. /* Set DuplexMode in Config register */
  1014. if (skge->duplex == DUPLEX_FULL)
  1015. ctrl |= PHY_CT_DUP_MD;
  1016. /*
  1017. * Do NOT enable Auto-negotiation here. This would hold
  1018. * the link down because no IDLEs are transmitted
  1019. */
  1020. }
  1021. xm_phy_write(hw, port, PHY_XMAC_CTRL, ctrl);
  1022. /* Poll PHY for status changes */
  1023. schedule_delayed_work(&skge->link_thread, LINK_HZ);
  1024. }
  1025. static void xm_check_link(struct net_device *dev)
  1026. {
  1027. struct skge_port *skge = netdev_priv(dev);
  1028. struct skge_hw *hw = skge->hw;
  1029. int port = skge->port;
  1030. u16 status;
  1031. /* read twice because of latch */
  1032. (void) xm_phy_read(hw, port, PHY_XMAC_STAT);
  1033. status = xm_phy_read(hw, port, PHY_XMAC_STAT);
  1034. if ((status & PHY_ST_LSYNC) == 0) {
  1035. u16 cmd = xm_read16(hw, port, XM_MMU_CMD);
  1036. cmd &= ~(XM_MMU_ENA_RX | XM_MMU_ENA_TX);
  1037. xm_write16(hw, port, XM_MMU_CMD, cmd);
  1038. /* dummy read to ensure writing */
  1039. (void) xm_read16(hw, port, XM_MMU_CMD);
  1040. if (netif_carrier_ok(dev))
  1041. skge_link_down(skge);
  1042. return;
  1043. }
  1044. if (skge->autoneg == AUTONEG_ENABLE) {
  1045. u16 lpa, res;
  1046. if (!(status & PHY_ST_AN_OVER))
  1047. return;
  1048. lpa = xm_phy_read(hw, port, PHY_XMAC_AUNE_LP);
  1049. if (lpa & PHY_B_AN_RF) {
  1050. printk(KERN_NOTICE PFX "%s: remote fault\n",
  1051. dev->name);
  1052. return;
  1053. }
  1054. res = xm_phy_read(hw, port, PHY_XMAC_RES_ABI);
  1055. /* Check Duplex mismatch */
  1056. switch (res & (PHY_X_RS_HD | PHY_X_RS_FD)) {
  1057. case PHY_X_RS_FD:
  1058. skge->duplex = DUPLEX_FULL;
  1059. break;
  1060. case PHY_X_RS_HD:
  1061. skge->duplex = DUPLEX_HALF;
  1062. break;
  1063. default:
  1064. printk(KERN_NOTICE PFX "%s: duplex mismatch\n",
  1065. dev->name);
  1066. return;
  1067. }
  1068. /* We are using IEEE 802.3z/D5.0 Table 37-4 */
  1069. if (lpa & PHY_X_P_SYM_MD)
  1070. skge->flow_control = FLOW_MODE_SYMMETRIC;
  1071. else if ((lpa & PHY_X_RS_PAUSE) == PHY_X_P_ASYM_MD)
  1072. skge->flow_control = FLOW_MODE_REM_SEND;
  1073. else if ((lpa & PHY_X_RS_PAUSE) == PHY_X_P_BOTH_MD)
  1074. skge->flow_control = FLOW_MODE_LOC_SEND;
  1075. else
  1076. skge->flow_control = FLOW_MODE_NONE;
  1077. skge->speed = SPEED_1000;
  1078. }
  1079. if (!netif_carrier_ok(dev))
  1080. genesis_link_up(skge);
  1081. }
  1082. /* Poll to check for link coming up.
  1083. * Since internal PHY is wired to a level triggered pin, can't
  1084. * get an interrupt when carrier is detected.
  1085. */
  1086. static void xm_link_timer(void *arg)
  1087. {
  1088. struct net_device *dev = arg;
  1089. struct skge_port *skge = netdev_priv(arg);
  1090. struct skge_hw *hw = skge->hw;
  1091. int port = skge->port;
  1092. if (!netif_running(dev))
  1093. return;
  1094. if (netif_carrier_ok(dev)) {
  1095. xm_read16(hw, port, XM_ISRC);
  1096. if (!(xm_read16(hw, port, XM_ISRC) & XM_IS_INP_ASS))
  1097. goto nochange;
  1098. } else {
  1099. if (xm_read32(hw, port, XM_GP_PORT) & XM_GP_INP_ASS)
  1100. goto nochange;
  1101. xm_read16(hw, port, XM_ISRC);
  1102. if (xm_read16(hw, port, XM_ISRC) & XM_IS_INP_ASS)
  1103. goto nochange;
  1104. }
  1105. mutex_lock(&hw->phy_mutex);
  1106. xm_check_link(dev);
  1107. mutex_unlock(&hw->phy_mutex);
  1108. nochange:
  1109. schedule_delayed_work(&skge->link_thread, LINK_HZ);
  1110. }
  1111. static void genesis_mac_init(struct skge_hw *hw, int port)
  1112. {
  1113. struct net_device *dev = hw->dev[port];
  1114. struct skge_port *skge = netdev_priv(dev);
  1115. int jumbo = hw->dev[port]->mtu > ETH_DATA_LEN;
  1116. int i;
  1117. u32 r;
  1118. const u8 zero[6] = { 0 };
  1119. for (i = 0; i < 10; i++) {
  1120. skge_write16(hw, SK_REG(port, TX_MFF_CTRL1),
  1121. MFF_SET_MAC_RST);
  1122. if (skge_read16(hw, SK_REG(port, TX_MFF_CTRL1)) & MFF_SET_MAC_RST)
  1123. goto reset_ok;
  1124. udelay(1);
  1125. }
  1126. printk(KERN_WARNING PFX "%s: genesis reset failed\n", dev->name);
  1127. reset_ok:
  1128. /* Unreset the XMAC. */
  1129. skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_CLR_MAC_RST);
  1130. /*
  1131. * Perform additional initialization for external PHYs,
  1132. * namely for the 1000baseTX cards that use the XMAC's
  1133. * GMII mode.
  1134. */
  1135. if (hw->phy_type != SK_PHY_XMAC) {
  1136. /* Take external Phy out of reset */
  1137. r = skge_read32(hw, B2_GP_IO);
  1138. if (port == 0)
  1139. r |= GP_DIR_0|GP_IO_0;
  1140. else
  1141. r |= GP_DIR_2|GP_IO_2;
  1142. skge_write32(hw, B2_GP_IO, r);
  1143. /* Enable GMII interface */
  1144. xm_write16(hw, port, XM_HW_CFG, XM_HW_GMII_MD);
  1145. }
  1146. switch(hw->phy_type) {
  1147. case SK_PHY_XMAC:
  1148. xm_phy_init(skge);
  1149. break;
  1150. case SK_PHY_BCOM:
  1151. bcom_phy_init(skge);
  1152. bcom_check_link(hw, port);
  1153. }
  1154. /* Set Station Address */
  1155. xm_outaddr(hw, port, XM_SA, dev->dev_addr);
  1156. /* We don't use match addresses so clear */
  1157. for (i = 1; i < 16; i++)
  1158. xm_outaddr(hw, port, XM_EXM(i), zero);
  1159. /* Clear MIB counters */
  1160. xm_write16(hw, port, XM_STAT_CMD,
  1161. XM_SC_CLR_RXC | XM_SC_CLR_TXC);
  1162. /* Clear two times according to Errata #3 */
  1163. xm_write16(hw, port, XM_STAT_CMD,
  1164. XM_SC_CLR_RXC | XM_SC_CLR_TXC);
  1165. /* configure Rx High Water Mark (XM_RX_HI_WM) */
  1166. xm_write16(hw, port, XM_RX_HI_WM, 1450);
  1167. /* We don't need the FCS appended to the packet. */
  1168. r = XM_RX_LENERR_OK | XM_RX_STRIP_FCS;
  1169. if (jumbo)
  1170. r |= XM_RX_BIG_PK_OK;
  1171. if (skge->duplex == DUPLEX_HALF) {
  1172. /*
  1173. * If in manual half duplex mode the other side might be in
  1174. * full duplex mode, so ignore if a carrier extension is not seen
  1175. * on frames received
  1176. */
  1177. r |= XM_RX_DIS_CEXT;
  1178. }
  1179. xm_write16(hw, port, XM_RX_CMD, r);
  1180. /* We want short frames padded to 60 bytes. */
  1181. xm_write16(hw, port, XM_TX_CMD, XM_TX_AUTO_PAD);
  1182. /*
  1183. * Bump up the transmit threshold. This helps hold off transmit
  1184. * underruns when we're blasting traffic from both ports at once.
  1185. */
  1186. xm_write16(hw, port, XM_TX_THR, 512);
  1187. /*
  1188. * Enable the reception of all error frames. This is is
  1189. * a necessary evil due to the design of the XMAC. The
  1190. * XMAC's receive FIFO is only 8K in size, however jumbo
  1191. * frames can be up to 9000 bytes in length. When bad
  1192. * frame filtering is enabled, the XMAC's RX FIFO operates
  1193. * in 'store and forward' mode. For this to work, the
  1194. * entire frame has to fit into the FIFO, but that means
  1195. * that jumbo frames larger than 8192 bytes will be
  1196. * truncated. Disabling all bad frame filtering causes
  1197. * the RX FIFO to operate in streaming mode, in which
  1198. * case the XMAC will start transferring frames out of the
  1199. * RX FIFO as soon as the FIFO threshold is reached.
  1200. */
  1201. xm_write32(hw, port, XM_MODE, XM_DEF_MODE);
  1202. /*
  1203. * Initialize the Receive Counter Event Mask (XM_RX_EV_MSK)
  1204. * - Enable all bits excepting 'Octets Rx OK Low CntOv'
  1205. * and 'Octets Rx OK Hi Cnt Ov'.
  1206. */
  1207. xm_write32(hw, port, XM_RX_EV_MSK, XMR_DEF_MSK);
  1208. /*
  1209. * Initialize the Transmit Counter Event Mask (XM_TX_EV_MSK)
  1210. * - Enable all bits excepting 'Octets Tx OK Low CntOv'
  1211. * and 'Octets Tx OK Hi Cnt Ov'.
  1212. */
  1213. xm_write32(hw, port, XM_TX_EV_MSK, XMT_DEF_MSK);
  1214. /* Configure MAC arbiter */
  1215. skge_write16(hw, B3_MA_TO_CTRL, MA_RST_CLR);
  1216. /* configure timeout values */
  1217. skge_write8(hw, B3_MA_TOINI_RX1, 72);
  1218. skge_write8(hw, B3_MA_TOINI_RX2, 72);
  1219. skge_write8(hw, B3_MA_TOINI_TX1, 72);
  1220. skge_write8(hw, B3_MA_TOINI_TX2, 72);
  1221. skge_write8(hw, B3_MA_RCINI_RX1, 0);
  1222. skge_write8(hw, B3_MA_RCINI_RX2, 0);
  1223. skge_write8(hw, B3_MA_RCINI_TX1, 0);
  1224. skge_write8(hw, B3_MA_RCINI_TX2, 0);
  1225. /* Configure Rx MAC FIFO */
  1226. skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_RST_CLR);
  1227. skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_ENA_TIM_PAT);
  1228. skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_ENA_OP_MD);
  1229. /* Configure Tx MAC FIFO */
  1230. skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_RST_CLR);
  1231. skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_TX_CTRL_DEF);
  1232. skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_ENA_OP_MD);
  1233. if (jumbo) {
  1234. /* Enable frame flushing if jumbo frames used */
  1235. skge_write16(hw, SK_REG(port,RX_MFF_CTRL1), MFF_ENA_FLUSH);
  1236. } else {
  1237. /* enable timeout timers if normal frames */
  1238. skge_write16(hw, B3_PA_CTRL,
  1239. (port == 0) ? PA_ENA_TO_TX1 : PA_ENA_TO_TX2);
  1240. }
  1241. }
  1242. static void genesis_stop(struct skge_port *skge)
  1243. {
  1244. struct skge_hw *hw = skge->hw;
  1245. int port = skge->port;
  1246. u32 reg;
  1247. genesis_reset(hw, port);
  1248. /* Clear Tx packet arbiter timeout IRQ */
  1249. skge_write16(hw, B3_PA_CTRL,
  1250. port == 0 ? PA_CLR_TO_TX1 : PA_CLR_TO_TX2);
  1251. /*
  1252. * If the transfer sticks at the MAC the STOP command will not
  1253. * terminate if we don't flush the XMAC's transmit FIFO !
  1254. */
  1255. xm_write32(hw, port, XM_MODE,
  1256. xm_read32(hw, port, XM_MODE)|XM_MD_FTF);
  1257. /* Reset the MAC */
  1258. skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_SET_MAC_RST);
  1259. /* For external PHYs there must be special handling */
  1260. if (hw->phy_type != SK_PHY_XMAC) {
  1261. reg = skge_read32(hw, B2_GP_IO);
  1262. if (port == 0) {
  1263. reg |= GP_DIR_0;
  1264. reg &= ~GP_IO_0;
  1265. } else {
  1266. reg |= GP_DIR_2;
  1267. reg &= ~GP_IO_2;
  1268. }
  1269. skge_write32(hw, B2_GP_IO, reg);
  1270. skge_read32(hw, B2_GP_IO);
  1271. }
  1272. xm_write16(hw, port, XM_MMU_CMD,
  1273. xm_read16(hw, port, XM_MMU_CMD)
  1274. & ~(XM_MMU_ENA_RX | XM_MMU_ENA_TX));
  1275. xm_read16(hw, port, XM_MMU_CMD);
  1276. }
  1277. static void genesis_get_stats(struct skge_port *skge, u64 *data)
  1278. {
  1279. struct skge_hw *hw = skge->hw;
  1280. int port = skge->port;
  1281. int i;
  1282. unsigned long timeout = jiffies + HZ;
  1283. xm_write16(hw, port,
  1284. XM_STAT_CMD, XM_SC_SNP_TXC | XM_SC_SNP_RXC);
  1285. /* wait for update to complete */
  1286. while (xm_read16(hw, port, XM_STAT_CMD)
  1287. & (XM_SC_SNP_TXC | XM_SC_SNP_RXC)) {
  1288. if (time_after(jiffies, timeout))
  1289. break;
  1290. udelay(10);
  1291. }
  1292. /* special case for 64 bit octet counter */
  1293. data[0] = (u64) xm_read32(hw, port, XM_TXO_OK_HI) << 32
  1294. | xm_read32(hw, port, XM_TXO_OK_LO);
  1295. data[1] = (u64) xm_read32(hw, port, XM_RXO_OK_HI) << 32
  1296. | xm_read32(hw, port, XM_RXO_OK_LO);
  1297. for (i = 2; i < ARRAY_SIZE(skge_stats); i++)
  1298. data[i] = xm_read32(hw, port, skge_stats[i].xmac_offset);
  1299. }
  1300. static void genesis_mac_intr(struct skge_hw *hw, int port)
  1301. {
  1302. struct skge_port *skge = netdev_priv(hw->dev[port]);
  1303. u16 status = xm_read16(hw, port, XM_ISRC);
  1304. if (netif_msg_intr(skge))
  1305. printk(KERN_DEBUG PFX "%s: mac interrupt status 0x%x\n",
  1306. skge->netdev->name, status);
  1307. if (status & XM_IS_TXF_UR) {
  1308. xm_write32(hw, port, XM_MODE, XM_MD_FTF);
  1309. ++skge->net_stats.tx_fifo_errors;
  1310. }
  1311. if (status & XM_IS_RXF_OV) {
  1312. xm_write32(hw, port, XM_MODE, XM_MD_FRF);
  1313. ++skge->net_stats.rx_fifo_errors;
  1314. }
  1315. }
  1316. static void genesis_link_up(struct skge_port *skge)
  1317. {
  1318. struct skge_hw *hw = skge->hw;
  1319. int port = skge->port;
  1320. u16 cmd;
  1321. u32 mode;
  1322. cmd = xm_read16(hw, port, XM_MMU_CMD);
  1323. /*
  1324. * enabling pause frame reception is required for 1000BT
  1325. * because the XMAC is not reset if the link is going down
  1326. */
  1327. if (skge->flow_control == FLOW_MODE_NONE ||
  1328. skge->flow_control == FLOW_MODE_LOC_SEND)
  1329. /* Disable Pause Frame Reception */
  1330. cmd |= XM_MMU_IGN_PF;
  1331. else
  1332. /* Enable Pause Frame Reception */
  1333. cmd &= ~XM_MMU_IGN_PF;
  1334. xm_write16(hw, port, XM_MMU_CMD, cmd);
  1335. mode = xm_read32(hw, port, XM_MODE);
  1336. if (skge->flow_control == FLOW_MODE_SYMMETRIC ||
  1337. skge->flow_control == FLOW_MODE_LOC_SEND) {
  1338. /*
  1339. * Configure Pause Frame Generation
  1340. * Use internal and external Pause Frame Generation.
  1341. * Sending pause frames is edge triggered.
  1342. * Send a Pause frame with the maximum pause time if
  1343. * internal oder external FIFO full condition occurs.
  1344. * Send a zero pause time frame to re-start transmission.
  1345. */
  1346. /* XM_PAUSE_DA = '010000C28001' (default) */
  1347. /* XM_MAC_PTIME = 0xffff (maximum) */
  1348. /* remember this value is defined in big endian (!) */
  1349. xm_write16(hw, port, XM_MAC_PTIME, 0xffff);
  1350. mode |= XM_PAUSE_MODE;
  1351. skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_ENA_PAUSE);
  1352. } else {
  1353. /*
  1354. * disable pause frame generation is required for 1000BT
  1355. * because the XMAC is not reset if the link is going down
  1356. */
  1357. /* Disable Pause Mode in Mode Register */
  1358. mode &= ~XM_PAUSE_MODE;
  1359. skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_DIS_PAUSE);
  1360. }
  1361. xm_write32(hw, port, XM_MODE, mode);
  1362. xm_write16(hw, port, XM_IMSK, XM_DEF_MSK);
  1363. xm_read16(hw, port, XM_ISRC);
  1364. /* get MMU Command Reg. */
  1365. cmd = xm_read16(hw, port, XM_MMU_CMD);
  1366. if (hw->phy_type != SK_PHY_XMAC && skge->duplex == DUPLEX_FULL)
  1367. cmd |= XM_MMU_GMII_FD;
  1368. /*
  1369. * Workaround BCOM Errata (#10523) for all BCom Phys
  1370. * Enable Power Management after link up
  1371. */
  1372. if (hw->phy_type == SK_PHY_BCOM) {
  1373. xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL,
  1374. xm_phy_read(hw, port, PHY_BCOM_AUX_CTRL)
  1375. & ~PHY_B_AC_DIS_PM);
  1376. xm_phy_write(hw, port, PHY_BCOM_INT_MASK, PHY_B_DEF_MSK);
  1377. }
  1378. /* enable Rx/Tx */
  1379. xm_write16(hw, port, XM_MMU_CMD,
  1380. cmd | XM_MMU_ENA_RX | XM_MMU_ENA_TX);
  1381. skge_link_up(skge);
  1382. }
  1383. static inline void bcom_phy_intr(struct skge_port *skge)
  1384. {
  1385. struct skge_hw *hw = skge->hw;
  1386. int port = skge->port;
  1387. u16 isrc;
  1388. isrc = xm_phy_read(hw, port, PHY_BCOM_INT_STAT);
  1389. if (netif_msg_intr(skge))
  1390. printk(KERN_DEBUG PFX "%s: phy interrupt status 0x%x\n",
  1391. skge->netdev->name, isrc);
  1392. if (isrc & PHY_B_IS_PSE)
  1393. printk(KERN_ERR PFX "%s: uncorrectable pair swap error\n",
  1394. hw->dev[port]->name);
  1395. /* Workaround BCom Errata:
  1396. * enable and disable loopback mode if "NO HCD" occurs.
  1397. */
  1398. if (isrc & PHY_B_IS_NO_HDCL) {
  1399. u16 ctrl = xm_phy_read(hw, port, PHY_BCOM_CTRL);
  1400. xm_phy_write(hw, port, PHY_BCOM_CTRL,
  1401. ctrl | PHY_CT_LOOP);
  1402. xm_phy_write(hw, port, PHY_BCOM_CTRL,
  1403. ctrl & ~PHY_CT_LOOP);
  1404. }
  1405. if (isrc & (PHY_B_IS_AN_PR | PHY_B_IS_LST_CHANGE))
  1406. bcom_check_link(hw, port);
  1407. }
  1408. static int gm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val)
  1409. {
  1410. int i;
  1411. gma_write16(hw, port, GM_SMI_DATA, val);
  1412. gma_write16(hw, port, GM_SMI_CTRL,
  1413. GM_SMI_CT_PHY_AD(hw->phy_addr) | GM_SMI_CT_REG_AD(reg));
  1414. for (i = 0; i < PHY_RETRIES; i++) {
  1415. udelay(1);
  1416. if (!(gma_read16(hw, port, GM_SMI_CTRL) & GM_SMI_CT_BUSY))
  1417. return 0;
  1418. }
  1419. printk(KERN_WARNING PFX "%s: phy write timeout\n",
  1420. hw->dev[port]->name);
  1421. return -EIO;
  1422. }
  1423. static int __gm_phy_read(struct skge_hw *hw, int port, u16 reg, u16 *val)
  1424. {
  1425. int i;
  1426. gma_write16(hw, port, GM_SMI_CTRL,
  1427. GM_SMI_CT_PHY_AD(hw->phy_addr)
  1428. | GM_SMI_CT_REG_AD(reg) | GM_SMI_CT_OP_RD);
  1429. for (i = 0; i < PHY_RETRIES; i++) {
  1430. udelay(1);
  1431. if (gma_read16(hw, port, GM_SMI_CTRL) & GM_SMI_CT_RD_VAL)
  1432. goto ready;
  1433. }
  1434. return -ETIMEDOUT;
  1435. ready:
  1436. *val = gma_read16(hw, port, GM_SMI_DATA);
  1437. return 0;
  1438. }
  1439. static u16 gm_phy_read(struct skge_hw *hw, int port, u16 reg)
  1440. {
  1441. u16 v = 0;
  1442. if (__gm_phy_read(hw, port, reg, &v))
  1443. printk(KERN_WARNING PFX "%s: phy read timeout\n",
  1444. hw->dev[port]->name);
  1445. return v;
  1446. }
  1447. /* Marvell Phy Initialization */
  1448. static void yukon_init(struct skge_hw *hw, int port)
  1449. {
  1450. struct skge_port *skge = netdev_priv(hw->dev[port]);
  1451. u16 ctrl, ct1000, adv;
  1452. if (skge->autoneg == AUTONEG_ENABLE) {
  1453. u16 ectrl = gm_phy_read(hw, port, PHY_MARV_EXT_CTRL);
  1454. ectrl &= ~(PHY_M_EC_M_DSC_MSK | PHY_M_EC_S_DSC_MSK |
  1455. PHY_M_EC_MAC_S_MSK);
  1456. ectrl |= PHY_M_EC_MAC_S(MAC_TX_CLK_25_MHZ);
  1457. ectrl |= PHY_M_EC_M_DSC(0) | PHY_M_EC_S_DSC(1);
  1458. gm_phy_write(hw, port, PHY_MARV_EXT_CTRL, ectrl);
  1459. }
  1460. ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL);
  1461. if (skge->autoneg == AUTONEG_DISABLE)
  1462. ctrl &= ~PHY_CT_ANE;
  1463. ctrl |= PHY_CT_RESET;
  1464. gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
  1465. ctrl = 0;
  1466. ct1000 = 0;
  1467. adv = PHY_AN_CSMA;
  1468. if (skge->autoneg == AUTONEG_ENABLE) {
  1469. if (hw->copper) {
  1470. if (skge->advertising & ADVERTISED_1000baseT_Full)
  1471. ct1000 |= PHY_M_1000C_AFD;
  1472. if (skge->advertising & ADVERTISED_1000baseT_Half)
  1473. ct1000 |= PHY_M_1000C_AHD;
  1474. if (skge->advertising & ADVERTISED_100baseT_Full)
  1475. adv |= PHY_M_AN_100_FD;
  1476. if (skge->advertising & ADVERTISED_100baseT_Half)
  1477. adv |= PHY_M_AN_100_HD;
  1478. if (skge->advertising & ADVERTISED_10baseT_Full)
  1479. adv |= PHY_M_AN_10_FD;
  1480. if (skge->advertising & ADVERTISED_10baseT_Half)
  1481. adv |= PHY_M_AN_10_HD;
  1482. } else /* special defines for FIBER (88E1011S only) */
  1483. adv |= PHY_M_AN_1000X_AHD | PHY_M_AN_1000X_AFD;
  1484. /* Set Flow-control capabilities */
  1485. adv |= phy_pause_map[skge->flow_control];
  1486. /* Restart Auto-negotiation */
  1487. ctrl |= PHY_CT_ANE | PHY_CT_RE_CFG;
  1488. } else {
  1489. /* forced speed/duplex settings */
  1490. ct1000 = PHY_M_1000C_MSE;
  1491. if (skge->duplex == DUPLEX_FULL)
  1492. ctrl |= PHY_CT_DUP_MD;
  1493. switch (skge->speed) {
  1494. case SPEED_1000:
  1495. ctrl |= PHY_CT_SP1000;
  1496. break;
  1497. case SPEED_100:
  1498. ctrl |= PHY_CT_SP100;
  1499. break;
  1500. }
  1501. ctrl |= PHY_CT_RESET;
  1502. }
  1503. gm_phy_write(hw, port, PHY_MARV_1000T_CTRL, ct1000);
  1504. gm_phy_write(hw, port, PHY_MARV_AUNE_ADV, adv);
  1505. gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
  1506. /* Enable phy interrupt on autonegotiation complete (or link up) */
  1507. if (skge->autoneg == AUTONEG_ENABLE)
  1508. gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_AN_MSK);
  1509. else
  1510. gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_DEF_MSK);
  1511. }
  1512. static void yukon_reset(struct skge_hw *hw, int port)
  1513. {
  1514. gm_phy_write(hw, port, PHY_MARV_INT_MASK, 0);/* disable PHY IRQs */
  1515. gma_write16(hw, port, GM_MC_ADDR_H1, 0); /* clear MC hash */
  1516. gma_write16(hw, port, GM_MC_ADDR_H2, 0);
  1517. gma_write16(hw, port, GM_MC_ADDR_H3, 0);
  1518. gma_write16(hw, port, GM_MC_ADDR_H4, 0);
  1519. gma_write16(hw, port, GM_RX_CTRL,
  1520. gma_read16(hw, port, GM_RX_CTRL)
  1521. | GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
  1522. }
  1523. /* Apparently, early versions of Yukon-Lite had wrong chip_id? */
  1524. static int is_yukon_lite_a0(struct skge_hw *hw)
  1525. {
  1526. u32 reg;
  1527. int ret;
  1528. if (hw->chip_id != CHIP_ID_YUKON)
  1529. return 0;
  1530. reg = skge_read32(hw, B2_FAR);
  1531. skge_write8(hw, B2_FAR + 3, 0xff);
  1532. ret = (skge_read8(hw, B2_FAR + 3) != 0);
  1533. skge_write32(hw, B2_FAR, reg);
  1534. return ret;
  1535. }
  1536. static void yukon_mac_init(struct skge_hw *hw, int port)
  1537. {
  1538. struct skge_port *skge = netdev_priv(hw->dev[port]);
  1539. int i;
  1540. u32 reg;
  1541. const u8 *addr = hw->dev[port]->dev_addr;
  1542. /* WA code for COMA mode -- set PHY reset */
  1543. if (hw->chip_id == CHIP_ID_YUKON_LITE &&
  1544. hw->chip_rev >= CHIP_REV_YU_LITE_A3) {
  1545. reg = skge_read32(hw, B2_GP_IO);
  1546. reg |= GP_DIR_9 | GP_IO_9;
  1547. skge_write32(hw, B2_GP_IO, reg);
  1548. }
  1549. /* hard reset */
  1550. skge_write32(hw, SK_REG(port, GPHY_CTRL), GPC_RST_SET);
  1551. skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_RST_SET);
  1552. /* WA code for COMA mode -- clear PHY reset */
  1553. if (hw->chip_id == CHIP_ID_YUKON_LITE &&
  1554. hw->chip_rev >= CHIP_REV_YU_LITE_A3) {
  1555. reg = skge_read32(hw, B2_GP_IO);
  1556. reg |= GP_DIR_9;
  1557. reg &= ~GP_IO_9;
  1558. skge_write32(hw, B2_GP_IO, reg);
  1559. }
  1560. /* Set hardware config mode */
  1561. reg = GPC_INT_POL_HI | GPC_DIS_FC | GPC_DIS_SLEEP |
  1562. GPC_ENA_XC | GPC_ANEG_ADV_ALL_M | GPC_ENA_PAUSE;
  1563. reg |= hw->copper ? GPC_HWCFG_GMII_COP : GPC_HWCFG_GMII_FIB;
  1564. /* Clear GMC reset */
  1565. skge_write32(hw, SK_REG(port, GPHY_CTRL), reg | GPC_RST_SET);
  1566. skge_write32(hw, SK_REG(port, GPHY_CTRL), reg | GPC_RST_CLR);
  1567. skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_ON | GMC_RST_CLR);
  1568. if (skge->autoneg == AUTONEG_DISABLE) {
  1569. reg = GM_GPCR_AU_ALL_DIS;
  1570. gma_write16(hw, port, GM_GP_CTRL,
  1571. gma_read16(hw, port, GM_GP_CTRL) | reg);
  1572. switch (skge->speed) {
  1573. case SPEED_1000:
  1574. reg &= ~GM_GPCR_SPEED_100;
  1575. reg |= GM_GPCR_SPEED_1000;
  1576. break;
  1577. case SPEED_100:
  1578. reg &= ~GM_GPCR_SPEED_1000;
  1579. reg |= GM_GPCR_SPEED_100;
  1580. break;
  1581. case SPEED_10:
  1582. reg &= ~(GM_GPCR_SPEED_1000 | GM_GPCR_SPEED_100);
  1583. break;
  1584. }
  1585. if (skge->duplex == DUPLEX_FULL)
  1586. reg |= GM_GPCR_DUP_FULL;
  1587. } else
  1588. reg = GM_GPCR_SPEED_1000 | GM_GPCR_SPEED_100 | GM_GPCR_DUP_FULL;
  1589. switch (skge->flow_control) {
  1590. case FLOW_MODE_NONE:
  1591. skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_OFF);
  1592. reg |= GM_GPCR_FC_TX_DIS | GM_GPCR_FC_RX_DIS | GM_GPCR_AU_FCT_DIS;
  1593. break;
  1594. case FLOW_MODE_LOC_SEND:
  1595. /* disable Rx flow-control */
  1596. reg |= GM_GPCR_FC_RX_DIS | GM_GPCR_AU_FCT_DIS;
  1597. }
  1598. gma_write16(hw, port, GM_GP_CTRL, reg);
  1599. skge_read16(hw, SK_REG(port, GMAC_IRQ_SRC));
  1600. yukon_init(hw, port);
  1601. /* MIB clear */
  1602. reg = gma_read16(hw, port, GM_PHY_ADDR);
  1603. gma_write16(hw, port, GM_PHY_ADDR, reg | GM_PAR_MIB_CLR);
  1604. for (i = 0; i < GM_MIB_CNT_SIZE; i++)
  1605. gma_read16(hw, port, GM_MIB_CNT_BASE + 8*i);
  1606. gma_write16(hw, port, GM_PHY_ADDR, reg);
  1607. /* transmit control */
  1608. gma_write16(hw, port, GM_TX_CTRL, TX_COL_THR(TX_COL_DEF));
  1609. /* receive control reg: unicast + multicast + no FCS */
  1610. gma_write16(hw, port, GM_RX_CTRL,
  1611. GM_RXCR_UCF_ENA | GM_RXCR_CRC_DIS | GM_RXCR_MCF_ENA);
  1612. /* transmit flow control */
  1613. gma_write16(hw, port, GM_TX_FLOW_CTRL, 0xffff);
  1614. /* transmit parameter */
  1615. gma_write16(hw, port, GM_TX_PARAM,
  1616. TX_JAM_LEN_VAL(TX_JAM_LEN_DEF) |
  1617. TX_JAM_IPG_VAL(TX_JAM_IPG_DEF) |
  1618. TX_IPG_JAM_DATA(TX_IPG_JAM_DEF));
  1619. /* serial mode register */
  1620. reg = GM_SMOD_VLAN_ENA | IPG_DATA_VAL(IPG_DATA_DEF);
  1621. if (hw->dev[port]->mtu > 1500)
  1622. reg |= GM_SMOD_JUMBO_ENA;
  1623. gma_write16(hw, port, GM_SERIAL_MODE, reg);
  1624. /* physical address: used for pause frames */
  1625. gma_set_addr(hw, port, GM_SRC_ADDR_1L, addr);
  1626. /* virtual address for data */
  1627. gma_set_addr(hw, port, GM_SRC_ADDR_2L, addr);
  1628. /* enable interrupt mask for counter overflows */
  1629. gma_write16(hw, port, GM_TX_IRQ_MSK, 0);
  1630. gma_write16(hw, port, GM_RX_IRQ_MSK, 0);
  1631. gma_write16(hw, port, GM_TR_IRQ_MSK, 0);
  1632. /* Initialize Mac Fifo */
  1633. /* Configure Rx MAC FIFO */
  1634. skge_write16(hw, SK_REG(port, RX_GMF_FL_MSK), RX_FF_FL_DEF_MSK);
  1635. reg = GMF_OPER_ON | GMF_RX_F_FL_ON;
  1636. /* disable Rx GMAC FIFO Flush for YUKON-Lite Rev. A0 only */
  1637. if (is_yukon_lite_a0(hw))
  1638. reg &= ~GMF_RX_F_FL_ON;
  1639. skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_CLR);
  1640. skge_write16(hw, SK_REG(port, RX_GMF_CTRL_T), reg);
  1641. /*
  1642. * because Pause Packet Truncation in GMAC is not working
  1643. * we have to increase the Flush Threshold to 64 bytes
  1644. * in order to flush pause packets in Rx FIFO on Yukon-1
  1645. */
  1646. skge_write16(hw, SK_REG(port, RX_GMF_FL_THR), RX_GMF_FL_THR_DEF+1);
  1647. /* Configure Tx MAC FIFO */
  1648. skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_RST_CLR);
  1649. skge_write16(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_OPER_ON);
  1650. }
  1651. /* Go into power down mode */
  1652. static void yukon_suspend(struct skge_hw *hw, int port)
  1653. {
  1654. u16 ctrl;
  1655. ctrl = gm_phy_read(hw, port, PHY_MARV_PHY_CTRL);
  1656. ctrl |= PHY_M_PC_POL_R_DIS;
  1657. gm_phy_write(hw, port, PHY_MARV_PHY_CTRL, ctrl);
  1658. ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL);
  1659. ctrl |= PHY_CT_RESET;
  1660. gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
  1661. /* switch IEEE compatible power down mode on */
  1662. ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL);
  1663. ctrl |= PHY_CT_PDOWN;
  1664. gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
  1665. }
  1666. static void yukon_stop(struct skge_port *skge)
  1667. {
  1668. struct skge_hw *hw = skge->hw;
  1669. int port = skge->port;
  1670. skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), 0);
  1671. yukon_reset(hw, port);
  1672. gma_write16(hw, port, GM_GP_CTRL,
  1673. gma_read16(hw, port, GM_GP_CTRL)
  1674. & ~(GM_GPCR_TX_ENA|GM_GPCR_RX_ENA));
  1675. gma_read16(hw, port, GM_GP_CTRL);
  1676. yukon_suspend(hw, port);
  1677. /* set GPHY Control reset */
  1678. skge_write8(hw, SK_REG(port, GPHY_CTRL), GPC_RST_SET);
  1679. skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_RST_SET);
  1680. }
  1681. static void yukon_get_stats(struct skge_port *skge, u64 *data)
  1682. {
  1683. struct skge_hw *hw = skge->hw;
  1684. int port = skge->port;
  1685. int i;
  1686. data[0] = (u64) gma_read32(hw, port, GM_TXO_OK_HI) << 32
  1687. | gma_read32(hw, port, GM_TXO_OK_LO);
  1688. data[1] = (u64) gma_read32(hw, port, GM_RXO_OK_HI) << 32
  1689. | gma_read32(hw, port, GM_RXO_OK_LO);
  1690. for (i = 2; i < ARRAY_SIZE(skge_stats); i++)
  1691. data[i] = gma_read32(hw, port,
  1692. skge_stats[i].gma_offset);
  1693. }
  1694. static void yukon_mac_intr(struct skge_hw *hw, int port)
  1695. {
  1696. struct net_device *dev = hw->dev[port];
  1697. struct skge_port *skge = netdev_priv(dev);
  1698. u8 status = skge_read8(hw, SK_REG(port, GMAC_IRQ_SRC));
  1699. if (netif_msg_intr(skge))
  1700. printk(KERN_DEBUG PFX "%s: mac interrupt status 0x%x\n",
  1701. dev->name, status);
  1702. if (status & GM_IS_RX_FF_OR) {
  1703. ++skge->net_stats.rx_fifo_errors;
  1704. skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_CLI_RX_FO);
  1705. }
  1706. if (status & GM_IS_TX_FF_UR) {
  1707. ++skge->net_stats.tx_fifo_errors;
  1708. skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_CLI_TX_FU);
  1709. }
  1710. }
  1711. static u16 yukon_speed(const struct skge_hw *hw, u16 aux)
  1712. {
  1713. switch (aux & PHY_M_PS_SPEED_MSK) {
  1714. case PHY_M_PS_SPEED_1000:
  1715. return SPEED_1000;
  1716. case PHY_M_PS_SPEED_100:
  1717. return SPEED_100;
  1718. default:
  1719. return SPEED_10;
  1720. }
  1721. }
  1722. static void yukon_link_up(struct skge_port *skge)
  1723. {
  1724. struct skge_hw *hw = skge->hw;
  1725. int port = skge->port;
  1726. u16 reg;
  1727. /* Enable Transmit FIFO Underrun */
  1728. skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), GMAC_DEF_MSK);
  1729. reg = gma_read16(hw, port, GM_GP_CTRL);
  1730. if (skge->duplex == DUPLEX_FULL || skge->autoneg == AUTONEG_ENABLE)
  1731. reg |= GM_GPCR_DUP_FULL;
  1732. /* enable Rx/Tx */
  1733. reg |= GM_GPCR_RX_ENA | GM_GPCR_TX_ENA;
  1734. gma_write16(hw, port, GM_GP_CTRL, reg);
  1735. gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_DEF_MSK);
  1736. skge_link_up(skge);
  1737. }
  1738. static void yukon_link_down(struct skge_port *skge)
  1739. {
  1740. struct skge_hw *hw = skge->hw;
  1741. int port = skge->port;
  1742. u16 ctrl;
  1743. gm_phy_write(hw, port, PHY_MARV_INT_MASK, 0);
  1744. ctrl = gma_read16(hw, port, GM_GP_CTRL);
  1745. ctrl &= ~(GM_GPCR_RX_ENA | GM_GPCR_TX_ENA);
  1746. gma_write16(hw, port, GM_GP_CTRL, ctrl);
  1747. if (skge->flow_control == FLOW_MODE_REM_SEND) {
  1748. /* restore Asymmetric Pause bit */
  1749. gm_phy_write(hw, port, PHY_MARV_AUNE_ADV,
  1750. gm_phy_read(hw, port,
  1751. PHY_MARV_AUNE_ADV)
  1752. | PHY_M_AN_ASP);
  1753. }
  1754. yukon_reset(hw, port);
  1755. skge_link_down(skge);
  1756. yukon_init(hw, port);
  1757. }
  1758. static void yukon_phy_intr(struct skge_port *skge)
  1759. {
  1760. struct skge_hw *hw = skge->hw;
  1761. int port = skge->port;
  1762. const char *reason = NULL;
  1763. u16 istatus, phystat;
  1764. istatus = gm_phy_read(hw, port, PHY_MARV_INT_STAT);
  1765. phystat = gm_phy_read(hw, port, PHY_MARV_PHY_STAT);
  1766. if (netif_msg_intr(skge))
  1767. printk(KERN_DEBUG PFX "%s: phy interrupt status 0x%x 0x%x\n",
  1768. skge->netdev->name, istatus, phystat);
  1769. if (istatus & PHY_M_IS_AN_COMPL) {
  1770. if (gm_phy_read(hw, port, PHY_MARV_AUNE_LP)
  1771. & PHY_M_AN_RF) {
  1772. reason = "remote fault";
  1773. goto failed;
  1774. }
  1775. if (gm_phy_read(hw, port, PHY_MARV_1000T_STAT) & PHY_B_1000S_MSF) {
  1776. reason = "master/slave fault";
  1777. goto failed;
  1778. }
  1779. if (!(phystat & PHY_M_PS_SPDUP_RES)) {
  1780. reason = "speed/duplex";
  1781. goto failed;
  1782. }
  1783. skge->duplex = (phystat & PHY_M_PS_FULL_DUP)
  1784. ? DUPLEX_FULL : DUPLEX_HALF;
  1785. skge->speed = yukon_speed(hw, phystat);
  1786. /* We are using IEEE 802.3z/D5.0 Table 37-4 */
  1787. switch (phystat & PHY_M_PS_PAUSE_MSK) {
  1788. case PHY_M_PS_PAUSE_MSK:
  1789. skge->flow_control = FLOW_MODE_SYMMETRIC;
  1790. break;
  1791. case PHY_M_PS_RX_P_EN:
  1792. skge->flow_control = FLOW_MODE_REM_SEND;
  1793. break;
  1794. case PHY_M_PS_TX_P_EN:
  1795. skge->flow_control = FLOW_MODE_LOC_SEND;
  1796. break;
  1797. default:
  1798. skge->flow_control = FLOW_MODE_NONE;
  1799. }
  1800. if (skge->flow_control == FLOW_MODE_NONE ||
  1801. (skge->speed < SPEED_1000 && skge->duplex == DUPLEX_HALF))
  1802. skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_OFF);
  1803. else
  1804. skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_ON);
  1805. yukon_link_up(skge);
  1806. return;
  1807. }
  1808. if (istatus & PHY_M_IS_LSP_CHANGE)
  1809. skge->speed = yukon_speed(hw, phystat);
  1810. if (istatus & PHY_M_IS_DUP_CHANGE)
  1811. skge->duplex = (phystat & PHY_M_PS_FULL_DUP) ? DUPLEX_FULL : DUPLEX_HALF;
  1812. if (istatus & PHY_M_IS_LST_CHANGE) {
  1813. if (phystat & PHY_M_PS_LINK_UP)
  1814. yukon_link_up(skge);
  1815. else
  1816. yukon_link_down(skge);
  1817. }
  1818. return;
  1819. failed:
  1820. printk(KERN_ERR PFX "%s: autonegotiation failed (%s)\n",
  1821. skge->netdev->name, reason);
  1822. /* XXX restart autonegotiation? */
  1823. }
  1824. static void skge_phy_reset(struct skge_port *skge)
  1825. {
  1826. struct skge_hw *hw = skge->hw;
  1827. int port = skge->port;
  1828. netif_stop_queue(skge->netdev);
  1829. netif_carrier_off(skge->netdev);
  1830. mutex_lock(&hw->phy_mutex);
  1831. if (hw->chip_id == CHIP_ID_GENESIS) {
  1832. genesis_reset(hw, port);
  1833. genesis_mac_init(hw, port);
  1834. } else {
  1835. yukon_reset(hw, port);
  1836. yukon_init(hw, port);
  1837. }
  1838. mutex_unlock(&hw->phy_mutex);
  1839. }
  1840. /* Basic MII support */
  1841. static int skge_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
  1842. {
  1843. struct mii_ioctl_data *data = if_mii(ifr);
  1844. struct skge_port *skge = netdev_priv(dev);
  1845. struct skge_hw *hw = skge->hw;
  1846. int err = -EOPNOTSUPP;
  1847. if (!netif_running(dev))
  1848. return -ENODEV; /* Phy still in reset */
  1849. switch(cmd) {
  1850. case SIOCGMIIPHY:
  1851. data->phy_id = hw->phy_addr;
  1852. /* fallthru */
  1853. case SIOCGMIIREG: {
  1854. u16 val = 0;
  1855. mutex_lock(&hw->phy_mutex);
  1856. if (hw->chip_id == CHIP_ID_GENESIS)
  1857. err = __xm_phy_read(hw, skge->port, data->reg_num & 0x1f, &val);
  1858. else
  1859. err = __gm_phy_read(hw, skge->port, data->reg_num & 0x1f, &val);
  1860. mutex_unlock(&hw->phy_mutex);
  1861. data->val_out = val;
  1862. break;
  1863. }
  1864. case SIOCSMIIREG:
  1865. if (!capable(CAP_NET_ADMIN))
  1866. return -EPERM;
  1867. mutex_lock(&hw->phy_mutex);
  1868. if (hw->chip_id == CHIP_ID_GENESIS)
  1869. err = xm_phy_write(hw, skge->port, data->reg_num & 0x1f,
  1870. data->val_in);
  1871. else
  1872. err = gm_phy_write(hw, skge->port, data->reg_num & 0x1f,
  1873. data->val_in);
  1874. mutex_unlock(&hw->phy_mutex);
  1875. break;
  1876. }
  1877. return err;
  1878. }
  1879. static void skge_ramset(struct skge_hw *hw, u16 q, u32 start, size_t len)
  1880. {
  1881. u32 end;
  1882. start /= 8;
  1883. len /= 8;
  1884. end = start + len - 1;
  1885. skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_RST_CLR);
  1886. skge_write32(hw, RB_ADDR(q, RB_START), start);
  1887. skge_write32(hw, RB_ADDR(q, RB_WP), start);
  1888. skge_write32(hw, RB_ADDR(q, RB_RP), start);
  1889. skge_write32(hw, RB_ADDR(q, RB_END), end);
  1890. if (q == Q_R1 || q == Q_R2) {
  1891. /* Set thresholds on receive queue's */
  1892. skge_write32(hw, RB_ADDR(q, RB_RX_UTPP),
  1893. start + (2*len)/3);
  1894. skge_write32(hw, RB_ADDR(q, RB_RX_LTPP),
  1895. start + (len/3));
  1896. } else {
  1897. /* Enable store & forward on Tx queue's because
  1898. * Tx FIFO is only 4K on Genesis and 1K on Yukon
  1899. */
  1900. skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_ENA_STFWD);
  1901. }
  1902. skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_ENA_OP_MD);
  1903. }
  1904. /* Setup Bus Memory Interface */
  1905. static void skge_qset(struct skge_port *skge, u16 q,
  1906. const struct skge_element *e)
  1907. {
  1908. struct skge_hw *hw = skge->hw;
  1909. u32 watermark = 0x600;
  1910. u64 base = skge->dma + (e->desc - skge->mem);
  1911. /* optimization to reduce window on 32bit/33mhz */
  1912. if ((skge_read16(hw, B0_CTST) & (CS_BUS_CLOCK | CS_BUS_SLOT_SZ)) == 0)
  1913. watermark /= 2;
  1914. skge_write32(hw, Q_ADDR(q, Q_CSR), CSR_CLR_RESET);
  1915. skge_write32(hw, Q_ADDR(q, Q_F), watermark);
  1916. skge_write32(hw, Q_ADDR(q, Q_DA_H), (u32)(base >> 32));
  1917. skge_write32(hw, Q_ADDR(q, Q_DA_L), (u32)base);
  1918. }
  1919. static int skge_up(struct net_device *dev)
  1920. {
  1921. struct skge_port *skge = netdev_priv(dev);
  1922. struct skge_hw *hw = skge->hw;
  1923. int port = skge->port;
  1924. u32 chunk, ram_addr;
  1925. size_t rx_size, tx_size;
  1926. int err;
  1927. if (netif_msg_ifup(skge))
  1928. printk(KERN_INFO PFX "%s: enabling interface\n", dev->name);
  1929. if (dev->mtu > RX_BUF_SIZE)
  1930. skge->rx_buf_size = dev->mtu + ETH_HLEN;
  1931. else
  1932. skge->rx_buf_size = RX_BUF_SIZE;
  1933. rx_size = skge->rx_ring.count * sizeof(struct skge_rx_desc);
  1934. tx_size = skge->tx_ring.count * sizeof(struct skge_tx_desc);
  1935. skge->mem_size = tx_size + rx_size;
  1936. skge->mem = pci_alloc_consistent(hw->pdev, skge->mem_size, &skge->dma);
  1937. if (!skge->mem)
  1938. return -ENOMEM;
  1939. BUG_ON(skge->dma & 7);
  1940. if ((u64)skge->dma >> 32 != ((u64) skge->dma + skge->mem_size) >> 32) {
  1941. printk(KERN_ERR PFX "pci_alloc_consistent region crosses 4G boundary\n");
  1942. err = -EINVAL;
  1943. goto free_pci_mem;
  1944. }
  1945. memset(skge->mem, 0, skge->mem_size);
  1946. err = skge_ring_alloc(&skge->rx_ring, skge->mem, skge->dma);
  1947. if (err)
  1948. goto free_pci_mem;
  1949. err = skge_rx_fill(dev);
  1950. if (err)
  1951. goto free_rx_ring;
  1952. err = skge_ring_alloc(&skge->tx_ring, skge->mem + rx_size,
  1953. skge->dma + rx_size);
  1954. if (err)
  1955. goto free_rx_ring;
  1956. /* Initialize MAC */
  1957. mutex_lock(&hw->phy_mutex);
  1958. if (hw->chip_id == CHIP_ID_GENESIS)
  1959. genesis_mac_init(hw, port);
  1960. else
  1961. yukon_mac_init(hw, port);
  1962. mutex_unlock(&hw->phy_mutex);
  1963. /* Configure RAMbuffers */
  1964. chunk = hw->ram_size / ((hw->ports + 1)*2);
  1965. ram_addr = hw->ram_offset + 2 * chunk * port;
  1966. skge_ramset(hw, rxqaddr[port], ram_addr, chunk);
  1967. skge_qset(skge, rxqaddr[port], skge->rx_ring.to_clean);
  1968. BUG_ON(skge->tx_ring.to_use != skge->tx_ring.to_clean);
  1969. skge_ramset(hw, txqaddr[port], ram_addr+chunk, chunk);
  1970. skge_qset(skge, txqaddr[port], skge->tx_ring.to_use);
  1971. /* Start receiver BMU */
  1972. wmb();
  1973. skge_write8(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_START | CSR_IRQ_CL_F);
  1974. skge_led(skge, LED_MODE_ON);
  1975. netif_poll_enable(dev);
  1976. return 0;
  1977. free_rx_ring:
  1978. skge_rx_clean(skge);
  1979. kfree(skge->rx_ring.start);
  1980. free_pci_mem:
  1981. pci_free_consistent(hw->pdev, skge->mem_size, skge->mem, skge->dma);
  1982. skge->mem = NULL;
  1983. return err;
  1984. }
  1985. static int skge_down(struct net_device *dev)
  1986. {
  1987. struct skge_port *skge = netdev_priv(dev);
  1988. struct skge_hw *hw = skge->hw;
  1989. int port = skge->port;
  1990. if (skge->mem == NULL)
  1991. return 0;
  1992. if (netif_msg_ifdown(skge))
  1993. printk(KERN_INFO PFX "%s: disabling interface\n", dev->name);
  1994. netif_stop_queue(dev);
  1995. if (hw->chip_id == CHIP_ID_GENESIS && hw->phy_type == SK_PHY_XMAC)
  1996. cancel_rearming_delayed_work(&skge->link_thread);
  1997. skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG), LED_OFF);
  1998. if (hw->chip_id == CHIP_ID_GENESIS)
  1999. genesis_stop(skge);
  2000. else
  2001. yukon_stop(skge);
  2002. /* Stop transmitter */
  2003. skge_write8(hw, Q_ADDR(txqaddr[port], Q_CSR), CSR_STOP);
  2004. skge_write32(hw, RB_ADDR(txqaddr[port], RB_CTRL),
  2005. RB_RST_SET|RB_DIS_OP_MD);
  2006. /* Disable Force Sync bit and Enable Alloc bit */
  2007. skge_write8(hw, SK_REG(port, TXA_CTRL),
  2008. TXA_DIS_FSYNC | TXA_DIS_ALLOC | TXA_STOP_RC);
  2009. /* Stop Interval Timer and Limit Counter of Tx Arbiter */
  2010. skge_write32(hw, SK_REG(port, TXA_ITI_INI), 0L);
  2011. skge_write32(hw, SK_REG(port, TXA_LIM_INI), 0L);
  2012. /* Reset PCI FIFO */
  2013. skge_write32(hw, Q_ADDR(txqaddr[port], Q_CSR), CSR_SET_RESET);
  2014. skge_write32(hw, RB_ADDR(txqaddr[port], RB_CTRL), RB_RST_SET);
  2015. /* Reset the RAM Buffer async Tx queue */
  2016. skge_write8(hw, RB_ADDR(port == 0 ? Q_XA1 : Q_XA2, RB_CTRL), RB_RST_SET);
  2017. /* stop receiver */
  2018. skge_write8(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_STOP);
  2019. skge_write32(hw, RB_ADDR(port ? Q_R2 : Q_R1, RB_CTRL),
  2020. RB_RST_SET|RB_DIS_OP_MD);
  2021. skge_write32(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_SET_RESET);
  2022. if (hw->chip_id == CHIP_ID_GENESIS) {
  2023. skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_RST_SET);
  2024. skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_RST_SET);
  2025. } else {
  2026. skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_SET);
  2027. skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_RST_SET);
  2028. }
  2029. skge_led(skge, LED_MODE_OFF);
  2030. netif_poll_disable(dev);
  2031. skge_tx_clean(dev);
  2032. skge_rx_clean(skge);
  2033. kfree(skge->rx_ring.start);
  2034. kfree(skge->tx_ring.start);
  2035. pci_free_consistent(hw->pdev, skge->mem_size, skge->mem, skge->dma);
  2036. skge->mem = NULL;
  2037. return 0;
  2038. }
  2039. static inline int skge_avail(const struct skge_ring *ring)
  2040. {
  2041. return ((ring->to_clean > ring->to_use) ? 0 : ring->count)
  2042. + (ring->to_clean - ring->to_use) - 1;
  2043. }
  2044. static int skge_xmit_frame(struct sk_buff *skb, struct net_device *dev)
  2045. {
  2046. struct skge_port *skge = netdev_priv(dev);
  2047. struct skge_hw *hw = skge->hw;
  2048. struct skge_element *e;
  2049. struct skge_tx_desc *td;
  2050. int i;
  2051. u32 control, len;
  2052. u64 map;
  2053. if (skb_padto(skb, ETH_ZLEN))
  2054. return NETDEV_TX_OK;
  2055. if (unlikely(skge_avail(&skge->tx_ring) < skb_shinfo(skb)->nr_frags + 1))
  2056. return NETDEV_TX_BUSY;
  2057. e = skge->tx_ring.to_use;
  2058. td = e->desc;
  2059. BUG_ON(td->control & BMU_OWN);
  2060. e->skb = skb;
  2061. len = skb_headlen(skb);
  2062. map = pci_map_single(hw->pdev, skb->data, len, PCI_DMA_TODEVICE);
  2063. pci_unmap_addr_set(e, mapaddr, map);
  2064. pci_unmap_len_set(e, maplen, len);
  2065. td->dma_lo = map;
  2066. td->dma_hi = map >> 32;
  2067. if (skb->ip_summed == CHECKSUM_PARTIAL) {
  2068. int offset = skb->h.raw - skb->data;
  2069. /* This seems backwards, but it is what the sk98lin
  2070. * does. Looks like hardware is wrong?
  2071. */
  2072. if (skb->h.ipiph->protocol == IPPROTO_UDP
  2073. && hw->chip_rev == 0 && hw->chip_id == CHIP_ID_YUKON)
  2074. control = BMU_TCP_CHECK;
  2075. else
  2076. control = BMU_UDP_CHECK;
  2077. td->csum_offs = 0;
  2078. td->csum_start = offset;
  2079. td->csum_write = offset + skb->csum;
  2080. } else
  2081. control = BMU_CHECK;
  2082. if (!skb_shinfo(skb)->nr_frags) /* single buffer i.e. no fragments */
  2083. control |= BMU_EOF| BMU_IRQ_EOF;
  2084. else {
  2085. struct skge_tx_desc *tf = td;
  2086. control |= BMU_STFWD;
  2087. for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
  2088. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  2089. map = pci_map_page(hw->pdev, frag->page, frag->page_offset,
  2090. frag->size, PCI_DMA_TODEVICE);
  2091. e = e->next;
  2092. e->skb = skb;
  2093. tf = e->desc;
  2094. BUG_ON(tf->control & BMU_OWN);
  2095. tf->dma_lo = map;
  2096. tf->dma_hi = (u64) map >> 32;
  2097. pci_unmap_addr_set(e, mapaddr, map);
  2098. pci_unmap_len_set(e, maplen, frag->size);
  2099. tf->control = BMU_OWN | BMU_SW | control | frag->size;
  2100. }
  2101. tf->control |= BMU_EOF | BMU_IRQ_EOF;
  2102. }
  2103. /* Make sure all the descriptors written */
  2104. wmb();
  2105. td->control = BMU_OWN | BMU_SW | BMU_STF | control | len;
  2106. wmb();
  2107. skge_write8(hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_START);
  2108. if (unlikely(netif_msg_tx_queued(skge)))
  2109. printk(KERN_DEBUG "%s: tx queued, slot %td, len %d\n",
  2110. dev->name, e - skge->tx_ring.start, skb->len);
  2111. skge->tx_ring.to_use = e->next;
  2112. if (skge_avail(&skge->tx_ring) <= TX_LOW_WATER) {
  2113. pr_debug("%s: transmit queue full\n", dev->name);
  2114. netif_stop_queue(dev);
  2115. }
  2116. dev->trans_start = jiffies;
  2117. return NETDEV_TX_OK;
  2118. }
  2119. /* Free resources associated with this reing element */
  2120. static void skge_tx_free(struct skge_port *skge, struct skge_element *e,
  2121. u32 control)
  2122. {
  2123. struct pci_dev *pdev = skge->hw->pdev;
  2124. BUG_ON(!e->skb);
  2125. /* skb header vs. fragment */
  2126. if (control & BMU_STF)
  2127. pci_unmap_single(pdev, pci_unmap_addr(e, mapaddr),
  2128. pci_unmap_len(e, maplen),
  2129. PCI_DMA_TODEVICE);
  2130. else
  2131. pci_unmap_page(pdev, pci_unmap_addr(e, mapaddr),
  2132. pci_unmap_len(e, maplen),
  2133. PCI_DMA_TODEVICE);
  2134. if (control & BMU_EOF) {
  2135. if (unlikely(netif_msg_tx_done(skge)))
  2136. printk(KERN_DEBUG PFX "%s: tx done slot %td\n",
  2137. skge->netdev->name, e - skge->tx_ring.start);
  2138. dev_kfree_skb(e->skb);
  2139. }
  2140. e->skb = NULL;
  2141. }
  2142. /* Free all buffers in transmit ring */
  2143. static void skge_tx_clean(struct net_device *dev)
  2144. {
  2145. struct skge_port *skge = netdev_priv(dev);
  2146. struct skge_element *e;
  2147. netif_tx_lock_bh(dev);
  2148. for (e = skge->tx_ring.to_clean; e != skge->tx_ring.to_use; e = e->next) {
  2149. struct skge_tx_desc *td = e->desc;
  2150. skge_tx_free(skge, e, td->control);
  2151. td->control = 0;
  2152. }
  2153. skge->tx_ring.to_clean = e;
  2154. netif_wake_queue(dev);
  2155. netif_tx_unlock_bh(dev);
  2156. }
  2157. static void skge_tx_timeout(struct net_device *dev)
  2158. {
  2159. struct skge_port *skge = netdev_priv(dev);
  2160. if (netif_msg_timer(skge))
  2161. printk(KERN_DEBUG PFX "%s: tx timeout\n", dev->name);
  2162. skge_write8(skge->hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_STOP);
  2163. skge_tx_clean(dev);
  2164. }
  2165. static int skge_change_mtu(struct net_device *dev, int new_mtu)
  2166. {
  2167. int err;
  2168. if (new_mtu < ETH_ZLEN || new_mtu > ETH_JUMBO_MTU)
  2169. return -EINVAL;
  2170. if (!netif_running(dev)) {
  2171. dev->mtu = new_mtu;
  2172. return 0;
  2173. }
  2174. skge_down(dev);
  2175. dev->mtu = new_mtu;
  2176. err = skge_up(dev);
  2177. if (err)
  2178. dev_close(dev);
  2179. return err;
  2180. }
  2181. static void genesis_set_multicast(struct net_device *dev)
  2182. {
  2183. struct skge_port *skge = netdev_priv(dev);
  2184. struct skge_hw *hw = skge->hw;
  2185. int port = skge->port;
  2186. int i, count = dev->mc_count;
  2187. struct dev_mc_list *list = dev->mc_list;
  2188. u32 mode;
  2189. u8 filter[8];
  2190. mode = xm_read32(hw, port, XM_MODE);
  2191. mode |= XM_MD_ENA_HASH;
  2192. if (dev->flags & IFF_PROMISC)
  2193. mode |= XM_MD_ENA_PROM;
  2194. else
  2195. mode &= ~XM_MD_ENA_PROM;
  2196. if (dev->flags & IFF_ALLMULTI)
  2197. memset(filter, 0xff, sizeof(filter));
  2198. else {
  2199. memset(filter, 0, sizeof(filter));
  2200. for (i = 0; list && i < count; i++, list = list->next) {
  2201. u32 crc, bit;
  2202. crc = ether_crc_le(ETH_ALEN, list->dmi_addr);
  2203. bit = ~crc & 0x3f;
  2204. filter[bit/8] |= 1 << (bit%8);
  2205. }
  2206. }
  2207. xm_write32(hw, port, XM_MODE, mode);
  2208. xm_outhash(hw, port, XM_HSM, filter);
  2209. }
  2210. static void yukon_set_multicast(struct net_device *dev)
  2211. {
  2212. struct skge_port *skge = netdev_priv(dev);
  2213. struct skge_hw *hw = skge->hw;
  2214. int port = skge->port;
  2215. struct dev_mc_list *list = dev->mc_list;
  2216. u16 reg;
  2217. u8 filter[8];
  2218. memset(filter, 0, sizeof(filter));
  2219. reg = gma_read16(hw, port, GM_RX_CTRL);
  2220. reg |= GM_RXCR_UCF_ENA;
  2221. if (dev->flags & IFF_PROMISC) /* promiscuous */
  2222. reg &= ~(GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
  2223. else if (dev->flags & IFF_ALLMULTI) /* all multicast */
  2224. memset(filter, 0xff, sizeof(filter));
  2225. else if (dev->mc_count == 0) /* no multicast */
  2226. reg &= ~GM_RXCR_MCF_ENA;
  2227. else {
  2228. int i;
  2229. reg |= GM_RXCR_MCF_ENA;
  2230. for (i = 0; list && i < dev->mc_count; i++, list = list->next) {
  2231. u32 bit = ether_crc(ETH_ALEN, list->dmi_addr) & 0x3f;
  2232. filter[bit/8] |= 1 << (bit%8);
  2233. }
  2234. }
  2235. gma_write16(hw, port, GM_MC_ADDR_H1,
  2236. (u16)filter[0] | ((u16)filter[1] << 8));
  2237. gma_write16(hw, port, GM_MC_ADDR_H2,
  2238. (u16)filter[2] | ((u16)filter[3] << 8));
  2239. gma_write16(hw, port, GM_MC_ADDR_H3,
  2240. (u16)filter[4] | ((u16)filter[5] << 8));
  2241. gma_write16(hw, port, GM_MC_ADDR_H4,
  2242. (u16)filter[6] | ((u16)filter[7] << 8));
  2243. gma_write16(hw, port, GM_RX_CTRL, reg);
  2244. }
  2245. static inline u16 phy_length(const struct skge_hw *hw, u32 status)
  2246. {
  2247. if (hw->chip_id == CHIP_ID_GENESIS)
  2248. return status >> XMR_FS_LEN_SHIFT;
  2249. else
  2250. return status >> GMR_FS_LEN_SHIFT;
  2251. }
  2252. static inline int bad_phy_status(const struct skge_hw *hw, u32 status)
  2253. {
  2254. if (hw->chip_id == CHIP_ID_GENESIS)
  2255. return (status & (XMR_FS_ERR | XMR_FS_2L_VLAN)) != 0;
  2256. else
  2257. return (status & GMR_FS_ANY_ERR) ||
  2258. (status & GMR_FS_RX_OK) == 0;
  2259. }
  2260. /* Get receive buffer from descriptor.
  2261. * Handles copy of small buffers and reallocation failures
  2262. */
  2263. static struct sk_buff *skge_rx_get(struct net_device *dev,
  2264. struct skge_element *e,
  2265. u32 control, u32 status, u16 csum)
  2266. {
  2267. struct skge_port *skge = netdev_priv(dev);
  2268. struct sk_buff *skb;
  2269. u16 len = control & BMU_BBC;
  2270. if (unlikely(netif_msg_rx_status(skge)))
  2271. printk(KERN_DEBUG PFX "%s: rx slot %td status 0x%x len %d\n",
  2272. dev->name, e - skge->rx_ring.start,
  2273. status, len);
  2274. if (len > skge->rx_buf_size)
  2275. goto error;
  2276. if ((control & (BMU_EOF|BMU_STF)) != (BMU_STF|BMU_EOF))
  2277. goto error;
  2278. if (bad_phy_status(skge->hw, status))
  2279. goto error;
  2280. if (phy_length(skge->hw, status) != len)
  2281. goto error;
  2282. if (len < RX_COPY_THRESHOLD) {
  2283. skb = netdev_alloc_skb(dev, len + 2);
  2284. if (!skb)
  2285. goto resubmit;
  2286. skb_reserve(skb, 2);
  2287. pci_dma_sync_single_for_cpu(skge->hw->pdev,
  2288. pci_unmap_addr(e, mapaddr),
  2289. len, PCI_DMA_FROMDEVICE);
  2290. memcpy(skb->data, e->skb->data, len);
  2291. pci_dma_sync_single_for_device(skge->hw->pdev,
  2292. pci_unmap_addr(e, mapaddr),
  2293. len, PCI_DMA_FROMDEVICE);
  2294. skge_rx_reuse(e, skge->rx_buf_size);
  2295. } else {
  2296. struct sk_buff *nskb;
  2297. nskb = netdev_alloc_skb(dev, skge->rx_buf_size + NET_IP_ALIGN);
  2298. if (!nskb)
  2299. goto resubmit;
  2300. skb_reserve(nskb, NET_IP_ALIGN);
  2301. pci_unmap_single(skge->hw->pdev,
  2302. pci_unmap_addr(e, mapaddr),
  2303. pci_unmap_len(e, maplen),
  2304. PCI_DMA_FROMDEVICE);
  2305. skb = e->skb;
  2306. prefetch(skb->data);
  2307. skge_rx_setup(skge, e, nskb, skge->rx_buf_size);
  2308. }
  2309. skb_put(skb, len);
  2310. if (skge->rx_csum) {
  2311. skb->csum = csum;
  2312. skb->ip_summed = CHECKSUM_COMPLETE;
  2313. }
  2314. skb->protocol = eth_type_trans(skb, dev);
  2315. return skb;
  2316. error:
  2317. if (netif_msg_rx_err(skge))
  2318. printk(KERN_DEBUG PFX "%s: rx err, slot %td control 0x%x status 0x%x\n",
  2319. dev->name, e - skge->rx_ring.start,
  2320. control, status);
  2321. if (skge->hw->chip_id == CHIP_ID_GENESIS) {
  2322. if (status & (XMR_FS_RUNT|XMR_FS_LNG_ERR))
  2323. skge->net_stats.rx_length_errors++;
  2324. if (status & XMR_FS_FRA_ERR)
  2325. skge->net_stats.rx_frame_errors++;
  2326. if (status & XMR_FS_FCS_ERR)
  2327. skge->net_stats.rx_crc_errors++;
  2328. } else {
  2329. if (status & (GMR_FS_LONG_ERR|GMR_FS_UN_SIZE))
  2330. skge->net_stats.rx_length_errors++;
  2331. if (status & GMR_FS_FRAGMENT)
  2332. skge->net_stats.rx_frame_errors++;
  2333. if (status & GMR_FS_CRC_ERR)
  2334. skge->net_stats.rx_crc_errors++;
  2335. }
  2336. resubmit:
  2337. skge_rx_reuse(e, skge->rx_buf_size);
  2338. return NULL;
  2339. }
  2340. /* Free all buffers in Tx ring which are no longer owned by device */
  2341. static void skge_tx_done(struct net_device *dev)
  2342. {
  2343. struct skge_port *skge = netdev_priv(dev);
  2344. struct skge_ring *ring = &skge->tx_ring;
  2345. struct skge_element *e;
  2346. skge_write8(skge->hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_IRQ_CL_F);
  2347. netif_tx_lock(dev);
  2348. for (e = ring->to_clean; e != ring->to_use; e = e->next) {
  2349. struct skge_tx_desc *td = e->desc;
  2350. if (td->control & BMU_OWN)
  2351. break;
  2352. skge_tx_free(skge, e, td->control);
  2353. }
  2354. skge->tx_ring.to_clean = e;
  2355. if (skge_avail(&skge->tx_ring) > TX_LOW_WATER)
  2356. netif_wake_queue(dev);
  2357. netif_tx_unlock(dev);
  2358. }
  2359. static int skge_poll(struct net_device *dev, int *budget)
  2360. {
  2361. struct skge_port *skge = netdev_priv(dev);
  2362. struct skge_hw *hw = skge->hw;
  2363. struct skge_ring *ring = &skge->rx_ring;
  2364. struct skge_element *e;
  2365. int to_do = min(dev->quota, *budget);
  2366. int work_done = 0;
  2367. skge_tx_done(dev);
  2368. skge_write8(hw, Q_ADDR(rxqaddr[skge->port], Q_CSR), CSR_IRQ_CL_F);
  2369. for (e = ring->to_clean; prefetch(e->next), work_done < to_do; e = e->next) {
  2370. struct skge_rx_desc *rd = e->desc;
  2371. struct sk_buff *skb;
  2372. u32 control;
  2373. rmb();
  2374. control = rd->control;
  2375. if (control & BMU_OWN)
  2376. break;
  2377. skb = skge_rx_get(dev, e, control, rd->status, rd->csum2);
  2378. if (likely(skb)) {
  2379. dev->last_rx = jiffies;
  2380. netif_receive_skb(skb);
  2381. ++work_done;
  2382. }
  2383. }
  2384. ring->to_clean = e;
  2385. /* restart receiver */
  2386. wmb();
  2387. skge_write8(hw, Q_ADDR(rxqaddr[skge->port], Q_CSR), CSR_START);
  2388. *budget -= work_done;
  2389. dev->quota -= work_done;
  2390. if (work_done >= to_do)
  2391. return 1; /* not done */
  2392. spin_lock_irq(&hw->hw_lock);
  2393. __netif_rx_complete(dev);
  2394. hw->intr_mask |= irqmask[skge->port];
  2395. skge_write32(hw, B0_IMSK, hw->intr_mask);
  2396. skge_read32(hw, B0_IMSK);
  2397. spin_unlock_irq(&hw->hw_lock);
  2398. return 0;
  2399. }
  2400. /* Parity errors seem to happen when Genesis is connected to a switch
  2401. * with no other ports present. Heartbeat error??
  2402. */
  2403. static void skge_mac_parity(struct skge_hw *hw, int port)
  2404. {
  2405. struct net_device *dev = hw->dev[port];
  2406. if (dev) {
  2407. struct skge_port *skge = netdev_priv(dev);
  2408. ++skge->net_stats.tx_heartbeat_errors;
  2409. }
  2410. if (hw->chip_id == CHIP_ID_GENESIS)
  2411. skge_write16(hw, SK_REG(port, TX_MFF_CTRL1),
  2412. MFF_CLR_PERR);
  2413. else
  2414. /* HW-Bug #8: cleared by GMF_CLI_TX_FC instead of GMF_CLI_TX_PE */
  2415. skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T),
  2416. (hw->chip_id == CHIP_ID_YUKON && hw->chip_rev == 0)
  2417. ? GMF_CLI_TX_FC : GMF_CLI_TX_PE);
  2418. }
  2419. static void skge_mac_intr(struct skge_hw *hw, int port)
  2420. {
  2421. if (hw->chip_id == CHIP_ID_GENESIS)
  2422. genesis_mac_intr(hw, port);
  2423. else
  2424. yukon_mac_intr(hw, port);
  2425. }
  2426. /* Handle device specific framing and timeout interrupts */
  2427. static void skge_error_irq(struct skge_hw *hw)
  2428. {
  2429. u32 hwstatus = skge_read32(hw, B0_HWE_ISRC);
  2430. if (hw->chip_id == CHIP_ID_GENESIS) {
  2431. /* clear xmac errors */
  2432. if (hwstatus & (IS_NO_STAT_M1|IS_NO_TIST_M1))
  2433. skge_write16(hw, RX_MFF_CTRL1, MFF_CLR_INSTAT);
  2434. if (hwstatus & (IS_NO_STAT_M2|IS_NO_TIST_M2))
  2435. skge_write16(hw, RX_MFF_CTRL2, MFF_CLR_INSTAT);
  2436. } else {
  2437. /* Timestamp (unused) overflow */
  2438. if (hwstatus & IS_IRQ_TIST_OV)
  2439. skge_write8(hw, GMAC_TI_ST_CTRL, GMT_ST_CLR_IRQ);
  2440. }
  2441. if (hwstatus & IS_RAM_RD_PAR) {
  2442. printk(KERN_ERR PFX "Ram read data parity error\n");
  2443. skge_write16(hw, B3_RI_CTRL, RI_CLR_RD_PERR);
  2444. }
  2445. if (hwstatus & IS_RAM_WR_PAR) {
  2446. printk(KERN_ERR PFX "Ram write data parity error\n");
  2447. skge_write16(hw, B3_RI_CTRL, RI_CLR_WR_PERR);
  2448. }
  2449. if (hwstatus & IS_M1_PAR_ERR)
  2450. skge_mac_parity(hw, 0);
  2451. if (hwstatus & IS_M2_PAR_ERR)
  2452. skge_mac_parity(hw, 1);
  2453. if (hwstatus & IS_R1_PAR_ERR) {
  2454. printk(KERN_ERR PFX "%s: receive queue parity error\n",
  2455. hw->dev[0]->name);
  2456. skge_write32(hw, B0_R1_CSR, CSR_IRQ_CL_P);
  2457. }
  2458. if (hwstatus & IS_R2_PAR_ERR) {
  2459. printk(KERN_ERR PFX "%s: receive queue parity error\n",
  2460. hw->dev[1]->name);
  2461. skge_write32(hw, B0_R2_CSR, CSR_IRQ_CL_P);
  2462. }
  2463. if (hwstatus & (IS_IRQ_MST_ERR|IS_IRQ_STAT)) {
  2464. u16 pci_status, pci_cmd;
  2465. pci_read_config_word(hw->pdev, PCI_COMMAND, &pci_cmd);
  2466. pci_read_config_word(hw->pdev, PCI_STATUS, &pci_status);
  2467. printk(KERN_ERR PFX "%s: PCI error cmd=%#x status=%#x\n",
  2468. pci_name(hw->pdev), pci_cmd, pci_status);
  2469. /* Write the error bits back to clear them. */
  2470. pci_status &= PCI_STATUS_ERROR_BITS;
  2471. skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
  2472. pci_write_config_word(hw->pdev, PCI_COMMAND,
  2473. pci_cmd | PCI_COMMAND_SERR | PCI_COMMAND_PARITY);
  2474. pci_write_config_word(hw->pdev, PCI_STATUS, pci_status);
  2475. skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
  2476. /* if error still set then just ignore it */
  2477. hwstatus = skge_read32(hw, B0_HWE_ISRC);
  2478. if (hwstatus & IS_IRQ_STAT) {
  2479. printk(KERN_INFO PFX "unable to clear error (so ignoring them)\n");
  2480. hw->intr_mask &= ~IS_HW_ERR;
  2481. }
  2482. }
  2483. }
  2484. /*
  2485. * Interrupt from PHY are handled in work queue
  2486. * because accessing phy registers requires spin wait which might
  2487. * cause excess interrupt latency.
  2488. */
  2489. static void skge_extirq(void *arg)
  2490. {
  2491. struct skge_hw *hw = arg;
  2492. int port;
  2493. mutex_lock(&hw->phy_mutex);
  2494. for (port = 0; port < hw->ports; port++) {
  2495. struct net_device *dev = hw->dev[port];
  2496. struct skge_port *skge = netdev_priv(dev);
  2497. if (netif_running(dev)) {
  2498. if (hw->chip_id != CHIP_ID_GENESIS)
  2499. yukon_phy_intr(skge);
  2500. else if (hw->phy_type == SK_PHY_BCOM)
  2501. bcom_phy_intr(skge);
  2502. }
  2503. }
  2504. mutex_unlock(&hw->phy_mutex);
  2505. spin_lock_irq(&hw->hw_lock);
  2506. hw->intr_mask |= IS_EXT_REG;
  2507. skge_write32(hw, B0_IMSK, hw->intr_mask);
  2508. skge_read32(hw, B0_IMSK);
  2509. spin_unlock_irq(&hw->hw_lock);
  2510. }
  2511. static irqreturn_t skge_intr(int irq, void *dev_id, struct pt_regs *regs)
  2512. {
  2513. struct skge_hw *hw = dev_id;
  2514. u32 status;
  2515. int handled = 0;
  2516. spin_lock(&hw->hw_lock);
  2517. /* Reading this register masks IRQ */
  2518. status = skge_read32(hw, B0_SP_ISRC);
  2519. if (status == 0 || status == ~0)
  2520. goto out;
  2521. handled = 1;
  2522. status &= hw->intr_mask;
  2523. if (status & IS_EXT_REG) {
  2524. hw->intr_mask &= ~IS_EXT_REG;
  2525. schedule_work(&hw->phy_work);
  2526. }
  2527. if (status & (IS_XA1_F|IS_R1_F)) {
  2528. hw->intr_mask &= ~(IS_XA1_F|IS_R1_F);
  2529. netif_rx_schedule(hw->dev[0]);
  2530. }
  2531. if (status & IS_PA_TO_TX1)
  2532. skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_TX1);
  2533. if (status & IS_PA_TO_RX1) {
  2534. struct skge_port *skge = netdev_priv(hw->dev[0]);
  2535. ++skge->net_stats.rx_over_errors;
  2536. skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_RX1);
  2537. }
  2538. if (status & IS_MAC1)
  2539. skge_mac_intr(hw, 0);
  2540. if (hw->dev[1]) {
  2541. if (status & (IS_XA2_F|IS_R2_F)) {
  2542. hw->intr_mask &= ~(IS_XA2_F|IS_R2_F);
  2543. netif_rx_schedule(hw->dev[1]);
  2544. }
  2545. if (status & IS_PA_TO_RX2) {
  2546. struct skge_port *skge = netdev_priv(hw->dev[1]);
  2547. ++skge->net_stats.rx_over_errors;
  2548. skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_RX2);
  2549. }
  2550. if (status & IS_PA_TO_TX2)
  2551. skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_TX2);
  2552. if (status & IS_MAC2)
  2553. skge_mac_intr(hw, 1);
  2554. }
  2555. if (status & IS_HW_ERR)
  2556. skge_error_irq(hw);
  2557. skge_write32(hw, B0_IMSK, hw->intr_mask);
  2558. skge_read32(hw, B0_IMSK);
  2559. out:
  2560. spin_unlock(&hw->hw_lock);
  2561. return IRQ_RETVAL(handled);
  2562. }
  2563. #ifdef CONFIG_NET_POLL_CONTROLLER
  2564. static void skge_netpoll(struct net_device *dev)
  2565. {
  2566. struct skge_port *skge = netdev_priv(dev);
  2567. disable_irq(dev->irq);
  2568. skge_intr(dev->irq, skge->hw, NULL);
  2569. enable_irq(dev->irq);
  2570. }
  2571. #endif
  2572. static int skge_set_mac_address(struct net_device *dev, void *p)
  2573. {
  2574. struct skge_port *skge = netdev_priv(dev);
  2575. struct skge_hw *hw = skge->hw;
  2576. unsigned port = skge->port;
  2577. const struct sockaddr *addr = p;
  2578. if (!is_valid_ether_addr(addr->sa_data))
  2579. return -EADDRNOTAVAIL;
  2580. mutex_lock(&hw->phy_mutex);
  2581. memcpy(dev->dev_addr, addr->sa_data, ETH_ALEN);
  2582. memcpy_toio(hw->regs + B2_MAC_1 + port*8,
  2583. dev->dev_addr, ETH_ALEN);
  2584. memcpy_toio(hw->regs + B2_MAC_2 + port*8,
  2585. dev->dev_addr, ETH_ALEN);
  2586. if (hw->chip_id == CHIP_ID_GENESIS)
  2587. xm_outaddr(hw, port, XM_SA, dev->dev_addr);
  2588. else {
  2589. gma_set_addr(hw, port, GM_SRC_ADDR_1L, dev->dev_addr);
  2590. gma_set_addr(hw, port, GM_SRC_ADDR_2L, dev->dev_addr);
  2591. }
  2592. mutex_unlock(&hw->phy_mutex);
  2593. return 0;
  2594. }
  2595. static const struct {
  2596. u8 id;
  2597. const char *name;
  2598. } skge_chips[] = {
  2599. { CHIP_ID_GENESIS, "Genesis" },
  2600. { CHIP_ID_YUKON, "Yukon" },
  2601. { CHIP_ID_YUKON_LITE, "Yukon-Lite"},
  2602. { CHIP_ID_YUKON_LP, "Yukon-LP"},
  2603. };
  2604. static const char *skge_board_name(const struct skge_hw *hw)
  2605. {
  2606. int i;
  2607. static char buf[16];
  2608. for (i = 0; i < ARRAY_SIZE(skge_chips); i++)
  2609. if (skge_chips[i].id == hw->chip_id)
  2610. return skge_chips[i].name;
  2611. snprintf(buf, sizeof buf, "chipid 0x%x", hw->chip_id);
  2612. return buf;
  2613. }
  2614. /*
  2615. * Setup the board data structure, but don't bring up
  2616. * the port(s)
  2617. */
  2618. static int skge_reset(struct skge_hw *hw)
  2619. {
  2620. u32 reg;
  2621. u16 ctst, pci_status;
  2622. u8 t8, mac_cfg, pmd_type;
  2623. int i;
  2624. ctst = skge_read16(hw, B0_CTST);
  2625. /* do a SW reset */
  2626. skge_write8(hw, B0_CTST, CS_RST_SET);
  2627. skge_write8(hw, B0_CTST, CS_RST_CLR);
  2628. /* clear PCI errors, if any */
  2629. skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
  2630. skge_write8(hw, B2_TST_CTRL2, 0);
  2631. pci_read_config_word(hw->pdev, PCI_STATUS, &pci_status);
  2632. pci_write_config_word(hw->pdev, PCI_STATUS,
  2633. pci_status | PCI_STATUS_ERROR_BITS);
  2634. skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
  2635. skge_write8(hw, B0_CTST, CS_MRST_CLR);
  2636. /* restore CLK_RUN bits (for Yukon-Lite) */
  2637. skge_write16(hw, B0_CTST,
  2638. ctst & (CS_CLK_RUN_HOT|CS_CLK_RUN_RST|CS_CLK_RUN_ENA));
  2639. hw->chip_id = skge_read8(hw, B2_CHIP_ID);
  2640. hw->phy_type = skge_read8(hw, B2_E_1) & 0xf;
  2641. pmd_type = skge_read8(hw, B2_PMD_TYP);
  2642. hw->copper = (pmd_type == 'T' || pmd_type == '1');
  2643. switch (hw->chip_id) {
  2644. case CHIP_ID_GENESIS:
  2645. switch (hw->phy_type) {
  2646. case SK_PHY_XMAC:
  2647. hw->phy_addr = PHY_ADDR_XMAC;
  2648. break;
  2649. case SK_PHY_BCOM:
  2650. hw->phy_addr = PHY_ADDR_BCOM;
  2651. break;
  2652. default:
  2653. printk(KERN_ERR PFX "%s: unsupported phy type 0x%x\n",
  2654. pci_name(hw->pdev), hw->phy_type);
  2655. return -EOPNOTSUPP;
  2656. }
  2657. break;
  2658. case CHIP_ID_YUKON:
  2659. case CHIP_ID_YUKON_LITE:
  2660. case CHIP_ID_YUKON_LP:
  2661. if (hw->phy_type < SK_PHY_MARV_COPPER && pmd_type != 'S')
  2662. hw->copper = 1;
  2663. hw->phy_addr = PHY_ADDR_MARV;
  2664. break;
  2665. default:
  2666. printk(KERN_ERR PFX "%s: unsupported chip type 0x%x\n",
  2667. pci_name(hw->pdev), hw->chip_id);
  2668. return -EOPNOTSUPP;
  2669. }
  2670. mac_cfg = skge_read8(hw, B2_MAC_CFG);
  2671. hw->ports = (mac_cfg & CFG_SNG_MAC) ? 1 : 2;
  2672. hw->chip_rev = (mac_cfg & CFG_CHIP_R_MSK) >> 4;
  2673. /* read the adapters RAM size */
  2674. t8 = skge_read8(hw, B2_E_0);
  2675. if (hw->chip_id == CHIP_ID_GENESIS) {
  2676. if (t8 == 3) {
  2677. /* special case: 4 x 64k x 36, offset = 0x80000 */
  2678. hw->ram_size = 0x100000;
  2679. hw->ram_offset = 0x80000;
  2680. } else
  2681. hw->ram_size = t8 * 512;
  2682. }
  2683. else if (t8 == 0)
  2684. hw->ram_size = 0x20000;
  2685. else
  2686. hw->ram_size = t8 * 4096;
  2687. hw->intr_mask = IS_HW_ERR | IS_PORT_1;
  2688. if (hw->ports > 1)
  2689. hw->intr_mask |= IS_PORT_2;
  2690. if (!(hw->chip_id == CHIP_ID_GENESIS && hw->phy_type == SK_PHY_XMAC))
  2691. hw->intr_mask |= IS_EXT_REG;
  2692. if (hw->chip_id == CHIP_ID_GENESIS)
  2693. genesis_init(hw);
  2694. else {
  2695. /* switch power to VCC (WA for VAUX problem) */
  2696. skge_write8(hw, B0_POWER_CTRL,
  2697. PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_OFF | PC_VCC_ON);
  2698. /* avoid boards with stuck Hardware error bits */
  2699. if ((skge_read32(hw, B0_ISRC) & IS_HW_ERR) &&
  2700. (skge_read32(hw, B0_HWE_ISRC) & IS_IRQ_SENSOR)) {
  2701. printk(KERN_WARNING PFX "stuck hardware sensor bit\n");
  2702. hw->intr_mask &= ~IS_HW_ERR;
  2703. }
  2704. /* Clear PHY COMA */
  2705. skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
  2706. pci_read_config_dword(hw->pdev, PCI_DEV_REG1, &reg);
  2707. reg &= ~PCI_PHY_COMA;
  2708. pci_write_config_dword(hw->pdev, PCI_DEV_REG1, reg);
  2709. skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
  2710. for (i = 0; i < hw->ports; i++) {
  2711. skge_write16(hw, SK_REG(i, GMAC_LINK_CTRL), GMLC_RST_SET);
  2712. skge_write16(hw, SK_REG(i, GMAC_LINK_CTRL), GMLC_RST_CLR);
  2713. }
  2714. }
  2715. /* turn off hardware timer (unused) */
  2716. skge_write8(hw, B2_TI_CTRL, TIM_STOP);
  2717. skge_write8(hw, B2_TI_CTRL, TIM_CLR_IRQ);
  2718. skge_write8(hw, B0_LED, LED_STAT_ON);
  2719. /* enable the Tx Arbiters */
  2720. for (i = 0; i < hw->ports; i++)
  2721. skge_write8(hw, SK_REG(i, TXA_CTRL), TXA_ENA_ARB);
  2722. /* Initialize ram interface */
  2723. skge_write16(hw, B3_RI_CTRL, RI_RST_CLR);
  2724. skge_write8(hw, B3_RI_WTO_R1, SK_RI_TO_53);
  2725. skge_write8(hw, B3_RI_WTO_XA1, SK_RI_TO_53);
  2726. skge_write8(hw, B3_RI_WTO_XS1, SK_RI_TO_53);
  2727. skge_write8(hw, B3_RI_RTO_R1, SK_RI_TO_53);
  2728. skge_write8(hw, B3_RI_RTO_XA1, SK_RI_TO_53);
  2729. skge_write8(hw, B3_RI_RTO_XS1, SK_RI_TO_53);
  2730. skge_write8(hw, B3_RI_WTO_R2, SK_RI_TO_53);
  2731. skge_write8(hw, B3_RI_WTO_XA2, SK_RI_TO_53);
  2732. skge_write8(hw, B3_RI_WTO_XS2, SK_RI_TO_53);
  2733. skge_write8(hw, B3_RI_RTO_R2, SK_RI_TO_53);
  2734. skge_write8(hw, B3_RI_RTO_XA2, SK_RI_TO_53);
  2735. skge_write8(hw, B3_RI_RTO_XS2, SK_RI_TO_53);
  2736. skge_write32(hw, B0_HWE_IMSK, IS_ERR_MSK);
  2737. /* Set interrupt moderation for Transmit only
  2738. * Receive interrupts avoided by NAPI
  2739. */
  2740. skge_write32(hw, B2_IRQM_MSK, IS_XA1_F|IS_XA2_F);
  2741. skge_write32(hw, B2_IRQM_INI, skge_usecs2clk(hw, 100));
  2742. skge_write32(hw, B2_IRQM_CTRL, TIM_START);
  2743. skge_write32(hw, B0_IMSK, hw->intr_mask);
  2744. mutex_lock(&hw->phy_mutex);
  2745. for (i = 0; i < hw->ports; i++) {
  2746. if (hw->chip_id == CHIP_ID_GENESIS)
  2747. genesis_reset(hw, i);
  2748. else
  2749. yukon_reset(hw, i);
  2750. }
  2751. mutex_unlock(&hw->phy_mutex);
  2752. return 0;
  2753. }
  2754. /* Initialize network device */
  2755. static struct net_device *skge_devinit(struct skge_hw *hw, int port,
  2756. int highmem)
  2757. {
  2758. struct skge_port *skge;
  2759. struct net_device *dev = alloc_etherdev(sizeof(*skge));
  2760. if (!dev) {
  2761. printk(KERN_ERR "skge etherdev alloc failed");
  2762. return NULL;
  2763. }
  2764. SET_MODULE_OWNER(dev);
  2765. SET_NETDEV_DEV(dev, &hw->pdev->dev);
  2766. dev->open = skge_up;
  2767. dev->stop = skge_down;
  2768. dev->do_ioctl = skge_ioctl;
  2769. dev->hard_start_xmit = skge_xmit_frame;
  2770. dev->get_stats = skge_get_stats;
  2771. if (hw->chip_id == CHIP_ID_GENESIS)
  2772. dev->set_multicast_list = genesis_set_multicast;
  2773. else
  2774. dev->set_multicast_list = yukon_set_multicast;
  2775. dev->set_mac_address = skge_set_mac_address;
  2776. dev->change_mtu = skge_change_mtu;
  2777. SET_ETHTOOL_OPS(dev, &skge_ethtool_ops);
  2778. dev->tx_timeout = skge_tx_timeout;
  2779. dev->watchdog_timeo = TX_WATCHDOG;
  2780. dev->poll = skge_poll;
  2781. dev->weight = NAPI_WEIGHT;
  2782. #ifdef CONFIG_NET_POLL_CONTROLLER
  2783. dev->poll_controller = skge_netpoll;
  2784. #endif
  2785. dev->irq = hw->pdev->irq;
  2786. if (highmem)
  2787. dev->features |= NETIF_F_HIGHDMA;
  2788. skge = netdev_priv(dev);
  2789. skge->netdev = dev;
  2790. skge->hw = hw;
  2791. skge->msg_enable = netif_msg_init(debug, default_msg);
  2792. skge->tx_ring.count = DEFAULT_TX_RING_SIZE;
  2793. skge->rx_ring.count = DEFAULT_RX_RING_SIZE;
  2794. /* Auto speed and flow control */
  2795. skge->autoneg = AUTONEG_ENABLE;
  2796. skge->flow_control = FLOW_MODE_SYMMETRIC;
  2797. skge->duplex = -1;
  2798. skge->speed = -1;
  2799. skge->advertising = skge_supported_modes(hw);
  2800. hw->dev[port] = dev;
  2801. skge->port = port;
  2802. /* Only used for Genesis XMAC */
  2803. INIT_WORK(&skge->link_thread, xm_link_timer, dev);
  2804. if (hw->chip_id != CHIP_ID_GENESIS) {
  2805. dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG;
  2806. skge->rx_csum = 1;
  2807. }
  2808. /* read the mac address */
  2809. memcpy_fromio(dev->dev_addr, hw->regs + B2_MAC_1 + port*8, ETH_ALEN);
  2810. memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
  2811. /* device is off until link detection */
  2812. netif_carrier_off(dev);
  2813. netif_stop_queue(dev);
  2814. return dev;
  2815. }
  2816. static void __devinit skge_show_addr(struct net_device *dev)
  2817. {
  2818. const struct skge_port *skge = netdev_priv(dev);
  2819. if (netif_msg_probe(skge))
  2820. printk(KERN_INFO PFX "%s: addr %02x:%02x:%02x:%02x:%02x:%02x\n",
  2821. dev->name,
  2822. dev->dev_addr[0], dev->dev_addr[1], dev->dev_addr[2],
  2823. dev->dev_addr[3], dev->dev_addr[4], dev->dev_addr[5]);
  2824. }
  2825. static int __devinit skge_probe(struct pci_dev *pdev,
  2826. const struct pci_device_id *ent)
  2827. {
  2828. struct net_device *dev, *dev1;
  2829. struct skge_hw *hw;
  2830. int err, using_dac = 0;
  2831. err = pci_enable_device(pdev);
  2832. if (err) {
  2833. printk(KERN_ERR PFX "%s cannot enable PCI device\n",
  2834. pci_name(pdev));
  2835. goto err_out;
  2836. }
  2837. err = pci_request_regions(pdev, DRV_NAME);
  2838. if (err) {
  2839. printk(KERN_ERR PFX "%s cannot obtain PCI resources\n",
  2840. pci_name(pdev));
  2841. goto err_out_disable_pdev;
  2842. }
  2843. pci_set_master(pdev);
  2844. if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK)) {
  2845. using_dac = 1;
  2846. err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK);
  2847. } else if (!(err = pci_set_dma_mask(pdev, DMA_32BIT_MASK))) {
  2848. using_dac = 0;
  2849. err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
  2850. }
  2851. if (err) {
  2852. printk(KERN_ERR PFX "%s no usable DMA configuration\n",
  2853. pci_name(pdev));
  2854. goto err_out_free_regions;
  2855. }
  2856. #ifdef __BIG_ENDIAN
  2857. /* byte swap descriptors in hardware */
  2858. {
  2859. u32 reg;
  2860. pci_read_config_dword(pdev, PCI_DEV_REG2, &reg);
  2861. reg |= PCI_REV_DESC;
  2862. pci_write_config_dword(pdev, PCI_DEV_REG2, reg);
  2863. }
  2864. #endif
  2865. err = -ENOMEM;
  2866. hw = kzalloc(sizeof(*hw), GFP_KERNEL);
  2867. if (!hw) {
  2868. printk(KERN_ERR PFX "%s: cannot allocate hardware struct\n",
  2869. pci_name(pdev));
  2870. goto err_out_free_regions;
  2871. }
  2872. hw->pdev = pdev;
  2873. mutex_init(&hw->phy_mutex);
  2874. INIT_WORK(&hw->phy_work, skge_extirq, hw);
  2875. spin_lock_init(&hw->hw_lock);
  2876. hw->regs = ioremap_nocache(pci_resource_start(pdev, 0), 0x4000);
  2877. if (!hw->regs) {
  2878. printk(KERN_ERR PFX "%s: cannot map device registers\n",
  2879. pci_name(pdev));
  2880. goto err_out_free_hw;
  2881. }
  2882. err = skge_reset(hw);
  2883. if (err)
  2884. goto err_out_iounmap;
  2885. printk(KERN_INFO PFX DRV_VERSION " addr 0x%llx irq %d chip %s rev %d\n",
  2886. (unsigned long long)pci_resource_start(pdev, 0), pdev->irq,
  2887. skge_board_name(hw), hw->chip_rev);
  2888. dev = skge_devinit(hw, 0, using_dac);
  2889. if (!dev)
  2890. goto err_out_led_off;
  2891. if (!is_valid_ether_addr(dev->dev_addr)) {
  2892. printk(KERN_ERR PFX "%s: bad (zero?) ethernet address in rom\n",
  2893. pci_name(pdev));
  2894. err = -EIO;
  2895. goto err_out_free_netdev;
  2896. }
  2897. err = register_netdev(dev);
  2898. if (err) {
  2899. printk(KERN_ERR PFX "%s: cannot register net device\n",
  2900. pci_name(pdev));
  2901. goto err_out_free_netdev;
  2902. }
  2903. err = request_irq(pdev->irq, skge_intr, IRQF_SHARED, dev->name, hw);
  2904. if (err) {
  2905. printk(KERN_ERR PFX "%s: cannot assign irq %d\n",
  2906. dev->name, pdev->irq);
  2907. goto err_out_unregister;
  2908. }
  2909. skge_show_addr(dev);
  2910. if (hw->ports > 1 && (dev1 = skge_devinit(hw, 1, using_dac))) {
  2911. if (register_netdev(dev1) == 0)
  2912. skge_show_addr(dev1);
  2913. else {
  2914. /* Failure to register second port need not be fatal */
  2915. printk(KERN_WARNING PFX "register of second port failed\n");
  2916. hw->dev[1] = NULL;
  2917. free_netdev(dev1);
  2918. }
  2919. }
  2920. pci_set_drvdata(pdev, hw);
  2921. return 0;
  2922. err_out_unregister:
  2923. unregister_netdev(dev);
  2924. err_out_free_netdev:
  2925. free_netdev(dev);
  2926. err_out_led_off:
  2927. skge_write16(hw, B0_LED, LED_STAT_OFF);
  2928. err_out_iounmap:
  2929. iounmap(hw->regs);
  2930. err_out_free_hw:
  2931. kfree(hw);
  2932. err_out_free_regions:
  2933. pci_release_regions(pdev);
  2934. err_out_disable_pdev:
  2935. pci_disable_device(pdev);
  2936. pci_set_drvdata(pdev, NULL);
  2937. err_out:
  2938. return err;
  2939. }
  2940. static void __devexit skge_remove(struct pci_dev *pdev)
  2941. {
  2942. struct skge_hw *hw = pci_get_drvdata(pdev);
  2943. struct net_device *dev0, *dev1;
  2944. if (!hw)
  2945. return;
  2946. if ((dev1 = hw->dev[1]))
  2947. unregister_netdev(dev1);
  2948. dev0 = hw->dev[0];
  2949. unregister_netdev(dev0);
  2950. spin_lock_irq(&hw->hw_lock);
  2951. hw->intr_mask = 0;
  2952. skge_write32(hw, B0_IMSK, 0);
  2953. skge_read32(hw, B0_IMSK);
  2954. spin_unlock_irq(&hw->hw_lock);
  2955. skge_write16(hw, B0_LED, LED_STAT_OFF);
  2956. skge_write8(hw, B0_CTST, CS_RST_SET);
  2957. flush_scheduled_work();
  2958. free_irq(pdev->irq, hw);
  2959. pci_release_regions(pdev);
  2960. pci_disable_device(pdev);
  2961. if (dev1)
  2962. free_netdev(dev1);
  2963. free_netdev(dev0);
  2964. iounmap(hw->regs);
  2965. kfree(hw);
  2966. pci_set_drvdata(pdev, NULL);
  2967. }
  2968. #ifdef CONFIG_PM
  2969. static int skge_suspend(struct pci_dev *pdev, pm_message_t state)
  2970. {
  2971. struct skge_hw *hw = pci_get_drvdata(pdev);
  2972. int i, wol = 0;
  2973. pci_save_state(pdev);
  2974. for (i = 0; i < hw->ports; i++) {
  2975. struct net_device *dev = hw->dev[i];
  2976. if (netif_running(dev)) {
  2977. struct skge_port *skge = netdev_priv(dev);
  2978. netif_carrier_off(dev);
  2979. if (skge->wol)
  2980. netif_stop_queue(dev);
  2981. else
  2982. skge_down(dev);
  2983. wol |= skge->wol;
  2984. }
  2985. netif_device_detach(dev);
  2986. }
  2987. skge_write32(hw, B0_IMSK, 0);
  2988. pci_enable_wake(pdev, pci_choose_state(pdev, state), wol);
  2989. pci_set_power_state(pdev, pci_choose_state(pdev, state));
  2990. return 0;
  2991. }
  2992. static int skge_resume(struct pci_dev *pdev)
  2993. {
  2994. struct skge_hw *hw = pci_get_drvdata(pdev);
  2995. int i, err;
  2996. pci_set_power_state(pdev, PCI_D0);
  2997. pci_restore_state(pdev);
  2998. pci_enable_wake(pdev, PCI_D0, 0);
  2999. err = skge_reset(hw);
  3000. if (err)
  3001. goto out;
  3002. for (i = 0; i < hw->ports; i++) {
  3003. struct net_device *dev = hw->dev[i];
  3004. netif_device_attach(dev);
  3005. if (netif_running(dev)) {
  3006. err = skge_up(dev);
  3007. if (err) {
  3008. printk(KERN_ERR PFX "%s: could not up: %d\n",
  3009. dev->name, err);
  3010. dev_close(dev);
  3011. goto out;
  3012. }
  3013. }
  3014. }
  3015. out:
  3016. return err;
  3017. }
  3018. #endif
  3019. static struct pci_driver skge_driver = {
  3020. .name = DRV_NAME,
  3021. .id_table = skge_id_table,
  3022. .probe = skge_probe,
  3023. .remove = __devexit_p(skge_remove),
  3024. #ifdef CONFIG_PM
  3025. .suspend = skge_suspend,
  3026. .resume = skge_resume,
  3027. #endif
  3028. };
  3029. static int __init skge_init_module(void)
  3030. {
  3031. return pci_register_driver(&skge_driver);
  3032. }
  3033. static void __exit skge_cleanup_module(void)
  3034. {
  3035. pci_unregister_driver(&skge_driver);
  3036. }
  3037. module_init(skge_init_module);
  3038. module_exit(skge_cleanup_module);