stv0297.c 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700
  1. /*
  2. Driver for STV0297 demodulator
  3. Copyright (C) 2004 Andrew de Quincey <adq_dvb@lidskialf.net>
  4. Copyright (C) 2003-2004 Dennis Noermann <dennis.noermann@noernet.de>
  5. This program is free software; you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation; either version 2 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program; if not, write to the Free Software
  15. Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  16. */
  17. #include <linux/init.h>
  18. #include <linux/kernel.h>
  19. #include <linux/module.h>
  20. #include <linux/string.h>
  21. #include <linux/delay.h>
  22. #include <linux/jiffies.h>
  23. #include <linux/slab.h>
  24. #include "dvb_frontend.h"
  25. #include "stv0297.h"
  26. struct stv0297_state {
  27. struct i2c_adapter *i2c;
  28. const struct stv0297_config *config;
  29. struct dvb_frontend frontend;
  30. unsigned long base_freq;
  31. };
  32. #if 1
  33. #define dprintk(x...) printk(x)
  34. #else
  35. #define dprintk(x...)
  36. #endif
  37. #define STV0297_CLOCK_KHZ 28900
  38. static int stv0297_writereg(struct stv0297_state *state, u8 reg, u8 data)
  39. {
  40. int ret;
  41. u8 buf[] = { reg, data };
  42. struct i2c_msg msg = {.addr = state->config->demod_address,.flags = 0,.buf = buf,.len = 2 };
  43. ret = i2c_transfer(state->i2c, &msg, 1);
  44. if (ret != 1)
  45. dprintk("%s: writereg error (reg == 0x%02x, val == 0x%02x, "
  46. "ret == %i)\n", __FUNCTION__, reg, data, ret);
  47. return (ret != 1) ? -1 : 0;
  48. }
  49. static int stv0297_readreg(struct stv0297_state *state, u8 reg)
  50. {
  51. int ret;
  52. u8 b0[] = { reg };
  53. u8 b1[] = { 0 };
  54. struct i2c_msg msg[] = { {.addr = state->config->demod_address,.flags = 0,.buf = b0,.len = 1},
  55. {.addr = state->config->demod_address,.flags = I2C_M_RD,.buf = b1,.len = 1}
  56. };
  57. // this device needs a STOP between the register and data
  58. if (state->config->stop_during_read) {
  59. if ((ret = i2c_transfer(state->i2c, &msg[0], 1)) != 1) {
  60. dprintk("%s: readreg error (reg == 0x%02x, ret == %i)\n", __FUNCTION__, reg, ret);
  61. return -1;
  62. }
  63. if ((ret = i2c_transfer(state->i2c, &msg[1], 1)) != 1) {
  64. dprintk("%s: readreg error (reg == 0x%02x, ret == %i)\n", __FUNCTION__, reg, ret);
  65. return -1;
  66. }
  67. } else {
  68. if ((ret = i2c_transfer(state->i2c, msg, 2)) != 2) {
  69. dprintk("%s: readreg error (reg == 0x%02x, ret == %i)\n", __FUNCTION__, reg, ret);
  70. return -1;
  71. }
  72. }
  73. return b1[0];
  74. }
  75. static int stv0297_writereg_mask(struct stv0297_state *state, u8 reg, u8 mask, u8 data)
  76. {
  77. int val;
  78. val = stv0297_readreg(state, reg);
  79. val &= ~mask;
  80. val |= (data & mask);
  81. stv0297_writereg(state, reg, val);
  82. return 0;
  83. }
  84. static int stv0297_readregs(struct stv0297_state *state, u8 reg1, u8 * b, u8 len)
  85. {
  86. int ret;
  87. struct i2c_msg msg[] = { {.addr = state->config->demod_address,.flags = 0,.buf =
  88. &reg1,.len = 1},
  89. {.addr = state->config->demod_address,.flags = I2C_M_RD,.buf = b,.len = len}
  90. };
  91. // this device needs a STOP between the register and data
  92. if (state->config->stop_during_read) {
  93. if ((ret = i2c_transfer(state->i2c, &msg[0], 1)) != 1) {
  94. dprintk("%s: readreg error (reg == 0x%02x, ret == %i)\n", __FUNCTION__, reg1, ret);
  95. return -1;
  96. }
  97. if ((ret = i2c_transfer(state->i2c, &msg[1], 1)) != 1) {
  98. dprintk("%s: readreg error (reg == 0x%02x, ret == %i)\n", __FUNCTION__, reg1, ret);
  99. return -1;
  100. }
  101. } else {
  102. if ((ret = i2c_transfer(state->i2c, msg, 2)) != 2) {
  103. dprintk("%s: readreg error (reg == 0x%02x, ret == %i)\n", __FUNCTION__, reg1, ret);
  104. return -1;
  105. }
  106. }
  107. return 0;
  108. }
  109. static u32 stv0297_get_symbolrate(struct stv0297_state *state)
  110. {
  111. u64 tmp;
  112. tmp = stv0297_readreg(state, 0x55);
  113. tmp |= stv0297_readreg(state, 0x56) << 8;
  114. tmp |= stv0297_readreg(state, 0x57) << 16;
  115. tmp |= stv0297_readreg(state, 0x58) << 24;
  116. tmp *= STV0297_CLOCK_KHZ;
  117. tmp >>= 32;
  118. return (u32) tmp;
  119. }
  120. static void stv0297_set_symbolrate(struct stv0297_state *state, u32 srate)
  121. {
  122. long tmp;
  123. tmp = 131072L * srate; /* 131072 = 2^17 */
  124. tmp = tmp / (STV0297_CLOCK_KHZ / 4); /* 1/4 = 2^-2 */
  125. tmp = tmp * 8192L; /* 8192 = 2^13 */
  126. stv0297_writereg(state, 0x55, (unsigned char) (tmp & 0xFF));
  127. stv0297_writereg(state, 0x56, (unsigned char) (tmp >> 8));
  128. stv0297_writereg(state, 0x57, (unsigned char) (tmp >> 16));
  129. stv0297_writereg(state, 0x58, (unsigned char) (tmp >> 24));
  130. }
  131. static void stv0297_set_sweeprate(struct stv0297_state *state, short fshift, long symrate)
  132. {
  133. long tmp;
  134. tmp = (long) fshift *262144L; /* 262144 = 2*18 */
  135. tmp /= symrate;
  136. tmp *= 1024; /* 1024 = 2*10 */
  137. // adjust
  138. if (tmp >= 0) {
  139. tmp += 500000;
  140. } else {
  141. tmp -= 500000;
  142. }
  143. tmp /= 1000000;
  144. stv0297_writereg(state, 0x60, tmp & 0xFF);
  145. stv0297_writereg_mask(state, 0x69, 0xF0, (tmp >> 4) & 0xf0);
  146. }
  147. static void stv0297_set_carrieroffset(struct stv0297_state *state, long offset)
  148. {
  149. long tmp;
  150. /* symrate is hardcoded to 10000 */
  151. tmp = offset * 26844L; /* (2**28)/10000 */
  152. if (tmp < 0)
  153. tmp += 0x10000000;
  154. tmp &= 0x0FFFFFFF;
  155. stv0297_writereg(state, 0x66, (unsigned char) (tmp & 0xFF));
  156. stv0297_writereg(state, 0x67, (unsigned char) (tmp >> 8));
  157. stv0297_writereg(state, 0x68, (unsigned char) (tmp >> 16));
  158. stv0297_writereg_mask(state, 0x69, 0x0F, (tmp >> 24) & 0x0f);
  159. }
  160. /*
  161. static long stv0297_get_carrieroffset(struct stv0297_state *state)
  162. {
  163. s64 tmp;
  164. stv0297_writereg(state, 0x6B, 0x00);
  165. tmp = stv0297_readreg(state, 0x66);
  166. tmp |= (stv0297_readreg(state, 0x67) << 8);
  167. tmp |= (stv0297_readreg(state, 0x68) << 16);
  168. tmp |= (stv0297_readreg(state, 0x69) & 0x0F) << 24;
  169. tmp *= stv0297_get_symbolrate(state);
  170. tmp >>= 28;
  171. return (s32) tmp;
  172. }
  173. */
  174. static void stv0297_set_initialdemodfreq(struct stv0297_state *state, long freq)
  175. {
  176. s32 tmp;
  177. if (freq > 10000)
  178. freq -= STV0297_CLOCK_KHZ;
  179. tmp = (STV0297_CLOCK_KHZ * 1000) / (1 << 16);
  180. tmp = (freq * 1000) / tmp;
  181. if (tmp > 0xffff)
  182. tmp = 0xffff;
  183. stv0297_writereg_mask(state, 0x25, 0x80, 0x80);
  184. stv0297_writereg(state, 0x21, tmp >> 8);
  185. stv0297_writereg(state, 0x20, tmp);
  186. }
  187. static int stv0297_set_qam(struct stv0297_state *state, fe_modulation_t modulation)
  188. {
  189. int val = 0;
  190. switch (modulation) {
  191. case QAM_16:
  192. val = 0;
  193. break;
  194. case QAM_32:
  195. val = 1;
  196. break;
  197. case QAM_64:
  198. val = 4;
  199. break;
  200. case QAM_128:
  201. val = 2;
  202. break;
  203. case QAM_256:
  204. val = 3;
  205. break;
  206. default:
  207. return -EINVAL;
  208. }
  209. stv0297_writereg_mask(state, 0x00, 0x70, val << 4);
  210. return 0;
  211. }
  212. static int stv0297_set_inversion(struct stv0297_state *state, fe_spectral_inversion_t inversion)
  213. {
  214. int val = 0;
  215. switch (inversion) {
  216. case INVERSION_OFF:
  217. val = 0;
  218. break;
  219. case INVERSION_ON:
  220. val = 1;
  221. break;
  222. default:
  223. return -EINVAL;
  224. }
  225. stv0297_writereg_mask(state, 0x83, 0x08, val << 3);
  226. return 0;
  227. }
  228. static int stv0297_i2c_gate_ctrl(struct dvb_frontend *fe, int enable)
  229. {
  230. struct stv0297_state *state = fe->demodulator_priv;
  231. if (enable) {
  232. stv0297_writereg(state, 0x87, 0x78);
  233. stv0297_writereg(state, 0x86, 0xc8);
  234. }
  235. return 0;
  236. }
  237. static int stv0297_init(struct dvb_frontend *fe)
  238. {
  239. struct stv0297_state *state = fe->demodulator_priv;
  240. int i;
  241. /* load init table */
  242. for (i=0; !(state->config->inittab[i] == 0xff && state->config->inittab[i+1] == 0xff); i+=2)
  243. stv0297_writereg(state, state->config->inittab[i], state->config->inittab[i+1]);
  244. msleep(200);
  245. return 0;
  246. }
  247. static int stv0297_sleep(struct dvb_frontend *fe)
  248. {
  249. struct stv0297_state *state = fe->demodulator_priv;
  250. stv0297_writereg_mask(state, 0x80, 1, 1);
  251. return 0;
  252. }
  253. static int stv0297_read_status(struct dvb_frontend *fe, fe_status_t * status)
  254. {
  255. struct stv0297_state *state = fe->demodulator_priv;
  256. u8 sync = stv0297_readreg(state, 0xDF);
  257. *status = 0;
  258. if (sync & 0x80)
  259. *status |=
  260. FE_HAS_SYNC | FE_HAS_SIGNAL | FE_HAS_CARRIER | FE_HAS_VITERBI | FE_HAS_LOCK;
  261. return 0;
  262. }
  263. static int stv0297_read_ber(struct dvb_frontend *fe, u32 * ber)
  264. {
  265. struct stv0297_state *state = fe->demodulator_priv;
  266. u8 BER[3];
  267. stv0297_writereg(state, 0xA0, 0x80); // Start Counting bit errors for 4096 Bytes
  268. mdelay(25); // Hopefully got 4096 Bytes
  269. stv0297_readregs(state, 0xA0, BER, 3);
  270. mdelay(25);
  271. *ber = (BER[2] << 8 | BER[1]) / (8 * 4096);
  272. return 0;
  273. }
  274. static int stv0297_read_signal_strength(struct dvb_frontend *fe, u16 * strength)
  275. {
  276. struct stv0297_state *state = fe->demodulator_priv;
  277. u8 STRENGTH[2];
  278. stv0297_readregs(state, 0x41, STRENGTH, 2);
  279. *strength = (STRENGTH[1] & 0x03) << 8 | STRENGTH[0];
  280. return 0;
  281. }
  282. static int stv0297_read_snr(struct dvb_frontend *fe, u16 * snr)
  283. {
  284. struct stv0297_state *state = fe->demodulator_priv;
  285. u8 SNR[2];
  286. stv0297_readregs(state, 0x07, SNR, 2);
  287. *snr = SNR[1] << 8 | SNR[0];
  288. return 0;
  289. }
  290. static int stv0297_read_ucblocks(struct dvb_frontend *fe, u32 * ucblocks)
  291. {
  292. struct stv0297_state *state = fe->demodulator_priv;
  293. *ucblocks = (stv0297_readreg(state, 0xD5) << 8)
  294. | stv0297_readreg(state, 0xD4);
  295. return 0;
  296. }
  297. static int stv0297_set_frontend(struct dvb_frontend *fe, struct dvb_frontend_parameters *p)
  298. {
  299. struct stv0297_state *state = fe->demodulator_priv;
  300. int u_threshold;
  301. int initial_u;
  302. int blind_u;
  303. int delay;
  304. int sweeprate;
  305. int carrieroffset;
  306. unsigned long starttime;
  307. unsigned long timeout;
  308. fe_spectral_inversion_t inversion;
  309. switch (p->u.qam.modulation) {
  310. case QAM_16:
  311. case QAM_32:
  312. case QAM_64:
  313. delay = 100;
  314. sweeprate = 1000;
  315. break;
  316. case QAM_128:
  317. case QAM_256:
  318. delay = 200;
  319. sweeprate = 500;
  320. break;
  321. default:
  322. return -EINVAL;
  323. }
  324. // determine inversion dependant parameters
  325. inversion = p->inversion;
  326. if (state->config->invert)
  327. inversion = (inversion == INVERSION_ON) ? INVERSION_OFF : INVERSION_ON;
  328. carrieroffset = -330;
  329. switch (inversion) {
  330. case INVERSION_OFF:
  331. break;
  332. case INVERSION_ON:
  333. sweeprate = -sweeprate;
  334. carrieroffset = -carrieroffset;
  335. break;
  336. default:
  337. return -EINVAL;
  338. }
  339. stv0297_init(fe);
  340. if (fe->ops.tuner_ops.set_params) {
  341. fe->ops.tuner_ops.set_params(fe, p);
  342. if (fe->ops.i2c_gate_ctrl) fe->ops.i2c_gate_ctrl(fe, 0);
  343. }
  344. /* clear software interrupts */
  345. stv0297_writereg(state, 0x82, 0x0);
  346. /* set initial demodulation frequency */
  347. stv0297_set_initialdemodfreq(state, 7250);
  348. /* setup AGC */
  349. stv0297_writereg_mask(state, 0x43, 0x10, 0x00);
  350. stv0297_writereg(state, 0x41, 0x00);
  351. stv0297_writereg_mask(state, 0x42, 0x03, 0x01);
  352. stv0297_writereg_mask(state, 0x36, 0x60, 0x00);
  353. stv0297_writereg_mask(state, 0x36, 0x18, 0x00);
  354. stv0297_writereg_mask(state, 0x71, 0x80, 0x80);
  355. stv0297_writereg(state, 0x72, 0x00);
  356. stv0297_writereg(state, 0x73, 0x00);
  357. stv0297_writereg_mask(state, 0x74, 0x0F, 0x00);
  358. stv0297_writereg_mask(state, 0x43, 0x08, 0x00);
  359. stv0297_writereg_mask(state, 0x71, 0x80, 0x00);
  360. /* setup STL */
  361. stv0297_writereg_mask(state, 0x5a, 0x20, 0x20);
  362. stv0297_writereg_mask(state, 0x5b, 0x02, 0x02);
  363. stv0297_writereg_mask(state, 0x5b, 0x02, 0x00);
  364. stv0297_writereg_mask(state, 0x5b, 0x01, 0x00);
  365. stv0297_writereg_mask(state, 0x5a, 0x40, 0x40);
  366. /* disable frequency sweep */
  367. stv0297_writereg_mask(state, 0x6a, 0x01, 0x00);
  368. /* reset deinterleaver */
  369. stv0297_writereg_mask(state, 0x81, 0x01, 0x01);
  370. stv0297_writereg_mask(state, 0x81, 0x01, 0x00);
  371. /* ??? */
  372. stv0297_writereg_mask(state, 0x83, 0x20, 0x20);
  373. stv0297_writereg_mask(state, 0x83, 0x20, 0x00);
  374. /* reset equaliser */
  375. u_threshold = stv0297_readreg(state, 0x00) & 0xf;
  376. initial_u = stv0297_readreg(state, 0x01) >> 4;
  377. blind_u = stv0297_readreg(state, 0x01) & 0xf;
  378. stv0297_writereg_mask(state, 0x84, 0x01, 0x01);
  379. stv0297_writereg_mask(state, 0x84, 0x01, 0x00);
  380. stv0297_writereg_mask(state, 0x00, 0x0f, u_threshold);
  381. stv0297_writereg_mask(state, 0x01, 0xf0, initial_u << 4);
  382. stv0297_writereg_mask(state, 0x01, 0x0f, blind_u);
  383. /* data comes from internal A/D */
  384. stv0297_writereg_mask(state, 0x87, 0x80, 0x00);
  385. /* clear phase registers */
  386. stv0297_writereg(state, 0x63, 0x00);
  387. stv0297_writereg(state, 0x64, 0x00);
  388. stv0297_writereg(state, 0x65, 0x00);
  389. stv0297_writereg(state, 0x66, 0x00);
  390. stv0297_writereg(state, 0x67, 0x00);
  391. stv0297_writereg(state, 0x68, 0x00);
  392. stv0297_writereg_mask(state, 0x69, 0x0f, 0x00);
  393. /* set parameters */
  394. stv0297_set_qam(state, p->u.qam.modulation);
  395. stv0297_set_symbolrate(state, p->u.qam.symbol_rate / 1000);
  396. stv0297_set_sweeprate(state, sweeprate, p->u.qam.symbol_rate / 1000);
  397. stv0297_set_carrieroffset(state, carrieroffset);
  398. stv0297_set_inversion(state, inversion);
  399. /* kick off lock */
  400. /* Disable corner detection for higher QAMs */
  401. if (p->u.qam.modulation == QAM_128 ||
  402. p->u.qam.modulation == QAM_256)
  403. stv0297_writereg_mask(state, 0x88, 0x08, 0x00);
  404. else
  405. stv0297_writereg_mask(state, 0x88, 0x08, 0x08);
  406. stv0297_writereg_mask(state, 0x5a, 0x20, 0x00);
  407. stv0297_writereg_mask(state, 0x6a, 0x01, 0x01);
  408. stv0297_writereg_mask(state, 0x43, 0x40, 0x40);
  409. stv0297_writereg_mask(state, 0x5b, 0x30, 0x00);
  410. stv0297_writereg_mask(state, 0x03, 0x0c, 0x0c);
  411. stv0297_writereg_mask(state, 0x03, 0x03, 0x03);
  412. stv0297_writereg_mask(state, 0x43, 0x10, 0x10);
  413. /* wait for WGAGC lock */
  414. starttime = jiffies;
  415. timeout = jiffies + msecs_to_jiffies(2000);
  416. while (time_before(jiffies, timeout)) {
  417. msleep(10);
  418. if (stv0297_readreg(state, 0x43) & 0x08)
  419. break;
  420. }
  421. if (time_after(jiffies, timeout)) {
  422. goto timeout;
  423. }
  424. msleep(20);
  425. /* wait for equaliser partial convergence */
  426. timeout = jiffies + msecs_to_jiffies(500);
  427. while (time_before(jiffies, timeout)) {
  428. msleep(10);
  429. if (stv0297_readreg(state, 0x82) & 0x04) {
  430. break;
  431. }
  432. }
  433. if (time_after(jiffies, timeout)) {
  434. goto timeout;
  435. }
  436. /* wait for equaliser full convergence */
  437. timeout = jiffies + msecs_to_jiffies(delay);
  438. while (time_before(jiffies, timeout)) {
  439. msleep(10);
  440. if (stv0297_readreg(state, 0x82) & 0x08) {
  441. break;
  442. }
  443. }
  444. if (time_after(jiffies, timeout)) {
  445. goto timeout;
  446. }
  447. /* disable sweep */
  448. stv0297_writereg_mask(state, 0x6a, 1, 0);
  449. stv0297_writereg_mask(state, 0x88, 8, 0);
  450. /* wait for main lock */
  451. timeout = jiffies + msecs_to_jiffies(20);
  452. while (time_before(jiffies, timeout)) {
  453. msleep(10);
  454. if (stv0297_readreg(state, 0xDF) & 0x80) {
  455. break;
  456. }
  457. }
  458. if (time_after(jiffies, timeout)) {
  459. goto timeout;
  460. }
  461. msleep(100);
  462. /* is it still locked after that delay? */
  463. if (!(stv0297_readreg(state, 0xDF) & 0x80)) {
  464. goto timeout;
  465. }
  466. /* success!! */
  467. stv0297_writereg_mask(state, 0x5a, 0x40, 0x00);
  468. state->base_freq = p->frequency;
  469. return 0;
  470. timeout:
  471. stv0297_writereg_mask(state, 0x6a, 0x01, 0x00);
  472. return 0;
  473. }
  474. static int stv0297_get_frontend(struct dvb_frontend *fe, struct dvb_frontend_parameters *p)
  475. {
  476. struct stv0297_state *state = fe->demodulator_priv;
  477. int reg_00, reg_83;
  478. reg_00 = stv0297_readreg(state, 0x00);
  479. reg_83 = stv0297_readreg(state, 0x83);
  480. p->frequency = state->base_freq;
  481. p->inversion = (reg_83 & 0x08) ? INVERSION_ON : INVERSION_OFF;
  482. if (state->config->invert)
  483. p->inversion = (p->inversion == INVERSION_ON) ? INVERSION_OFF : INVERSION_ON;
  484. p->u.qam.symbol_rate = stv0297_get_symbolrate(state) * 1000;
  485. p->u.qam.fec_inner = FEC_NONE;
  486. switch ((reg_00 >> 4) & 0x7) {
  487. case 0:
  488. p->u.qam.modulation = QAM_16;
  489. break;
  490. case 1:
  491. p->u.qam.modulation = QAM_32;
  492. break;
  493. case 2:
  494. p->u.qam.modulation = QAM_128;
  495. break;
  496. case 3:
  497. p->u.qam.modulation = QAM_256;
  498. break;
  499. case 4:
  500. p->u.qam.modulation = QAM_64;
  501. break;
  502. }
  503. return 0;
  504. }
  505. static void stv0297_release(struct dvb_frontend *fe)
  506. {
  507. struct stv0297_state *state = fe->demodulator_priv;
  508. kfree(state);
  509. }
  510. static struct dvb_frontend_ops stv0297_ops;
  511. struct dvb_frontend *stv0297_attach(const struct stv0297_config *config,
  512. struct i2c_adapter *i2c)
  513. {
  514. struct stv0297_state *state = NULL;
  515. /* allocate memory for the internal state */
  516. state = kmalloc(sizeof(struct stv0297_state), GFP_KERNEL);
  517. if (state == NULL)
  518. goto error;
  519. /* setup the state */
  520. state->config = config;
  521. state->i2c = i2c;
  522. state->base_freq = 0;
  523. /* check if the demod is there */
  524. if ((stv0297_readreg(state, 0x80) & 0x70) != 0x20)
  525. goto error;
  526. /* create dvb_frontend */
  527. memcpy(&state->frontend.ops, &stv0297_ops, sizeof(struct dvb_frontend_ops));
  528. state->frontend.demodulator_priv = state;
  529. return &state->frontend;
  530. error:
  531. kfree(state);
  532. return NULL;
  533. }
  534. static struct dvb_frontend_ops stv0297_ops = {
  535. .info = {
  536. .name = "ST STV0297 DVB-C",
  537. .type = FE_QAM,
  538. .frequency_min = 64000000,
  539. .frequency_max = 1300000000,
  540. .frequency_stepsize = 62500,
  541. .symbol_rate_min = 870000,
  542. .symbol_rate_max = 11700000,
  543. .caps = FE_CAN_QAM_16 | FE_CAN_QAM_32 | FE_CAN_QAM_64 |
  544. FE_CAN_QAM_128 | FE_CAN_QAM_256 | FE_CAN_FEC_AUTO},
  545. .release = stv0297_release,
  546. .init = stv0297_init,
  547. .sleep = stv0297_sleep,
  548. .i2c_gate_ctrl = stv0297_i2c_gate_ctrl,
  549. .set_frontend = stv0297_set_frontend,
  550. .get_frontend = stv0297_get_frontend,
  551. .read_status = stv0297_read_status,
  552. .read_ber = stv0297_read_ber,
  553. .read_signal_strength = stv0297_read_signal_strength,
  554. .read_snr = stv0297_read_snr,
  555. .read_ucblocks = stv0297_read_ucblocks,
  556. };
  557. MODULE_DESCRIPTION("ST STV0297 DVB-C Demodulator driver");
  558. MODULE_AUTHOR("Dennis Noermann and Andrew de Quincey");
  559. MODULE_LICENSE("GPL");
  560. EXPORT_SYMBOL(stv0297_attach);