raid10.c 58 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175
  1. /*
  2. * raid10.c : Multiple Devices driver for Linux
  3. *
  4. * Copyright (C) 2000-2004 Neil Brown
  5. *
  6. * RAID-10 support for md.
  7. *
  8. * Base on code in raid1.c. See raid1.c for futher copyright information.
  9. *
  10. *
  11. * This program is free software; you can redistribute it and/or modify
  12. * it under the terms of the GNU General Public License as published by
  13. * the Free Software Foundation; either version 2, or (at your option)
  14. * any later version.
  15. *
  16. * You should have received a copy of the GNU General Public License
  17. * (for example /usr/src/linux/COPYING); if not, write to the Free
  18. * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  19. */
  20. #include "dm-bio-list.h"
  21. #include <linux/raid/raid10.h>
  22. #include <linux/raid/bitmap.h>
  23. /*
  24. * RAID10 provides a combination of RAID0 and RAID1 functionality.
  25. * The layout of data is defined by
  26. * chunk_size
  27. * raid_disks
  28. * near_copies (stored in low byte of layout)
  29. * far_copies (stored in second byte of layout)
  30. * far_offset (stored in bit 16 of layout )
  31. *
  32. * The data to be stored is divided into chunks using chunksize.
  33. * Each device is divided into far_copies sections.
  34. * In each section, chunks are laid out in a style similar to raid0, but
  35. * near_copies copies of each chunk is stored (each on a different drive).
  36. * The starting device for each section is offset near_copies from the starting
  37. * device of the previous section.
  38. * Thus they are (near_copies*far_copies) of each chunk, and each is on a different
  39. * drive.
  40. * near_copies and far_copies must be at least one, and their product is at most
  41. * raid_disks.
  42. *
  43. * If far_offset is true, then the far_copies are handled a bit differently.
  44. * The copies are still in different stripes, but instead of be very far apart
  45. * on disk, there are adjacent stripes.
  46. */
  47. /*
  48. * Number of guaranteed r10bios in case of extreme VM load:
  49. */
  50. #define NR_RAID10_BIOS 256
  51. static void unplug_slaves(mddev_t *mddev);
  52. static void allow_barrier(conf_t *conf);
  53. static void lower_barrier(conf_t *conf);
  54. static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
  55. {
  56. conf_t *conf = data;
  57. r10bio_t *r10_bio;
  58. int size = offsetof(struct r10bio_s, devs[conf->copies]);
  59. /* allocate a r10bio with room for raid_disks entries in the bios array */
  60. r10_bio = kzalloc(size, gfp_flags);
  61. if (!r10_bio)
  62. unplug_slaves(conf->mddev);
  63. return r10_bio;
  64. }
  65. static void r10bio_pool_free(void *r10_bio, void *data)
  66. {
  67. kfree(r10_bio);
  68. }
  69. #define RESYNC_BLOCK_SIZE (64*1024)
  70. //#define RESYNC_BLOCK_SIZE PAGE_SIZE
  71. #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
  72. #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
  73. #define RESYNC_WINDOW (2048*1024)
  74. /*
  75. * When performing a resync, we need to read and compare, so
  76. * we need as many pages are there are copies.
  77. * When performing a recovery, we need 2 bios, one for read,
  78. * one for write (we recover only one drive per r10buf)
  79. *
  80. */
  81. static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
  82. {
  83. conf_t *conf = data;
  84. struct page *page;
  85. r10bio_t *r10_bio;
  86. struct bio *bio;
  87. int i, j;
  88. int nalloc;
  89. r10_bio = r10bio_pool_alloc(gfp_flags, conf);
  90. if (!r10_bio) {
  91. unplug_slaves(conf->mddev);
  92. return NULL;
  93. }
  94. if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery))
  95. nalloc = conf->copies; /* resync */
  96. else
  97. nalloc = 2; /* recovery */
  98. /*
  99. * Allocate bios.
  100. */
  101. for (j = nalloc ; j-- ; ) {
  102. bio = bio_alloc(gfp_flags, RESYNC_PAGES);
  103. if (!bio)
  104. goto out_free_bio;
  105. r10_bio->devs[j].bio = bio;
  106. }
  107. /*
  108. * Allocate RESYNC_PAGES data pages and attach them
  109. * where needed.
  110. */
  111. for (j = 0 ; j < nalloc; j++) {
  112. bio = r10_bio->devs[j].bio;
  113. for (i = 0; i < RESYNC_PAGES; i++) {
  114. page = alloc_page(gfp_flags);
  115. if (unlikely(!page))
  116. goto out_free_pages;
  117. bio->bi_io_vec[i].bv_page = page;
  118. }
  119. }
  120. return r10_bio;
  121. out_free_pages:
  122. for ( ; i > 0 ; i--)
  123. safe_put_page(bio->bi_io_vec[i-1].bv_page);
  124. while (j--)
  125. for (i = 0; i < RESYNC_PAGES ; i++)
  126. safe_put_page(r10_bio->devs[j].bio->bi_io_vec[i].bv_page);
  127. j = -1;
  128. out_free_bio:
  129. while ( ++j < nalloc )
  130. bio_put(r10_bio->devs[j].bio);
  131. r10bio_pool_free(r10_bio, conf);
  132. return NULL;
  133. }
  134. static void r10buf_pool_free(void *__r10_bio, void *data)
  135. {
  136. int i;
  137. conf_t *conf = data;
  138. r10bio_t *r10bio = __r10_bio;
  139. int j;
  140. for (j=0; j < conf->copies; j++) {
  141. struct bio *bio = r10bio->devs[j].bio;
  142. if (bio) {
  143. for (i = 0; i < RESYNC_PAGES; i++) {
  144. safe_put_page(bio->bi_io_vec[i].bv_page);
  145. bio->bi_io_vec[i].bv_page = NULL;
  146. }
  147. bio_put(bio);
  148. }
  149. }
  150. r10bio_pool_free(r10bio, conf);
  151. }
  152. static void put_all_bios(conf_t *conf, r10bio_t *r10_bio)
  153. {
  154. int i;
  155. for (i = 0; i < conf->copies; i++) {
  156. struct bio **bio = & r10_bio->devs[i].bio;
  157. if (*bio && *bio != IO_BLOCKED)
  158. bio_put(*bio);
  159. *bio = NULL;
  160. }
  161. }
  162. static void free_r10bio(r10bio_t *r10_bio)
  163. {
  164. conf_t *conf = mddev_to_conf(r10_bio->mddev);
  165. /*
  166. * Wake up any possible resync thread that waits for the device
  167. * to go idle.
  168. */
  169. allow_barrier(conf);
  170. put_all_bios(conf, r10_bio);
  171. mempool_free(r10_bio, conf->r10bio_pool);
  172. }
  173. static void put_buf(r10bio_t *r10_bio)
  174. {
  175. conf_t *conf = mddev_to_conf(r10_bio->mddev);
  176. mempool_free(r10_bio, conf->r10buf_pool);
  177. lower_barrier(conf);
  178. }
  179. static void reschedule_retry(r10bio_t *r10_bio)
  180. {
  181. unsigned long flags;
  182. mddev_t *mddev = r10_bio->mddev;
  183. conf_t *conf = mddev_to_conf(mddev);
  184. spin_lock_irqsave(&conf->device_lock, flags);
  185. list_add(&r10_bio->retry_list, &conf->retry_list);
  186. conf->nr_queued ++;
  187. spin_unlock_irqrestore(&conf->device_lock, flags);
  188. md_wakeup_thread(mddev->thread);
  189. }
  190. /*
  191. * raid_end_bio_io() is called when we have finished servicing a mirrored
  192. * operation and are ready to return a success/failure code to the buffer
  193. * cache layer.
  194. */
  195. static void raid_end_bio_io(r10bio_t *r10_bio)
  196. {
  197. struct bio *bio = r10_bio->master_bio;
  198. bio_endio(bio, bio->bi_size,
  199. test_bit(R10BIO_Uptodate, &r10_bio->state) ? 0 : -EIO);
  200. free_r10bio(r10_bio);
  201. }
  202. /*
  203. * Update disk head position estimator based on IRQ completion info.
  204. */
  205. static inline void update_head_pos(int slot, r10bio_t *r10_bio)
  206. {
  207. conf_t *conf = mddev_to_conf(r10_bio->mddev);
  208. conf->mirrors[r10_bio->devs[slot].devnum].head_position =
  209. r10_bio->devs[slot].addr + (r10_bio->sectors);
  210. }
  211. static int raid10_end_read_request(struct bio *bio, unsigned int bytes_done, int error)
  212. {
  213. int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
  214. r10bio_t * r10_bio = (r10bio_t *)(bio->bi_private);
  215. int slot, dev;
  216. conf_t *conf = mddev_to_conf(r10_bio->mddev);
  217. if (bio->bi_size)
  218. return 1;
  219. slot = r10_bio->read_slot;
  220. dev = r10_bio->devs[slot].devnum;
  221. /*
  222. * this branch is our 'one mirror IO has finished' event handler:
  223. */
  224. update_head_pos(slot, r10_bio);
  225. if (uptodate) {
  226. /*
  227. * Set R10BIO_Uptodate in our master bio, so that
  228. * we will return a good error code to the higher
  229. * levels even if IO on some other mirrored buffer fails.
  230. *
  231. * The 'master' represents the composite IO operation to
  232. * user-side. So if something waits for IO, then it will
  233. * wait for the 'master' bio.
  234. */
  235. set_bit(R10BIO_Uptodate, &r10_bio->state);
  236. raid_end_bio_io(r10_bio);
  237. } else {
  238. /*
  239. * oops, read error:
  240. */
  241. char b[BDEVNAME_SIZE];
  242. if (printk_ratelimit())
  243. printk(KERN_ERR "raid10: %s: rescheduling sector %llu\n",
  244. bdevname(conf->mirrors[dev].rdev->bdev,b), (unsigned long long)r10_bio->sector);
  245. reschedule_retry(r10_bio);
  246. }
  247. rdev_dec_pending(conf->mirrors[dev].rdev, conf->mddev);
  248. return 0;
  249. }
  250. static int raid10_end_write_request(struct bio *bio, unsigned int bytes_done, int error)
  251. {
  252. int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
  253. r10bio_t * r10_bio = (r10bio_t *)(bio->bi_private);
  254. int slot, dev;
  255. conf_t *conf = mddev_to_conf(r10_bio->mddev);
  256. if (bio->bi_size)
  257. return 1;
  258. for (slot = 0; slot < conf->copies; slot++)
  259. if (r10_bio->devs[slot].bio == bio)
  260. break;
  261. dev = r10_bio->devs[slot].devnum;
  262. /*
  263. * this branch is our 'one mirror IO has finished' event handler:
  264. */
  265. if (!uptodate) {
  266. md_error(r10_bio->mddev, conf->mirrors[dev].rdev);
  267. /* an I/O failed, we can't clear the bitmap */
  268. set_bit(R10BIO_Degraded, &r10_bio->state);
  269. } else
  270. /*
  271. * Set R10BIO_Uptodate in our master bio, so that
  272. * we will return a good error code for to the higher
  273. * levels even if IO on some other mirrored buffer fails.
  274. *
  275. * The 'master' represents the composite IO operation to
  276. * user-side. So if something waits for IO, then it will
  277. * wait for the 'master' bio.
  278. */
  279. set_bit(R10BIO_Uptodate, &r10_bio->state);
  280. update_head_pos(slot, r10_bio);
  281. /*
  282. *
  283. * Let's see if all mirrored write operations have finished
  284. * already.
  285. */
  286. if (atomic_dec_and_test(&r10_bio->remaining)) {
  287. /* clear the bitmap if all writes complete successfully */
  288. bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
  289. r10_bio->sectors,
  290. !test_bit(R10BIO_Degraded, &r10_bio->state),
  291. 0);
  292. md_write_end(r10_bio->mddev);
  293. raid_end_bio_io(r10_bio);
  294. }
  295. rdev_dec_pending(conf->mirrors[dev].rdev, conf->mddev);
  296. return 0;
  297. }
  298. /*
  299. * RAID10 layout manager
  300. * Aswell as the chunksize and raid_disks count, there are two
  301. * parameters: near_copies and far_copies.
  302. * near_copies * far_copies must be <= raid_disks.
  303. * Normally one of these will be 1.
  304. * If both are 1, we get raid0.
  305. * If near_copies == raid_disks, we get raid1.
  306. *
  307. * Chunks are layed out in raid0 style with near_copies copies of the
  308. * first chunk, followed by near_copies copies of the next chunk and
  309. * so on.
  310. * If far_copies > 1, then after 1/far_copies of the array has been assigned
  311. * as described above, we start again with a device offset of near_copies.
  312. * So we effectively have another copy of the whole array further down all
  313. * the drives, but with blocks on different drives.
  314. * With this layout, and block is never stored twice on the one device.
  315. *
  316. * raid10_find_phys finds the sector offset of a given virtual sector
  317. * on each device that it is on.
  318. *
  319. * raid10_find_virt does the reverse mapping, from a device and a
  320. * sector offset to a virtual address
  321. */
  322. static void raid10_find_phys(conf_t *conf, r10bio_t *r10bio)
  323. {
  324. int n,f;
  325. sector_t sector;
  326. sector_t chunk;
  327. sector_t stripe;
  328. int dev;
  329. int slot = 0;
  330. /* now calculate first sector/dev */
  331. chunk = r10bio->sector >> conf->chunk_shift;
  332. sector = r10bio->sector & conf->chunk_mask;
  333. chunk *= conf->near_copies;
  334. stripe = chunk;
  335. dev = sector_div(stripe, conf->raid_disks);
  336. if (conf->far_offset)
  337. stripe *= conf->far_copies;
  338. sector += stripe << conf->chunk_shift;
  339. /* and calculate all the others */
  340. for (n=0; n < conf->near_copies; n++) {
  341. int d = dev;
  342. sector_t s = sector;
  343. r10bio->devs[slot].addr = sector;
  344. r10bio->devs[slot].devnum = d;
  345. slot++;
  346. for (f = 1; f < conf->far_copies; f++) {
  347. d += conf->near_copies;
  348. if (d >= conf->raid_disks)
  349. d -= conf->raid_disks;
  350. s += conf->stride;
  351. r10bio->devs[slot].devnum = d;
  352. r10bio->devs[slot].addr = s;
  353. slot++;
  354. }
  355. dev++;
  356. if (dev >= conf->raid_disks) {
  357. dev = 0;
  358. sector += (conf->chunk_mask + 1);
  359. }
  360. }
  361. BUG_ON(slot != conf->copies);
  362. }
  363. static sector_t raid10_find_virt(conf_t *conf, sector_t sector, int dev)
  364. {
  365. sector_t offset, chunk, vchunk;
  366. offset = sector & conf->chunk_mask;
  367. if (conf->far_offset) {
  368. int fc;
  369. chunk = sector >> conf->chunk_shift;
  370. fc = sector_div(chunk, conf->far_copies);
  371. dev -= fc * conf->near_copies;
  372. if (dev < 0)
  373. dev += conf->raid_disks;
  374. } else {
  375. while (sector > conf->stride) {
  376. sector -= conf->stride;
  377. if (dev < conf->near_copies)
  378. dev += conf->raid_disks - conf->near_copies;
  379. else
  380. dev -= conf->near_copies;
  381. }
  382. chunk = sector >> conf->chunk_shift;
  383. }
  384. vchunk = chunk * conf->raid_disks + dev;
  385. sector_div(vchunk, conf->near_copies);
  386. return (vchunk << conf->chunk_shift) + offset;
  387. }
  388. /**
  389. * raid10_mergeable_bvec -- tell bio layer if a two requests can be merged
  390. * @q: request queue
  391. * @bio: the buffer head that's been built up so far
  392. * @biovec: the request that could be merged to it.
  393. *
  394. * Return amount of bytes we can accept at this offset
  395. * If near_copies == raid_disk, there are no striping issues,
  396. * but in that case, the function isn't called at all.
  397. */
  398. static int raid10_mergeable_bvec(request_queue_t *q, struct bio *bio,
  399. struct bio_vec *bio_vec)
  400. {
  401. mddev_t *mddev = q->queuedata;
  402. sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
  403. int max;
  404. unsigned int chunk_sectors = mddev->chunk_size >> 9;
  405. unsigned int bio_sectors = bio->bi_size >> 9;
  406. max = (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
  407. if (max < 0) max = 0; /* bio_add cannot handle a negative return */
  408. if (max <= bio_vec->bv_len && bio_sectors == 0)
  409. return bio_vec->bv_len;
  410. else
  411. return max;
  412. }
  413. /*
  414. * This routine returns the disk from which the requested read should
  415. * be done. There is a per-array 'next expected sequential IO' sector
  416. * number - if this matches on the next IO then we use the last disk.
  417. * There is also a per-disk 'last know head position' sector that is
  418. * maintained from IRQ contexts, both the normal and the resync IO
  419. * completion handlers update this position correctly. If there is no
  420. * perfect sequential match then we pick the disk whose head is closest.
  421. *
  422. * If there are 2 mirrors in the same 2 devices, performance degrades
  423. * because position is mirror, not device based.
  424. *
  425. * The rdev for the device selected will have nr_pending incremented.
  426. */
  427. /*
  428. * FIXME: possibly should rethink readbalancing and do it differently
  429. * depending on near_copies / far_copies geometry.
  430. */
  431. static int read_balance(conf_t *conf, r10bio_t *r10_bio)
  432. {
  433. const unsigned long this_sector = r10_bio->sector;
  434. int disk, slot, nslot;
  435. const int sectors = r10_bio->sectors;
  436. sector_t new_distance, current_distance;
  437. mdk_rdev_t *rdev;
  438. raid10_find_phys(conf, r10_bio);
  439. rcu_read_lock();
  440. /*
  441. * Check if we can balance. We can balance on the whole
  442. * device if no resync is going on (recovery is ok), or below
  443. * the resync window. We take the first readable disk when
  444. * above the resync window.
  445. */
  446. if (conf->mddev->recovery_cp < MaxSector
  447. && (this_sector + sectors >= conf->next_resync)) {
  448. /* make sure that disk is operational */
  449. slot = 0;
  450. disk = r10_bio->devs[slot].devnum;
  451. while ((rdev = rcu_dereference(conf->mirrors[disk].rdev)) == NULL ||
  452. r10_bio->devs[slot].bio == IO_BLOCKED ||
  453. !test_bit(In_sync, &rdev->flags)) {
  454. slot++;
  455. if (slot == conf->copies) {
  456. slot = 0;
  457. disk = -1;
  458. break;
  459. }
  460. disk = r10_bio->devs[slot].devnum;
  461. }
  462. goto rb_out;
  463. }
  464. /* make sure the disk is operational */
  465. slot = 0;
  466. disk = r10_bio->devs[slot].devnum;
  467. while ((rdev=rcu_dereference(conf->mirrors[disk].rdev)) == NULL ||
  468. r10_bio->devs[slot].bio == IO_BLOCKED ||
  469. !test_bit(In_sync, &rdev->flags)) {
  470. slot ++;
  471. if (slot == conf->copies) {
  472. disk = -1;
  473. goto rb_out;
  474. }
  475. disk = r10_bio->devs[slot].devnum;
  476. }
  477. current_distance = abs(r10_bio->devs[slot].addr -
  478. conf->mirrors[disk].head_position);
  479. /* Find the disk whose head is closest */
  480. for (nslot = slot; nslot < conf->copies; nslot++) {
  481. int ndisk = r10_bio->devs[nslot].devnum;
  482. if ((rdev=rcu_dereference(conf->mirrors[ndisk].rdev)) == NULL ||
  483. r10_bio->devs[nslot].bio == IO_BLOCKED ||
  484. !test_bit(In_sync, &rdev->flags))
  485. continue;
  486. /* This optimisation is debatable, and completely destroys
  487. * sequential read speed for 'far copies' arrays. So only
  488. * keep it for 'near' arrays, and review those later.
  489. */
  490. if (conf->near_copies > 1 && !atomic_read(&rdev->nr_pending)) {
  491. disk = ndisk;
  492. slot = nslot;
  493. break;
  494. }
  495. new_distance = abs(r10_bio->devs[nslot].addr -
  496. conf->mirrors[ndisk].head_position);
  497. if (new_distance < current_distance) {
  498. current_distance = new_distance;
  499. disk = ndisk;
  500. slot = nslot;
  501. }
  502. }
  503. rb_out:
  504. r10_bio->read_slot = slot;
  505. /* conf->next_seq_sect = this_sector + sectors;*/
  506. if (disk >= 0 && (rdev=rcu_dereference(conf->mirrors[disk].rdev))!= NULL)
  507. atomic_inc(&conf->mirrors[disk].rdev->nr_pending);
  508. else
  509. disk = -1;
  510. rcu_read_unlock();
  511. return disk;
  512. }
  513. static void unplug_slaves(mddev_t *mddev)
  514. {
  515. conf_t *conf = mddev_to_conf(mddev);
  516. int i;
  517. rcu_read_lock();
  518. for (i=0; i<mddev->raid_disks; i++) {
  519. mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
  520. if (rdev && !test_bit(Faulty, &rdev->flags) && atomic_read(&rdev->nr_pending)) {
  521. request_queue_t *r_queue = bdev_get_queue(rdev->bdev);
  522. atomic_inc(&rdev->nr_pending);
  523. rcu_read_unlock();
  524. if (r_queue->unplug_fn)
  525. r_queue->unplug_fn(r_queue);
  526. rdev_dec_pending(rdev, mddev);
  527. rcu_read_lock();
  528. }
  529. }
  530. rcu_read_unlock();
  531. }
  532. static void raid10_unplug(request_queue_t *q)
  533. {
  534. mddev_t *mddev = q->queuedata;
  535. unplug_slaves(q->queuedata);
  536. md_wakeup_thread(mddev->thread);
  537. }
  538. static int raid10_issue_flush(request_queue_t *q, struct gendisk *disk,
  539. sector_t *error_sector)
  540. {
  541. mddev_t *mddev = q->queuedata;
  542. conf_t *conf = mddev_to_conf(mddev);
  543. int i, ret = 0;
  544. rcu_read_lock();
  545. for (i=0; i<mddev->raid_disks && ret == 0; i++) {
  546. mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
  547. if (rdev && !test_bit(Faulty, &rdev->flags)) {
  548. struct block_device *bdev = rdev->bdev;
  549. request_queue_t *r_queue = bdev_get_queue(bdev);
  550. if (!r_queue->issue_flush_fn)
  551. ret = -EOPNOTSUPP;
  552. else {
  553. atomic_inc(&rdev->nr_pending);
  554. rcu_read_unlock();
  555. ret = r_queue->issue_flush_fn(r_queue, bdev->bd_disk,
  556. error_sector);
  557. rdev_dec_pending(rdev, mddev);
  558. rcu_read_lock();
  559. }
  560. }
  561. }
  562. rcu_read_unlock();
  563. return ret;
  564. }
  565. /* Barriers....
  566. * Sometimes we need to suspend IO while we do something else,
  567. * either some resync/recovery, or reconfigure the array.
  568. * To do this we raise a 'barrier'.
  569. * The 'barrier' is a counter that can be raised multiple times
  570. * to count how many activities are happening which preclude
  571. * normal IO.
  572. * We can only raise the barrier if there is no pending IO.
  573. * i.e. if nr_pending == 0.
  574. * We choose only to raise the barrier if no-one is waiting for the
  575. * barrier to go down. This means that as soon as an IO request
  576. * is ready, no other operations which require a barrier will start
  577. * until the IO request has had a chance.
  578. *
  579. * So: regular IO calls 'wait_barrier'. When that returns there
  580. * is no backgroup IO happening, It must arrange to call
  581. * allow_barrier when it has finished its IO.
  582. * backgroup IO calls must call raise_barrier. Once that returns
  583. * there is no normal IO happeing. It must arrange to call
  584. * lower_barrier when the particular background IO completes.
  585. */
  586. #define RESYNC_DEPTH 32
  587. static void raise_barrier(conf_t *conf, int force)
  588. {
  589. BUG_ON(force && !conf->barrier);
  590. spin_lock_irq(&conf->resync_lock);
  591. /* Wait until no block IO is waiting (unless 'force') */
  592. wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting,
  593. conf->resync_lock,
  594. raid10_unplug(conf->mddev->queue));
  595. /* block any new IO from starting */
  596. conf->barrier++;
  597. /* No wait for all pending IO to complete */
  598. wait_event_lock_irq(conf->wait_barrier,
  599. !conf->nr_pending && conf->barrier < RESYNC_DEPTH,
  600. conf->resync_lock,
  601. raid10_unplug(conf->mddev->queue));
  602. spin_unlock_irq(&conf->resync_lock);
  603. }
  604. static void lower_barrier(conf_t *conf)
  605. {
  606. unsigned long flags;
  607. spin_lock_irqsave(&conf->resync_lock, flags);
  608. conf->barrier--;
  609. spin_unlock_irqrestore(&conf->resync_lock, flags);
  610. wake_up(&conf->wait_barrier);
  611. }
  612. static void wait_barrier(conf_t *conf)
  613. {
  614. spin_lock_irq(&conf->resync_lock);
  615. if (conf->barrier) {
  616. conf->nr_waiting++;
  617. wait_event_lock_irq(conf->wait_barrier, !conf->barrier,
  618. conf->resync_lock,
  619. raid10_unplug(conf->mddev->queue));
  620. conf->nr_waiting--;
  621. }
  622. conf->nr_pending++;
  623. spin_unlock_irq(&conf->resync_lock);
  624. }
  625. static void allow_barrier(conf_t *conf)
  626. {
  627. unsigned long flags;
  628. spin_lock_irqsave(&conf->resync_lock, flags);
  629. conf->nr_pending--;
  630. spin_unlock_irqrestore(&conf->resync_lock, flags);
  631. wake_up(&conf->wait_barrier);
  632. }
  633. static void freeze_array(conf_t *conf)
  634. {
  635. /* stop syncio and normal IO and wait for everything to
  636. * go quiet.
  637. * We increment barrier and nr_waiting, and then
  638. * wait until barrier+nr_pending match nr_queued+2
  639. */
  640. spin_lock_irq(&conf->resync_lock);
  641. conf->barrier++;
  642. conf->nr_waiting++;
  643. wait_event_lock_irq(conf->wait_barrier,
  644. conf->barrier+conf->nr_pending == conf->nr_queued+2,
  645. conf->resync_lock,
  646. raid10_unplug(conf->mddev->queue));
  647. spin_unlock_irq(&conf->resync_lock);
  648. }
  649. static void unfreeze_array(conf_t *conf)
  650. {
  651. /* reverse the effect of the freeze */
  652. spin_lock_irq(&conf->resync_lock);
  653. conf->barrier--;
  654. conf->nr_waiting--;
  655. wake_up(&conf->wait_barrier);
  656. spin_unlock_irq(&conf->resync_lock);
  657. }
  658. static int make_request(request_queue_t *q, struct bio * bio)
  659. {
  660. mddev_t *mddev = q->queuedata;
  661. conf_t *conf = mddev_to_conf(mddev);
  662. mirror_info_t *mirror;
  663. r10bio_t *r10_bio;
  664. struct bio *read_bio;
  665. int i;
  666. int chunk_sects = conf->chunk_mask + 1;
  667. const int rw = bio_data_dir(bio);
  668. struct bio_list bl;
  669. unsigned long flags;
  670. if (unlikely(bio_barrier(bio))) {
  671. bio_endio(bio, bio->bi_size, -EOPNOTSUPP);
  672. return 0;
  673. }
  674. /* If this request crosses a chunk boundary, we need to
  675. * split it. This will only happen for 1 PAGE (or less) requests.
  676. */
  677. if (unlikely( (bio->bi_sector & conf->chunk_mask) + (bio->bi_size >> 9)
  678. > chunk_sects &&
  679. conf->near_copies < conf->raid_disks)) {
  680. struct bio_pair *bp;
  681. /* Sanity check -- queue functions should prevent this happening */
  682. if (bio->bi_vcnt != 1 ||
  683. bio->bi_idx != 0)
  684. goto bad_map;
  685. /* This is a one page bio that upper layers
  686. * refuse to split for us, so we need to split it.
  687. */
  688. bp = bio_split(bio, bio_split_pool,
  689. chunk_sects - (bio->bi_sector & (chunk_sects - 1)) );
  690. if (make_request(q, &bp->bio1))
  691. generic_make_request(&bp->bio1);
  692. if (make_request(q, &bp->bio2))
  693. generic_make_request(&bp->bio2);
  694. bio_pair_release(bp);
  695. return 0;
  696. bad_map:
  697. printk("raid10_make_request bug: can't convert block across chunks"
  698. " or bigger than %dk %llu %d\n", chunk_sects/2,
  699. (unsigned long long)bio->bi_sector, bio->bi_size >> 10);
  700. bio_io_error(bio, bio->bi_size);
  701. return 0;
  702. }
  703. md_write_start(mddev, bio);
  704. /*
  705. * Register the new request and wait if the reconstruction
  706. * thread has put up a bar for new requests.
  707. * Continue immediately if no resync is active currently.
  708. */
  709. wait_barrier(conf);
  710. disk_stat_inc(mddev->gendisk, ios[rw]);
  711. disk_stat_add(mddev->gendisk, sectors[rw], bio_sectors(bio));
  712. r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
  713. r10_bio->master_bio = bio;
  714. r10_bio->sectors = bio->bi_size >> 9;
  715. r10_bio->mddev = mddev;
  716. r10_bio->sector = bio->bi_sector;
  717. r10_bio->state = 0;
  718. if (rw == READ) {
  719. /*
  720. * read balancing logic:
  721. */
  722. int disk = read_balance(conf, r10_bio);
  723. int slot = r10_bio->read_slot;
  724. if (disk < 0) {
  725. raid_end_bio_io(r10_bio);
  726. return 0;
  727. }
  728. mirror = conf->mirrors + disk;
  729. read_bio = bio_clone(bio, GFP_NOIO);
  730. r10_bio->devs[slot].bio = read_bio;
  731. read_bio->bi_sector = r10_bio->devs[slot].addr +
  732. mirror->rdev->data_offset;
  733. read_bio->bi_bdev = mirror->rdev->bdev;
  734. read_bio->bi_end_io = raid10_end_read_request;
  735. read_bio->bi_rw = READ;
  736. read_bio->bi_private = r10_bio;
  737. generic_make_request(read_bio);
  738. return 0;
  739. }
  740. /*
  741. * WRITE:
  742. */
  743. /* first select target devices under spinlock and
  744. * inc refcount on their rdev. Record them by setting
  745. * bios[x] to bio
  746. */
  747. raid10_find_phys(conf, r10_bio);
  748. rcu_read_lock();
  749. for (i = 0; i < conf->copies; i++) {
  750. int d = r10_bio->devs[i].devnum;
  751. mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[d].rdev);
  752. if (rdev &&
  753. !test_bit(Faulty, &rdev->flags)) {
  754. atomic_inc(&rdev->nr_pending);
  755. r10_bio->devs[i].bio = bio;
  756. } else {
  757. r10_bio->devs[i].bio = NULL;
  758. set_bit(R10BIO_Degraded, &r10_bio->state);
  759. }
  760. }
  761. rcu_read_unlock();
  762. atomic_set(&r10_bio->remaining, 0);
  763. bio_list_init(&bl);
  764. for (i = 0; i < conf->copies; i++) {
  765. struct bio *mbio;
  766. int d = r10_bio->devs[i].devnum;
  767. if (!r10_bio->devs[i].bio)
  768. continue;
  769. mbio = bio_clone(bio, GFP_NOIO);
  770. r10_bio->devs[i].bio = mbio;
  771. mbio->bi_sector = r10_bio->devs[i].addr+
  772. conf->mirrors[d].rdev->data_offset;
  773. mbio->bi_bdev = conf->mirrors[d].rdev->bdev;
  774. mbio->bi_end_io = raid10_end_write_request;
  775. mbio->bi_rw = WRITE;
  776. mbio->bi_private = r10_bio;
  777. atomic_inc(&r10_bio->remaining);
  778. bio_list_add(&bl, mbio);
  779. }
  780. bitmap_startwrite(mddev->bitmap, bio->bi_sector, r10_bio->sectors, 0);
  781. spin_lock_irqsave(&conf->device_lock, flags);
  782. bio_list_merge(&conf->pending_bio_list, &bl);
  783. blk_plug_device(mddev->queue);
  784. spin_unlock_irqrestore(&conf->device_lock, flags);
  785. return 0;
  786. }
  787. static void status(struct seq_file *seq, mddev_t *mddev)
  788. {
  789. conf_t *conf = mddev_to_conf(mddev);
  790. int i;
  791. if (conf->near_copies < conf->raid_disks)
  792. seq_printf(seq, " %dK chunks", mddev->chunk_size/1024);
  793. if (conf->near_copies > 1)
  794. seq_printf(seq, " %d near-copies", conf->near_copies);
  795. if (conf->far_copies > 1) {
  796. if (conf->far_offset)
  797. seq_printf(seq, " %d offset-copies", conf->far_copies);
  798. else
  799. seq_printf(seq, " %d far-copies", conf->far_copies);
  800. }
  801. seq_printf(seq, " [%d/%d] [", conf->raid_disks,
  802. conf->working_disks);
  803. for (i = 0; i < conf->raid_disks; i++)
  804. seq_printf(seq, "%s",
  805. conf->mirrors[i].rdev &&
  806. test_bit(In_sync, &conf->mirrors[i].rdev->flags) ? "U" : "_");
  807. seq_printf(seq, "]");
  808. }
  809. static void error(mddev_t *mddev, mdk_rdev_t *rdev)
  810. {
  811. char b[BDEVNAME_SIZE];
  812. conf_t *conf = mddev_to_conf(mddev);
  813. /*
  814. * If it is not operational, then we have already marked it as dead
  815. * else if it is the last working disks, ignore the error, let the
  816. * next level up know.
  817. * else mark the drive as failed
  818. */
  819. if (test_bit(In_sync, &rdev->flags)
  820. && conf->working_disks == 1)
  821. /*
  822. * Don't fail the drive, just return an IO error.
  823. * The test should really be more sophisticated than
  824. * "working_disks == 1", but it isn't critical, and
  825. * can wait until we do more sophisticated "is the drive
  826. * really dead" tests...
  827. */
  828. return;
  829. if (test_bit(In_sync, &rdev->flags)) {
  830. mddev->degraded++;
  831. conf->working_disks--;
  832. /*
  833. * if recovery is running, make sure it aborts.
  834. */
  835. set_bit(MD_RECOVERY_ERR, &mddev->recovery);
  836. }
  837. clear_bit(In_sync, &rdev->flags);
  838. set_bit(Faulty, &rdev->flags);
  839. mddev->sb_dirty = 1;
  840. printk(KERN_ALERT "raid10: Disk failure on %s, disabling device. \n"
  841. " Operation continuing on %d devices\n",
  842. bdevname(rdev->bdev,b), conf->working_disks);
  843. }
  844. static void print_conf(conf_t *conf)
  845. {
  846. int i;
  847. mirror_info_t *tmp;
  848. printk("RAID10 conf printout:\n");
  849. if (!conf) {
  850. printk("(!conf)\n");
  851. return;
  852. }
  853. printk(" --- wd:%d rd:%d\n", conf->working_disks,
  854. conf->raid_disks);
  855. for (i = 0; i < conf->raid_disks; i++) {
  856. char b[BDEVNAME_SIZE];
  857. tmp = conf->mirrors + i;
  858. if (tmp->rdev)
  859. printk(" disk %d, wo:%d, o:%d, dev:%s\n",
  860. i, !test_bit(In_sync, &tmp->rdev->flags),
  861. !test_bit(Faulty, &tmp->rdev->flags),
  862. bdevname(tmp->rdev->bdev,b));
  863. }
  864. }
  865. static void close_sync(conf_t *conf)
  866. {
  867. wait_barrier(conf);
  868. allow_barrier(conf);
  869. mempool_destroy(conf->r10buf_pool);
  870. conf->r10buf_pool = NULL;
  871. }
  872. /* check if there are enough drives for
  873. * every block to appear on atleast one
  874. */
  875. static int enough(conf_t *conf)
  876. {
  877. int first = 0;
  878. do {
  879. int n = conf->copies;
  880. int cnt = 0;
  881. while (n--) {
  882. if (conf->mirrors[first].rdev)
  883. cnt++;
  884. first = (first+1) % conf->raid_disks;
  885. }
  886. if (cnt == 0)
  887. return 0;
  888. } while (first != 0);
  889. return 1;
  890. }
  891. static int raid10_spare_active(mddev_t *mddev)
  892. {
  893. int i;
  894. conf_t *conf = mddev->private;
  895. mirror_info_t *tmp;
  896. /*
  897. * Find all non-in_sync disks within the RAID10 configuration
  898. * and mark them in_sync
  899. */
  900. for (i = 0; i < conf->raid_disks; i++) {
  901. tmp = conf->mirrors + i;
  902. if (tmp->rdev
  903. && !test_bit(Faulty, &tmp->rdev->flags)
  904. && !test_bit(In_sync, &tmp->rdev->flags)) {
  905. conf->working_disks++;
  906. mddev->degraded--;
  907. set_bit(In_sync, &tmp->rdev->flags);
  908. }
  909. }
  910. print_conf(conf);
  911. return 0;
  912. }
  913. static int raid10_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
  914. {
  915. conf_t *conf = mddev->private;
  916. int found = 0;
  917. int mirror;
  918. mirror_info_t *p;
  919. if (mddev->recovery_cp < MaxSector)
  920. /* only hot-add to in-sync arrays, as recovery is
  921. * very different from resync
  922. */
  923. return 0;
  924. if (!enough(conf))
  925. return 0;
  926. if (rdev->saved_raid_disk >= 0 &&
  927. conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
  928. mirror = rdev->saved_raid_disk;
  929. else
  930. mirror = 0;
  931. for ( ; mirror < mddev->raid_disks; mirror++)
  932. if ( !(p=conf->mirrors+mirror)->rdev) {
  933. blk_queue_stack_limits(mddev->queue,
  934. rdev->bdev->bd_disk->queue);
  935. /* as we don't honour merge_bvec_fn, we must never risk
  936. * violating it, so limit ->max_sector to one PAGE, as
  937. * a one page request is never in violation.
  938. */
  939. if (rdev->bdev->bd_disk->queue->merge_bvec_fn &&
  940. mddev->queue->max_sectors > (PAGE_SIZE>>9))
  941. mddev->queue->max_sectors = (PAGE_SIZE>>9);
  942. p->head_position = 0;
  943. rdev->raid_disk = mirror;
  944. found = 1;
  945. if (rdev->saved_raid_disk != mirror)
  946. conf->fullsync = 1;
  947. rcu_assign_pointer(p->rdev, rdev);
  948. break;
  949. }
  950. print_conf(conf);
  951. return found;
  952. }
  953. static int raid10_remove_disk(mddev_t *mddev, int number)
  954. {
  955. conf_t *conf = mddev->private;
  956. int err = 0;
  957. mdk_rdev_t *rdev;
  958. mirror_info_t *p = conf->mirrors+ number;
  959. print_conf(conf);
  960. rdev = p->rdev;
  961. if (rdev) {
  962. if (test_bit(In_sync, &rdev->flags) ||
  963. atomic_read(&rdev->nr_pending)) {
  964. err = -EBUSY;
  965. goto abort;
  966. }
  967. p->rdev = NULL;
  968. synchronize_rcu();
  969. if (atomic_read(&rdev->nr_pending)) {
  970. /* lost the race, try later */
  971. err = -EBUSY;
  972. p->rdev = rdev;
  973. }
  974. }
  975. abort:
  976. print_conf(conf);
  977. return err;
  978. }
  979. static int end_sync_read(struct bio *bio, unsigned int bytes_done, int error)
  980. {
  981. r10bio_t * r10_bio = (r10bio_t *)(bio->bi_private);
  982. conf_t *conf = mddev_to_conf(r10_bio->mddev);
  983. int i,d;
  984. if (bio->bi_size)
  985. return 1;
  986. for (i=0; i<conf->copies; i++)
  987. if (r10_bio->devs[i].bio == bio)
  988. break;
  989. BUG_ON(i == conf->copies);
  990. update_head_pos(i, r10_bio);
  991. d = r10_bio->devs[i].devnum;
  992. if (test_bit(BIO_UPTODATE, &bio->bi_flags))
  993. set_bit(R10BIO_Uptodate, &r10_bio->state);
  994. else {
  995. atomic_add(r10_bio->sectors,
  996. &conf->mirrors[d].rdev->corrected_errors);
  997. if (!test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery))
  998. md_error(r10_bio->mddev,
  999. conf->mirrors[d].rdev);
  1000. }
  1001. /* for reconstruct, we always reschedule after a read.
  1002. * for resync, only after all reads
  1003. */
  1004. if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
  1005. atomic_dec_and_test(&r10_bio->remaining)) {
  1006. /* we have read all the blocks,
  1007. * do the comparison in process context in raid10d
  1008. */
  1009. reschedule_retry(r10_bio);
  1010. }
  1011. rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
  1012. return 0;
  1013. }
  1014. static int end_sync_write(struct bio *bio, unsigned int bytes_done, int error)
  1015. {
  1016. int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
  1017. r10bio_t * r10_bio = (r10bio_t *)(bio->bi_private);
  1018. mddev_t *mddev = r10_bio->mddev;
  1019. conf_t *conf = mddev_to_conf(mddev);
  1020. int i,d;
  1021. if (bio->bi_size)
  1022. return 1;
  1023. for (i = 0; i < conf->copies; i++)
  1024. if (r10_bio->devs[i].bio == bio)
  1025. break;
  1026. d = r10_bio->devs[i].devnum;
  1027. if (!uptodate)
  1028. md_error(mddev, conf->mirrors[d].rdev);
  1029. update_head_pos(i, r10_bio);
  1030. while (atomic_dec_and_test(&r10_bio->remaining)) {
  1031. if (r10_bio->master_bio == NULL) {
  1032. /* the primary of several recovery bios */
  1033. md_done_sync(mddev, r10_bio->sectors, 1);
  1034. put_buf(r10_bio);
  1035. break;
  1036. } else {
  1037. r10bio_t *r10_bio2 = (r10bio_t *)r10_bio->master_bio;
  1038. put_buf(r10_bio);
  1039. r10_bio = r10_bio2;
  1040. }
  1041. }
  1042. rdev_dec_pending(conf->mirrors[d].rdev, mddev);
  1043. return 0;
  1044. }
  1045. /*
  1046. * Note: sync and recover and handled very differently for raid10
  1047. * This code is for resync.
  1048. * For resync, we read through virtual addresses and read all blocks.
  1049. * If there is any error, we schedule a write. The lowest numbered
  1050. * drive is authoritative.
  1051. * However requests come for physical address, so we need to map.
  1052. * For every physical address there are raid_disks/copies virtual addresses,
  1053. * which is always are least one, but is not necessarly an integer.
  1054. * This means that a physical address can span multiple chunks, so we may
  1055. * have to submit multiple io requests for a single sync request.
  1056. */
  1057. /*
  1058. * We check if all blocks are in-sync and only write to blocks that
  1059. * aren't in sync
  1060. */
  1061. static void sync_request_write(mddev_t *mddev, r10bio_t *r10_bio)
  1062. {
  1063. conf_t *conf = mddev_to_conf(mddev);
  1064. int i, first;
  1065. struct bio *tbio, *fbio;
  1066. atomic_set(&r10_bio->remaining, 1);
  1067. /* find the first device with a block */
  1068. for (i=0; i<conf->copies; i++)
  1069. if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags))
  1070. break;
  1071. if (i == conf->copies)
  1072. goto done;
  1073. first = i;
  1074. fbio = r10_bio->devs[i].bio;
  1075. /* now find blocks with errors */
  1076. for (i=0 ; i < conf->copies ; i++) {
  1077. int j, d;
  1078. int vcnt = r10_bio->sectors >> (PAGE_SHIFT-9);
  1079. tbio = r10_bio->devs[i].bio;
  1080. if (tbio->bi_end_io != end_sync_read)
  1081. continue;
  1082. if (i == first)
  1083. continue;
  1084. if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags)) {
  1085. /* We know that the bi_io_vec layout is the same for
  1086. * both 'first' and 'i', so we just compare them.
  1087. * All vec entries are PAGE_SIZE;
  1088. */
  1089. for (j = 0; j < vcnt; j++)
  1090. if (memcmp(page_address(fbio->bi_io_vec[j].bv_page),
  1091. page_address(tbio->bi_io_vec[j].bv_page),
  1092. PAGE_SIZE))
  1093. break;
  1094. if (j == vcnt)
  1095. continue;
  1096. mddev->resync_mismatches += r10_bio->sectors;
  1097. }
  1098. if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
  1099. /* Don't fix anything. */
  1100. continue;
  1101. /* Ok, we need to write this bio
  1102. * First we need to fixup bv_offset, bv_len and
  1103. * bi_vecs, as the read request might have corrupted these
  1104. */
  1105. tbio->bi_vcnt = vcnt;
  1106. tbio->bi_size = r10_bio->sectors << 9;
  1107. tbio->bi_idx = 0;
  1108. tbio->bi_phys_segments = 0;
  1109. tbio->bi_hw_segments = 0;
  1110. tbio->bi_hw_front_size = 0;
  1111. tbio->bi_hw_back_size = 0;
  1112. tbio->bi_flags &= ~(BIO_POOL_MASK - 1);
  1113. tbio->bi_flags |= 1 << BIO_UPTODATE;
  1114. tbio->bi_next = NULL;
  1115. tbio->bi_rw = WRITE;
  1116. tbio->bi_private = r10_bio;
  1117. tbio->bi_sector = r10_bio->devs[i].addr;
  1118. for (j=0; j < vcnt ; j++) {
  1119. tbio->bi_io_vec[j].bv_offset = 0;
  1120. tbio->bi_io_vec[j].bv_len = PAGE_SIZE;
  1121. memcpy(page_address(tbio->bi_io_vec[j].bv_page),
  1122. page_address(fbio->bi_io_vec[j].bv_page),
  1123. PAGE_SIZE);
  1124. }
  1125. tbio->bi_end_io = end_sync_write;
  1126. d = r10_bio->devs[i].devnum;
  1127. atomic_inc(&conf->mirrors[d].rdev->nr_pending);
  1128. atomic_inc(&r10_bio->remaining);
  1129. md_sync_acct(conf->mirrors[d].rdev->bdev, tbio->bi_size >> 9);
  1130. tbio->bi_sector += conf->mirrors[d].rdev->data_offset;
  1131. tbio->bi_bdev = conf->mirrors[d].rdev->bdev;
  1132. generic_make_request(tbio);
  1133. }
  1134. done:
  1135. if (atomic_dec_and_test(&r10_bio->remaining)) {
  1136. md_done_sync(mddev, r10_bio->sectors, 1);
  1137. put_buf(r10_bio);
  1138. }
  1139. }
  1140. /*
  1141. * Now for the recovery code.
  1142. * Recovery happens across physical sectors.
  1143. * We recover all non-is_sync drives by finding the virtual address of
  1144. * each, and then choose a working drive that also has that virt address.
  1145. * There is a separate r10_bio for each non-in_sync drive.
  1146. * Only the first two slots are in use. The first for reading,
  1147. * The second for writing.
  1148. *
  1149. */
  1150. static void recovery_request_write(mddev_t *mddev, r10bio_t *r10_bio)
  1151. {
  1152. conf_t *conf = mddev_to_conf(mddev);
  1153. int i, d;
  1154. struct bio *bio, *wbio;
  1155. /* move the pages across to the second bio
  1156. * and submit the write request
  1157. */
  1158. bio = r10_bio->devs[0].bio;
  1159. wbio = r10_bio->devs[1].bio;
  1160. for (i=0; i < wbio->bi_vcnt; i++) {
  1161. struct page *p = bio->bi_io_vec[i].bv_page;
  1162. bio->bi_io_vec[i].bv_page = wbio->bi_io_vec[i].bv_page;
  1163. wbio->bi_io_vec[i].bv_page = p;
  1164. }
  1165. d = r10_bio->devs[1].devnum;
  1166. atomic_inc(&conf->mirrors[d].rdev->nr_pending);
  1167. md_sync_acct(conf->mirrors[d].rdev->bdev, wbio->bi_size >> 9);
  1168. if (test_bit(R10BIO_Uptodate, &r10_bio->state))
  1169. generic_make_request(wbio);
  1170. else
  1171. bio_endio(wbio, wbio->bi_size, -EIO);
  1172. }
  1173. /*
  1174. * This is a kernel thread which:
  1175. *
  1176. * 1. Retries failed read operations on working mirrors.
  1177. * 2. Updates the raid superblock when problems encounter.
  1178. * 3. Performs writes following reads for array syncronising.
  1179. */
  1180. static void raid10d(mddev_t *mddev)
  1181. {
  1182. r10bio_t *r10_bio;
  1183. struct bio *bio;
  1184. unsigned long flags;
  1185. conf_t *conf = mddev_to_conf(mddev);
  1186. struct list_head *head = &conf->retry_list;
  1187. int unplug=0;
  1188. mdk_rdev_t *rdev;
  1189. md_check_recovery(mddev);
  1190. for (;;) {
  1191. char b[BDEVNAME_SIZE];
  1192. spin_lock_irqsave(&conf->device_lock, flags);
  1193. if (conf->pending_bio_list.head) {
  1194. bio = bio_list_get(&conf->pending_bio_list);
  1195. blk_remove_plug(mddev->queue);
  1196. spin_unlock_irqrestore(&conf->device_lock, flags);
  1197. /* flush any pending bitmap writes to disk before proceeding w/ I/O */
  1198. if (bitmap_unplug(mddev->bitmap) != 0)
  1199. printk("%s: bitmap file write failed!\n", mdname(mddev));
  1200. while (bio) { /* submit pending writes */
  1201. struct bio *next = bio->bi_next;
  1202. bio->bi_next = NULL;
  1203. generic_make_request(bio);
  1204. bio = next;
  1205. }
  1206. unplug = 1;
  1207. continue;
  1208. }
  1209. if (list_empty(head))
  1210. break;
  1211. r10_bio = list_entry(head->prev, r10bio_t, retry_list);
  1212. list_del(head->prev);
  1213. conf->nr_queued--;
  1214. spin_unlock_irqrestore(&conf->device_lock, flags);
  1215. mddev = r10_bio->mddev;
  1216. conf = mddev_to_conf(mddev);
  1217. if (test_bit(R10BIO_IsSync, &r10_bio->state)) {
  1218. sync_request_write(mddev, r10_bio);
  1219. unplug = 1;
  1220. } else if (test_bit(R10BIO_IsRecover, &r10_bio->state)) {
  1221. recovery_request_write(mddev, r10_bio);
  1222. unplug = 1;
  1223. } else {
  1224. int mirror;
  1225. /* we got a read error. Maybe the drive is bad. Maybe just
  1226. * the block and we can fix it.
  1227. * We freeze all other IO, and try reading the block from
  1228. * other devices. When we find one, we re-write
  1229. * and check it that fixes the read error.
  1230. * This is all done synchronously while the array is
  1231. * frozen.
  1232. */
  1233. int sect = 0; /* Offset from r10_bio->sector */
  1234. int sectors = r10_bio->sectors;
  1235. freeze_array(conf);
  1236. if (mddev->ro == 0) while(sectors) {
  1237. int s = sectors;
  1238. int sl = r10_bio->read_slot;
  1239. int success = 0;
  1240. if (s > (PAGE_SIZE>>9))
  1241. s = PAGE_SIZE >> 9;
  1242. rcu_read_lock();
  1243. do {
  1244. int d = r10_bio->devs[sl].devnum;
  1245. rdev = rcu_dereference(conf->mirrors[d].rdev);
  1246. if (rdev &&
  1247. test_bit(In_sync, &rdev->flags)) {
  1248. atomic_inc(&rdev->nr_pending);
  1249. rcu_read_unlock();
  1250. success = sync_page_io(rdev->bdev,
  1251. r10_bio->devs[sl].addr +
  1252. sect + rdev->data_offset,
  1253. s<<9,
  1254. conf->tmppage, READ);
  1255. rdev_dec_pending(rdev, mddev);
  1256. rcu_read_lock();
  1257. if (success)
  1258. break;
  1259. }
  1260. sl++;
  1261. if (sl == conf->copies)
  1262. sl = 0;
  1263. } while (!success && sl != r10_bio->read_slot);
  1264. rcu_read_unlock();
  1265. if (success) {
  1266. int start = sl;
  1267. /* write it back and re-read */
  1268. rcu_read_lock();
  1269. while (sl != r10_bio->read_slot) {
  1270. int d;
  1271. if (sl==0)
  1272. sl = conf->copies;
  1273. sl--;
  1274. d = r10_bio->devs[sl].devnum;
  1275. rdev = rcu_dereference(conf->mirrors[d].rdev);
  1276. if (rdev &&
  1277. test_bit(In_sync, &rdev->flags)) {
  1278. atomic_inc(&rdev->nr_pending);
  1279. rcu_read_unlock();
  1280. atomic_add(s, &rdev->corrected_errors);
  1281. if (sync_page_io(rdev->bdev,
  1282. r10_bio->devs[sl].addr +
  1283. sect + rdev->data_offset,
  1284. s<<9, conf->tmppage, WRITE) == 0)
  1285. /* Well, this device is dead */
  1286. md_error(mddev, rdev);
  1287. rdev_dec_pending(rdev, mddev);
  1288. rcu_read_lock();
  1289. }
  1290. }
  1291. sl = start;
  1292. while (sl != r10_bio->read_slot) {
  1293. int d;
  1294. if (sl==0)
  1295. sl = conf->copies;
  1296. sl--;
  1297. d = r10_bio->devs[sl].devnum;
  1298. rdev = rcu_dereference(conf->mirrors[d].rdev);
  1299. if (rdev &&
  1300. test_bit(In_sync, &rdev->flags)) {
  1301. atomic_inc(&rdev->nr_pending);
  1302. rcu_read_unlock();
  1303. if (sync_page_io(rdev->bdev,
  1304. r10_bio->devs[sl].addr +
  1305. sect + rdev->data_offset,
  1306. s<<9, conf->tmppage, READ) == 0)
  1307. /* Well, this device is dead */
  1308. md_error(mddev, rdev);
  1309. else
  1310. printk(KERN_INFO "raid10:%s: read error corrected (%d sectors at %llu on %s)\n",
  1311. mdname(mddev), s, (unsigned long long)(sect+rdev->data_offset), bdevname(rdev->bdev, b));
  1312. rdev_dec_pending(rdev, mddev);
  1313. rcu_read_lock();
  1314. }
  1315. }
  1316. rcu_read_unlock();
  1317. } else {
  1318. /* Cannot read from anywhere -- bye bye array */
  1319. md_error(mddev, conf->mirrors[r10_bio->devs[r10_bio->read_slot].devnum].rdev);
  1320. break;
  1321. }
  1322. sectors -= s;
  1323. sect += s;
  1324. }
  1325. unfreeze_array(conf);
  1326. bio = r10_bio->devs[r10_bio->read_slot].bio;
  1327. r10_bio->devs[r10_bio->read_slot].bio =
  1328. mddev->ro ? IO_BLOCKED : NULL;
  1329. bio_put(bio);
  1330. mirror = read_balance(conf, r10_bio);
  1331. if (mirror == -1) {
  1332. printk(KERN_ALERT "raid10: %s: unrecoverable I/O"
  1333. " read error for block %llu\n",
  1334. bdevname(bio->bi_bdev,b),
  1335. (unsigned long long)r10_bio->sector);
  1336. raid_end_bio_io(r10_bio);
  1337. } else {
  1338. rdev = conf->mirrors[mirror].rdev;
  1339. if (printk_ratelimit())
  1340. printk(KERN_ERR "raid10: %s: redirecting sector %llu to"
  1341. " another mirror\n",
  1342. bdevname(rdev->bdev,b),
  1343. (unsigned long long)r10_bio->sector);
  1344. bio = bio_clone(r10_bio->master_bio, GFP_NOIO);
  1345. r10_bio->devs[r10_bio->read_slot].bio = bio;
  1346. bio->bi_sector = r10_bio->devs[r10_bio->read_slot].addr
  1347. + rdev->data_offset;
  1348. bio->bi_bdev = rdev->bdev;
  1349. bio->bi_rw = READ;
  1350. bio->bi_private = r10_bio;
  1351. bio->bi_end_io = raid10_end_read_request;
  1352. unplug = 1;
  1353. generic_make_request(bio);
  1354. }
  1355. }
  1356. }
  1357. spin_unlock_irqrestore(&conf->device_lock, flags);
  1358. if (unplug)
  1359. unplug_slaves(mddev);
  1360. }
  1361. static int init_resync(conf_t *conf)
  1362. {
  1363. int buffs;
  1364. buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
  1365. BUG_ON(conf->r10buf_pool);
  1366. conf->r10buf_pool = mempool_create(buffs, r10buf_pool_alloc, r10buf_pool_free, conf);
  1367. if (!conf->r10buf_pool)
  1368. return -ENOMEM;
  1369. conf->next_resync = 0;
  1370. return 0;
  1371. }
  1372. /*
  1373. * perform a "sync" on one "block"
  1374. *
  1375. * We need to make sure that no normal I/O request - particularly write
  1376. * requests - conflict with active sync requests.
  1377. *
  1378. * This is achieved by tracking pending requests and a 'barrier' concept
  1379. * that can be installed to exclude normal IO requests.
  1380. *
  1381. * Resync and recovery are handled very differently.
  1382. * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
  1383. *
  1384. * For resync, we iterate over virtual addresses, read all copies,
  1385. * and update if there are differences. If only one copy is live,
  1386. * skip it.
  1387. * For recovery, we iterate over physical addresses, read a good
  1388. * value for each non-in_sync drive, and over-write.
  1389. *
  1390. * So, for recovery we may have several outstanding complex requests for a
  1391. * given address, one for each out-of-sync device. We model this by allocating
  1392. * a number of r10_bio structures, one for each out-of-sync device.
  1393. * As we setup these structures, we collect all bio's together into a list
  1394. * which we then process collectively to add pages, and then process again
  1395. * to pass to generic_make_request.
  1396. *
  1397. * The r10_bio structures are linked using a borrowed master_bio pointer.
  1398. * This link is counted in ->remaining. When the r10_bio that points to NULL
  1399. * has its remaining count decremented to 0, the whole complex operation
  1400. * is complete.
  1401. *
  1402. */
  1403. static sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
  1404. {
  1405. conf_t *conf = mddev_to_conf(mddev);
  1406. r10bio_t *r10_bio;
  1407. struct bio *biolist = NULL, *bio;
  1408. sector_t max_sector, nr_sectors;
  1409. int disk;
  1410. int i;
  1411. int max_sync;
  1412. int sync_blocks;
  1413. sector_t sectors_skipped = 0;
  1414. int chunks_skipped = 0;
  1415. if (!conf->r10buf_pool)
  1416. if (init_resync(conf))
  1417. return 0;
  1418. skipped:
  1419. max_sector = mddev->size << 1;
  1420. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
  1421. max_sector = mddev->resync_max_sectors;
  1422. if (sector_nr >= max_sector) {
  1423. /* If we aborted, we need to abort the
  1424. * sync on the 'current' bitmap chucks (there can
  1425. * be several when recovering multiple devices).
  1426. * as we may have started syncing it but not finished.
  1427. * We can find the current address in
  1428. * mddev->curr_resync, but for recovery,
  1429. * we need to convert that to several
  1430. * virtual addresses.
  1431. */
  1432. if (mddev->curr_resync < max_sector) { /* aborted */
  1433. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
  1434. bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
  1435. &sync_blocks, 1);
  1436. else for (i=0; i<conf->raid_disks; i++) {
  1437. sector_t sect =
  1438. raid10_find_virt(conf, mddev->curr_resync, i);
  1439. bitmap_end_sync(mddev->bitmap, sect,
  1440. &sync_blocks, 1);
  1441. }
  1442. } else /* completed sync */
  1443. conf->fullsync = 0;
  1444. bitmap_close_sync(mddev->bitmap);
  1445. close_sync(conf);
  1446. *skipped = 1;
  1447. return sectors_skipped;
  1448. }
  1449. if (chunks_skipped >= conf->raid_disks) {
  1450. /* if there has been nothing to do on any drive,
  1451. * then there is nothing to do at all..
  1452. */
  1453. *skipped = 1;
  1454. return (max_sector - sector_nr) + sectors_skipped;
  1455. }
  1456. /* make sure whole request will fit in a chunk - if chunks
  1457. * are meaningful
  1458. */
  1459. if (conf->near_copies < conf->raid_disks &&
  1460. max_sector > (sector_nr | conf->chunk_mask))
  1461. max_sector = (sector_nr | conf->chunk_mask) + 1;
  1462. /*
  1463. * If there is non-resync activity waiting for us then
  1464. * put in a delay to throttle resync.
  1465. */
  1466. if (!go_faster && conf->nr_waiting)
  1467. msleep_interruptible(1000);
  1468. /* Again, very different code for resync and recovery.
  1469. * Both must result in an r10bio with a list of bios that
  1470. * have bi_end_io, bi_sector, bi_bdev set,
  1471. * and bi_private set to the r10bio.
  1472. * For recovery, we may actually create several r10bios
  1473. * with 2 bios in each, that correspond to the bios in the main one.
  1474. * In this case, the subordinate r10bios link back through a
  1475. * borrowed master_bio pointer, and the counter in the master
  1476. * includes a ref from each subordinate.
  1477. */
  1478. /* First, we decide what to do and set ->bi_end_io
  1479. * To end_sync_read if we want to read, and
  1480. * end_sync_write if we will want to write.
  1481. */
  1482. max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
  1483. if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
  1484. /* recovery... the complicated one */
  1485. int i, j, k;
  1486. r10_bio = NULL;
  1487. for (i=0 ; i<conf->raid_disks; i++)
  1488. if (conf->mirrors[i].rdev &&
  1489. !test_bit(In_sync, &conf->mirrors[i].rdev->flags)) {
  1490. int still_degraded = 0;
  1491. /* want to reconstruct this device */
  1492. r10bio_t *rb2 = r10_bio;
  1493. sector_t sect = raid10_find_virt(conf, sector_nr, i);
  1494. int must_sync;
  1495. /* Unless we are doing a full sync, we only need
  1496. * to recover the block if it is set in the bitmap
  1497. */
  1498. must_sync = bitmap_start_sync(mddev->bitmap, sect,
  1499. &sync_blocks, 1);
  1500. if (sync_blocks < max_sync)
  1501. max_sync = sync_blocks;
  1502. if (!must_sync &&
  1503. !conf->fullsync) {
  1504. /* yep, skip the sync_blocks here, but don't assume
  1505. * that there will never be anything to do here
  1506. */
  1507. chunks_skipped = -1;
  1508. continue;
  1509. }
  1510. r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
  1511. raise_barrier(conf, rb2 != NULL);
  1512. atomic_set(&r10_bio->remaining, 0);
  1513. r10_bio->master_bio = (struct bio*)rb2;
  1514. if (rb2)
  1515. atomic_inc(&rb2->remaining);
  1516. r10_bio->mddev = mddev;
  1517. set_bit(R10BIO_IsRecover, &r10_bio->state);
  1518. r10_bio->sector = sect;
  1519. raid10_find_phys(conf, r10_bio);
  1520. /* Need to check if this section will still be
  1521. * degraded
  1522. */
  1523. for (j=0; j<conf->copies;j++) {
  1524. int d = r10_bio->devs[j].devnum;
  1525. if (conf->mirrors[d].rdev == NULL ||
  1526. test_bit(Faulty, &conf->mirrors[d].rdev->flags)) {
  1527. still_degraded = 1;
  1528. break;
  1529. }
  1530. }
  1531. must_sync = bitmap_start_sync(mddev->bitmap, sect,
  1532. &sync_blocks, still_degraded);
  1533. for (j=0; j<conf->copies;j++) {
  1534. int d = r10_bio->devs[j].devnum;
  1535. if (conf->mirrors[d].rdev &&
  1536. test_bit(In_sync, &conf->mirrors[d].rdev->flags)) {
  1537. /* This is where we read from */
  1538. bio = r10_bio->devs[0].bio;
  1539. bio->bi_next = biolist;
  1540. biolist = bio;
  1541. bio->bi_private = r10_bio;
  1542. bio->bi_end_io = end_sync_read;
  1543. bio->bi_rw = 0;
  1544. bio->bi_sector = r10_bio->devs[j].addr +
  1545. conf->mirrors[d].rdev->data_offset;
  1546. bio->bi_bdev = conf->mirrors[d].rdev->bdev;
  1547. atomic_inc(&conf->mirrors[d].rdev->nr_pending);
  1548. atomic_inc(&r10_bio->remaining);
  1549. /* and we write to 'i' */
  1550. for (k=0; k<conf->copies; k++)
  1551. if (r10_bio->devs[k].devnum == i)
  1552. break;
  1553. bio = r10_bio->devs[1].bio;
  1554. bio->bi_next = biolist;
  1555. biolist = bio;
  1556. bio->bi_private = r10_bio;
  1557. bio->bi_end_io = end_sync_write;
  1558. bio->bi_rw = 1;
  1559. bio->bi_sector = r10_bio->devs[k].addr +
  1560. conf->mirrors[i].rdev->data_offset;
  1561. bio->bi_bdev = conf->mirrors[i].rdev->bdev;
  1562. r10_bio->devs[0].devnum = d;
  1563. r10_bio->devs[1].devnum = i;
  1564. break;
  1565. }
  1566. }
  1567. if (j == conf->copies) {
  1568. /* Cannot recover, so abort the recovery */
  1569. put_buf(r10_bio);
  1570. r10_bio = rb2;
  1571. if (!test_and_set_bit(MD_RECOVERY_ERR, &mddev->recovery))
  1572. printk(KERN_INFO "raid10: %s: insufficient working devices for recovery.\n",
  1573. mdname(mddev));
  1574. break;
  1575. }
  1576. }
  1577. if (biolist == NULL) {
  1578. while (r10_bio) {
  1579. r10bio_t *rb2 = r10_bio;
  1580. r10_bio = (r10bio_t*) rb2->master_bio;
  1581. rb2->master_bio = NULL;
  1582. put_buf(rb2);
  1583. }
  1584. goto giveup;
  1585. }
  1586. } else {
  1587. /* resync. Schedule a read for every block at this virt offset */
  1588. int count = 0;
  1589. if (!bitmap_start_sync(mddev->bitmap, sector_nr,
  1590. &sync_blocks, mddev->degraded) &&
  1591. !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
  1592. /* We can skip this block */
  1593. *skipped = 1;
  1594. return sync_blocks + sectors_skipped;
  1595. }
  1596. if (sync_blocks < max_sync)
  1597. max_sync = sync_blocks;
  1598. r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
  1599. r10_bio->mddev = mddev;
  1600. atomic_set(&r10_bio->remaining, 0);
  1601. raise_barrier(conf, 0);
  1602. conf->next_resync = sector_nr;
  1603. r10_bio->master_bio = NULL;
  1604. r10_bio->sector = sector_nr;
  1605. set_bit(R10BIO_IsSync, &r10_bio->state);
  1606. raid10_find_phys(conf, r10_bio);
  1607. r10_bio->sectors = (sector_nr | conf->chunk_mask) - sector_nr +1;
  1608. for (i=0; i<conf->copies; i++) {
  1609. int d = r10_bio->devs[i].devnum;
  1610. bio = r10_bio->devs[i].bio;
  1611. bio->bi_end_io = NULL;
  1612. if (conf->mirrors[d].rdev == NULL ||
  1613. test_bit(Faulty, &conf->mirrors[d].rdev->flags))
  1614. continue;
  1615. atomic_inc(&conf->mirrors[d].rdev->nr_pending);
  1616. atomic_inc(&r10_bio->remaining);
  1617. bio->bi_next = biolist;
  1618. biolist = bio;
  1619. bio->bi_private = r10_bio;
  1620. bio->bi_end_io = end_sync_read;
  1621. bio->bi_rw = 0;
  1622. bio->bi_sector = r10_bio->devs[i].addr +
  1623. conf->mirrors[d].rdev->data_offset;
  1624. bio->bi_bdev = conf->mirrors[d].rdev->bdev;
  1625. count++;
  1626. }
  1627. if (count < 2) {
  1628. for (i=0; i<conf->copies; i++) {
  1629. int d = r10_bio->devs[i].devnum;
  1630. if (r10_bio->devs[i].bio->bi_end_io)
  1631. rdev_dec_pending(conf->mirrors[d].rdev, mddev);
  1632. }
  1633. put_buf(r10_bio);
  1634. biolist = NULL;
  1635. goto giveup;
  1636. }
  1637. }
  1638. for (bio = biolist; bio ; bio=bio->bi_next) {
  1639. bio->bi_flags &= ~(BIO_POOL_MASK - 1);
  1640. if (bio->bi_end_io)
  1641. bio->bi_flags |= 1 << BIO_UPTODATE;
  1642. bio->bi_vcnt = 0;
  1643. bio->bi_idx = 0;
  1644. bio->bi_phys_segments = 0;
  1645. bio->bi_hw_segments = 0;
  1646. bio->bi_size = 0;
  1647. }
  1648. nr_sectors = 0;
  1649. if (sector_nr + max_sync < max_sector)
  1650. max_sector = sector_nr + max_sync;
  1651. do {
  1652. struct page *page;
  1653. int len = PAGE_SIZE;
  1654. disk = 0;
  1655. if (sector_nr + (len>>9) > max_sector)
  1656. len = (max_sector - sector_nr) << 9;
  1657. if (len == 0)
  1658. break;
  1659. for (bio= biolist ; bio ; bio=bio->bi_next) {
  1660. page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
  1661. if (bio_add_page(bio, page, len, 0) == 0) {
  1662. /* stop here */
  1663. struct bio *bio2;
  1664. bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
  1665. for (bio2 = biolist; bio2 && bio2 != bio; bio2 = bio2->bi_next) {
  1666. /* remove last page from this bio */
  1667. bio2->bi_vcnt--;
  1668. bio2->bi_size -= len;
  1669. bio2->bi_flags &= ~(1<< BIO_SEG_VALID);
  1670. }
  1671. goto bio_full;
  1672. }
  1673. disk = i;
  1674. }
  1675. nr_sectors += len>>9;
  1676. sector_nr += len>>9;
  1677. } while (biolist->bi_vcnt < RESYNC_PAGES);
  1678. bio_full:
  1679. r10_bio->sectors = nr_sectors;
  1680. while (biolist) {
  1681. bio = biolist;
  1682. biolist = biolist->bi_next;
  1683. bio->bi_next = NULL;
  1684. r10_bio = bio->bi_private;
  1685. r10_bio->sectors = nr_sectors;
  1686. if (bio->bi_end_io == end_sync_read) {
  1687. md_sync_acct(bio->bi_bdev, nr_sectors);
  1688. generic_make_request(bio);
  1689. }
  1690. }
  1691. if (sectors_skipped)
  1692. /* pretend they weren't skipped, it makes
  1693. * no important difference in this case
  1694. */
  1695. md_done_sync(mddev, sectors_skipped, 1);
  1696. return sectors_skipped + nr_sectors;
  1697. giveup:
  1698. /* There is nowhere to write, so all non-sync
  1699. * drives must be failed, so try the next chunk...
  1700. */
  1701. {
  1702. sector_t sec = max_sector - sector_nr;
  1703. sectors_skipped += sec;
  1704. chunks_skipped ++;
  1705. sector_nr = max_sector;
  1706. goto skipped;
  1707. }
  1708. }
  1709. static int run(mddev_t *mddev)
  1710. {
  1711. conf_t *conf;
  1712. int i, disk_idx;
  1713. mirror_info_t *disk;
  1714. mdk_rdev_t *rdev;
  1715. struct list_head *tmp;
  1716. int nc, fc, fo;
  1717. sector_t stride, size;
  1718. if (mddev->chunk_size == 0) {
  1719. printk(KERN_ERR "md/raid10: non-zero chunk size required.\n");
  1720. return -EINVAL;
  1721. }
  1722. nc = mddev->layout & 255;
  1723. fc = (mddev->layout >> 8) & 255;
  1724. fo = mddev->layout & (1<<16);
  1725. if ((nc*fc) <2 || (nc*fc) > mddev->raid_disks ||
  1726. (mddev->layout >> 17)) {
  1727. printk(KERN_ERR "raid10: %s: unsupported raid10 layout: 0x%8x\n",
  1728. mdname(mddev), mddev->layout);
  1729. goto out;
  1730. }
  1731. /*
  1732. * copy the already verified devices into our private RAID10
  1733. * bookkeeping area. [whatever we allocate in run(),
  1734. * should be freed in stop()]
  1735. */
  1736. conf = kzalloc(sizeof(conf_t), GFP_KERNEL);
  1737. mddev->private = conf;
  1738. if (!conf) {
  1739. printk(KERN_ERR "raid10: couldn't allocate memory for %s\n",
  1740. mdname(mddev));
  1741. goto out;
  1742. }
  1743. conf->mirrors = kzalloc(sizeof(struct mirror_info)*mddev->raid_disks,
  1744. GFP_KERNEL);
  1745. if (!conf->mirrors) {
  1746. printk(KERN_ERR "raid10: couldn't allocate memory for %s\n",
  1747. mdname(mddev));
  1748. goto out_free_conf;
  1749. }
  1750. conf->tmppage = alloc_page(GFP_KERNEL);
  1751. if (!conf->tmppage)
  1752. goto out_free_conf;
  1753. conf->near_copies = nc;
  1754. conf->far_copies = fc;
  1755. conf->copies = nc*fc;
  1756. conf->far_offset = fo;
  1757. conf->chunk_mask = (sector_t)(mddev->chunk_size>>9)-1;
  1758. conf->chunk_shift = ffz(~mddev->chunk_size) - 9;
  1759. if (fo)
  1760. conf->stride = 1 << conf->chunk_shift;
  1761. else {
  1762. stride = mddev->size >> (conf->chunk_shift-1);
  1763. sector_div(stride, fc);
  1764. conf->stride = stride << conf->chunk_shift;
  1765. }
  1766. conf->r10bio_pool = mempool_create(NR_RAID10_BIOS, r10bio_pool_alloc,
  1767. r10bio_pool_free, conf);
  1768. if (!conf->r10bio_pool) {
  1769. printk(KERN_ERR "raid10: couldn't allocate memory for %s\n",
  1770. mdname(mddev));
  1771. goto out_free_conf;
  1772. }
  1773. ITERATE_RDEV(mddev, rdev, tmp) {
  1774. disk_idx = rdev->raid_disk;
  1775. if (disk_idx >= mddev->raid_disks
  1776. || disk_idx < 0)
  1777. continue;
  1778. disk = conf->mirrors + disk_idx;
  1779. disk->rdev = rdev;
  1780. blk_queue_stack_limits(mddev->queue,
  1781. rdev->bdev->bd_disk->queue);
  1782. /* as we don't honour merge_bvec_fn, we must never risk
  1783. * violating it, so limit ->max_sector to one PAGE, as
  1784. * a one page request is never in violation.
  1785. */
  1786. if (rdev->bdev->bd_disk->queue->merge_bvec_fn &&
  1787. mddev->queue->max_sectors > (PAGE_SIZE>>9))
  1788. mddev->queue->max_sectors = (PAGE_SIZE>>9);
  1789. disk->head_position = 0;
  1790. if (!test_bit(Faulty, &rdev->flags) && test_bit(In_sync, &rdev->flags))
  1791. conf->working_disks++;
  1792. }
  1793. conf->raid_disks = mddev->raid_disks;
  1794. conf->mddev = mddev;
  1795. spin_lock_init(&conf->device_lock);
  1796. INIT_LIST_HEAD(&conf->retry_list);
  1797. spin_lock_init(&conf->resync_lock);
  1798. init_waitqueue_head(&conf->wait_barrier);
  1799. /* need to check that every block has at least one working mirror */
  1800. if (!enough(conf)) {
  1801. printk(KERN_ERR "raid10: not enough operational mirrors for %s\n",
  1802. mdname(mddev));
  1803. goto out_free_conf;
  1804. }
  1805. mddev->degraded = 0;
  1806. for (i = 0; i < conf->raid_disks; i++) {
  1807. disk = conf->mirrors + i;
  1808. if (!disk->rdev ||
  1809. !test_bit(In_sync, &rdev->flags)) {
  1810. disk->head_position = 0;
  1811. mddev->degraded++;
  1812. }
  1813. }
  1814. mddev->thread = md_register_thread(raid10d, mddev, "%s_raid10");
  1815. if (!mddev->thread) {
  1816. printk(KERN_ERR
  1817. "raid10: couldn't allocate thread for %s\n",
  1818. mdname(mddev));
  1819. goto out_free_conf;
  1820. }
  1821. printk(KERN_INFO
  1822. "raid10: raid set %s active with %d out of %d devices\n",
  1823. mdname(mddev), mddev->raid_disks - mddev->degraded,
  1824. mddev->raid_disks);
  1825. /*
  1826. * Ok, everything is just fine now
  1827. */
  1828. if (conf->far_offset) {
  1829. size = mddev->size >> (conf->chunk_shift-1);
  1830. size *= conf->raid_disks;
  1831. size <<= conf->chunk_shift;
  1832. sector_div(size, conf->far_copies);
  1833. } else
  1834. size = conf->stride * conf->raid_disks;
  1835. sector_div(size, conf->near_copies);
  1836. mddev->array_size = size/2;
  1837. mddev->resync_max_sectors = size;
  1838. mddev->queue->unplug_fn = raid10_unplug;
  1839. mddev->queue->issue_flush_fn = raid10_issue_flush;
  1840. /* Calculate max read-ahead size.
  1841. * We need to readahead at least twice a whole stripe....
  1842. * maybe...
  1843. */
  1844. {
  1845. int stripe = conf->raid_disks * (mddev->chunk_size / PAGE_SIZE);
  1846. stripe /= conf->near_copies;
  1847. if (mddev->queue->backing_dev_info.ra_pages < 2* stripe)
  1848. mddev->queue->backing_dev_info.ra_pages = 2* stripe;
  1849. }
  1850. if (conf->near_copies < mddev->raid_disks)
  1851. blk_queue_merge_bvec(mddev->queue, raid10_mergeable_bvec);
  1852. return 0;
  1853. out_free_conf:
  1854. if (conf->r10bio_pool)
  1855. mempool_destroy(conf->r10bio_pool);
  1856. safe_put_page(conf->tmppage);
  1857. kfree(conf->mirrors);
  1858. kfree(conf);
  1859. mddev->private = NULL;
  1860. out:
  1861. return -EIO;
  1862. }
  1863. static int stop(mddev_t *mddev)
  1864. {
  1865. conf_t *conf = mddev_to_conf(mddev);
  1866. md_unregister_thread(mddev->thread);
  1867. mddev->thread = NULL;
  1868. blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
  1869. if (conf->r10bio_pool)
  1870. mempool_destroy(conf->r10bio_pool);
  1871. kfree(conf->mirrors);
  1872. kfree(conf);
  1873. mddev->private = NULL;
  1874. return 0;
  1875. }
  1876. static void raid10_quiesce(mddev_t *mddev, int state)
  1877. {
  1878. conf_t *conf = mddev_to_conf(mddev);
  1879. switch(state) {
  1880. case 1:
  1881. raise_barrier(conf, 0);
  1882. break;
  1883. case 0:
  1884. lower_barrier(conf);
  1885. break;
  1886. }
  1887. if (mddev->thread) {
  1888. if (mddev->bitmap)
  1889. mddev->thread->timeout = mddev->bitmap->daemon_sleep * HZ;
  1890. else
  1891. mddev->thread->timeout = MAX_SCHEDULE_TIMEOUT;
  1892. md_wakeup_thread(mddev->thread);
  1893. }
  1894. }
  1895. static struct mdk_personality raid10_personality =
  1896. {
  1897. .name = "raid10",
  1898. .level = 10,
  1899. .owner = THIS_MODULE,
  1900. .make_request = make_request,
  1901. .run = run,
  1902. .stop = stop,
  1903. .status = status,
  1904. .error_handler = error,
  1905. .hot_add_disk = raid10_add_disk,
  1906. .hot_remove_disk= raid10_remove_disk,
  1907. .spare_active = raid10_spare_active,
  1908. .sync_request = sync_request,
  1909. .quiesce = raid10_quiesce,
  1910. };
  1911. static int __init raid_init(void)
  1912. {
  1913. return register_md_personality(&raid10_personality);
  1914. }
  1915. static void raid_exit(void)
  1916. {
  1917. unregister_md_personality(&raid10_personality);
  1918. }
  1919. module_init(raid_init);
  1920. module_exit(raid_exit);
  1921. MODULE_LICENSE("GPL");
  1922. MODULE_ALIAS("md-personality-9"); /* RAID10 */
  1923. MODULE_ALIAS("md-raid10");
  1924. MODULE_ALIAS("md-level-10");