raid1.c 56 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160
  1. /*
  2. * raid1.c : Multiple Devices driver for Linux
  3. *
  4. * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
  5. *
  6. * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
  7. *
  8. * RAID-1 management functions.
  9. *
  10. * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
  11. *
  12. * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
  13. * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
  14. *
  15. * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
  16. * bitmapped intelligence in resync:
  17. *
  18. * - bitmap marked during normal i/o
  19. * - bitmap used to skip nondirty blocks during sync
  20. *
  21. * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
  22. * - persistent bitmap code
  23. *
  24. * This program is free software; you can redistribute it and/or modify
  25. * it under the terms of the GNU General Public License as published by
  26. * the Free Software Foundation; either version 2, or (at your option)
  27. * any later version.
  28. *
  29. * You should have received a copy of the GNU General Public License
  30. * (for example /usr/src/linux/COPYING); if not, write to the Free
  31. * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  32. */
  33. #include "dm-bio-list.h"
  34. #include <linux/raid/raid1.h>
  35. #include <linux/raid/bitmap.h>
  36. #define DEBUG 0
  37. #if DEBUG
  38. #define PRINTK(x...) printk(x)
  39. #else
  40. #define PRINTK(x...)
  41. #endif
  42. /*
  43. * Number of guaranteed r1bios in case of extreme VM load:
  44. */
  45. #define NR_RAID1_BIOS 256
  46. static void unplug_slaves(mddev_t *mddev);
  47. static void allow_barrier(conf_t *conf);
  48. static void lower_barrier(conf_t *conf);
  49. static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
  50. {
  51. struct pool_info *pi = data;
  52. r1bio_t *r1_bio;
  53. int size = offsetof(r1bio_t, bios[pi->raid_disks]);
  54. /* allocate a r1bio with room for raid_disks entries in the bios array */
  55. r1_bio = kzalloc(size, gfp_flags);
  56. if (!r1_bio)
  57. unplug_slaves(pi->mddev);
  58. return r1_bio;
  59. }
  60. static void r1bio_pool_free(void *r1_bio, void *data)
  61. {
  62. kfree(r1_bio);
  63. }
  64. #define RESYNC_BLOCK_SIZE (64*1024)
  65. //#define RESYNC_BLOCK_SIZE PAGE_SIZE
  66. #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
  67. #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
  68. #define RESYNC_WINDOW (2048*1024)
  69. static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
  70. {
  71. struct pool_info *pi = data;
  72. struct page *page;
  73. r1bio_t *r1_bio;
  74. struct bio *bio;
  75. int i, j;
  76. r1_bio = r1bio_pool_alloc(gfp_flags, pi);
  77. if (!r1_bio) {
  78. unplug_slaves(pi->mddev);
  79. return NULL;
  80. }
  81. /*
  82. * Allocate bios : 1 for reading, n-1 for writing
  83. */
  84. for (j = pi->raid_disks ; j-- ; ) {
  85. bio = bio_alloc(gfp_flags, RESYNC_PAGES);
  86. if (!bio)
  87. goto out_free_bio;
  88. r1_bio->bios[j] = bio;
  89. }
  90. /*
  91. * Allocate RESYNC_PAGES data pages and attach them to
  92. * the first bio.
  93. * If this is a user-requested check/repair, allocate
  94. * RESYNC_PAGES for each bio.
  95. */
  96. if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
  97. j = pi->raid_disks;
  98. else
  99. j = 1;
  100. while(j--) {
  101. bio = r1_bio->bios[j];
  102. for (i = 0; i < RESYNC_PAGES; i++) {
  103. page = alloc_page(gfp_flags);
  104. if (unlikely(!page))
  105. goto out_free_pages;
  106. bio->bi_io_vec[i].bv_page = page;
  107. }
  108. }
  109. /* If not user-requests, copy the page pointers to all bios */
  110. if (!test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) {
  111. for (i=0; i<RESYNC_PAGES ; i++)
  112. for (j=1; j<pi->raid_disks; j++)
  113. r1_bio->bios[j]->bi_io_vec[i].bv_page =
  114. r1_bio->bios[0]->bi_io_vec[i].bv_page;
  115. }
  116. r1_bio->master_bio = NULL;
  117. return r1_bio;
  118. out_free_pages:
  119. for (i=0; i < RESYNC_PAGES ; i++)
  120. for (j=0 ; j < pi->raid_disks; j++)
  121. safe_put_page(r1_bio->bios[j]->bi_io_vec[i].bv_page);
  122. j = -1;
  123. out_free_bio:
  124. while ( ++j < pi->raid_disks )
  125. bio_put(r1_bio->bios[j]);
  126. r1bio_pool_free(r1_bio, data);
  127. return NULL;
  128. }
  129. static void r1buf_pool_free(void *__r1_bio, void *data)
  130. {
  131. struct pool_info *pi = data;
  132. int i,j;
  133. r1bio_t *r1bio = __r1_bio;
  134. for (i = 0; i < RESYNC_PAGES; i++)
  135. for (j = pi->raid_disks; j-- ;) {
  136. if (j == 0 ||
  137. r1bio->bios[j]->bi_io_vec[i].bv_page !=
  138. r1bio->bios[0]->bi_io_vec[i].bv_page)
  139. safe_put_page(r1bio->bios[j]->bi_io_vec[i].bv_page);
  140. }
  141. for (i=0 ; i < pi->raid_disks; i++)
  142. bio_put(r1bio->bios[i]);
  143. r1bio_pool_free(r1bio, data);
  144. }
  145. static void put_all_bios(conf_t *conf, r1bio_t *r1_bio)
  146. {
  147. int i;
  148. for (i = 0; i < conf->raid_disks; i++) {
  149. struct bio **bio = r1_bio->bios + i;
  150. if (*bio && *bio != IO_BLOCKED)
  151. bio_put(*bio);
  152. *bio = NULL;
  153. }
  154. }
  155. static void free_r1bio(r1bio_t *r1_bio)
  156. {
  157. conf_t *conf = mddev_to_conf(r1_bio->mddev);
  158. /*
  159. * Wake up any possible resync thread that waits for the device
  160. * to go idle.
  161. */
  162. allow_barrier(conf);
  163. put_all_bios(conf, r1_bio);
  164. mempool_free(r1_bio, conf->r1bio_pool);
  165. }
  166. static void put_buf(r1bio_t *r1_bio)
  167. {
  168. conf_t *conf = mddev_to_conf(r1_bio->mddev);
  169. int i;
  170. for (i=0; i<conf->raid_disks; i++) {
  171. struct bio *bio = r1_bio->bios[i];
  172. if (bio->bi_end_io)
  173. rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
  174. }
  175. mempool_free(r1_bio, conf->r1buf_pool);
  176. lower_barrier(conf);
  177. }
  178. static void reschedule_retry(r1bio_t *r1_bio)
  179. {
  180. unsigned long flags;
  181. mddev_t *mddev = r1_bio->mddev;
  182. conf_t *conf = mddev_to_conf(mddev);
  183. spin_lock_irqsave(&conf->device_lock, flags);
  184. list_add(&r1_bio->retry_list, &conf->retry_list);
  185. conf->nr_queued ++;
  186. spin_unlock_irqrestore(&conf->device_lock, flags);
  187. wake_up(&conf->wait_barrier);
  188. md_wakeup_thread(mddev->thread);
  189. }
  190. /*
  191. * raid_end_bio_io() is called when we have finished servicing a mirrored
  192. * operation and are ready to return a success/failure code to the buffer
  193. * cache layer.
  194. */
  195. static void raid_end_bio_io(r1bio_t *r1_bio)
  196. {
  197. struct bio *bio = r1_bio->master_bio;
  198. /* if nobody has done the final endio yet, do it now */
  199. if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
  200. PRINTK(KERN_DEBUG "raid1: sync end %s on sectors %llu-%llu\n",
  201. (bio_data_dir(bio) == WRITE) ? "write" : "read",
  202. (unsigned long long) bio->bi_sector,
  203. (unsigned long long) bio->bi_sector +
  204. (bio->bi_size >> 9) - 1);
  205. bio_endio(bio, bio->bi_size,
  206. test_bit(R1BIO_Uptodate, &r1_bio->state) ? 0 : -EIO);
  207. }
  208. free_r1bio(r1_bio);
  209. }
  210. /*
  211. * Update disk head position estimator based on IRQ completion info.
  212. */
  213. static inline void update_head_pos(int disk, r1bio_t *r1_bio)
  214. {
  215. conf_t *conf = mddev_to_conf(r1_bio->mddev);
  216. conf->mirrors[disk].head_position =
  217. r1_bio->sector + (r1_bio->sectors);
  218. }
  219. static int raid1_end_read_request(struct bio *bio, unsigned int bytes_done, int error)
  220. {
  221. int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
  222. r1bio_t * r1_bio = (r1bio_t *)(bio->bi_private);
  223. int mirror;
  224. conf_t *conf = mddev_to_conf(r1_bio->mddev);
  225. if (bio->bi_size)
  226. return 1;
  227. mirror = r1_bio->read_disk;
  228. /*
  229. * this branch is our 'one mirror IO has finished' event handler:
  230. */
  231. update_head_pos(mirror, r1_bio);
  232. if (uptodate || conf->working_disks <= 1) {
  233. /*
  234. * Set R1BIO_Uptodate in our master bio, so that
  235. * we will return a good error code for to the higher
  236. * levels even if IO on some other mirrored buffer fails.
  237. *
  238. * The 'master' represents the composite IO operation to
  239. * user-side. So if something waits for IO, then it will
  240. * wait for the 'master' bio.
  241. */
  242. if (uptodate)
  243. set_bit(R1BIO_Uptodate, &r1_bio->state);
  244. raid_end_bio_io(r1_bio);
  245. } else {
  246. /*
  247. * oops, read error:
  248. */
  249. char b[BDEVNAME_SIZE];
  250. if (printk_ratelimit())
  251. printk(KERN_ERR "raid1: %s: rescheduling sector %llu\n",
  252. bdevname(conf->mirrors[mirror].rdev->bdev,b), (unsigned long long)r1_bio->sector);
  253. reschedule_retry(r1_bio);
  254. }
  255. rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev);
  256. return 0;
  257. }
  258. static int raid1_end_write_request(struct bio *bio, unsigned int bytes_done, int error)
  259. {
  260. int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
  261. r1bio_t * r1_bio = (r1bio_t *)(bio->bi_private);
  262. int mirror, behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
  263. conf_t *conf = mddev_to_conf(r1_bio->mddev);
  264. struct bio *to_put = NULL;
  265. if (bio->bi_size)
  266. return 1;
  267. for (mirror = 0; mirror < conf->raid_disks; mirror++)
  268. if (r1_bio->bios[mirror] == bio)
  269. break;
  270. if (error == -EOPNOTSUPP && test_bit(R1BIO_Barrier, &r1_bio->state)) {
  271. set_bit(BarriersNotsupp, &conf->mirrors[mirror].rdev->flags);
  272. set_bit(R1BIO_BarrierRetry, &r1_bio->state);
  273. r1_bio->mddev->barriers_work = 0;
  274. /* Don't rdev_dec_pending in this branch - keep it for the retry */
  275. } else {
  276. /*
  277. * this branch is our 'one mirror IO has finished' event handler:
  278. */
  279. r1_bio->bios[mirror] = NULL;
  280. to_put = bio;
  281. if (!uptodate) {
  282. md_error(r1_bio->mddev, conf->mirrors[mirror].rdev);
  283. /* an I/O failed, we can't clear the bitmap */
  284. set_bit(R1BIO_Degraded, &r1_bio->state);
  285. } else
  286. /*
  287. * Set R1BIO_Uptodate in our master bio, so that
  288. * we will return a good error code for to the higher
  289. * levels even if IO on some other mirrored buffer fails.
  290. *
  291. * The 'master' represents the composite IO operation to
  292. * user-side. So if something waits for IO, then it will
  293. * wait for the 'master' bio.
  294. */
  295. set_bit(R1BIO_Uptodate, &r1_bio->state);
  296. update_head_pos(mirror, r1_bio);
  297. if (behind) {
  298. if (test_bit(WriteMostly, &conf->mirrors[mirror].rdev->flags))
  299. atomic_dec(&r1_bio->behind_remaining);
  300. /* In behind mode, we ACK the master bio once the I/O has safely
  301. * reached all non-writemostly disks. Setting the Returned bit
  302. * ensures that this gets done only once -- we don't ever want to
  303. * return -EIO here, instead we'll wait */
  304. if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
  305. test_bit(R1BIO_Uptodate, &r1_bio->state)) {
  306. /* Maybe we can return now */
  307. if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
  308. struct bio *mbio = r1_bio->master_bio;
  309. PRINTK(KERN_DEBUG "raid1: behind end write sectors %llu-%llu\n",
  310. (unsigned long long) mbio->bi_sector,
  311. (unsigned long long) mbio->bi_sector +
  312. (mbio->bi_size >> 9) - 1);
  313. bio_endio(mbio, mbio->bi_size, 0);
  314. }
  315. }
  316. }
  317. rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev);
  318. }
  319. /*
  320. *
  321. * Let's see if all mirrored write operations have finished
  322. * already.
  323. */
  324. if (atomic_dec_and_test(&r1_bio->remaining)) {
  325. if (test_bit(R1BIO_BarrierRetry, &r1_bio->state))
  326. reschedule_retry(r1_bio);
  327. else {
  328. /* it really is the end of this request */
  329. if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
  330. /* free extra copy of the data pages */
  331. int i = bio->bi_vcnt;
  332. while (i--)
  333. safe_put_page(bio->bi_io_vec[i].bv_page);
  334. }
  335. /* clear the bitmap if all writes complete successfully */
  336. bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
  337. r1_bio->sectors,
  338. !test_bit(R1BIO_Degraded, &r1_bio->state),
  339. behind);
  340. md_write_end(r1_bio->mddev);
  341. raid_end_bio_io(r1_bio);
  342. }
  343. }
  344. if (to_put)
  345. bio_put(to_put);
  346. return 0;
  347. }
  348. /*
  349. * This routine returns the disk from which the requested read should
  350. * be done. There is a per-array 'next expected sequential IO' sector
  351. * number - if this matches on the next IO then we use the last disk.
  352. * There is also a per-disk 'last know head position' sector that is
  353. * maintained from IRQ contexts, both the normal and the resync IO
  354. * completion handlers update this position correctly. If there is no
  355. * perfect sequential match then we pick the disk whose head is closest.
  356. *
  357. * If there are 2 mirrors in the same 2 devices, performance degrades
  358. * because position is mirror, not device based.
  359. *
  360. * The rdev for the device selected will have nr_pending incremented.
  361. */
  362. static int read_balance(conf_t *conf, r1bio_t *r1_bio)
  363. {
  364. const unsigned long this_sector = r1_bio->sector;
  365. int new_disk = conf->last_used, disk = new_disk;
  366. int wonly_disk = -1;
  367. const int sectors = r1_bio->sectors;
  368. sector_t new_distance, current_distance;
  369. mdk_rdev_t *rdev;
  370. rcu_read_lock();
  371. /*
  372. * Check if we can balance. We can balance on the whole
  373. * device if no resync is going on, or below the resync window.
  374. * We take the first readable disk when above the resync window.
  375. */
  376. retry:
  377. if (conf->mddev->recovery_cp < MaxSector &&
  378. (this_sector + sectors >= conf->next_resync)) {
  379. /* Choose the first operation device, for consistancy */
  380. new_disk = 0;
  381. for (rdev = rcu_dereference(conf->mirrors[new_disk].rdev);
  382. r1_bio->bios[new_disk] == IO_BLOCKED ||
  383. !rdev || !test_bit(In_sync, &rdev->flags)
  384. || test_bit(WriteMostly, &rdev->flags);
  385. rdev = rcu_dereference(conf->mirrors[++new_disk].rdev)) {
  386. if (rdev && test_bit(In_sync, &rdev->flags) &&
  387. r1_bio->bios[new_disk] != IO_BLOCKED)
  388. wonly_disk = new_disk;
  389. if (new_disk == conf->raid_disks - 1) {
  390. new_disk = wonly_disk;
  391. break;
  392. }
  393. }
  394. goto rb_out;
  395. }
  396. /* make sure the disk is operational */
  397. for (rdev = rcu_dereference(conf->mirrors[new_disk].rdev);
  398. r1_bio->bios[new_disk] == IO_BLOCKED ||
  399. !rdev || !test_bit(In_sync, &rdev->flags) ||
  400. test_bit(WriteMostly, &rdev->flags);
  401. rdev = rcu_dereference(conf->mirrors[new_disk].rdev)) {
  402. if (rdev && test_bit(In_sync, &rdev->flags) &&
  403. r1_bio->bios[new_disk] != IO_BLOCKED)
  404. wonly_disk = new_disk;
  405. if (new_disk <= 0)
  406. new_disk = conf->raid_disks;
  407. new_disk--;
  408. if (new_disk == disk) {
  409. new_disk = wonly_disk;
  410. break;
  411. }
  412. }
  413. if (new_disk < 0)
  414. goto rb_out;
  415. disk = new_disk;
  416. /* now disk == new_disk == starting point for search */
  417. /*
  418. * Don't change to another disk for sequential reads:
  419. */
  420. if (conf->next_seq_sect == this_sector)
  421. goto rb_out;
  422. if (this_sector == conf->mirrors[new_disk].head_position)
  423. goto rb_out;
  424. current_distance = abs(this_sector - conf->mirrors[disk].head_position);
  425. /* Find the disk whose head is closest */
  426. do {
  427. if (disk <= 0)
  428. disk = conf->raid_disks;
  429. disk--;
  430. rdev = rcu_dereference(conf->mirrors[disk].rdev);
  431. if (!rdev || r1_bio->bios[disk] == IO_BLOCKED ||
  432. !test_bit(In_sync, &rdev->flags) ||
  433. test_bit(WriteMostly, &rdev->flags))
  434. continue;
  435. if (!atomic_read(&rdev->nr_pending)) {
  436. new_disk = disk;
  437. break;
  438. }
  439. new_distance = abs(this_sector - conf->mirrors[disk].head_position);
  440. if (new_distance < current_distance) {
  441. current_distance = new_distance;
  442. new_disk = disk;
  443. }
  444. } while (disk != conf->last_used);
  445. rb_out:
  446. if (new_disk >= 0) {
  447. rdev = rcu_dereference(conf->mirrors[new_disk].rdev);
  448. if (!rdev)
  449. goto retry;
  450. atomic_inc(&rdev->nr_pending);
  451. if (!test_bit(In_sync, &rdev->flags)) {
  452. /* cannot risk returning a device that failed
  453. * before we inc'ed nr_pending
  454. */
  455. rdev_dec_pending(rdev, conf->mddev);
  456. goto retry;
  457. }
  458. conf->next_seq_sect = this_sector + sectors;
  459. conf->last_used = new_disk;
  460. }
  461. rcu_read_unlock();
  462. return new_disk;
  463. }
  464. static void unplug_slaves(mddev_t *mddev)
  465. {
  466. conf_t *conf = mddev_to_conf(mddev);
  467. int i;
  468. rcu_read_lock();
  469. for (i=0; i<mddev->raid_disks; i++) {
  470. mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
  471. if (rdev && !test_bit(Faulty, &rdev->flags) && atomic_read(&rdev->nr_pending)) {
  472. request_queue_t *r_queue = bdev_get_queue(rdev->bdev);
  473. atomic_inc(&rdev->nr_pending);
  474. rcu_read_unlock();
  475. if (r_queue->unplug_fn)
  476. r_queue->unplug_fn(r_queue);
  477. rdev_dec_pending(rdev, mddev);
  478. rcu_read_lock();
  479. }
  480. }
  481. rcu_read_unlock();
  482. }
  483. static void raid1_unplug(request_queue_t *q)
  484. {
  485. mddev_t *mddev = q->queuedata;
  486. unplug_slaves(mddev);
  487. md_wakeup_thread(mddev->thread);
  488. }
  489. static int raid1_issue_flush(request_queue_t *q, struct gendisk *disk,
  490. sector_t *error_sector)
  491. {
  492. mddev_t *mddev = q->queuedata;
  493. conf_t *conf = mddev_to_conf(mddev);
  494. int i, ret = 0;
  495. rcu_read_lock();
  496. for (i=0; i<mddev->raid_disks && ret == 0; i++) {
  497. mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
  498. if (rdev && !test_bit(Faulty, &rdev->flags)) {
  499. struct block_device *bdev = rdev->bdev;
  500. request_queue_t *r_queue = bdev_get_queue(bdev);
  501. if (!r_queue->issue_flush_fn)
  502. ret = -EOPNOTSUPP;
  503. else {
  504. atomic_inc(&rdev->nr_pending);
  505. rcu_read_unlock();
  506. ret = r_queue->issue_flush_fn(r_queue, bdev->bd_disk,
  507. error_sector);
  508. rdev_dec_pending(rdev, mddev);
  509. rcu_read_lock();
  510. }
  511. }
  512. }
  513. rcu_read_unlock();
  514. return ret;
  515. }
  516. /* Barriers....
  517. * Sometimes we need to suspend IO while we do something else,
  518. * either some resync/recovery, or reconfigure the array.
  519. * To do this we raise a 'barrier'.
  520. * The 'barrier' is a counter that can be raised multiple times
  521. * to count how many activities are happening which preclude
  522. * normal IO.
  523. * We can only raise the barrier if there is no pending IO.
  524. * i.e. if nr_pending == 0.
  525. * We choose only to raise the barrier if no-one is waiting for the
  526. * barrier to go down. This means that as soon as an IO request
  527. * is ready, no other operations which require a barrier will start
  528. * until the IO request has had a chance.
  529. *
  530. * So: regular IO calls 'wait_barrier'. When that returns there
  531. * is no backgroup IO happening, It must arrange to call
  532. * allow_barrier when it has finished its IO.
  533. * backgroup IO calls must call raise_barrier. Once that returns
  534. * there is no normal IO happeing. It must arrange to call
  535. * lower_barrier when the particular background IO completes.
  536. */
  537. #define RESYNC_DEPTH 32
  538. static void raise_barrier(conf_t *conf)
  539. {
  540. spin_lock_irq(&conf->resync_lock);
  541. /* Wait until no block IO is waiting */
  542. wait_event_lock_irq(conf->wait_barrier, !conf->nr_waiting,
  543. conf->resync_lock,
  544. raid1_unplug(conf->mddev->queue));
  545. /* block any new IO from starting */
  546. conf->barrier++;
  547. /* No wait for all pending IO to complete */
  548. wait_event_lock_irq(conf->wait_barrier,
  549. !conf->nr_pending && conf->barrier < RESYNC_DEPTH,
  550. conf->resync_lock,
  551. raid1_unplug(conf->mddev->queue));
  552. spin_unlock_irq(&conf->resync_lock);
  553. }
  554. static void lower_barrier(conf_t *conf)
  555. {
  556. unsigned long flags;
  557. spin_lock_irqsave(&conf->resync_lock, flags);
  558. conf->barrier--;
  559. spin_unlock_irqrestore(&conf->resync_lock, flags);
  560. wake_up(&conf->wait_barrier);
  561. }
  562. static void wait_barrier(conf_t *conf)
  563. {
  564. spin_lock_irq(&conf->resync_lock);
  565. if (conf->barrier) {
  566. conf->nr_waiting++;
  567. wait_event_lock_irq(conf->wait_barrier, !conf->barrier,
  568. conf->resync_lock,
  569. raid1_unplug(conf->mddev->queue));
  570. conf->nr_waiting--;
  571. }
  572. conf->nr_pending++;
  573. spin_unlock_irq(&conf->resync_lock);
  574. }
  575. static void allow_barrier(conf_t *conf)
  576. {
  577. unsigned long flags;
  578. spin_lock_irqsave(&conf->resync_lock, flags);
  579. conf->nr_pending--;
  580. spin_unlock_irqrestore(&conf->resync_lock, flags);
  581. wake_up(&conf->wait_barrier);
  582. }
  583. static void freeze_array(conf_t *conf)
  584. {
  585. /* stop syncio and normal IO and wait for everything to
  586. * go quite.
  587. * We increment barrier and nr_waiting, and then
  588. * wait until barrier+nr_pending match nr_queued+2
  589. */
  590. spin_lock_irq(&conf->resync_lock);
  591. conf->barrier++;
  592. conf->nr_waiting++;
  593. wait_event_lock_irq(conf->wait_barrier,
  594. conf->barrier+conf->nr_pending == conf->nr_queued+2,
  595. conf->resync_lock,
  596. raid1_unplug(conf->mddev->queue));
  597. spin_unlock_irq(&conf->resync_lock);
  598. }
  599. static void unfreeze_array(conf_t *conf)
  600. {
  601. /* reverse the effect of the freeze */
  602. spin_lock_irq(&conf->resync_lock);
  603. conf->barrier--;
  604. conf->nr_waiting--;
  605. wake_up(&conf->wait_barrier);
  606. spin_unlock_irq(&conf->resync_lock);
  607. }
  608. /* duplicate the data pages for behind I/O */
  609. static struct page **alloc_behind_pages(struct bio *bio)
  610. {
  611. int i;
  612. struct bio_vec *bvec;
  613. struct page **pages = kzalloc(bio->bi_vcnt * sizeof(struct page *),
  614. GFP_NOIO);
  615. if (unlikely(!pages))
  616. goto do_sync_io;
  617. bio_for_each_segment(bvec, bio, i) {
  618. pages[i] = alloc_page(GFP_NOIO);
  619. if (unlikely(!pages[i]))
  620. goto do_sync_io;
  621. memcpy(kmap(pages[i]) + bvec->bv_offset,
  622. kmap(bvec->bv_page) + bvec->bv_offset, bvec->bv_len);
  623. kunmap(pages[i]);
  624. kunmap(bvec->bv_page);
  625. }
  626. return pages;
  627. do_sync_io:
  628. if (pages)
  629. for (i = 0; i < bio->bi_vcnt && pages[i]; i++)
  630. put_page(pages[i]);
  631. kfree(pages);
  632. PRINTK("%dB behind alloc failed, doing sync I/O\n", bio->bi_size);
  633. return NULL;
  634. }
  635. static int make_request(request_queue_t *q, struct bio * bio)
  636. {
  637. mddev_t *mddev = q->queuedata;
  638. conf_t *conf = mddev_to_conf(mddev);
  639. mirror_info_t *mirror;
  640. r1bio_t *r1_bio;
  641. struct bio *read_bio;
  642. int i, targets = 0, disks;
  643. mdk_rdev_t *rdev;
  644. struct bitmap *bitmap = mddev->bitmap;
  645. unsigned long flags;
  646. struct bio_list bl;
  647. struct page **behind_pages = NULL;
  648. const int rw = bio_data_dir(bio);
  649. int do_barriers;
  650. /*
  651. * Register the new request and wait if the reconstruction
  652. * thread has put up a bar for new requests.
  653. * Continue immediately if no resync is active currently.
  654. * We test barriers_work *after* md_write_start as md_write_start
  655. * may cause the first superblock write, and that will check out
  656. * if barriers work.
  657. */
  658. md_write_start(mddev, bio); /* wait on superblock update early */
  659. if (unlikely(!mddev->barriers_work && bio_barrier(bio))) {
  660. if (rw == WRITE)
  661. md_write_end(mddev);
  662. bio_endio(bio, bio->bi_size, -EOPNOTSUPP);
  663. return 0;
  664. }
  665. wait_barrier(conf);
  666. disk_stat_inc(mddev->gendisk, ios[rw]);
  667. disk_stat_add(mddev->gendisk, sectors[rw], bio_sectors(bio));
  668. /*
  669. * make_request() can abort the operation when READA is being
  670. * used and no empty request is available.
  671. *
  672. */
  673. r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
  674. r1_bio->master_bio = bio;
  675. r1_bio->sectors = bio->bi_size >> 9;
  676. r1_bio->state = 0;
  677. r1_bio->mddev = mddev;
  678. r1_bio->sector = bio->bi_sector;
  679. if (rw == READ) {
  680. /*
  681. * read balancing logic:
  682. */
  683. int rdisk = read_balance(conf, r1_bio);
  684. if (rdisk < 0) {
  685. /* couldn't find anywhere to read from */
  686. raid_end_bio_io(r1_bio);
  687. return 0;
  688. }
  689. mirror = conf->mirrors + rdisk;
  690. r1_bio->read_disk = rdisk;
  691. read_bio = bio_clone(bio, GFP_NOIO);
  692. r1_bio->bios[rdisk] = read_bio;
  693. read_bio->bi_sector = r1_bio->sector + mirror->rdev->data_offset;
  694. read_bio->bi_bdev = mirror->rdev->bdev;
  695. read_bio->bi_end_io = raid1_end_read_request;
  696. read_bio->bi_rw = READ;
  697. read_bio->bi_private = r1_bio;
  698. generic_make_request(read_bio);
  699. return 0;
  700. }
  701. /*
  702. * WRITE:
  703. */
  704. /* first select target devices under spinlock and
  705. * inc refcount on their rdev. Record them by setting
  706. * bios[x] to bio
  707. */
  708. disks = conf->raid_disks;
  709. #if 0
  710. { static int first=1;
  711. if (first) printk("First Write sector %llu disks %d\n",
  712. (unsigned long long)r1_bio->sector, disks);
  713. first = 0;
  714. }
  715. #endif
  716. rcu_read_lock();
  717. for (i = 0; i < disks; i++) {
  718. if ((rdev=rcu_dereference(conf->mirrors[i].rdev)) != NULL &&
  719. !test_bit(Faulty, &rdev->flags)) {
  720. atomic_inc(&rdev->nr_pending);
  721. if (test_bit(Faulty, &rdev->flags)) {
  722. rdev_dec_pending(rdev, mddev);
  723. r1_bio->bios[i] = NULL;
  724. } else
  725. r1_bio->bios[i] = bio;
  726. targets++;
  727. } else
  728. r1_bio->bios[i] = NULL;
  729. }
  730. rcu_read_unlock();
  731. BUG_ON(targets == 0); /* we never fail the last device */
  732. if (targets < conf->raid_disks) {
  733. /* array is degraded, we will not clear the bitmap
  734. * on I/O completion (see raid1_end_write_request) */
  735. set_bit(R1BIO_Degraded, &r1_bio->state);
  736. }
  737. /* do behind I/O ? */
  738. if (bitmap &&
  739. atomic_read(&bitmap->behind_writes) < bitmap->max_write_behind &&
  740. (behind_pages = alloc_behind_pages(bio)) != NULL)
  741. set_bit(R1BIO_BehindIO, &r1_bio->state);
  742. atomic_set(&r1_bio->remaining, 0);
  743. atomic_set(&r1_bio->behind_remaining, 0);
  744. do_barriers = bio_barrier(bio);
  745. if (do_barriers)
  746. set_bit(R1BIO_Barrier, &r1_bio->state);
  747. bio_list_init(&bl);
  748. for (i = 0; i < disks; i++) {
  749. struct bio *mbio;
  750. if (!r1_bio->bios[i])
  751. continue;
  752. mbio = bio_clone(bio, GFP_NOIO);
  753. r1_bio->bios[i] = mbio;
  754. mbio->bi_sector = r1_bio->sector + conf->mirrors[i].rdev->data_offset;
  755. mbio->bi_bdev = conf->mirrors[i].rdev->bdev;
  756. mbio->bi_end_io = raid1_end_write_request;
  757. mbio->bi_rw = WRITE | do_barriers;
  758. mbio->bi_private = r1_bio;
  759. if (behind_pages) {
  760. struct bio_vec *bvec;
  761. int j;
  762. /* Yes, I really want the '__' version so that
  763. * we clear any unused pointer in the io_vec, rather
  764. * than leave them unchanged. This is important
  765. * because when we come to free the pages, we won't
  766. * know the originial bi_idx, so we just free
  767. * them all
  768. */
  769. __bio_for_each_segment(bvec, mbio, j, 0)
  770. bvec->bv_page = behind_pages[j];
  771. if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags))
  772. atomic_inc(&r1_bio->behind_remaining);
  773. }
  774. atomic_inc(&r1_bio->remaining);
  775. bio_list_add(&bl, mbio);
  776. }
  777. kfree(behind_pages); /* the behind pages are attached to the bios now */
  778. bitmap_startwrite(bitmap, bio->bi_sector, r1_bio->sectors,
  779. test_bit(R1BIO_BehindIO, &r1_bio->state));
  780. spin_lock_irqsave(&conf->device_lock, flags);
  781. bio_list_merge(&conf->pending_bio_list, &bl);
  782. bio_list_init(&bl);
  783. blk_plug_device(mddev->queue);
  784. spin_unlock_irqrestore(&conf->device_lock, flags);
  785. #if 0
  786. while ((bio = bio_list_pop(&bl)) != NULL)
  787. generic_make_request(bio);
  788. #endif
  789. return 0;
  790. }
  791. static void status(struct seq_file *seq, mddev_t *mddev)
  792. {
  793. conf_t *conf = mddev_to_conf(mddev);
  794. int i;
  795. seq_printf(seq, " [%d/%d] [", conf->raid_disks,
  796. conf->working_disks);
  797. rcu_read_lock();
  798. for (i = 0; i < conf->raid_disks; i++) {
  799. mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
  800. seq_printf(seq, "%s",
  801. rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
  802. }
  803. rcu_read_unlock();
  804. seq_printf(seq, "]");
  805. }
  806. static void error(mddev_t *mddev, mdk_rdev_t *rdev)
  807. {
  808. char b[BDEVNAME_SIZE];
  809. conf_t *conf = mddev_to_conf(mddev);
  810. /*
  811. * If it is not operational, then we have already marked it as dead
  812. * else if it is the last working disks, ignore the error, let the
  813. * next level up know.
  814. * else mark the drive as failed
  815. */
  816. if (test_bit(In_sync, &rdev->flags)
  817. && conf->working_disks == 1)
  818. /*
  819. * Don't fail the drive, act as though we were just a
  820. * normal single drive
  821. */
  822. return;
  823. if (test_bit(In_sync, &rdev->flags)) {
  824. mddev->degraded++;
  825. conf->working_disks--;
  826. /*
  827. * if recovery is running, make sure it aborts.
  828. */
  829. set_bit(MD_RECOVERY_ERR, &mddev->recovery);
  830. }
  831. clear_bit(In_sync, &rdev->flags);
  832. set_bit(Faulty, &rdev->flags);
  833. mddev->sb_dirty = 1;
  834. printk(KERN_ALERT "raid1: Disk failure on %s, disabling device. \n"
  835. " Operation continuing on %d devices\n",
  836. bdevname(rdev->bdev,b), conf->working_disks);
  837. }
  838. static void print_conf(conf_t *conf)
  839. {
  840. int i;
  841. printk("RAID1 conf printout:\n");
  842. if (!conf) {
  843. printk("(!conf)\n");
  844. return;
  845. }
  846. printk(" --- wd:%d rd:%d\n", conf->working_disks,
  847. conf->raid_disks);
  848. rcu_read_lock();
  849. for (i = 0; i < conf->raid_disks; i++) {
  850. char b[BDEVNAME_SIZE];
  851. mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
  852. if (rdev)
  853. printk(" disk %d, wo:%d, o:%d, dev:%s\n",
  854. i, !test_bit(In_sync, &rdev->flags),
  855. !test_bit(Faulty, &rdev->flags),
  856. bdevname(rdev->bdev,b));
  857. }
  858. rcu_read_unlock();
  859. }
  860. static void close_sync(conf_t *conf)
  861. {
  862. wait_barrier(conf);
  863. allow_barrier(conf);
  864. mempool_destroy(conf->r1buf_pool);
  865. conf->r1buf_pool = NULL;
  866. }
  867. static int raid1_spare_active(mddev_t *mddev)
  868. {
  869. int i;
  870. conf_t *conf = mddev->private;
  871. /*
  872. * Find all failed disks within the RAID1 configuration
  873. * and mark them readable.
  874. * Called under mddev lock, so rcu protection not needed.
  875. */
  876. for (i = 0; i < conf->raid_disks; i++) {
  877. mdk_rdev_t *rdev = conf->mirrors[i].rdev;
  878. if (rdev
  879. && !test_bit(Faulty, &rdev->flags)
  880. && !test_bit(In_sync, &rdev->flags)) {
  881. conf->working_disks++;
  882. mddev->degraded--;
  883. set_bit(In_sync, &rdev->flags);
  884. }
  885. }
  886. print_conf(conf);
  887. return 0;
  888. }
  889. static int raid1_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
  890. {
  891. conf_t *conf = mddev->private;
  892. int found = 0;
  893. int mirror = 0;
  894. mirror_info_t *p;
  895. for (mirror=0; mirror < mddev->raid_disks; mirror++)
  896. if ( !(p=conf->mirrors+mirror)->rdev) {
  897. blk_queue_stack_limits(mddev->queue,
  898. rdev->bdev->bd_disk->queue);
  899. /* as we don't honour merge_bvec_fn, we must never risk
  900. * violating it, so limit ->max_sector to one PAGE, as
  901. * a one page request is never in violation.
  902. */
  903. if (rdev->bdev->bd_disk->queue->merge_bvec_fn &&
  904. mddev->queue->max_sectors > (PAGE_SIZE>>9))
  905. blk_queue_max_sectors(mddev->queue, PAGE_SIZE>>9);
  906. p->head_position = 0;
  907. rdev->raid_disk = mirror;
  908. found = 1;
  909. /* As all devices are equivalent, we don't need a full recovery
  910. * if this was recently any drive of the array
  911. */
  912. if (rdev->saved_raid_disk < 0)
  913. conf->fullsync = 1;
  914. rcu_assign_pointer(p->rdev, rdev);
  915. break;
  916. }
  917. print_conf(conf);
  918. return found;
  919. }
  920. static int raid1_remove_disk(mddev_t *mddev, int number)
  921. {
  922. conf_t *conf = mddev->private;
  923. int err = 0;
  924. mdk_rdev_t *rdev;
  925. mirror_info_t *p = conf->mirrors+ number;
  926. print_conf(conf);
  927. rdev = p->rdev;
  928. if (rdev) {
  929. if (test_bit(In_sync, &rdev->flags) ||
  930. atomic_read(&rdev->nr_pending)) {
  931. err = -EBUSY;
  932. goto abort;
  933. }
  934. p->rdev = NULL;
  935. synchronize_rcu();
  936. if (atomic_read(&rdev->nr_pending)) {
  937. /* lost the race, try later */
  938. err = -EBUSY;
  939. p->rdev = rdev;
  940. }
  941. }
  942. abort:
  943. print_conf(conf);
  944. return err;
  945. }
  946. static int end_sync_read(struct bio *bio, unsigned int bytes_done, int error)
  947. {
  948. r1bio_t * r1_bio = (r1bio_t *)(bio->bi_private);
  949. int i;
  950. if (bio->bi_size)
  951. return 1;
  952. for (i=r1_bio->mddev->raid_disks; i--; )
  953. if (r1_bio->bios[i] == bio)
  954. break;
  955. BUG_ON(i < 0);
  956. update_head_pos(i, r1_bio);
  957. /*
  958. * we have read a block, now it needs to be re-written,
  959. * or re-read if the read failed.
  960. * We don't do much here, just schedule handling by raid1d
  961. */
  962. if (test_bit(BIO_UPTODATE, &bio->bi_flags))
  963. set_bit(R1BIO_Uptodate, &r1_bio->state);
  964. if (atomic_dec_and_test(&r1_bio->remaining))
  965. reschedule_retry(r1_bio);
  966. return 0;
  967. }
  968. static int end_sync_write(struct bio *bio, unsigned int bytes_done, int error)
  969. {
  970. int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
  971. r1bio_t * r1_bio = (r1bio_t *)(bio->bi_private);
  972. mddev_t *mddev = r1_bio->mddev;
  973. conf_t *conf = mddev_to_conf(mddev);
  974. int i;
  975. int mirror=0;
  976. if (bio->bi_size)
  977. return 1;
  978. for (i = 0; i < conf->raid_disks; i++)
  979. if (r1_bio->bios[i] == bio) {
  980. mirror = i;
  981. break;
  982. }
  983. if (!uptodate) {
  984. int sync_blocks = 0;
  985. sector_t s = r1_bio->sector;
  986. long sectors_to_go = r1_bio->sectors;
  987. /* make sure these bits doesn't get cleared. */
  988. do {
  989. bitmap_end_sync(mddev->bitmap, s,
  990. &sync_blocks, 1);
  991. s += sync_blocks;
  992. sectors_to_go -= sync_blocks;
  993. } while (sectors_to_go > 0);
  994. md_error(mddev, conf->mirrors[mirror].rdev);
  995. }
  996. update_head_pos(mirror, r1_bio);
  997. if (atomic_dec_and_test(&r1_bio->remaining)) {
  998. md_done_sync(mddev, r1_bio->sectors, uptodate);
  999. put_buf(r1_bio);
  1000. }
  1001. return 0;
  1002. }
  1003. static void sync_request_write(mddev_t *mddev, r1bio_t *r1_bio)
  1004. {
  1005. conf_t *conf = mddev_to_conf(mddev);
  1006. int i;
  1007. int disks = conf->raid_disks;
  1008. struct bio *bio, *wbio;
  1009. bio = r1_bio->bios[r1_bio->read_disk];
  1010. if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
  1011. /* We have read all readable devices. If we haven't
  1012. * got the block, then there is no hope left.
  1013. * If we have, then we want to do a comparison
  1014. * and skip the write if everything is the same.
  1015. * If any blocks failed to read, then we need to
  1016. * attempt an over-write
  1017. */
  1018. int primary;
  1019. if (!test_bit(R1BIO_Uptodate, &r1_bio->state)) {
  1020. for (i=0; i<mddev->raid_disks; i++)
  1021. if (r1_bio->bios[i]->bi_end_io == end_sync_read)
  1022. md_error(mddev, conf->mirrors[i].rdev);
  1023. md_done_sync(mddev, r1_bio->sectors, 1);
  1024. put_buf(r1_bio);
  1025. return;
  1026. }
  1027. for (primary=0; primary<mddev->raid_disks; primary++)
  1028. if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
  1029. test_bit(BIO_UPTODATE, &r1_bio->bios[primary]->bi_flags)) {
  1030. r1_bio->bios[primary]->bi_end_io = NULL;
  1031. rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
  1032. break;
  1033. }
  1034. r1_bio->read_disk = primary;
  1035. for (i=0; i<mddev->raid_disks; i++)
  1036. if (r1_bio->bios[i]->bi_end_io == end_sync_read &&
  1037. test_bit(BIO_UPTODATE, &r1_bio->bios[i]->bi_flags)) {
  1038. int j;
  1039. int vcnt = r1_bio->sectors >> (PAGE_SHIFT- 9);
  1040. struct bio *pbio = r1_bio->bios[primary];
  1041. struct bio *sbio = r1_bio->bios[i];
  1042. for (j = vcnt; j-- ; )
  1043. if (memcmp(page_address(pbio->bi_io_vec[j].bv_page),
  1044. page_address(sbio->bi_io_vec[j].bv_page),
  1045. PAGE_SIZE))
  1046. break;
  1047. if (j >= 0)
  1048. mddev->resync_mismatches += r1_bio->sectors;
  1049. if (j < 0 || test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
  1050. sbio->bi_end_io = NULL;
  1051. rdev_dec_pending(conf->mirrors[i].rdev, mddev);
  1052. } else {
  1053. /* fixup the bio for reuse */
  1054. sbio->bi_vcnt = vcnt;
  1055. sbio->bi_size = r1_bio->sectors << 9;
  1056. sbio->bi_idx = 0;
  1057. sbio->bi_phys_segments = 0;
  1058. sbio->bi_hw_segments = 0;
  1059. sbio->bi_hw_front_size = 0;
  1060. sbio->bi_hw_back_size = 0;
  1061. sbio->bi_flags &= ~(BIO_POOL_MASK - 1);
  1062. sbio->bi_flags |= 1 << BIO_UPTODATE;
  1063. sbio->bi_next = NULL;
  1064. sbio->bi_sector = r1_bio->sector +
  1065. conf->mirrors[i].rdev->data_offset;
  1066. sbio->bi_bdev = conf->mirrors[i].rdev->bdev;
  1067. }
  1068. }
  1069. }
  1070. if (!test_bit(R1BIO_Uptodate, &r1_bio->state)) {
  1071. /* ouch - failed to read all of that.
  1072. * Try some synchronous reads of other devices to get
  1073. * good data, much like with normal read errors. Only
  1074. * read into the pages we already have so we don't
  1075. * need to re-issue the read request.
  1076. * We don't need to freeze the array, because being in an
  1077. * active sync request, there is no normal IO, and
  1078. * no overlapping syncs.
  1079. */
  1080. sector_t sect = r1_bio->sector;
  1081. int sectors = r1_bio->sectors;
  1082. int idx = 0;
  1083. while(sectors) {
  1084. int s = sectors;
  1085. int d = r1_bio->read_disk;
  1086. int success = 0;
  1087. mdk_rdev_t *rdev;
  1088. if (s > (PAGE_SIZE>>9))
  1089. s = PAGE_SIZE >> 9;
  1090. do {
  1091. if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
  1092. /* No rcu protection needed here devices
  1093. * can only be removed when no resync is
  1094. * active, and resync is currently active
  1095. */
  1096. rdev = conf->mirrors[d].rdev;
  1097. if (sync_page_io(rdev->bdev,
  1098. sect + rdev->data_offset,
  1099. s<<9,
  1100. bio->bi_io_vec[idx].bv_page,
  1101. READ)) {
  1102. success = 1;
  1103. break;
  1104. }
  1105. }
  1106. d++;
  1107. if (d == conf->raid_disks)
  1108. d = 0;
  1109. } while (!success && d != r1_bio->read_disk);
  1110. if (success) {
  1111. int start = d;
  1112. /* write it back and re-read */
  1113. set_bit(R1BIO_Uptodate, &r1_bio->state);
  1114. while (d != r1_bio->read_disk) {
  1115. if (d == 0)
  1116. d = conf->raid_disks;
  1117. d--;
  1118. if (r1_bio->bios[d]->bi_end_io != end_sync_read)
  1119. continue;
  1120. rdev = conf->mirrors[d].rdev;
  1121. atomic_add(s, &rdev->corrected_errors);
  1122. if (sync_page_io(rdev->bdev,
  1123. sect + rdev->data_offset,
  1124. s<<9,
  1125. bio->bi_io_vec[idx].bv_page,
  1126. WRITE) == 0)
  1127. md_error(mddev, rdev);
  1128. }
  1129. d = start;
  1130. while (d != r1_bio->read_disk) {
  1131. if (d == 0)
  1132. d = conf->raid_disks;
  1133. d--;
  1134. if (r1_bio->bios[d]->bi_end_io != end_sync_read)
  1135. continue;
  1136. rdev = conf->mirrors[d].rdev;
  1137. if (sync_page_io(rdev->bdev,
  1138. sect + rdev->data_offset,
  1139. s<<9,
  1140. bio->bi_io_vec[idx].bv_page,
  1141. READ) == 0)
  1142. md_error(mddev, rdev);
  1143. }
  1144. } else {
  1145. char b[BDEVNAME_SIZE];
  1146. /* Cannot read from anywhere, array is toast */
  1147. md_error(mddev, conf->mirrors[r1_bio->read_disk].rdev);
  1148. printk(KERN_ALERT "raid1: %s: unrecoverable I/O read error"
  1149. " for block %llu\n",
  1150. bdevname(bio->bi_bdev,b),
  1151. (unsigned long long)r1_bio->sector);
  1152. md_done_sync(mddev, r1_bio->sectors, 0);
  1153. put_buf(r1_bio);
  1154. return;
  1155. }
  1156. sectors -= s;
  1157. sect += s;
  1158. idx ++;
  1159. }
  1160. }
  1161. /*
  1162. * schedule writes
  1163. */
  1164. atomic_set(&r1_bio->remaining, 1);
  1165. for (i = 0; i < disks ; i++) {
  1166. wbio = r1_bio->bios[i];
  1167. if (wbio->bi_end_io == NULL ||
  1168. (wbio->bi_end_io == end_sync_read &&
  1169. (i == r1_bio->read_disk ||
  1170. !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
  1171. continue;
  1172. wbio->bi_rw = WRITE;
  1173. wbio->bi_end_io = end_sync_write;
  1174. atomic_inc(&r1_bio->remaining);
  1175. md_sync_acct(conf->mirrors[i].rdev->bdev, wbio->bi_size >> 9);
  1176. generic_make_request(wbio);
  1177. }
  1178. if (atomic_dec_and_test(&r1_bio->remaining)) {
  1179. /* if we're here, all write(s) have completed, so clean up */
  1180. md_done_sync(mddev, r1_bio->sectors, 1);
  1181. put_buf(r1_bio);
  1182. }
  1183. }
  1184. /*
  1185. * This is a kernel thread which:
  1186. *
  1187. * 1. Retries failed read operations on working mirrors.
  1188. * 2. Updates the raid superblock when problems encounter.
  1189. * 3. Performs writes following reads for array syncronising.
  1190. */
  1191. static void raid1d(mddev_t *mddev)
  1192. {
  1193. r1bio_t *r1_bio;
  1194. struct bio *bio;
  1195. unsigned long flags;
  1196. conf_t *conf = mddev_to_conf(mddev);
  1197. struct list_head *head = &conf->retry_list;
  1198. int unplug=0;
  1199. mdk_rdev_t *rdev;
  1200. md_check_recovery(mddev);
  1201. for (;;) {
  1202. char b[BDEVNAME_SIZE];
  1203. spin_lock_irqsave(&conf->device_lock, flags);
  1204. if (conf->pending_bio_list.head) {
  1205. bio = bio_list_get(&conf->pending_bio_list);
  1206. blk_remove_plug(mddev->queue);
  1207. spin_unlock_irqrestore(&conf->device_lock, flags);
  1208. /* flush any pending bitmap writes to disk before proceeding w/ I/O */
  1209. if (bitmap_unplug(mddev->bitmap) != 0)
  1210. printk("%s: bitmap file write failed!\n", mdname(mddev));
  1211. while (bio) { /* submit pending writes */
  1212. struct bio *next = bio->bi_next;
  1213. bio->bi_next = NULL;
  1214. generic_make_request(bio);
  1215. bio = next;
  1216. }
  1217. unplug = 1;
  1218. continue;
  1219. }
  1220. if (list_empty(head))
  1221. break;
  1222. r1_bio = list_entry(head->prev, r1bio_t, retry_list);
  1223. list_del(head->prev);
  1224. conf->nr_queued--;
  1225. spin_unlock_irqrestore(&conf->device_lock, flags);
  1226. mddev = r1_bio->mddev;
  1227. conf = mddev_to_conf(mddev);
  1228. if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
  1229. sync_request_write(mddev, r1_bio);
  1230. unplug = 1;
  1231. } else if (test_bit(R1BIO_BarrierRetry, &r1_bio->state)) {
  1232. /* some requests in the r1bio were BIO_RW_BARRIER
  1233. * requests which failed with -EOPNOTSUPP. Hohumm..
  1234. * Better resubmit without the barrier.
  1235. * We know which devices to resubmit for, because
  1236. * all others have had their bios[] entry cleared.
  1237. * We already have a nr_pending reference on these rdevs.
  1238. */
  1239. int i;
  1240. clear_bit(R1BIO_BarrierRetry, &r1_bio->state);
  1241. clear_bit(R1BIO_Barrier, &r1_bio->state);
  1242. for (i=0; i < conf->raid_disks; i++)
  1243. if (r1_bio->bios[i])
  1244. atomic_inc(&r1_bio->remaining);
  1245. for (i=0; i < conf->raid_disks; i++)
  1246. if (r1_bio->bios[i]) {
  1247. struct bio_vec *bvec;
  1248. int j;
  1249. bio = bio_clone(r1_bio->master_bio, GFP_NOIO);
  1250. /* copy pages from the failed bio, as
  1251. * this might be a write-behind device */
  1252. __bio_for_each_segment(bvec, bio, j, 0)
  1253. bvec->bv_page = bio_iovec_idx(r1_bio->bios[i], j)->bv_page;
  1254. bio_put(r1_bio->bios[i]);
  1255. bio->bi_sector = r1_bio->sector +
  1256. conf->mirrors[i].rdev->data_offset;
  1257. bio->bi_bdev = conf->mirrors[i].rdev->bdev;
  1258. bio->bi_end_io = raid1_end_write_request;
  1259. bio->bi_rw = WRITE;
  1260. bio->bi_private = r1_bio;
  1261. r1_bio->bios[i] = bio;
  1262. generic_make_request(bio);
  1263. }
  1264. } else {
  1265. int disk;
  1266. /* we got a read error. Maybe the drive is bad. Maybe just
  1267. * the block and we can fix it.
  1268. * We freeze all other IO, and try reading the block from
  1269. * other devices. When we find one, we re-write
  1270. * and check it that fixes the read error.
  1271. * This is all done synchronously while the array is
  1272. * frozen
  1273. */
  1274. sector_t sect = r1_bio->sector;
  1275. int sectors = r1_bio->sectors;
  1276. freeze_array(conf);
  1277. if (mddev->ro == 0) while(sectors) {
  1278. int s = sectors;
  1279. int d = r1_bio->read_disk;
  1280. int success = 0;
  1281. if (s > (PAGE_SIZE>>9))
  1282. s = PAGE_SIZE >> 9;
  1283. do {
  1284. /* Note: no rcu protection needed here
  1285. * as this is synchronous in the raid1d thread
  1286. * which is the thread that might remove
  1287. * a device. If raid1d ever becomes multi-threaded....
  1288. */
  1289. rdev = conf->mirrors[d].rdev;
  1290. if (rdev &&
  1291. test_bit(In_sync, &rdev->flags) &&
  1292. sync_page_io(rdev->bdev,
  1293. sect + rdev->data_offset,
  1294. s<<9,
  1295. conf->tmppage, READ))
  1296. success = 1;
  1297. else {
  1298. d++;
  1299. if (d == conf->raid_disks)
  1300. d = 0;
  1301. }
  1302. } while (!success && d != r1_bio->read_disk);
  1303. if (success) {
  1304. /* write it back and re-read */
  1305. int start = d;
  1306. while (d != r1_bio->read_disk) {
  1307. if (d==0)
  1308. d = conf->raid_disks;
  1309. d--;
  1310. rdev = conf->mirrors[d].rdev;
  1311. if (rdev &&
  1312. test_bit(In_sync, &rdev->flags)) {
  1313. if (sync_page_io(rdev->bdev,
  1314. sect + rdev->data_offset,
  1315. s<<9, conf->tmppage, WRITE) == 0)
  1316. /* Well, this device is dead */
  1317. md_error(mddev, rdev);
  1318. }
  1319. }
  1320. d = start;
  1321. while (d != r1_bio->read_disk) {
  1322. if (d==0)
  1323. d = conf->raid_disks;
  1324. d--;
  1325. rdev = conf->mirrors[d].rdev;
  1326. if (rdev &&
  1327. test_bit(In_sync, &rdev->flags)) {
  1328. if (sync_page_io(rdev->bdev,
  1329. sect + rdev->data_offset,
  1330. s<<9, conf->tmppage, READ) == 0)
  1331. /* Well, this device is dead */
  1332. md_error(mddev, rdev);
  1333. else {
  1334. atomic_add(s, &rdev->corrected_errors);
  1335. printk(KERN_INFO "raid1:%s: read error corrected (%d sectors at %llu on %s)\n",
  1336. mdname(mddev), s, (unsigned long long)(sect + rdev->data_offset), bdevname(rdev->bdev, b));
  1337. }
  1338. }
  1339. }
  1340. } else {
  1341. /* Cannot read from anywhere -- bye bye array */
  1342. md_error(mddev, conf->mirrors[r1_bio->read_disk].rdev);
  1343. break;
  1344. }
  1345. sectors -= s;
  1346. sect += s;
  1347. }
  1348. unfreeze_array(conf);
  1349. bio = r1_bio->bios[r1_bio->read_disk];
  1350. if ((disk=read_balance(conf, r1_bio)) == -1) {
  1351. printk(KERN_ALERT "raid1: %s: unrecoverable I/O"
  1352. " read error for block %llu\n",
  1353. bdevname(bio->bi_bdev,b),
  1354. (unsigned long long)r1_bio->sector);
  1355. raid_end_bio_io(r1_bio);
  1356. } else {
  1357. r1_bio->bios[r1_bio->read_disk] =
  1358. mddev->ro ? IO_BLOCKED : NULL;
  1359. r1_bio->read_disk = disk;
  1360. bio_put(bio);
  1361. bio = bio_clone(r1_bio->master_bio, GFP_NOIO);
  1362. r1_bio->bios[r1_bio->read_disk] = bio;
  1363. rdev = conf->mirrors[disk].rdev;
  1364. if (printk_ratelimit())
  1365. printk(KERN_ERR "raid1: %s: redirecting sector %llu to"
  1366. " another mirror\n",
  1367. bdevname(rdev->bdev,b),
  1368. (unsigned long long)r1_bio->sector);
  1369. bio->bi_sector = r1_bio->sector + rdev->data_offset;
  1370. bio->bi_bdev = rdev->bdev;
  1371. bio->bi_end_io = raid1_end_read_request;
  1372. bio->bi_rw = READ;
  1373. bio->bi_private = r1_bio;
  1374. unplug = 1;
  1375. generic_make_request(bio);
  1376. }
  1377. }
  1378. }
  1379. spin_unlock_irqrestore(&conf->device_lock, flags);
  1380. if (unplug)
  1381. unplug_slaves(mddev);
  1382. }
  1383. static int init_resync(conf_t *conf)
  1384. {
  1385. int buffs;
  1386. buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
  1387. BUG_ON(conf->r1buf_pool);
  1388. conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free,
  1389. conf->poolinfo);
  1390. if (!conf->r1buf_pool)
  1391. return -ENOMEM;
  1392. conf->next_resync = 0;
  1393. return 0;
  1394. }
  1395. /*
  1396. * perform a "sync" on one "block"
  1397. *
  1398. * We need to make sure that no normal I/O request - particularly write
  1399. * requests - conflict with active sync requests.
  1400. *
  1401. * This is achieved by tracking pending requests and a 'barrier' concept
  1402. * that can be installed to exclude normal IO requests.
  1403. */
  1404. static sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
  1405. {
  1406. conf_t *conf = mddev_to_conf(mddev);
  1407. r1bio_t *r1_bio;
  1408. struct bio *bio;
  1409. sector_t max_sector, nr_sectors;
  1410. int disk = -1;
  1411. int i;
  1412. int wonly = -1;
  1413. int write_targets = 0, read_targets = 0;
  1414. int sync_blocks;
  1415. int still_degraded = 0;
  1416. if (!conf->r1buf_pool)
  1417. {
  1418. /*
  1419. printk("sync start - bitmap %p\n", mddev->bitmap);
  1420. */
  1421. if (init_resync(conf))
  1422. return 0;
  1423. }
  1424. max_sector = mddev->size << 1;
  1425. if (sector_nr >= max_sector) {
  1426. /* If we aborted, we need to abort the
  1427. * sync on the 'current' bitmap chunk (there will
  1428. * only be one in raid1 resync.
  1429. * We can find the current addess in mddev->curr_resync
  1430. */
  1431. if (mddev->curr_resync < max_sector) /* aborted */
  1432. bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
  1433. &sync_blocks, 1);
  1434. else /* completed sync */
  1435. conf->fullsync = 0;
  1436. bitmap_close_sync(mddev->bitmap);
  1437. close_sync(conf);
  1438. return 0;
  1439. }
  1440. if (mddev->bitmap == NULL &&
  1441. mddev->recovery_cp == MaxSector &&
  1442. !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
  1443. conf->fullsync == 0) {
  1444. *skipped = 1;
  1445. return max_sector - sector_nr;
  1446. }
  1447. /* before building a request, check if we can skip these blocks..
  1448. * This call the bitmap_start_sync doesn't actually record anything
  1449. */
  1450. if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
  1451. !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
  1452. /* We can skip this block, and probably several more */
  1453. *skipped = 1;
  1454. return sync_blocks;
  1455. }
  1456. /*
  1457. * If there is non-resync activity waiting for a turn,
  1458. * and resync is going fast enough,
  1459. * then let it though before starting on this new sync request.
  1460. */
  1461. if (!go_faster && conf->nr_waiting)
  1462. msleep_interruptible(1000);
  1463. raise_barrier(conf);
  1464. conf->next_resync = sector_nr;
  1465. r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO);
  1466. rcu_read_lock();
  1467. /*
  1468. * If we get a correctably read error during resync or recovery,
  1469. * we might want to read from a different device. So we
  1470. * flag all drives that could conceivably be read from for READ,
  1471. * and any others (which will be non-In_sync devices) for WRITE.
  1472. * If a read fails, we try reading from something else for which READ
  1473. * is OK.
  1474. */
  1475. r1_bio->mddev = mddev;
  1476. r1_bio->sector = sector_nr;
  1477. r1_bio->state = 0;
  1478. set_bit(R1BIO_IsSync, &r1_bio->state);
  1479. for (i=0; i < conf->raid_disks; i++) {
  1480. mdk_rdev_t *rdev;
  1481. bio = r1_bio->bios[i];
  1482. /* take from bio_init */
  1483. bio->bi_next = NULL;
  1484. bio->bi_flags |= 1 << BIO_UPTODATE;
  1485. bio->bi_rw = 0;
  1486. bio->bi_vcnt = 0;
  1487. bio->bi_idx = 0;
  1488. bio->bi_phys_segments = 0;
  1489. bio->bi_hw_segments = 0;
  1490. bio->bi_size = 0;
  1491. bio->bi_end_io = NULL;
  1492. bio->bi_private = NULL;
  1493. rdev = rcu_dereference(conf->mirrors[i].rdev);
  1494. if (rdev == NULL ||
  1495. test_bit(Faulty, &rdev->flags)) {
  1496. still_degraded = 1;
  1497. continue;
  1498. } else if (!test_bit(In_sync, &rdev->flags)) {
  1499. bio->bi_rw = WRITE;
  1500. bio->bi_end_io = end_sync_write;
  1501. write_targets ++;
  1502. } else {
  1503. /* may need to read from here */
  1504. bio->bi_rw = READ;
  1505. bio->bi_end_io = end_sync_read;
  1506. if (test_bit(WriteMostly, &rdev->flags)) {
  1507. if (wonly < 0)
  1508. wonly = i;
  1509. } else {
  1510. if (disk < 0)
  1511. disk = i;
  1512. }
  1513. read_targets++;
  1514. }
  1515. atomic_inc(&rdev->nr_pending);
  1516. bio->bi_sector = sector_nr + rdev->data_offset;
  1517. bio->bi_bdev = rdev->bdev;
  1518. bio->bi_private = r1_bio;
  1519. }
  1520. rcu_read_unlock();
  1521. if (disk < 0)
  1522. disk = wonly;
  1523. r1_bio->read_disk = disk;
  1524. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
  1525. /* extra read targets are also write targets */
  1526. write_targets += read_targets-1;
  1527. if (write_targets == 0 || read_targets == 0) {
  1528. /* There is nowhere to write, so all non-sync
  1529. * drives must be failed - so we are finished
  1530. */
  1531. sector_t rv = max_sector - sector_nr;
  1532. *skipped = 1;
  1533. put_buf(r1_bio);
  1534. return rv;
  1535. }
  1536. nr_sectors = 0;
  1537. sync_blocks = 0;
  1538. do {
  1539. struct page *page;
  1540. int len = PAGE_SIZE;
  1541. if (sector_nr + (len>>9) > max_sector)
  1542. len = (max_sector - sector_nr) << 9;
  1543. if (len == 0)
  1544. break;
  1545. if (sync_blocks == 0) {
  1546. if (!bitmap_start_sync(mddev->bitmap, sector_nr,
  1547. &sync_blocks, still_degraded) &&
  1548. !conf->fullsync &&
  1549. !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
  1550. break;
  1551. BUG_ON(sync_blocks < (PAGE_SIZE>>9));
  1552. if (len > (sync_blocks<<9))
  1553. len = sync_blocks<<9;
  1554. }
  1555. for (i=0 ; i < conf->raid_disks; i++) {
  1556. bio = r1_bio->bios[i];
  1557. if (bio->bi_end_io) {
  1558. page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
  1559. if (bio_add_page(bio, page, len, 0) == 0) {
  1560. /* stop here */
  1561. bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
  1562. while (i > 0) {
  1563. i--;
  1564. bio = r1_bio->bios[i];
  1565. if (bio->bi_end_io==NULL)
  1566. continue;
  1567. /* remove last page from this bio */
  1568. bio->bi_vcnt--;
  1569. bio->bi_size -= len;
  1570. bio->bi_flags &= ~(1<< BIO_SEG_VALID);
  1571. }
  1572. goto bio_full;
  1573. }
  1574. }
  1575. }
  1576. nr_sectors += len>>9;
  1577. sector_nr += len>>9;
  1578. sync_blocks -= (len>>9);
  1579. } while (r1_bio->bios[disk]->bi_vcnt < RESYNC_PAGES);
  1580. bio_full:
  1581. r1_bio->sectors = nr_sectors;
  1582. /* For a user-requested sync, we read all readable devices and do a
  1583. * compare
  1584. */
  1585. if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
  1586. atomic_set(&r1_bio->remaining, read_targets);
  1587. for (i=0; i<conf->raid_disks; i++) {
  1588. bio = r1_bio->bios[i];
  1589. if (bio->bi_end_io == end_sync_read) {
  1590. md_sync_acct(bio->bi_bdev, nr_sectors);
  1591. generic_make_request(bio);
  1592. }
  1593. }
  1594. } else {
  1595. atomic_set(&r1_bio->remaining, 1);
  1596. bio = r1_bio->bios[r1_bio->read_disk];
  1597. md_sync_acct(bio->bi_bdev, nr_sectors);
  1598. generic_make_request(bio);
  1599. }
  1600. return nr_sectors;
  1601. }
  1602. static int run(mddev_t *mddev)
  1603. {
  1604. conf_t *conf;
  1605. int i, j, disk_idx;
  1606. mirror_info_t *disk;
  1607. mdk_rdev_t *rdev;
  1608. struct list_head *tmp;
  1609. if (mddev->level != 1) {
  1610. printk("raid1: %s: raid level not set to mirroring (%d)\n",
  1611. mdname(mddev), mddev->level);
  1612. goto out;
  1613. }
  1614. if (mddev->reshape_position != MaxSector) {
  1615. printk("raid1: %s: reshape_position set but not supported\n",
  1616. mdname(mddev));
  1617. goto out;
  1618. }
  1619. /*
  1620. * copy the already verified devices into our private RAID1
  1621. * bookkeeping area. [whatever we allocate in run(),
  1622. * should be freed in stop()]
  1623. */
  1624. conf = kzalloc(sizeof(conf_t), GFP_KERNEL);
  1625. mddev->private = conf;
  1626. if (!conf)
  1627. goto out_no_mem;
  1628. conf->mirrors = kzalloc(sizeof(struct mirror_info)*mddev->raid_disks,
  1629. GFP_KERNEL);
  1630. if (!conf->mirrors)
  1631. goto out_no_mem;
  1632. conf->tmppage = alloc_page(GFP_KERNEL);
  1633. if (!conf->tmppage)
  1634. goto out_no_mem;
  1635. conf->poolinfo = kmalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
  1636. if (!conf->poolinfo)
  1637. goto out_no_mem;
  1638. conf->poolinfo->mddev = mddev;
  1639. conf->poolinfo->raid_disks = mddev->raid_disks;
  1640. conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
  1641. r1bio_pool_free,
  1642. conf->poolinfo);
  1643. if (!conf->r1bio_pool)
  1644. goto out_no_mem;
  1645. ITERATE_RDEV(mddev, rdev, tmp) {
  1646. disk_idx = rdev->raid_disk;
  1647. if (disk_idx >= mddev->raid_disks
  1648. || disk_idx < 0)
  1649. continue;
  1650. disk = conf->mirrors + disk_idx;
  1651. disk->rdev = rdev;
  1652. blk_queue_stack_limits(mddev->queue,
  1653. rdev->bdev->bd_disk->queue);
  1654. /* as we don't honour merge_bvec_fn, we must never risk
  1655. * violating it, so limit ->max_sector to one PAGE, as
  1656. * a one page request is never in violation.
  1657. */
  1658. if (rdev->bdev->bd_disk->queue->merge_bvec_fn &&
  1659. mddev->queue->max_sectors > (PAGE_SIZE>>9))
  1660. blk_queue_max_sectors(mddev->queue, PAGE_SIZE>>9);
  1661. disk->head_position = 0;
  1662. if (!test_bit(Faulty, &rdev->flags) && test_bit(In_sync, &rdev->flags))
  1663. conf->working_disks++;
  1664. }
  1665. conf->raid_disks = mddev->raid_disks;
  1666. conf->mddev = mddev;
  1667. spin_lock_init(&conf->device_lock);
  1668. INIT_LIST_HEAD(&conf->retry_list);
  1669. if (conf->working_disks == 1)
  1670. mddev->recovery_cp = MaxSector;
  1671. spin_lock_init(&conf->resync_lock);
  1672. init_waitqueue_head(&conf->wait_barrier);
  1673. bio_list_init(&conf->pending_bio_list);
  1674. bio_list_init(&conf->flushing_bio_list);
  1675. if (!conf->working_disks) {
  1676. printk(KERN_ERR "raid1: no operational mirrors for %s\n",
  1677. mdname(mddev));
  1678. goto out_free_conf;
  1679. }
  1680. mddev->degraded = 0;
  1681. for (i = 0; i < conf->raid_disks; i++) {
  1682. disk = conf->mirrors + i;
  1683. if (!disk->rdev ||
  1684. !test_bit(In_sync, &disk->rdev->flags)) {
  1685. disk->head_position = 0;
  1686. mddev->degraded++;
  1687. }
  1688. }
  1689. /*
  1690. * find the first working one and use it as a starting point
  1691. * to read balancing.
  1692. */
  1693. for (j = 0; j < conf->raid_disks &&
  1694. (!conf->mirrors[j].rdev ||
  1695. !test_bit(In_sync, &conf->mirrors[j].rdev->flags)) ; j++)
  1696. /* nothing */;
  1697. conf->last_used = j;
  1698. mddev->thread = md_register_thread(raid1d, mddev, "%s_raid1");
  1699. if (!mddev->thread) {
  1700. printk(KERN_ERR
  1701. "raid1: couldn't allocate thread for %s\n",
  1702. mdname(mddev));
  1703. goto out_free_conf;
  1704. }
  1705. printk(KERN_INFO
  1706. "raid1: raid set %s active with %d out of %d mirrors\n",
  1707. mdname(mddev), mddev->raid_disks - mddev->degraded,
  1708. mddev->raid_disks);
  1709. /*
  1710. * Ok, everything is just fine now
  1711. */
  1712. mddev->array_size = mddev->size;
  1713. mddev->queue->unplug_fn = raid1_unplug;
  1714. mddev->queue->issue_flush_fn = raid1_issue_flush;
  1715. return 0;
  1716. out_no_mem:
  1717. printk(KERN_ERR "raid1: couldn't allocate memory for %s\n",
  1718. mdname(mddev));
  1719. out_free_conf:
  1720. if (conf) {
  1721. if (conf->r1bio_pool)
  1722. mempool_destroy(conf->r1bio_pool);
  1723. kfree(conf->mirrors);
  1724. safe_put_page(conf->tmppage);
  1725. kfree(conf->poolinfo);
  1726. kfree(conf);
  1727. mddev->private = NULL;
  1728. }
  1729. out:
  1730. return -EIO;
  1731. }
  1732. static int stop(mddev_t *mddev)
  1733. {
  1734. conf_t *conf = mddev_to_conf(mddev);
  1735. struct bitmap *bitmap = mddev->bitmap;
  1736. int behind_wait = 0;
  1737. /* wait for behind writes to complete */
  1738. while (bitmap && atomic_read(&bitmap->behind_writes) > 0) {
  1739. behind_wait++;
  1740. printk(KERN_INFO "raid1: behind writes in progress on device %s, waiting to stop (%d)\n", mdname(mddev), behind_wait);
  1741. set_current_state(TASK_UNINTERRUPTIBLE);
  1742. schedule_timeout(HZ); /* wait a second */
  1743. /* need to kick something here to make sure I/O goes? */
  1744. }
  1745. md_unregister_thread(mddev->thread);
  1746. mddev->thread = NULL;
  1747. blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
  1748. if (conf->r1bio_pool)
  1749. mempool_destroy(conf->r1bio_pool);
  1750. kfree(conf->mirrors);
  1751. kfree(conf->poolinfo);
  1752. kfree(conf);
  1753. mddev->private = NULL;
  1754. return 0;
  1755. }
  1756. static int raid1_resize(mddev_t *mddev, sector_t sectors)
  1757. {
  1758. /* no resync is happening, and there is enough space
  1759. * on all devices, so we can resize.
  1760. * We need to make sure resync covers any new space.
  1761. * If the array is shrinking we should possibly wait until
  1762. * any io in the removed space completes, but it hardly seems
  1763. * worth it.
  1764. */
  1765. mddev->array_size = sectors>>1;
  1766. set_capacity(mddev->gendisk, mddev->array_size << 1);
  1767. mddev->changed = 1;
  1768. if (mddev->array_size > mddev->size && mddev->recovery_cp == MaxSector) {
  1769. mddev->recovery_cp = mddev->size << 1;
  1770. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  1771. }
  1772. mddev->size = mddev->array_size;
  1773. mddev->resync_max_sectors = sectors;
  1774. return 0;
  1775. }
  1776. static int raid1_reshape(mddev_t *mddev)
  1777. {
  1778. /* We need to:
  1779. * 1/ resize the r1bio_pool
  1780. * 2/ resize conf->mirrors
  1781. *
  1782. * We allocate a new r1bio_pool if we can.
  1783. * Then raise a device barrier and wait until all IO stops.
  1784. * Then resize conf->mirrors and swap in the new r1bio pool.
  1785. *
  1786. * At the same time, we "pack" the devices so that all the missing
  1787. * devices have the higher raid_disk numbers.
  1788. */
  1789. mempool_t *newpool, *oldpool;
  1790. struct pool_info *newpoolinfo;
  1791. mirror_info_t *newmirrors;
  1792. conf_t *conf = mddev_to_conf(mddev);
  1793. int cnt, raid_disks;
  1794. int d, d2;
  1795. /* Cannot change chunk_size, layout, or level */
  1796. if (mddev->chunk_size != mddev->new_chunk ||
  1797. mddev->layout != mddev->new_layout ||
  1798. mddev->level != mddev->new_level) {
  1799. mddev->new_chunk = mddev->chunk_size;
  1800. mddev->new_layout = mddev->layout;
  1801. mddev->new_level = mddev->level;
  1802. return -EINVAL;
  1803. }
  1804. raid_disks = mddev->raid_disks + mddev->delta_disks;
  1805. if (raid_disks < conf->raid_disks) {
  1806. cnt=0;
  1807. for (d= 0; d < conf->raid_disks; d++)
  1808. if (conf->mirrors[d].rdev)
  1809. cnt++;
  1810. if (cnt > raid_disks)
  1811. return -EBUSY;
  1812. }
  1813. newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
  1814. if (!newpoolinfo)
  1815. return -ENOMEM;
  1816. newpoolinfo->mddev = mddev;
  1817. newpoolinfo->raid_disks = raid_disks;
  1818. newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
  1819. r1bio_pool_free, newpoolinfo);
  1820. if (!newpool) {
  1821. kfree(newpoolinfo);
  1822. return -ENOMEM;
  1823. }
  1824. newmirrors = kzalloc(sizeof(struct mirror_info) * raid_disks, GFP_KERNEL);
  1825. if (!newmirrors) {
  1826. kfree(newpoolinfo);
  1827. mempool_destroy(newpool);
  1828. return -ENOMEM;
  1829. }
  1830. raise_barrier(conf);
  1831. /* ok, everything is stopped */
  1832. oldpool = conf->r1bio_pool;
  1833. conf->r1bio_pool = newpool;
  1834. for (d=d2=0; d < conf->raid_disks; d++)
  1835. if (conf->mirrors[d].rdev) {
  1836. conf->mirrors[d].rdev->raid_disk = d2;
  1837. newmirrors[d2++].rdev = conf->mirrors[d].rdev;
  1838. }
  1839. kfree(conf->mirrors);
  1840. conf->mirrors = newmirrors;
  1841. kfree(conf->poolinfo);
  1842. conf->poolinfo = newpoolinfo;
  1843. mddev->degraded += (raid_disks - conf->raid_disks);
  1844. conf->raid_disks = mddev->raid_disks = raid_disks;
  1845. mddev->delta_disks = 0;
  1846. conf->last_used = 0; /* just make sure it is in-range */
  1847. lower_barrier(conf);
  1848. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  1849. md_wakeup_thread(mddev->thread);
  1850. mempool_destroy(oldpool);
  1851. return 0;
  1852. }
  1853. static void raid1_quiesce(mddev_t *mddev, int state)
  1854. {
  1855. conf_t *conf = mddev_to_conf(mddev);
  1856. switch(state) {
  1857. case 1:
  1858. raise_barrier(conf);
  1859. break;
  1860. case 0:
  1861. lower_barrier(conf);
  1862. break;
  1863. }
  1864. }
  1865. static struct mdk_personality raid1_personality =
  1866. {
  1867. .name = "raid1",
  1868. .level = 1,
  1869. .owner = THIS_MODULE,
  1870. .make_request = make_request,
  1871. .run = run,
  1872. .stop = stop,
  1873. .status = status,
  1874. .error_handler = error,
  1875. .hot_add_disk = raid1_add_disk,
  1876. .hot_remove_disk= raid1_remove_disk,
  1877. .spare_active = raid1_spare_active,
  1878. .sync_request = sync_request,
  1879. .resize = raid1_resize,
  1880. .check_reshape = raid1_reshape,
  1881. .quiesce = raid1_quiesce,
  1882. };
  1883. static int __init raid_init(void)
  1884. {
  1885. return register_md_personality(&raid1_personality);
  1886. }
  1887. static void raid_exit(void)
  1888. {
  1889. unregister_md_personality(&raid1_personality);
  1890. }
  1891. module_init(raid_init);
  1892. module_exit(raid_exit);
  1893. MODULE_LICENSE("GPL");
  1894. MODULE_ALIAS("md-personality-3"); /* RAID1 */
  1895. MODULE_ALIAS("md-raid1");
  1896. MODULE_ALIAS("md-level-1");