md.c 139 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687
  1. /*
  2. md.c : Multiple Devices driver for Linux
  3. Copyright (C) 1998, 1999, 2000 Ingo Molnar
  4. completely rewritten, based on the MD driver code from Marc Zyngier
  5. Changes:
  6. - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
  7. - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
  8. - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
  9. - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
  10. - kmod support by: Cyrus Durgin
  11. - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
  12. - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
  13. - lots of fixes and improvements to the RAID1/RAID5 and generic
  14. RAID code (such as request based resynchronization):
  15. Neil Brown <neilb@cse.unsw.edu.au>.
  16. - persistent bitmap code
  17. Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
  18. This program is free software; you can redistribute it and/or modify
  19. it under the terms of the GNU General Public License as published by
  20. the Free Software Foundation; either version 2, or (at your option)
  21. any later version.
  22. You should have received a copy of the GNU General Public License
  23. (for example /usr/src/linux/COPYING); if not, write to the Free
  24. Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  25. */
  26. #include <linux/module.h>
  27. #include <linux/kthread.h>
  28. #include <linux/linkage.h>
  29. #include <linux/raid/md.h>
  30. #include <linux/raid/bitmap.h>
  31. #include <linux/sysctl.h>
  32. #include <linux/buffer_head.h> /* for invalidate_bdev */
  33. #include <linux/suspend.h>
  34. #include <linux/poll.h>
  35. #include <linux/mutex.h>
  36. #include <linux/ctype.h>
  37. #include <linux/init.h>
  38. #include <linux/file.h>
  39. #ifdef CONFIG_KMOD
  40. #include <linux/kmod.h>
  41. #endif
  42. #include <asm/unaligned.h>
  43. #define MAJOR_NR MD_MAJOR
  44. #define MD_DRIVER
  45. /* 63 partitions with the alternate major number (mdp) */
  46. #define MdpMinorShift 6
  47. #define DEBUG 0
  48. #define dprintk(x...) ((void)(DEBUG && printk(x)))
  49. #ifndef MODULE
  50. static void autostart_arrays (int part);
  51. #endif
  52. static LIST_HEAD(pers_list);
  53. static DEFINE_SPINLOCK(pers_lock);
  54. static void md_print_devices(void);
  55. #define MD_BUG(x...) { printk("md: bug in file %s, line %d\n", __FILE__, __LINE__); md_print_devices(); }
  56. /*
  57. * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
  58. * is 1000 KB/sec, so the extra system load does not show up that much.
  59. * Increase it if you want to have more _guaranteed_ speed. Note that
  60. * the RAID driver will use the maximum available bandwidth if the IO
  61. * subsystem is idle. There is also an 'absolute maximum' reconstruction
  62. * speed limit - in case reconstruction slows down your system despite
  63. * idle IO detection.
  64. *
  65. * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
  66. * or /sys/block/mdX/md/sync_speed_{min,max}
  67. */
  68. static int sysctl_speed_limit_min = 1000;
  69. static int sysctl_speed_limit_max = 200000;
  70. static inline int speed_min(mddev_t *mddev)
  71. {
  72. return mddev->sync_speed_min ?
  73. mddev->sync_speed_min : sysctl_speed_limit_min;
  74. }
  75. static inline int speed_max(mddev_t *mddev)
  76. {
  77. return mddev->sync_speed_max ?
  78. mddev->sync_speed_max : sysctl_speed_limit_max;
  79. }
  80. static struct ctl_table_header *raid_table_header;
  81. static ctl_table raid_table[] = {
  82. {
  83. .ctl_name = DEV_RAID_SPEED_LIMIT_MIN,
  84. .procname = "speed_limit_min",
  85. .data = &sysctl_speed_limit_min,
  86. .maxlen = sizeof(int),
  87. .mode = S_IRUGO|S_IWUSR,
  88. .proc_handler = &proc_dointvec,
  89. },
  90. {
  91. .ctl_name = DEV_RAID_SPEED_LIMIT_MAX,
  92. .procname = "speed_limit_max",
  93. .data = &sysctl_speed_limit_max,
  94. .maxlen = sizeof(int),
  95. .mode = S_IRUGO|S_IWUSR,
  96. .proc_handler = &proc_dointvec,
  97. },
  98. { .ctl_name = 0 }
  99. };
  100. static ctl_table raid_dir_table[] = {
  101. {
  102. .ctl_name = DEV_RAID,
  103. .procname = "raid",
  104. .maxlen = 0,
  105. .mode = S_IRUGO|S_IXUGO,
  106. .child = raid_table,
  107. },
  108. { .ctl_name = 0 }
  109. };
  110. static ctl_table raid_root_table[] = {
  111. {
  112. .ctl_name = CTL_DEV,
  113. .procname = "dev",
  114. .maxlen = 0,
  115. .mode = 0555,
  116. .child = raid_dir_table,
  117. },
  118. { .ctl_name = 0 }
  119. };
  120. static struct block_device_operations md_fops;
  121. static int start_readonly;
  122. /*
  123. * We have a system wide 'event count' that is incremented
  124. * on any 'interesting' event, and readers of /proc/mdstat
  125. * can use 'poll' or 'select' to find out when the event
  126. * count increases.
  127. *
  128. * Events are:
  129. * start array, stop array, error, add device, remove device,
  130. * start build, activate spare
  131. */
  132. static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
  133. static atomic_t md_event_count;
  134. void md_new_event(mddev_t *mddev)
  135. {
  136. atomic_inc(&md_event_count);
  137. wake_up(&md_event_waiters);
  138. sysfs_notify(&mddev->kobj, NULL, "sync_action");
  139. }
  140. EXPORT_SYMBOL_GPL(md_new_event);
  141. /* Alternate version that can be called from interrupts
  142. * when calling sysfs_notify isn't needed.
  143. */
  144. static void md_new_event_inintr(mddev_t *mddev)
  145. {
  146. atomic_inc(&md_event_count);
  147. wake_up(&md_event_waiters);
  148. }
  149. /*
  150. * Enables to iterate over all existing md arrays
  151. * all_mddevs_lock protects this list.
  152. */
  153. static LIST_HEAD(all_mddevs);
  154. static DEFINE_SPINLOCK(all_mddevs_lock);
  155. /*
  156. * iterates through all used mddevs in the system.
  157. * We take care to grab the all_mddevs_lock whenever navigating
  158. * the list, and to always hold a refcount when unlocked.
  159. * Any code which breaks out of this loop while own
  160. * a reference to the current mddev and must mddev_put it.
  161. */
  162. #define ITERATE_MDDEV(mddev,tmp) \
  163. \
  164. for (({ spin_lock(&all_mddevs_lock); \
  165. tmp = all_mddevs.next; \
  166. mddev = NULL;}); \
  167. ({ if (tmp != &all_mddevs) \
  168. mddev_get(list_entry(tmp, mddev_t, all_mddevs));\
  169. spin_unlock(&all_mddevs_lock); \
  170. if (mddev) mddev_put(mddev); \
  171. mddev = list_entry(tmp, mddev_t, all_mddevs); \
  172. tmp != &all_mddevs;}); \
  173. ({ spin_lock(&all_mddevs_lock); \
  174. tmp = tmp->next;}) \
  175. )
  176. static int md_fail_request (request_queue_t *q, struct bio *bio)
  177. {
  178. bio_io_error(bio, bio->bi_size);
  179. return 0;
  180. }
  181. static inline mddev_t *mddev_get(mddev_t *mddev)
  182. {
  183. atomic_inc(&mddev->active);
  184. return mddev;
  185. }
  186. static void mddev_put(mddev_t *mddev)
  187. {
  188. if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
  189. return;
  190. if (!mddev->raid_disks && list_empty(&mddev->disks)) {
  191. list_del(&mddev->all_mddevs);
  192. spin_unlock(&all_mddevs_lock);
  193. blk_cleanup_queue(mddev->queue);
  194. kobject_unregister(&mddev->kobj);
  195. } else
  196. spin_unlock(&all_mddevs_lock);
  197. }
  198. static mddev_t * mddev_find(dev_t unit)
  199. {
  200. mddev_t *mddev, *new = NULL;
  201. retry:
  202. spin_lock(&all_mddevs_lock);
  203. list_for_each_entry(mddev, &all_mddevs, all_mddevs)
  204. if (mddev->unit == unit) {
  205. mddev_get(mddev);
  206. spin_unlock(&all_mddevs_lock);
  207. kfree(new);
  208. return mddev;
  209. }
  210. if (new) {
  211. list_add(&new->all_mddevs, &all_mddevs);
  212. spin_unlock(&all_mddevs_lock);
  213. return new;
  214. }
  215. spin_unlock(&all_mddevs_lock);
  216. new = kzalloc(sizeof(*new), GFP_KERNEL);
  217. if (!new)
  218. return NULL;
  219. new->unit = unit;
  220. if (MAJOR(unit) == MD_MAJOR)
  221. new->md_minor = MINOR(unit);
  222. else
  223. new->md_minor = MINOR(unit) >> MdpMinorShift;
  224. mutex_init(&new->reconfig_mutex);
  225. INIT_LIST_HEAD(&new->disks);
  226. INIT_LIST_HEAD(&new->all_mddevs);
  227. init_timer(&new->safemode_timer);
  228. atomic_set(&new->active, 1);
  229. spin_lock_init(&new->write_lock);
  230. init_waitqueue_head(&new->sb_wait);
  231. new->queue = blk_alloc_queue(GFP_KERNEL);
  232. if (!new->queue) {
  233. kfree(new);
  234. return NULL;
  235. }
  236. set_bit(QUEUE_FLAG_CLUSTER, &new->queue->queue_flags);
  237. blk_queue_make_request(new->queue, md_fail_request);
  238. goto retry;
  239. }
  240. static inline int mddev_lock(mddev_t * mddev)
  241. {
  242. return mutex_lock_interruptible(&mddev->reconfig_mutex);
  243. }
  244. static inline int mddev_trylock(mddev_t * mddev)
  245. {
  246. return mutex_trylock(&mddev->reconfig_mutex);
  247. }
  248. static inline void mddev_unlock(mddev_t * mddev)
  249. {
  250. mutex_unlock(&mddev->reconfig_mutex);
  251. md_wakeup_thread(mddev->thread);
  252. }
  253. static mdk_rdev_t * find_rdev_nr(mddev_t *mddev, int nr)
  254. {
  255. mdk_rdev_t * rdev;
  256. struct list_head *tmp;
  257. ITERATE_RDEV(mddev,rdev,tmp) {
  258. if (rdev->desc_nr == nr)
  259. return rdev;
  260. }
  261. return NULL;
  262. }
  263. static mdk_rdev_t * find_rdev(mddev_t * mddev, dev_t dev)
  264. {
  265. struct list_head *tmp;
  266. mdk_rdev_t *rdev;
  267. ITERATE_RDEV(mddev,rdev,tmp) {
  268. if (rdev->bdev->bd_dev == dev)
  269. return rdev;
  270. }
  271. return NULL;
  272. }
  273. static struct mdk_personality *find_pers(int level, char *clevel)
  274. {
  275. struct mdk_personality *pers;
  276. list_for_each_entry(pers, &pers_list, list) {
  277. if (level != LEVEL_NONE && pers->level == level)
  278. return pers;
  279. if (strcmp(pers->name, clevel)==0)
  280. return pers;
  281. }
  282. return NULL;
  283. }
  284. static inline sector_t calc_dev_sboffset(struct block_device *bdev)
  285. {
  286. sector_t size = bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
  287. return MD_NEW_SIZE_BLOCKS(size);
  288. }
  289. static sector_t calc_dev_size(mdk_rdev_t *rdev, unsigned chunk_size)
  290. {
  291. sector_t size;
  292. size = rdev->sb_offset;
  293. if (chunk_size)
  294. size &= ~((sector_t)chunk_size/1024 - 1);
  295. return size;
  296. }
  297. static int alloc_disk_sb(mdk_rdev_t * rdev)
  298. {
  299. if (rdev->sb_page)
  300. MD_BUG();
  301. rdev->sb_page = alloc_page(GFP_KERNEL);
  302. if (!rdev->sb_page) {
  303. printk(KERN_ALERT "md: out of memory.\n");
  304. return -EINVAL;
  305. }
  306. return 0;
  307. }
  308. static void free_disk_sb(mdk_rdev_t * rdev)
  309. {
  310. if (rdev->sb_page) {
  311. put_page(rdev->sb_page);
  312. rdev->sb_loaded = 0;
  313. rdev->sb_page = NULL;
  314. rdev->sb_offset = 0;
  315. rdev->size = 0;
  316. }
  317. }
  318. static int super_written(struct bio *bio, unsigned int bytes_done, int error)
  319. {
  320. mdk_rdev_t *rdev = bio->bi_private;
  321. mddev_t *mddev = rdev->mddev;
  322. if (bio->bi_size)
  323. return 1;
  324. if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags))
  325. md_error(mddev, rdev);
  326. if (atomic_dec_and_test(&mddev->pending_writes))
  327. wake_up(&mddev->sb_wait);
  328. bio_put(bio);
  329. return 0;
  330. }
  331. static int super_written_barrier(struct bio *bio, unsigned int bytes_done, int error)
  332. {
  333. struct bio *bio2 = bio->bi_private;
  334. mdk_rdev_t *rdev = bio2->bi_private;
  335. mddev_t *mddev = rdev->mddev;
  336. if (bio->bi_size)
  337. return 1;
  338. if (!test_bit(BIO_UPTODATE, &bio->bi_flags) &&
  339. error == -EOPNOTSUPP) {
  340. unsigned long flags;
  341. /* barriers don't appear to be supported :-( */
  342. set_bit(BarriersNotsupp, &rdev->flags);
  343. mddev->barriers_work = 0;
  344. spin_lock_irqsave(&mddev->write_lock, flags);
  345. bio2->bi_next = mddev->biolist;
  346. mddev->biolist = bio2;
  347. spin_unlock_irqrestore(&mddev->write_lock, flags);
  348. wake_up(&mddev->sb_wait);
  349. bio_put(bio);
  350. return 0;
  351. }
  352. bio_put(bio2);
  353. bio->bi_private = rdev;
  354. return super_written(bio, bytes_done, error);
  355. }
  356. void md_super_write(mddev_t *mddev, mdk_rdev_t *rdev,
  357. sector_t sector, int size, struct page *page)
  358. {
  359. /* write first size bytes of page to sector of rdev
  360. * Increment mddev->pending_writes before returning
  361. * and decrement it on completion, waking up sb_wait
  362. * if zero is reached.
  363. * If an error occurred, call md_error
  364. *
  365. * As we might need to resubmit the request if BIO_RW_BARRIER
  366. * causes ENOTSUPP, we allocate a spare bio...
  367. */
  368. struct bio *bio = bio_alloc(GFP_NOIO, 1);
  369. int rw = (1<<BIO_RW) | (1<<BIO_RW_SYNC);
  370. bio->bi_bdev = rdev->bdev;
  371. bio->bi_sector = sector;
  372. bio_add_page(bio, page, size, 0);
  373. bio->bi_private = rdev;
  374. bio->bi_end_io = super_written;
  375. bio->bi_rw = rw;
  376. atomic_inc(&mddev->pending_writes);
  377. if (!test_bit(BarriersNotsupp, &rdev->flags)) {
  378. struct bio *rbio;
  379. rw |= (1<<BIO_RW_BARRIER);
  380. rbio = bio_clone(bio, GFP_NOIO);
  381. rbio->bi_private = bio;
  382. rbio->bi_end_io = super_written_barrier;
  383. submit_bio(rw, rbio);
  384. } else
  385. submit_bio(rw, bio);
  386. }
  387. void md_super_wait(mddev_t *mddev)
  388. {
  389. /* wait for all superblock writes that were scheduled to complete.
  390. * if any had to be retried (due to BARRIER problems), retry them
  391. */
  392. DEFINE_WAIT(wq);
  393. for(;;) {
  394. prepare_to_wait(&mddev->sb_wait, &wq, TASK_UNINTERRUPTIBLE);
  395. if (atomic_read(&mddev->pending_writes)==0)
  396. break;
  397. while (mddev->biolist) {
  398. struct bio *bio;
  399. spin_lock_irq(&mddev->write_lock);
  400. bio = mddev->biolist;
  401. mddev->biolist = bio->bi_next ;
  402. bio->bi_next = NULL;
  403. spin_unlock_irq(&mddev->write_lock);
  404. submit_bio(bio->bi_rw, bio);
  405. }
  406. schedule();
  407. }
  408. finish_wait(&mddev->sb_wait, &wq);
  409. }
  410. static int bi_complete(struct bio *bio, unsigned int bytes_done, int error)
  411. {
  412. if (bio->bi_size)
  413. return 1;
  414. complete((struct completion*)bio->bi_private);
  415. return 0;
  416. }
  417. int sync_page_io(struct block_device *bdev, sector_t sector, int size,
  418. struct page *page, int rw)
  419. {
  420. struct bio *bio = bio_alloc(GFP_NOIO, 1);
  421. struct completion event;
  422. int ret;
  423. rw |= (1 << BIO_RW_SYNC);
  424. bio->bi_bdev = bdev;
  425. bio->bi_sector = sector;
  426. bio_add_page(bio, page, size, 0);
  427. init_completion(&event);
  428. bio->bi_private = &event;
  429. bio->bi_end_io = bi_complete;
  430. submit_bio(rw, bio);
  431. wait_for_completion(&event);
  432. ret = test_bit(BIO_UPTODATE, &bio->bi_flags);
  433. bio_put(bio);
  434. return ret;
  435. }
  436. EXPORT_SYMBOL_GPL(sync_page_io);
  437. static int read_disk_sb(mdk_rdev_t * rdev, int size)
  438. {
  439. char b[BDEVNAME_SIZE];
  440. if (!rdev->sb_page) {
  441. MD_BUG();
  442. return -EINVAL;
  443. }
  444. if (rdev->sb_loaded)
  445. return 0;
  446. if (!sync_page_io(rdev->bdev, rdev->sb_offset<<1, size, rdev->sb_page, READ))
  447. goto fail;
  448. rdev->sb_loaded = 1;
  449. return 0;
  450. fail:
  451. printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
  452. bdevname(rdev->bdev,b));
  453. return -EINVAL;
  454. }
  455. static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
  456. {
  457. if ( (sb1->set_uuid0 == sb2->set_uuid0) &&
  458. (sb1->set_uuid1 == sb2->set_uuid1) &&
  459. (sb1->set_uuid2 == sb2->set_uuid2) &&
  460. (sb1->set_uuid3 == sb2->set_uuid3))
  461. return 1;
  462. return 0;
  463. }
  464. static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
  465. {
  466. int ret;
  467. mdp_super_t *tmp1, *tmp2;
  468. tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
  469. tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
  470. if (!tmp1 || !tmp2) {
  471. ret = 0;
  472. printk(KERN_INFO "md.c: sb1 is not equal to sb2!\n");
  473. goto abort;
  474. }
  475. *tmp1 = *sb1;
  476. *tmp2 = *sb2;
  477. /*
  478. * nr_disks is not constant
  479. */
  480. tmp1->nr_disks = 0;
  481. tmp2->nr_disks = 0;
  482. if (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4))
  483. ret = 0;
  484. else
  485. ret = 1;
  486. abort:
  487. kfree(tmp1);
  488. kfree(tmp2);
  489. return ret;
  490. }
  491. static unsigned int calc_sb_csum(mdp_super_t * sb)
  492. {
  493. unsigned int disk_csum, csum;
  494. disk_csum = sb->sb_csum;
  495. sb->sb_csum = 0;
  496. csum = csum_partial((void *)sb, MD_SB_BYTES, 0);
  497. sb->sb_csum = disk_csum;
  498. return csum;
  499. }
  500. /*
  501. * Handle superblock details.
  502. * We want to be able to handle multiple superblock formats
  503. * so we have a common interface to them all, and an array of
  504. * different handlers.
  505. * We rely on user-space to write the initial superblock, and support
  506. * reading and updating of superblocks.
  507. * Interface methods are:
  508. * int load_super(mdk_rdev_t *dev, mdk_rdev_t *refdev, int minor_version)
  509. * loads and validates a superblock on dev.
  510. * if refdev != NULL, compare superblocks on both devices
  511. * Return:
  512. * 0 - dev has a superblock that is compatible with refdev
  513. * 1 - dev has a superblock that is compatible and newer than refdev
  514. * so dev should be used as the refdev in future
  515. * -EINVAL superblock incompatible or invalid
  516. * -othererror e.g. -EIO
  517. *
  518. * int validate_super(mddev_t *mddev, mdk_rdev_t *dev)
  519. * Verify that dev is acceptable into mddev.
  520. * The first time, mddev->raid_disks will be 0, and data from
  521. * dev should be merged in. Subsequent calls check that dev
  522. * is new enough. Return 0 or -EINVAL
  523. *
  524. * void sync_super(mddev_t *mddev, mdk_rdev_t *dev)
  525. * Update the superblock for rdev with data in mddev
  526. * This does not write to disc.
  527. *
  528. */
  529. struct super_type {
  530. char *name;
  531. struct module *owner;
  532. int (*load_super)(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version);
  533. int (*validate_super)(mddev_t *mddev, mdk_rdev_t *rdev);
  534. void (*sync_super)(mddev_t *mddev, mdk_rdev_t *rdev);
  535. };
  536. /*
  537. * load_super for 0.90.0
  538. */
  539. static int super_90_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
  540. {
  541. char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
  542. mdp_super_t *sb;
  543. int ret;
  544. sector_t sb_offset;
  545. /*
  546. * Calculate the position of the superblock,
  547. * it's at the end of the disk.
  548. *
  549. * It also happens to be a multiple of 4Kb.
  550. */
  551. sb_offset = calc_dev_sboffset(rdev->bdev);
  552. rdev->sb_offset = sb_offset;
  553. ret = read_disk_sb(rdev, MD_SB_BYTES);
  554. if (ret) return ret;
  555. ret = -EINVAL;
  556. bdevname(rdev->bdev, b);
  557. sb = (mdp_super_t*)page_address(rdev->sb_page);
  558. if (sb->md_magic != MD_SB_MAGIC) {
  559. printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
  560. b);
  561. goto abort;
  562. }
  563. if (sb->major_version != 0 ||
  564. sb->minor_version < 90 ||
  565. sb->minor_version > 91) {
  566. printk(KERN_WARNING "Bad version number %d.%d on %s\n",
  567. sb->major_version, sb->minor_version,
  568. b);
  569. goto abort;
  570. }
  571. if (sb->raid_disks <= 0)
  572. goto abort;
  573. if (csum_fold(calc_sb_csum(sb)) != csum_fold(sb->sb_csum)) {
  574. printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
  575. b);
  576. goto abort;
  577. }
  578. rdev->preferred_minor = sb->md_minor;
  579. rdev->data_offset = 0;
  580. rdev->sb_size = MD_SB_BYTES;
  581. if (sb->level == LEVEL_MULTIPATH)
  582. rdev->desc_nr = -1;
  583. else
  584. rdev->desc_nr = sb->this_disk.number;
  585. if (refdev == 0)
  586. ret = 1;
  587. else {
  588. __u64 ev1, ev2;
  589. mdp_super_t *refsb = (mdp_super_t*)page_address(refdev->sb_page);
  590. if (!uuid_equal(refsb, sb)) {
  591. printk(KERN_WARNING "md: %s has different UUID to %s\n",
  592. b, bdevname(refdev->bdev,b2));
  593. goto abort;
  594. }
  595. if (!sb_equal(refsb, sb)) {
  596. printk(KERN_WARNING "md: %s has same UUID"
  597. " but different superblock to %s\n",
  598. b, bdevname(refdev->bdev, b2));
  599. goto abort;
  600. }
  601. ev1 = md_event(sb);
  602. ev2 = md_event(refsb);
  603. if (ev1 > ev2)
  604. ret = 1;
  605. else
  606. ret = 0;
  607. }
  608. rdev->size = calc_dev_size(rdev, sb->chunk_size);
  609. if (rdev->size < sb->size && sb->level > 1)
  610. /* "this cannot possibly happen" ... */
  611. ret = -EINVAL;
  612. abort:
  613. return ret;
  614. }
  615. /*
  616. * validate_super for 0.90.0
  617. */
  618. static int super_90_validate(mddev_t *mddev, mdk_rdev_t *rdev)
  619. {
  620. mdp_disk_t *desc;
  621. mdp_super_t *sb = (mdp_super_t *)page_address(rdev->sb_page);
  622. __u64 ev1 = md_event(sb);
  623. rdev->raid_disk = -1;
  624. rdev->flags = 0;
  625. if (mddev->raid_disks == 0) {
  626. mddev->major_version = 0;
  627. mddev->minor_version = sb->minor_version;
  628. mddev->patch_version = sb->patch_version;
  629. mddev->persistent = ! sb->not_persistent;
  630. mddev->chunk_size = sb->chunk_size;
  631. mddev->ctime = sb->ctime;
  632. mddev->utime = sb->utime;
  633. mddev->level = sb->level;
  634. mddev->clevel[0] = 0;
  635. mddev->layout = sb->layout;
  636. mddev->raid_disks = sb->raid_disks;
  637. mddev->size = sb->size;
  638. mddev->events = ev1;
  639. mddev->bitmap_offset = 0;
  640. mddev->default_bitmap_offset = MD_SB_BYTES >> 9;
  641. if (mddev->minor_version >= 91) {
  642. mddev->reshape_position = sb->reshape_position;
  643. mddev->delta_disks = sb->delta_disks;
  644. mddev->new_level = sb->new_level;
  645. mddev->new_layout = sb->new_layout;
  646. mddev->new_chunk = sb->new_chunk;
  647. } else {
  648. mddev->reshape_position = MaxSector;
  649. mddev->delta_disks = 0;
  650. mddev->new_level = mddev->level;
  651. mddev->new_layout = mddev->layout;
  652. mddev->new_chunk = mddev->chunk_size;
  653. }
  654. if (sb->state & (1<<MD_SB_CLEAN))
  655. mddev->recovery_cp = MaxSector;
  656. else {
  657. if (sb->events_hi == sb->cp_events_hi &&
  658. sb->events_lo == sb->cp_events_lo) {
  659. mddev->recovery_cp = sb->recovery_cp;
  660. } else
  661. mddev->recovery_cp = 0;
  662. }
  663. memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
  664. memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
  665. memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
  666. memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
  667. mddev->max_disks = MD_SB_DISKS;
  668. if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
  669. mddev->bitmap_file == NULL) {
  670. if (mddev->level != 1 && mddev->level != 4
  671. && mddev->level != 5 && mddev->level != 6
  672. && mddev->level != 10) {
  673. /* FIXME use a better test */
  674. printk(KERN_WARNING "md: bitmaps not supported for this level.\n");
  675. return -EINVAL;
  676. }
  677. mddev->bitmap_offset = mddev->default_bitmap_offset;
  678. }
  679. } else if (mddev->pers == NULL) {
  680. /* Insist on good event counter while assembling */
  681. ++ev1;
  682. if (ev1 < mddev->events)
  683. return -EINVAL;
  684. } else if (mddev->bitmap) {
  685. /* if adding to array with a bitmap, then we can accept an
  686. * older device ... but not too old.
  687. */
  688. if (ev1 < mddev->bitmap->events_cleared)
  689. return 0;
  690. } else {
  691. if (ev1 < mddev->events)
  692. /* just a hot-add of a new device, leave raid_disk at -1 */
  693. return 0;
  694. }
  695. if (mddev->level != LEVEL_MULTIPATH) {
  696. desc = sb->disks + rdev->desc_nr;
  697. if (desc->state & (1<<MD_DISK_FAULTY))
  698. set_bit(Faulty, &rdev->flags);
  699. else if (desc->state & (1<<MD_DISK_SYNC) /* &&
  700. desc->raid_disk < mddev->raid_disks */) {
  701. set_bit(In_sync, &rdev->flags);
  702. rdev->raid_disk = desc->raid_disk;
  703. }
  704. if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
  705. set_bit(WriteMostly, &rdev->flags);
  706. } else /* MULTIPATH are always insync */
  707. set_bit(In_sync, &rdev->flags);
  708. return 0;
  709. }
  710. /*
  711. * sync_super for 0.90.0
  712. */
  713. static void super_90_sync(mddev_t *mddev, mdk_rdev_t *rdev)
  714. {
  715. mdp_super_t *sb;
  716. struct list_head *tmp;
  717. mdk_rdev_t *rdev2;
  718. int next_spare = mddev->raid_disks;
  719. /* make rdev->sb match mddev data..
  720. *
  721. * 1/ zero out disks
  722. * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
  723. * 3/ any empty disks < next_spare become removed
  724. *
  725. * disks[0] gets initialised to REMOVED because
  726. * we cannot be sure from other fields if it has
  727. * been initialised or not.
  728. */
  729. int i;
  730. int active=0, working=0,failed=0,spare=0,nr_disks=0;
  731. rdev->sb_size = MD_SB_BYTES;
  732. sb = (mdp_super_t*)page_address(rdev->sb_page);
  733. memset(sb, 0, sizeof(*sb));
  734. sb->md_magic = MD_SB_MAGIC;
  735. sb->major_version = mddev->major_version;
  736. sb->patch_version = mddev->patch_version;
  737. sb->gvalid_words = 0; /* ignored */
  738. memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
  739. memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
  740. memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
  741. memcpy(&sb->set_uuid3, mddev->uuid+12,4);
  742. sb->ctime = mddev->ctime;
  743. sb->level = mddev->level;
  744. sb->size = mddev->size;
  745. sb->raid_disks = mddev->raid_disks;
  746. sb->md_minor = mddev->md_minor;
  747. sb->not_persistent = !mddev->persistent;
  748. sb->utime = mddev->utime;
  749. sb->state = 0;
  750. sb->events_hi = (mddev->events>>32);
  751. sb->events_lo = (u32)mddev->events;
  752. if (mddev->reshape_position == MaxSector)
  753. sb->minor_version = 90;
  754. else {
  755. sb->minor_version = 91;
  756. sb->reshape_position = mddev->reshape_position;
  757. sb->new_level = mddev->new_level;
  758. sb->delta_disks = mddev->delta_disks;
  759. sb->new_layout = mddev->new_layout;
  760. sb->new_chunk = mddev->new_chunk;
  761. }
  762. mddev->minor_version = sb->minor_version;
  763. if (mddev->in_sync)
  764. {
  765. sb->recovery_cp = mddev->recovery_cp;
  766. sb->cp_events_hi = (mddev->events>>32);
  767. sb->cp_events_lo = (u32)mddev->events;
  768. if (mddev->recovery_cp == MaxSector)
  769. sb->state = (1<< MD_SB_CLEAN);
  770. } else
  771. sb->recovery_cp = 0;
  772. sb->layout = mddev->layout;
  773. sb->chunk_size = mddev->chunk_size;
  774. if (mddev->bitmap && mddev->bitmap_file == NULL)
  775. sb->state |= (1<<MD_SB_BITMAP_PRESENT);
  776. sb->disks[0].state = (1<<MD_DISK_REMOVED);
  777. ITERATE_RDEV(mddev,rdev2,tmp) {
  778. mdp_disk_t *d;
  779. int desc_nr;
  780. if (rdev2->raid_disk >= 0 && test_bit(In_sync, &rdev2->flags)
  781. && !test_bit(Faulty, &rdev2->flags))
  782. desc_nr = rdev2->raid_disk;
  783. else
  784. desc_nr = next_spare++;
  785. rdev2->desc_nr = desc_nr;
  786. d = &sb->disks[rdev2->desc_nr];
  787. nr_disks++;
  788. d->number = rdev2->desc_nr;
  789. d->major = MAJOR(rdev2->bdev->bd_dev);
  790. d->minor = MINOR(rdev2->bdev->bd_dev);
  791. if (rdev2->raid_disk >= 0 && test_bit(In_sync, &rdev2->flags)
  792. && !test_bit(Faulty, &rdev2->flags))
  793. d->raid_disk = rdev2->raid_disk;
  794. else
  795. d->raid_disk = rdev2->desc_nr; /* compatibility */
  796. if (test_bit(Faulty, &rdev2->flags))
  797. d->state = (1<<MD_DISK_FAULTY);
  798. else if (test_bit(In_sync, &rdev2->flags)) {
  799. d->state = (1<<MD_DISK_ACTIVE);
  800. d->state |= (1<<MD_DISK_SYNC);
  801. active++;
  802. working++;
  803. } else {
  804. d->state = 0;
  805. spare++;
  806. working++;
  807. }
  808. if (test_bit(WriteMostly, &rdev2->flags))
  809. d->state |= (1<<MD_DISK_WRITEMOSTLY);
  810. }
  811. /* now set the "removed" and "faulty" bits on any missing devices */
  812. for (i=0 ; i < mddev->raid_disks ; i++) {
  813. mdp_disk_t *d = &sb->disks[i];
  814. if (d->state == 0 && d->number == 0) {
  815. d->number = i;
  816. d->raid_disk = i;
  817. d->state = (1<<MD_DISK_REMOVED);
  818. d->state |= (1<<MD_DISK_FAULTY);
  819. failed++;
  820. }
  821. }
  822. sb->nr_disks = nr_disks;
  823. sb->active_disks = active;
  824. sb->working_disks = working;
  825. sb->failed_disks = failed;
  826. sb->spare_disks = spare;
  827. sb->this_disk = sb->disks[rdev->desc_nr];
  828. sb->sb_csum = calc_sb_csum(sb);
  829. }
  830. /*
  831. * version 1 superblock
  832. */
  833. static unsigned int calc_sb_1_csum(struct mdp_superblock_1 * sb)
  834. {
  835. unsigned int disk_csum, csum;
  836. unsigned long long newcsum;
  837. int size = 256 + le32_to_cpu(sb->max_dev)*2;
  838. unsigned int *isuper = (unsigned int*)sb;
  839. int i;
  840. disk_csum = sb->sb_csum;
  841. sb->sb_csum = 0;
  842. newcsum = 0;
  843. for (i=0; size>=4; size -= 4 )
  844. newcsum += le32_to_cpu(*isuper++);
  845. if (size == 2)
  846. newcsum += le16_to_cpu(*(unsigned short*) isuper);
  847. csum = (newcsum & 0xffffffff) + (newcsum >> 32);
  848. sb->sb_csum = disk_csum;
  849. return cpu_to_le32(csum);
  850. }
  851. static int super_1_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
  852. {
  853. struct mdp_superblock_1 *sb;
  854. int ret;
  855. sector_t sb_offset;
  856. char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
  857. int bmask;
  858. /*
  859. * Calculate the position of the superblock.
  860. * It is always aligned to a 4K boundary and
  861. * depeding on minor_version, it can be:
  862. * 0: At least 8K, but less than 12K, from end of device
  863. * 1: At start of device
  864. * 2: 4K from start of device.
  865. */
  866. switch(minor_version) {
  867. case 0:
  868. sb_offset = rdev->bdev->bd_inode->i_size >> 9;
  869. sb_offset -= 8*2;
  870. sb_offset &= ~(sector_t)(4*2-1);
  871. /* convert from sectors to K */
  872. sb_offset /= 2;
  873. break;
  874. case 1:
  875. sb_offset = 0;
  876. break;
  877. case 2:
  878. sb_offset = 4;
  879. break;
  880. default:
  881. return -EINVAL;
  882. }
  883. rdev->sb_offset = sb_offset;
  884. /* superblock is rarely larger than 1K, but it can be larger,
  885. * and it is safe to read 4k, so we do that
  886. */
  887. ret = read_disk_sb(rdev, 4096);
  888. if (ret) return ret;
  889. sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
  890. if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
  891. sb->major_version != cpu_to_le32(1) ||
  892. le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
  893. le64_to_cpu(sb->super_offset) != (rdev->sb_offset<<1) ||
  894. (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
  895. return -EINVAL;
  896. if (calc_sb_1_csum(sb) != sb->sb_csum) {
  897. printk("md: invalid superblock checksum on %s\n",
  898. bdevname(rdev->bdev,b));
  899. return -EINVAL;
  900. }
  901. if (le64_to_cpu(sb->data_size) < 10) {
  902. printk("md: data_size too small on %s\n",
  903. bdevname(rdev->bdev,b));
  904. return -EINVAL;
  905. }
  906. rdev->preferred_minor = 0xffff;
  907. rdev->data_offset = le64_to_cpu(sb->data_offset);
  908. atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
  909. rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
  910. bmask = queue_hardsect_size(rdev->bdev->bd_disk->queue)-1;
  911. if (rdev->sb_size & bmask)
  912. rdev-> sb_size = (rdev->sb_size | bmask)+1;
  913. if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
  914. rdev->desc_nr = -1;
  915. else
  916. rdev->desc_nr = le32_to_cpu(sb->dev_number);
  917. if (refdev == 0)
  918. ret = 1;
  919. else {
  920. __u64 ev1, ev2;
  921. struct mdp_superblock_1 *refsb =
  922. (struct mdp_superblock_1*)page_address(refdev->sb_page);
  923. if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
  924. sb->level != refsb->level ||
  925. sb->layout != refsb->layout ||
  926. sb->chunksize != refsb->chunksize) {
  927. printk(KERN_WARNING "md: %s has strangely different"
  928. " superblock to %s\n",
  929. bdevname(rdev->bdev,b),
  930. bdevname(refdev->bdev,b2));
  931. return -EINVAL;
  932. }
  933. ev1 = le64_to_cpu(sb->events);
  934. ev2 = le64_to_cpu(refsb->events);
  935. if (ev1 > ev2)
  936. ret = 1;
  937. else
  938. ret = 0;
  939. }
  940. if (minor_version)
  941. rdev->size = ((rdev->bdev->bd_inode->i_size>>9) - le64_to_cpu(sb->data_offset)) / 2;
  942. else
  943. rdev->size = rdev->sb_offset;
  944. if (rdev->size < le64_to_cpu(sb->data_size)/2)
  945. return -EINVAL;
  946. rdev->size = le64_to_cpu(sb->data_size)/2;
  947. if (le32_to_cpu(sb->chunksize))
  948. rdev->size &= ~((sector_t)le32_to_cpu(sb->chunksize)/2 - 1);
  949. if (le32_to_cpu(sb->size) > rdev->size*2)
  950. return -EINVAL;
  951. return ret;
  952. }
  953. static int super_1_validate(mddev_t *mddev, mdk_rdev_t *rdev)
  954. {
  955. struct mdp_superblock_1 *sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
  956. __u64 ev1 = le64_to_cpu(sb->events);
  957. rdev->raid_disk = -1;
  958. rdev->flags = 0;
  959. if (mddev->raid_disks == 0) {
  960. mddev->major_version = 1;
  961. mddev->patch_version = 0;
  962. mddev->persistent = 1;
  963. mddev->chunk_size = le32_to_cpu(sb->chunksize) << 9;
  964. mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
  965. mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
  966. mddev->level = le32_to_cpu(sb->level);
  967. mddev->clevel[0] = 0;
  968. mddev->layout = le32_to_cpu(sb->layout);
  969. mddev->raid_disks = le32_to_cpu(sb->raid_disks);
  970. mddev->size = le64_to_cpu(sb->size)/2;
  971. mddev->events = ev1;
  972. mddev->bitmap_offset = 0;
  973. mddev->default_bitmap_offset = 1024 >> 9;
  974. mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
  975. memcpy(mddev->uuid, sb->set_uuid, 16);
  976. mddev->max_disks = (4096-256)/2;
  977. if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
  978. mddev->bitmap_file == NULL ) {
  979. if (mddev->level != 1 && mddev->level != 5 && mddev->level != 6
  980. && mddev->level != 10) {
  981. printk(KERN_WARNING "md: bitmaps not supported for this level.\n");
  982. return -EINVAL;
  983. }
  984. mddev->bitmap_offset = (__s32)le32_to_cpu(sb->bitmap_offset);
  985. }
  986. if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
  987. mddev->reshape_position = le64_to_cpu(sb->reshape_position);
  988. mddev->delta_disks = le32_to_cpu(sb->delta_disks);
  989. mddev->new_level = le32_to_cpu(sb->new_level);
  990. mddev->new_layout = le32_to_cpu(sb->new_layout);
  991. mddev->new_chunk = le32_to_cpu(sb->new_chunk)<<9;
  992. } else {
  993. mddev->reshape_position = MaxSector;
  994. mddev->delta_disks = 0;
  995. mddev->new_level = mddev->level;
  996. mddev->new_layout = mddev->layout;
  997. mddev->new_chunk = mddev->chunk_size;
  998. }
  999. } else if (mddev->pers == NULL) {
  1000. /* Insist of good event counter while assembling */
  1001. ++ev1;
  1002. if (ev1 < mddev->events)
  1003. return -EINVAL;
  1004. } else if (mddev->bitmap) {
  1005. /* If adding to array with a bitmap, then we can accept an
  1006. * older device, but not too old.
  1007. */
  1008. if (ev1 < mddev->bitmap->events_cleared)
  1009. return 0;
  1010. } else {
  1011. if (ev1 < mddev->events)
  1012. /* just a hot-add of a new device, leave raid_disk at -1 */
  1013. return 0;
  1014. }
  1015. if (mddev->level != LEVEL_MULTIPATH) {
  1016. int role;
  1017. role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
  1018. switch(role) {
  1019. case 0xffff: /* spare */
  1020. break;
  1021. case 0xfffe: /* faulty */
  1022. set_bit(Faulty, &rdev->flags);
  1023. break;
  1024. default:
  1025. if ((le32_to_cpu(sb->feature_map) &
  1026. MD_FEATURE_RECOVERY_OFFSET))
  1027. rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
  1028. else
  1029. set_bit(In_sync, &rdev->flags);
  1030. rdev->raid_disk = role;
  1031. break;
  1032. }
  1033. if (sb->devflags & WriteMostly1)
  1034. set_bit(WriteMostly, &rdev->flags);
  1035. } else /* MULTIPATH are always insync */
  1036. set_bit(In_sync, &rdev->flags);
  1037. return 0;
  1038. }
  1039. static void super_1_sync(mddev_t *mddev, mdk_rdev_t *rdev)
  1040. {
  1041. struct mdp_superblock_1 *sb;
  1042. struct list_head *tmp;
  1043. mdk_rdev_t *rdev2;
  1044. int max_dev, i;
  1045. /* make rdev->sb match mddev and rdev data. */
  1046. sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
  1047. sb->feature_map = 0;
  1048. sb->pad0 = 0;
  1049. sb->recovery_offset = cpu_to_le64(0);
  1050. memset(sb->pad1, 0, sizeof(sb->pad1));
  1051. memset(sb->pad2, 0, sizeof(sb->pad2));
  1052. memset(sb->pad3, 0, sizeof(sb->pad3));
  1053. sb->utime = cpu_to_le64((__u64)mddev->utime);
  1054. sb->events = cpu_to_le64(mddev->events);
  1055. if (mddev->in_sync)
  1056. sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
  1057. else
  1058. sb->resync_offset = cpu_to_le64(0);
  1059. sb->cnt_corrected_read = atomic_read(&rdev->corrected_errors);
  1060. sb->raid_disks = cpu_to_le32(mddev->raid_disks);
  1061. sb->size = cpu_to_le64(mddev->size<<1);
  1062. if (mddev->bitmap && mddev->bitmap_file == NULL) {
  1063. sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_offset);
  1064. sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
  1065. }
  1066. if (rdev->raid_disk >= 0 &&
  1067. !test_bit(In_sync, &rdev->flags) &&
  1068. rdev->recovery_offset > 0) {
  1069. sb->feature_map |= cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
  1070. sb->recovery_offset = cpu_to_le64(rdev->recovery_offset);
  1071. }
  1072. if (mddev->reshape_position != MaxSector) {
  1073. sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
  1074. sb->reshape_position = cpu_to_le64(mddev->reshape_position);
  1075. sb->new_layout = cpu_to_le32(mddev->new_layout);
  1076. sb->delta_disks = cpu_to_le32(mddev->delta_disks);
  1077. sb->new_level = cpu_to_le32(mddev->new_level);
  1078. sb->new_chunk = cpu_to_le32(mddev->new_chunk>>9);
  1079. }
  1080. max_dev = 0;
  1081. ITERATE_RDEV(mddev,rdev2,tmp)
  1082. if (rdev2->desc_nr+1 > max_dev)
  1083. max_dev = rdev2->desc_nr+1;
  1084. sb->max_dev = cpu_to_le32(max_dev);
  1085. for (i=0; i<max_dev;i++)
  1086. sb->dev_roles[i] = cpu_to_le16(0xfffe);
  1087. ITERATE_RDEV(mddev,rdev2,tmp) {
  1088. i = rdev2->desc_nr;
  1089. if (test_bit(Faulty, &rdev2->flags))
  1090. sb->dev_roles[i] = cpu_to_le16(0xfffe);
  1091. else if (test_bit(In_sync, &rdev2->flags))
  1092. sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
  1093. else if (rdev2->raid_disk >= 0 && rdev2->recovery_offset > 0)
  1094. sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
  1095. else
  1096. sb->dev_roles[i] = cpu_to_le16(0xffff);
  1097. }
  1098. sb->sb_csum = calc_sb_1_csum(sb);
  1099. }
  1100. static struct super_type super_types[] = {
  1101. [0] = {
  1102. .name = "0.90.0",
  1103. .owner = THIS_MODULE,
  1104. .load_super = super_90_load,
  1105. .validate_super = super_90_validate,
  1106. .sync_super = super_90_sync,
  1107. },
  1108. [1] = {
  1109. .name = "md-1",
  1110. .owner = THIS_MODULE,
  1111. .load_super = super_1_load,
  1112. .validate_super = super_1_validate,
  1113. .sync_super = super_1_sync,
  1114. },
  1115. };
  1116. static mdk_rdev_t * match_dev_unit(mddev_t *mddev, mdk_rdev_t *dev)
  1117. {
  1118. struct list_head *tmp;
  1119. mdk_rdev_t *rdev;
  1120. ITERATE_RDEV(mddev,rdev,tmp)
  1121. if (rdev->bdev->bd_contains == dev->bdev->bd_contains)
  1122. return rdev;
  1123. return NULL;
  1124. }
  1125. static int match_mddev_units(mddev_t *mddev1, mddev_t *mddev2)
  1126. {
  1127. struct list_head *tmp;
  1128. mdk_rdev_t *rdev;
  1129. ITERATE_RDEV(mddev1,rdev,tmp)
  1130. if (match_dev_unit(mddev2, rdev))
  1131. return 1;
  1132. return 0;
  1133. }
  1134. static LIST_HEAD(pending_raid_disks);
  1135. static int bind_rdev_to_array(mdk_rdev_t * rdev, mddev_t * mddev)
  1136. {
  1137. mdk_rdev_t *same_pdev;
  1138. char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
  1139. struct kobject *ko;
  1140. char *s;
  1141. if (rdev->mddev) {
  1142. MD_BUG();
  1143. return -EINVAL;
  1144. }
  1145. /* make sure rdev->size exceeds mddev->size */
  1146. if (rdev->size && (mddev->size == 0 || rdev->size < mddev->size)) {
  1147. if (mddev->pers)
  1148. /* Cannot change size, so fail */
  1149. return -ENOSPC;
  1150. else
  1151. mddev->size = rdev->size;
  1152. }
  1153. same_pdev = match_dev_unit(mddev, rdev);
  1154. if (same_pdev)
  1155. printk(KERN_WARNING
  1156. "%s: WARNING: %s appears to be on the same physical"
  1157. " disk as %s. True\n protection against single-disk"
  1158. " failure might be compromised.\n",
  1159. mdname(mddev), bdevname(rdev->bdev,b),
  1160. bdevname(same_pdev->bdev,b2));
  1161. /* Verify rdev->desc_nr is unique.
  1162. * If it is -1, assign a free number, else
  1163. * check number is not in use
  1164. */
  1165. if (rdev->desc_nr < 0) {
  1166. int choice = 0;
  1167. if (mddev->pers) choice = mddev->raid_disks;
  1168. while (find_rdev_nr(mddev, choice))
  1169. choice++;
  1170. rdev->desc_nr = choice;
  1171. } else {
  1172. if (find_rdev_nr(mddev, rdev->desc_nr))
  1173. return -EBUSY;
  1174. }
  1175. bdevname(rdev->bdev,b);
  1176. if (kobject_set_name(&rdev->kobj, "dev-%s", b) < 0)
  1177. return -ENOMEM;
  1178. while ( (s=strchr(rdev->kobj.k_name, '/')) != NULL)
  1179. *s = '!';
  1180. list_add(&rdev->same_set, &mddev->disks);
  1181. rdev->mddev = mddev;
  1182. printk(KERN_INFO "md: bind<%s>\n", b);
  1183. rdev->kobj.parent = &mddev->kobj;
  1184. kobject_add(&rdev->kobj);
  1185. if (rdev->bdev->bd_part)
  1186. ko = &rdev->bdev->bd_part->kobj;
  1187. else
  1188. ko = &rdev->bdev->bd_disk->kobj;
  1189. sysfs_create_link(&rdev->kobj, ko, "block");
  1190. bd_claim_by_disk(rdev->bdev, rdev, mddev->gendisk);
  1191. return 0;
  1192. }
  1193. static void unbind_rdev_from_array(mdk_rdev_t * rdev)
  1194. {
  1195. char b[BDEVNAME_SIZE];
  1196. if (!rdev->mddev) {
  1197. MD_BUG();
  1198. return;
  1199. }
  1200. bd_release_from_disk(rdev->bdev, rdev->mddev->gendisk);
  1201. list_del_init(&rdev->same_set);
  1202. printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
  1203. rdev->mddev = NULL;
  1204. sysfs_remove_link(&rdev->kobj, "block");
  1205. kobject_del(&rdev->kobj);
  1206. }
  1207. /*
  1208. * prevent the device from being mounted, repartitioned or
  1209. * otherwise reused by a RAID array (or any other kernel
  1210. * subsystem), by bd_claiming the device.
  1211. */
  1212. static int lock_rdev(mdk_rdev_t *rdev, dev_t dev)
  1213. {
  1214. int err = 0;
  1215. struct block_device *bdev;
  1216. char b[BDEVNAME_SIZE];
  1217. bdev = open_partition_by_devnum(dev, FMODE_READ|FMODE_WRITE);
  1218. if (IS_ERR(bdev)) {
  1219. printk(KERN_ERR "md: could not open %s.\n",
  1220. __bdevname(dev, b));
  1221. return PTR_ERR(bdev);
  1222. }
  1223. err = bd_claim(bdev, rdev);
  1224. if (err) {
  1225. printk(KERN_ERR "md: could not bd_claim %s.\n",
  1226. bdevname(bdev, b));
  1227. blkdev_put_partition(bdev);
  1228. return err;
  1229. }
  1230. rdev->bdev = bdev;
  1231. return err;
  1232. }
  1233. static void unlock_rdev(mdk_rdev_t *rdev)
  1234. {
  1235. struct block_device *bdev = rdev->bdev;
  1236. rdev->bdev = NULL;
  1237. if (!bdev)
  1238. MD_BUG();
  1239. bd_release(bdev);
  1240. blkdev_put_partition(bdev);
  1241. }
  1242. void md_autodetect_dev(dev_t dev);
  1243. static void export_rdev(mdk_rdev_t * rdev)
  1244. {
  1245. char b[BDEVNAME_SIZE];
  1246. printk(KERN_INFO "md: export_rdev(%s)\n",
  1247. bdevname(rdev->bdev,b));
  1248. if (rdev->mddev)
  1249. MD_BUG();
  1250. free_disk_sb(rdev);
  1251. list_del_init(&rdev->same_set);
  1252. #ifndef MODULE
  1253. md_autodetect_dev(rdev->bdev->bd_dev);
  1254. #endif
  1255. unlock_rdev(rdev);
  1256. kobject_put(&rdev->kobj);
  1257. }
  1258. static void kick_rdev_from_array(mdk_rdev_t * rdev)
  1259. {
  1260. unbind_rdev_from_array(rdev);
  1261. export_rdev(rdev);
  1262. }
  1263. static void export_array(mddev_t *mddev)
  1264. {
  1265. struct list_head *tmp;
  1266. mdk_rdev_t *rdev;
  1267. ITERATE_RDEV(mddev,rdev,tmp) {
  1268. if (!rdev->mddev) {
  1269. MD_BUG();
  1270. continue;
  1271. }
  1272. kick_rdev_from_array(rdev);
  1273. }
  1274. if (!list_empty(&mddev->disks))
  1275. MD_BUG();
  1276. mddev->raid_disks = 0;
  1277. mddev->major_version = 0;
  1278. }
  1279. static void print_desc(mdp_disk_t *desc)
  1280. {
  1281. printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc->number,
  1282. desc->major,desc->minor,desc->raid_disk,desc->state);
  1283. }
  1284. static void print_sb(mdp_super_t *sb)
  1285. {
  1286. int i;
  1287. printk(KERN_INFO
  1288. "md: SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n",
  1289. sb->major_version, sb->minor_version, sb->patch_version,
  1290. sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3,
  1291. sb->ctime);
  1292. printk(KERN_INFO "md: L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n",
  1293. sb->level, sb->size, sb->nr_disks, sb->raid_disks,
  1294. sb->md_minor, sb->layout, sb->chunk_size);
  1295. printk(KERN_INFO "md: UT:%08x ST:%d AD:%d WD:%d"
  1296. " FD:%d SD:%d CSUM:%08x E:%08lx\n",
  1297. sb->utime, sb->state, sb->active_disks, sb->working_disks,
  1298. sb->failed_disks, sb->spare_disks,
  1299. sb->sb_csum, (unsigned long)sb->events_lo);
  1300. printk(KERN_INFO);
  1301. for (i = 0; i < MD_SB_DISKS; i++) {
  1302. mdp_disk_t *desc;
  1303. desc = sb->disks + i;
  1304. if (desc->number || desc->major || desc->minor ||
  1305. desc->raid_disk || (desc->state && (desc->state != 4))) {
  1306. printk(" D %2d: ", i);
  1307. print_desc(desc);
  1308. }
  1309. }
  1310. printk(KERN_INFO "md: THIS: ");
  1311. print_desc(&sb->this_disk);
  1312. }
  1313. static void print_rdev(mdk_rdev_t *rdev)
  1314. {
  1315. char b[BDEVNAME_SIZE];
  1316. printk(KERN_INFO "md: rdev %s, SZ:%08llu F:%d S:%d DN:%u\n",
  1317. bdevname(rdev->bdev,b), (unsigned long long)rdev->size,
  1318. test_bit(Faulty, &rdev->flags), test_bit(In_sync, &rdev->flags),
  1319. rdev->desc_nr);
  1320. if (rdev->sb_loaded) {
  1321. printk(KERN_INFO "md: rdev superblock:\n");
  1322. print_sb((mdp_super_t*)page_address(rdev->sb_page));
  1323. } else
  1324. printk(KERN_INFO "md: no rdev superblock!\n");
  1325. }
  1326. static void md_print_devices(void)
  1327. {
  1328. struct list_head *tmp, *tmp2;
  1329. mdk_rdev_t *rdev;
  1330. mddev_t *mddev;
  1331. char b[BDEVNAME_SIZE];
  1332. printk("\n");
  1333. printk("md: **********************************\n");
  1334. printk("md: * <COMPLETE RAID STATE PRINTOUT> *\n");
  1335. printk("md: **********************************\n");
  1336. ITERATE_MDDEV(mddev,tmp) {
  1337. if (mddev->bitmap)
  1338. bitmap_print_sb(mddev->bitmap);
  1339. else
  1340. printk("%s: ", mdname(mddev));
  1341. ITERATE_RDEV(mddev,rdev,tmp2)
  1342. printk("<%s>", bdevname(rdev->bdev,b));
  1343. printk("\n");
  1344. ITERATE_RDEV(mddev,rdev,tmp2)
  1345. print_rdev(rdev);
  1346. }
  1347. printk("md: **********************************\n");
  1348. printk("\n");
  1349. }
  1350. static void sync_sbs(mddev_t * mddev, int nospares)
  1351. {
  1352. /* Update each superblock (in-memory image), but
  1353. * if we are allowed to, skip spares which already
  1354. * have the right event counter, or have one earlier
  1355. * (which would mean they aren't being marked as dirty
  1356. * with the rest of the array)
  1357. */
  1358. mdk_rdev_t *rdev;
  1359. struct list_head *tmp;
  1360. ITERATE_RDEV(mddev,rdev,tmp) {
  1361. if (rdev->sb_events == mddev->events ||
  1362. (nospares &&
  1363. rdev->raid_disk < 0 &&
  1364. (rdev->sb_events&1)==0 &&
  1365. rdev->sb_events+1 == mddev->events)) {
  1366. /* Don't update this superblock */
  1367. rdev->sb_loaded = 2;
  1368. } else {
  1369. super_types[mddev->major_version].
  1370. sync_super(mddev, rdev);
  1371. rdev->sb_loaded = 1;
  1372. }
  1373. }
  1374. }
  1375. void md_update_sb(mddev_t * mddev)
  1376. {
  1377. int err;
  1378. struct list_head *tmp;
  1379. mdk_rdev_t *rdev;
  1380. int sync_req;
  1381. int nospares = 0;
  1382. repeat:
  1383. spin_lock_irq(&mddev->write_lock);
  1384. if (mddev->degraded && mddev->sb_dirty == 3)
  1385. /* If the array is degraded, then skipping spares is both
  1386. * dangerous and fairly pointless.
  1387. * Dangerous because a device that was removed from the array
  1388. * might have a event_count that still looks up-to-date,
  1389. * so it can be re-added without a resync.
  1390. * Pointless because if there are any spares to skip,
  1391. * then a recovery will happen and soon that array won't
  1392. * be degraded any more and the spare can go back to sleep then.
  1393. */
  1394. mddev->sb_dirty = 1;
  1395. sync_req = mddev->in_sync;
  1396. mddev->utime = get_seconds();
  1397. if (mddev->sb_dirty == 3)
  1398. /* just a clean<-> dirty transition, possibly leave spares alone,
  1399. * though if events isn't the right even/odd, we will have to do
  1400. * spares after all
  1401. */
  1402. nospares = 1;
  1403. /* If this is just a dirty<->clean transition, and the array is clean
  1404. * and 'events' is odd, we can roll back to the previous clean state */
  1405. if (mddev->sb_dirty == 3
  1406. && (mddev->in_sync && mddev->recovery_cp == MaxSector)
  1407. && (mddev->events & 1))
  1408. mddev->events--;
  1409. else {
  1410. /* otherwise we have to go forward and ... */
  1411. mddev->events ++;
  1412. if (!mddev->in_sync || mddev->recovery_cp != MaxSector) { /* not clean */
  1413. /* .. if the array isn't clean, insist on an odd 'events' */
  1414. if ((mddev->events&1)==0) {
  1415. mddev->events++;
  1416. nospares = 0;
  1417. }
  1418. } else {
  1419. /* otherwise insist on an even 'events' (for clean states) */
  1420. if ((mddev->events&1)) {
  1421. mddev->events++;
  1422. nospares = 0;
  1423. }
  1424. }
  1425. }
  1426. if (!mddev->events) {
  1427. /*
  1428. * oops, this 64-bit counter should never wrap.
  1429. * Either we are in around ~1 trillion A.C., assuming
  1430. * 1 reboot per second, or we have a bug:
  1431. */
  1432. MD_BUG();
  1433. mddev->events --;
  1434. }
  1435. mddev->sb_dirty = 2;
  1436. sync_sbs(mddev, nospares);
  1437. /*
  1438. * do not write anything to disk if using
  1439. * nonpersistent superblocks
  1440. */
  1441. if (!mddev->persistent) {
  1442. mddev->sb_dirty = 0;
  1443. spin_unlock_irq(&mddev->write_lock);
  1444. wake_up(&mddev->sb_wait);
  1445. return;
  1446. }
  1447. spin_unlock_irq(&mddev->write_lock);
  1448. dprintk(KERN_INFO
  1449. "md: updating %s RAID superblock on device (in sync %d)\n",
  1450. mdname(mddev),mddev->in_sync);
  1451. err = bitmap_update_sb(mddev->bitmap);
  1452. ITERATE_RDEV(mddev,rdev,tmp) {
  1453. char b[BDEVNAME_SIZE];
  1454. dprintk(KERN_INFO "md: ");
  1455. if (rdev->sb_loaded != 1)
  1456. continue; /* no noise on spare devices */
  1457. if (test_bit(Faulty, &rdev->flags))
  1458. dprintk("(skipping faulty ");
  1459. dprintk("%s ", bdevname(rdev->bdev,b));
  1460. if (!test_bit(Faulty, &rdev->flags)) {
  1461. md_super_write(mddev,rdev,
  1462. rdev->sb_offset<<1, rdev->sb_size,
  1463. rdev->sb_page);
  1464. dprintk(KERN_INFO "(write) %s's sb offset: %llu\n",
  1465. bdevname(rdev->bdev,b),
  1466. (unsigned long long)rdev->sb_offset);
  1467. rdev->sb_events = mddev->events;
  1468. } else
  1469. dprintk(")\n");
  1470. if (mddev->level == LEVEL_MULTIPATH)
  1471. /* only need to write one superblock... */
  1472. break;
  1473. }
  1474. md_super_wait(mddev);
  1475. /* if there was a failure, sb_dirty was set to 1, and we re-write super */
  1476. spin_lock_irq(&mddev->write_lock);
  1477. if (mddev->in_sync != sync_req|| mddev->sb_dirty == 1) {
  1478. /* have to write it out again */
  1479. spin_unlock_irq(&mddev->write_lock);
  1480. goto repeat;
  1481. }
  1482. mddev->sb_dirty = 0;
  1483. spin_unlock_irq(&mddev->write_lock);
  1484. wake_up(&mddev->sb_wait);
  1485. }
  1486. EXPORT_SYMBOL_GPL(md_update_sb);
  1487. /* words written to sysfs files may, or my not, be \n terminated.
  1488. * We want to accept with case. For this we use cmd_match.
  1489. */
  1490. static int cmd_match(const char *cmd, const char *str)
  1491. {
  1492. /* See if cmd, written into a sysfs file, matches
  1493. * str. They must either be the same, or cmd can
  1494. * have a trailing newline
  1495. */
  1496. while (*cmd && *str && *cmd == *str) {
  1497. cmd++;
  1498. str++;
  1499. }
  1500. if (*cmd == '\n')
  1501. cmd++;
  1502. if (*str || *cmd)
  1503. return 0;
  1504. return 1;
  1505. }
  1506. struct rdev_sysfs_entry {
  1507. struct attribute attr;
  1508. ssize_t (*show)(mdk_rdev_t *, char *);
  1509. ssize_t (*store)(mdk_rdev_t *, const char *, size_t);
  1510. };
  1511. static ssize_t
  1512. state_show(mdk_rdev_t *rdev, char *page)
  1513. {
  1514. char *sep = "";
  1515. int len=0;
  1516. if (test_bit(Faulty, &rdev->flags)) {
  1517. len+= sprintf(page+len, "%sfaulty",sep);
  1518. sep = ",";
  1519. }
  1520. if (test_bit(In_sync, &rdev->flags)) {
  1521. len += sprintf(page+len, "%sin_sync",sep);
  1522. sep = ",";
  1523. }
  1524. if (test_bit(WriteMostly, &rdev->flags)) {
  1525. len += sprintf(page+len, "%swrite_mostly",sep);
  1526. sep = ",";
  1527. }
  1528. if (!test_bit(Faulty, &rdev->flags) &&
  1529. !test_bit(In_sync, &rdev->flags)) {
  1530. len += sprintf(page+len, "%sspare", sep);
  1531. sep = ",";
  1532. }
  1533. return len+sprintf(page+len, "\n");
  1534. }
  1535. static ssize_t
  1536. state_store(mdk_rdev_t *rdev, const char *buf, size_t len)
  1537. {
  1538. /* can write
  1539. * faulty - simulates and error
  1540. * remove - disconnects the device
  1541. * writemostly - sets write_mostly
  1542. * -writemostly - clears write_mostly
  1543. */
  1544. int err = -EINVAL;
  1545. if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
  1546. md_error(rdev->mddev, rdev);
  1547. err = 0;
  1548. } else if (cmd_match(buf, "remove")) {
  1549. if (rdev->raid_disk >= 0)
  1550. err = -EBUSY;
  1551. else {
  1552. mddev_t *mddev = rdev->mddev;
  1553. kick_rdev_from_array(rdev);
  1554. md_update_sb(mddev);
  1555. md_new_event(mddev);
  1556. err = 0;
  1557. }
  1558. } else if (cmd_match(buf, "writemostly")) {
  1559. set_bit(WriteMostly, &rdev->flags);
  1560. err = 0;
  1561. } else if (cmd_match(buf, "-writemostly")) {
  1562. clear_bit(WriteMostly, &rdev->flags);
  1563. err = 0;
  1564. }
  1565. return err ? err : len;
  1566. }
  1567. static struct rdev_sysfs_entry rdev_state =
  1568. __ATTR(state, S_IRUGO|S_IWUSR, state_show, state_store);
  1569. static ssize_t
  1570. super_show(mdk_rdev_t *rdev, char *page)
  1571. {
  1572. if (rdev->sb_loaded && rdev->sb_size) {
  1573. memcpy(page, page_address(rdev->sb_page), rdev->sb_size);
  1574. return rdev->sb_size;
  1575. } else
  1576. return 0;
  1577. }
  1578. static struct rdev_sysfs_entry rdev_super = __ATTR_RO(super);
  1579. static ssize_t
  1580. errors_show(mdk_rdev_t *rdev, char *page)
  1581. {
  1582. return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
  1583. }
  1584. static ssize_t
  1585. errors_store(mdk_rdev_t *rdev, const char *buf, size_t len)
  1586. {
  1587. char *e;
  1588. unsigned long n = simple_strtoul(buf, &e, 10);
  1589. if (*buf && (*e == 0 || *e == '\n')) {
  1590. atomic_set(&rdev->corrected_errors, n);
  1591. return len;
  1592. }
  1593. return -EINVAL;
  1594. }
  1595. static struct rdev_sysfs_entry rdev_errors =
  1596. __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
  1597. static ssize_t
  1598. slot_show(mdk_rdev_t *rdev, char *page)
  1599. {
  1600. if (rdev->raid_disk < 0)
  1601. return sprintf(page, "none\n");
  1602. else
  1603. return sprintf(page, "%d\n", rdev->raid_disk);
  1604. }
  1605. static ssize_t
  1606. slot_store(mdk_rdev_t *rdev, const char *buf, size_t len)
  1607. {
  1608. char *e;
  1609. int slot = simple_strtoul(buf, &e, 10);
  1610. if (strncmp(buf, "none", 4)==0)
  1611. slot = -1;
  1612. else if (e==buf || (*e && *e!= '\n'))
  1613. return -EINVAL;
  1614. if (rdev->mddev->pers)
  1615. /* Cannot set slot in active array (yet) */
  1616. return -EBUSY;
  1617. if (slot >= rdev->mddev->raid_disks)
  1618. return -ENOSPC;
  1619. rdev->raid_disk = slot;
  1620. /* assume it is working */
  1621. rdev->flags = 0;
  1622. set_bit(In_sync, &rdev->flags);
  1623. return len;
  1624. }
  1625. static struct rdev_sysfs_entry rdev_slot =
  1626. __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
  1627. static ssize_t
  1628. offset_show(mdk_rdev_t *rdev, char *page)
  1629. {
  1630. return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
  1631. }
  1632. static ssize_t
  1633. offset_store(mdk_rdev_t *rdev, const char *buf, size_t len)
  1634. {
  1635. char *e;
  1636. unsigned long long offset = simple_strtoull(buf, &e, 10);
  1637. if (e==buf || (*e && *e != '\n'))
  1638. return -EINVAL;
  1639. if (rdev->mddev->pers)
  1640. return -EBUSY;
  1641. rdev->data_offset = offset;
  1642. return len;
  1643. }
  1644. static struct rdev_sysfs_entry rdev_offset =
  1645. __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
  1646. static ssize_t
  1647. rdev_size_show(mdk_rdev_t *rdev, char *page)
  1648. {
  1649. return sprintf(page, "%llu\n", (unsigned long long)rdev->size);
  1650. }
  1651. static ssize_t
  1652. rdev_size_store(mdk_rdev_t *rdev, const char *buf, size_t len)
  1653. {
  1654. char *e;
  1655. unsigned long long size = simple_strtoull(buf, &e, 10);
  1656. if (e==buf || (*e && *e != '\n'))
  1657. return -EINVAL;
  1658. if (rdev->mddev->pers)
  1659. return -EBUSY;
  1660. rdev->size = size;
  1661. if (size < rdev->mddev->size || rdev->mddev->size == 0)
  1662. rdev->mddev->size = size;
  1663. return len;
  1664. }
  1665. static struct rdev_sysfs_entry rdev_size =
  1666. __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
  1667. static struct attribute *rdev_default_attrs[] = {
  1668. &rdev_state.attr,
  1669. &rdev_super.attr,
  1670. &rdev_errors.attr,
  1671. &rdev_slot.attr,
  1672. &rdev_offset.attr,
  1673. &rdev_size.attr,
  1674. NULL,
  1675. };
  1676. static ssize_t
  1677. rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
  1678. {
  1679. struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
  1680. mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj);
  1681. if (!entry->show)
  1682. return -EIO;
  1683. return entry->show(rdev, page);
  1684. }
  1685. static ssize_t
  1686. rdev_attr_store(struct kobject *kobj, struct attribute *attr,
  1687. const char *page, size_t length)
  1688. {
  1689. struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
  1690. mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj);
  1691. if (!entry->store)
  1692. return -EIO;
  1693. if (!capable(CAP_SYS_ADMIN))
  1694. return -EACCES;
  1695. return entry->store(rdev, page, length);
  1696. }
  1697. static void rdev_free(struct kobject *ko)
  1698. {
  1699. mdk_rdev_t *rdev = container_of(ko, mdk_rdev_t, kobj);
  1700. kfree(rdev);
  1701. }
  1702. static struct sysfs_ops rdev_sysfs_ops = {
  1703. .show = rdev_attr_show,
  1704. .store = rdev_attr_store,
  1705. };
  1706. static struct kobj_type rdev_ktype = {
  1707. .release = rdev_free,
  1708. .sysfs_ops = &rdev_sysfs_ops,
  1709. .default_attrs = rdev_default_attrs,
  1710. };
  1711. /*
  1712. * Import a device. If 'super_format' >= 0, then sanity check the superblock
  1713. *
  1714. * mark the device faulty if:
  1715. *
  1716. * - the device is nonexistent (zero size)
  1717. * - the device has no valid superblock
  1718. *
  1719. * a faulty rdev _never_ has rdev->sb set.
  1720. */
  1721. static mdk_rdev_t *md_import_device(dev_t newdev, int super_format, int super_minor)
  1722. {
  1723. char b[BDEVNAME_SIZE];
  1724. int err;
  1725. mdk_rdev_t *rdev;
  1726. sector_t size;
  1727. rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
  1728. if (!rdev) {
  1729. printk(KERN_ERR "md: could not alloc mem for new device!\n");
  1730. return ERR_PTR(-ENOMEM);
  1731. }
  1732. if ((err = alloc_disk_sb(rdev)))
  1733. goto abort_free;
  1734. err = lock_rdev(rdev, newdev);
  1735. if (err)
  1736. goto abort_free;
  1737. rdev->kobj.parent = NULL;
  1738. rdev->kobj.ktype = &rdev_ktype;
  1739. kobject_init(&rdev->kobj);
  1740. rdev->desc_nr = -1;
  1741. rdev->flags = 0;
  1742. rdev->data_offset = 0;
  1743. rdev->sb_events = 0;
  1744. atomic_set(&rdev->nr_pending, 0);
  1745. atomic_set(&rdev->read_errors, 0);
  1746. atomic_set(&rdev->corrected_errors, 0);
  1747. size = rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
  1748. if (!size) {
  1749. printk(KERN_WARNING
  1750. "md: %s has zero or unknown size, marking faulty!\n",
  1751. bdevname(rdev->bdev,b));
  1752. err = -EINVAL;
  1753. goto abort_free;
  1754. }
  1755. if (super_format >= 0) {
  1756. err = super_types[super_format].
  1757. load_super(rdev, NULL, super_minor);
  1758. if (err == -EINVAL) {
  1759. printk(KERN_WARNING
  1760. "md: %s has invalid sb, not importing!\n",
  1761. bdevname(rdev->bdev,b));
  1762. goto abort_free;
  1763. }
  1764. if (err < 0) {
  1765. printk(KERN_WARNING
  1766. "md: could not read %s's sb, not importing!\n",
  1767. bdevname(rdev->bdev,b));
  1768. goto abort_free;
  1769. }
  1770. }
  1771. INIT_LIST_HEAD(&rdev->same_set);
  1772. return rdev;
  1773. abort_free:
  1774. if (rdev->sb_page) {
  1775. if (rdev->bdev)
  1776. unlock_rdev(rdev);
  1777. free_disk_sb(rdev);
  1778. }
  1779. kfree(rdev);
  1780. return ERR_PTR(err);
  1781. }
  1782. /*
  1783. * Check a full RAID array for plausibility
  1784. */
  1785. static void analyze_sbs(mddev_t * mddev)
  1786. {
  1787. int i;
  1788. struct list_head *tmp;
  1789. mdk_rdev_t *rdev, *freshest;
  1790. char b[BDEVNAME_SIZE];
  1791. freshest = NULL;
  1792. ITERATE_RDEV(mddev,rdev,tmp)
  1793. switch (super_types[mddev->major_version].
  1794. load_super(rdev, freshest, mddev->minor_version)) {
  1795. case 1:
  1796. freshest = rdev;
  1797. break;
  1798. case 0:
  1799. break;
  1800. default:
  1801. printk( KERN_ERR \
  1802. "md: fatal superblock inconsistency in %s"
  1803. " -- removing from array\n",
  1804. bdevname(rdev->bdev,b));
  1805. kick_rdev_from_array(rdev);
  1806. }
  1807. super_types[mddev->major_version].
  1808. validate_super(mddev, freshest);
  1809. i = 0;
  1810. ITERATE_RDEV(mddev,rdev,tmp) {
  1811. if (rdev != freshest)
  1812. if (super_types[mddev->major_version].
  1813. validate_super(mddev, rdev)) {
  1814. printk(KERN_WARNING "md: kicking non-fresh %s"
  1815. " from array!\n",
  1816. bdevname(rdev->bdev,b));
  1817. kick_rdev_from_array(rdev);
  1818. continue;
  1819. }
  1820. if (mddev->level == LEVEL_MULTIPATH) {
  1821. rdev->desc_nr = i++;
  1822. rdev->raid_disk = rdev->desc_nr;
  1823. set_bit(In_sync, &rdev->flags);
  1824. }
  1825. }
  1826. if (mddev->recovery_cp != MaxSector &&
  1827. mddev->level >= 1)
  1828. printk(KERN_ERR "md: %s: raid array is not clean"
  1829. " -- starting background reconstruction\n",
  1830. mdname(mddev));
  1831. }
  1832. static ssize_t
  1833. safe_delay_show(mddev_t *mddev, char *page)
  1834. {
  1835. int msec = (mddev->safemode_delay*1000)/HZ;
  1836. return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
  1837. }
  1838. static ssize_t
  1839. safe_delay_store(mddev_t *mddev, const char *cbuf, size_t len)
  1840. {
  1841. int scale=1;
  1842. int dot=0;
  1843. int i;
  1844. unsigned long msec;
  1845. char buf[30];
  1846. char *e;
  1847. /* remove a period, and count digits after it */
  1848. if (len >= sizeof(buf))
  1849. return -EINVAL;
  1850. strlcpy(buf, cbuf, len);
  1851. buf[len] = 0;
  1852. for (i=0; i<len; i++) {
  1853. if (dot) {
  1854. if (isdigit(buf[i])) {
  1855. buf[i-1] = buf[i];
  1856. scale *= 10;
  1857. }
  1858. buf[i] = 0;
  1859. } else if (buf[i] == '.') {
  1860. dot=1;
  1861. buf[i] = 0;
  1862. }
  1863. }
  1864. msec = simple_strtoul(buf, &e, 10);
  1865. if (e == buf || (*e && *e != '\n'))
  1866. return -EINVAL;
  1867. msec = (msec * 1000) / scale;
  1868. if (msec == 0)
  1869. mddev->safemode_delay = 0;
  1870. else {
  1871. mddev->safemode_delay = (msec*HZ)/1000;
  1872. if (mddev->safemode_delay == 0)
  1873. mddev->safemode_delay = 1;
  1874. }
  1875. return len;
  1876. }
  1877. static struct md_sysfs_entry md_safe_delay =
  1878. __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
  1879. static ssize_t
  1880. level_show(mddev_t *mddev, char *page)
  1881. {
  1882. struct mdk_personality *p = mddev->pers;
  1883. if (p)
  1884. return sprintf(page, "%s\n", p->name);
  1885. else if (mddev->clevel[0])
  1886. return sprintf(page, "%s\n", mddev->clevel);
  1887. else if (mddev->level != LEVEL_NONE)
  1888. return sprintf(page, "%d\n", mddev->level);
  1889. else
  1890. return 0;
  1891. }
  1892. static ssize_t
  1893. level_store(mddev_t *mddev, const char *buf, size_t len)
  1894. {
  1895. int rv = len;
  1896. if (mddev->pers)
  1897. return -EBUSY;
  1898. if (len == 0)
  1899. return 0;
  1900. if (len >= sizeof(mddev->clevel))
  1901. return -ENOSPC;
  1902. strncpy(mddev->clevel, buf, len);
  1903. if (mddev->clevel[len-1] == '\n')
  1904. len--;
  1905. mddev->clevel[len] = 0;
  1906. mddev->level = LEVEL_NONE;
  1907. return rv;
  1908. }
  1909. static struct md_sysfs_entry md_level =
  1910. __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
  1911. static ssize_t
  1912. layout_show(mddev_t *mddev, char *page)
  1913. {
  1914. /* just a number, not meaningful for all levels */
  1915. return sprintf(page, "%d\n", mddev->layout);
  1916. }
  1917. static ssize_t
  1918. layout_store(mddev_t *mddev, const char *buf, size_t len)
  1919. {
  1920. char *e;
  1921. unsigned long n = simple_strtoul(buf, &e, 10);
  1922. if (mddev->pers)
  1923. return -EBUSY;
  1924. if (!*buf || (*e && *e != '\n'))
  1925. return -EINVAL;
  1926. mddev->layout = n;
  1927. return len;
  1928. }
  1929. static struct md_sysfs_entry md_layout =
  1930. __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
  1931. static ssize_t
  1932. raid_disks_show(mddev_t *mddev, char *page)
  1933. {
  1934. if (mddev->raid_disks == 0)
  1935. return 0;
  1936. return sprintf(page, "%d\n", mddev->raid_disks);
  1937. }
  1938. static int update_raid_disks(mddev_t *mddev, int raid_disks);
  1939. static ssize_t
  1940. raid_disks_store(mddev_t *mddev, const char *buf, size_t len)
  1941. {
  1942. /* can only set raid_disks if array is not yet active */
  1943. char *e;
  1944. int rv = 0;
  1945. unsigned long n = simple_strtoul(buf, &e, 10);
  1946. if (!*buf || (*e && *e != '\n'))
  1947. return -EINVAL;
  1948. if (mddev->pers)
  1949. rv = update_raid_disks(mddev, n);
  1950. else
  1951. mddev->raid_disks = n;
  1952. return rv ? rv : len;
  1953. }
  1954. static struct md_sysfs_entry md_raid_disks =
  1955. __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
  1956. static ssize_t
  1957. chunk_size_show(mddev_t *mddev, char *page)
  1958. {
  1959. return sprintf(page, "%d\n", mddev->chunk_size);
  1960. }
  1961. static ssize_t
  1962. chunk_size_store(mddev_t *mddev, const char *buf, size_t len)
  1963. {
  1964. /* can only set chunk_size if array is not yet active */
  1965. char *e;
  1966. unsigned long n = simple_strtoul(buf, &e, 10);
  1967. if (mddev->pers)
  1968. return -EBUSY;
  1969. if (!*buf || (*e && *e != '\n'))
  1970. return -EINVAL;
  1971. mddev->chunk_size = n;
  1972. return len;
  1973. }
  1974. static struct md_sysfs_entry md_chunk_size =
  1975. __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
  1976. static ssize_t
  1977. resync_start_show(mddev_t *mddev, char *page)
  1978. {
  1979. return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
  1980. }
  1981. static ssize_t
  1982. resync_start_store(mddev_t *mddev, const char *buf, size_t len)
  1983. {
  1984. /* can only set chunk_size if array is not yet active */
  1985. char *e;
  1986. unsigned long long n = simple_strtoull(buf, &e, 10);
  1987. if (mddev->pers)
  1988. return -EBUSY;
  1989. if (!*buf || (*e && *e != '\n'))
  1990. return -EINVAL;
  1991. mddev->recovery_cp = n;
  1992. return len;
  1993. }
  1994. static struct md_sysfs_entry md_resync_start =
  1995. __ATTR(resync_start, S_IRUGO|S_IWUSR, resync_start_show, resync_start_store);
  1996. /*
  1997. * The array state can be:
  1998. *
  1999. * clear
  2000. * No devices, no size, no level
  2001. * Equivalent to STOP_ARRAY ioctl
  2002. * inactive
  2003. * May have some settings, but array is not active
  2004. * all IO results in error
  2005. * When written, doesn't tear down array, but just stops it
  2006. * suspended (not supported yet)
  2007. * All IO requests will block. The array can be reconfigured.
  2008. * Writing this, if accepted, will block until array is quiessent
  2009. * readonly
  2010. * no resync can happen. no superblocks get written.
  2011. * write requests fail
  2012. * read-auto
  2013. * like readonly, but behaves like 'clean' on a write request.
  2014. *
  2015. * clean - no pending writes, but otherwise active.
  2016. * When written to inactive array, starts without resync
  2017. * If a write request arrives then
  2018. * if metadata is known, mark 'dirty' and switch to 'active'.
  2019. * if not known, block and switch to write-pending
  2020. * If written to an active array that has pending writes, then fails.
  2021. * active
  2022. * fully active: IO and resync can be happening.
  2023. * When written to inactive array, starts with resync
  2024. *
  2025. * write-pending
  2026. * clean, but writes are blocked waiting for 'active' to be written.
  2027. *
  2028. * active-idle
  2029. * like active, but no writes have been seen for a while (100msec).
  2030. *
  2031. */
  2032. enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
  2033. write_pending, active_idle, bad_word};
  2034. static char *array_states[] = {
  2035. "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
  2036. "write-pending", "active-idle", NULL };
  2037. static int match_word(const char *word, char **list)
  2038. {
  2039. int n;
  2040. for (n=0; list[n]; n++)
  2041. if (cmd_match(word, list[n]))
  2042. break;
  2043. return n;
  2044. }
  2045. static ssize_t
  2046. array_state_show(mddev_t *mddev, char *page)
  2047. {
  2048. enum array_state st = inactive;
  2049. if (mddev->pers)
  2050. switch(mddev->ro) {
  2051. case 1:
  2052. st = readonly;
  2053. break;
  2054. case 2:
  2055. st = read_auto;
  2056. break;
  2057. case 0:
  2058. if (mddev->in_sync)
  2059. st = clean;
  2060. else if (mddev->safemode)
  2061. st = active_idle;
  2062. else
  2063. st = active;
  2064. }
  2065. else {
  2066. if (list_empty(&mddev->disks) &&
  2067. mddev->raid_disks == 0 &&
  2068. mddev->size == 0)
  2069. st = clear;
  2070. else
  2071. st = inactive;
  2072. }
  2073. return sprintf(page, "%s\n", array_states[st]);
  2074. }
  2075. static int do_md_stop(mddev_t * mddev, int ro);
  2076. static int do_md_run(mddev_t * mddev);
  2077. static int restart_array(mddev_t *mddev);
  2078. static ssize_t
  2079. array_state_store(mddev_t *mddev, const char *buf, size_t len)
  2080. {
  2081. int err = -EINVAL;
  2082. enum array_state st = match_word(buf, array_states);
  2083. switch(st) {
  2084. case bad_word:
  2085. break;
  2086. case clear:
  2087. /* stopping an active array */
  2088. if (mddev->pers) {
  2089. if (atomic_read(&mddev->active) > 1)
  2090. return -EBUSY;
  2091. err = do_md_stop(mddev, 0);
  2092. }
  2093. break;
  2094. case inactive:
  2095. /* stopping an active array */
  2096. if (mddev->pers) {
  2097. if (atomic_read(&mddev->active) > 1)
  2098. return -EBUSY;
  2099. err = do_md_stop(mddev, 2);
  2100. }
  2101. break;
  2102. case suspended:
  2103. break; /* not supported yet */
  2104. case readonly:
  2105. if (mddev->pers)
  2106. err = do_md_stop(mddev, 1);
  2107. else {
  2108. mddev->ro = 1;
  2109. err = do_md_run(mddev);
  2110. }
  2111. break;
  2112. case read_auto:
  2113. /* stopping an active array */
  2114. if (mddev->pers) {
  2115. err = do_md_stop(mddev, 1);
  2116. if (err == 0)
  2117. mddev->ro = 2; /* FIXME mark devices writable */
  2118. } else {
  2119. mddev->ro = 2;
  2120. err = do_md_run(mddev);
  2121. }
  2122. break;
  2123. case clean:
  2124. if (mddev->pers) {
  2125. restart_array(mddev);
  2126. spin_lock_irq(&mddev->write_lock);
  2127. if (atomic_read(&mddev->writes_pending) == 0) {
  2128. mddev->in_sync = 1;
  2129. mddev->sb_dirty = 1;
  2130. }
  2131. spin_unlock_irq(&mddev->write_lock);
  2132. } else {
  2133. mddev->ro = 0;
  2134. mddev->recovery_cp = MaxSector;
  2135. err = do_md_run(mddev);
  2136. }
  2137. break;
  2138. case active:
  2139. if (mddev->pers) {
  2140. restart_array(mddev);
  2141. mddev->sb_dirty = 0;
  2142. wake_up(&mddev->sb_wait);
  2143. err = 0;
  2144. } else {
  2145. mddev->ro = 0;
  2146. err = do_md_run(mddev);
  2147. }
  2148. break;
  2149. case write_pending:
  2150. case active_idle:
  2151. /* these cannot be set */
  2152. break;
  2153. }
  2154. if (err)
  2155. return err;
  2156. else
  2157. return len;
  2158. }
  2159. static struct md_sysfs_entry md_array_state =
  2160. __ATTR(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
  2161. static ssize_t
  2162. null_show(mddev_t *mddev, char *page)
  2163. {
  2164. return -EINVAL;
  2165. }
  2166. static ssize_t
  2167. new_dev_store(mddev_t *mddev, const char *buf, size_t len)
  2168. {
  2169. /* buf must be %d:%d\n? giving major and minor numbers */
  2170. /* The new device is added to the array.
  2171. * If the array has a persistent superblock, we read the
  2172. * superblock to initialise info and check validity.
  2173. * Otherwise, only checking done is that in bind_rdev_to_array,
  2174. * which mainly checks size.
  2175. */
  2176. char *e;
  2177. int major = simple_strtoul(buf, &e, 10);
  2178. int minor;
  2179. dev_t dev;
  2180. mdk_rdev_t *rdev;
  2181. int err;
  2182. if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
  2183. return -EINVAL;
  2184. minor = simple_strtoul(e+1, &e, 10);
  2185. if (*e && *e != '\n')
  2186. return -EINVAL;
  2187. dev = MKDEV(major, minor);
  2188. if (major != MAJOR(dev) ||
  2189. minor != MINOR(dev))
  2190. return -EOVERFLOW;
  2191. if (mddev->persistent) {
  2192. rdev = md_import_device(dev, mddev->major_version,
  2193. mddev->minor_version);
  2194. if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
  2195. mdk_rdev_t *rdev0 = list_entry(mddev->disks.next,
  2196. mdk_rdev_t, same_set);
  2197. err = super_types[mddev->major_version]
  2198. .load_super(rdev, rdev0, mddev->minor_version);
  2199. if (err < 0)
  2200. goto out;
  2201. }
  2202. } else
  2203. rdev = md_import_device(dev, -1, -1);
  2204. if (IS_ERR(rdev))
  2205. return PTR_ERR(rdev);
  2206. err = bind_rdev_to_array(rdev, mddev);
  2207. out:
  2208. if (err)
  2209. export_rdev(rdev);
  2210. return err ? err : len;
  2211. }
  2212. static struct md_sysfs_entry md_new_device =
  2213. __ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
  2214. static ssize_t
  2215. size_show(mddev_t *mddev, char *page)
  2216. {
  2217. return sprintf(page, "%llu\n", (unsigned long long)mddev->size);
  2218. }
  2219. static int update_size(mddev_t *mddev, unsigned long size);
  2220. static ssize_t
  2221. size_store(mddev_t *mddev, const char *buf, size_t len)
  2222. {
  2223. /* If array is inactive, we can reduce the component size, but
  2224. * not increase it (except from 0).
  2225. * If array is active, we can try an on-line resize
  2226. */
  2227. char *e;
  2228. int err = 0;
  2229. unsigned long long size = simple_strtoull(buf, &e, 10);
  2230. if (!*buf || *buf == '\n' ||
  2231. (*e && *e != '\n'))
  2232. return -EINVAL;
  2233. if (mddev->pers) {
  2234. err = update_size(mddev, size);
  2235. md_update_sb(mddev);
  2236. } else {
  2237. if (mddev->size == 0 ||
  2238. mddev->size > size)
  2239. mddev->size = size;
  2240. else
  2241. err = -ENOSPC;
  2242. }
  2243. return err ? err : len;
  2244. }
  2245. static struct md_sysfs_entry md_size =
  2246. __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
  2247. /* Metdata version.
  2248. * This is either 'none' for arrays with externally managed metadata,
  2249. * or N.M for internally known formats
  2250. */
  2251. static ssize_t
  2252. metadata_show(mddev_t *mddev, char *page)
  2253. {
  2254. if (mddev->persistent)
  2255. return sprintf(page, "%d.%d\n",
  2256. mddev->major_version, mddev->minor_version);
  2257. else
  2258. return sprintf(page, "none\n");
  2259. }
  2260. static ssize_t
  2261. metadata_store(mddev_t *mddev, const char *buf, size_t len)
  2262. {
  2263. int major, minor;
  2264. char *e;
  2265. if (!list_empty(&mddev->disks))
  2266. return -EBUSY;
  2267. if (cmd_match(buf, "none")) {
  2268. mddev->persistent = 0;
  2269. mddev->major_version = 0;
  2270. mddev->minor_version = 90;
  2271. return len;
  2272. }
  2273. major = simple_strtoul(buf, &e, 10);
  2274. if (e==buf || *e != '.')
  2275. return -EINVAL;
  2276. buf = e+1;
  2277. minor = simple_strtoul(buf, &e, 10);
  2278. if (e==buf || *e != '\n')
  2279. return -EINVAL;
  2280. if (major >= sizeof(super_types)/sizeof(super_types[0]) ||
  2281. super_types[major].name == NULL)
  2282. return -ENOENT;
  2283. mddev->major_version = major;
  2284. mddev->minor_version = minor;
  2285. mddev->persistent = 1;
  2286. return len;
  2287. }
  2288. static struct md_sysfs_entry md_metadata =
  2289. __ATTR(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
  2290. static ssize_t
  2291. action_show(mddev_t *mddev, char *page)
  2292. {
  2293. char *type = "idle";
  2294. if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
  2295. test_bit(MD_RECOVERY_NEEDED, &mddev->recovery)) {
  2296. if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
  2297. type = "reshape";
  2298. else if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
  2299. if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
  2300. type = "resync";
  2301. else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
  2302. type = "check";
  2303. else
  2304. type = "repair";
  2305. } else
  2306. type = "recover";
  2307. }
  2308. return sprintf(page, "%s\n", type);
  2309. }
  2310. static ssize_t
  2311. action_store(mddev_t *mddev, const char *page, size_t len)
  2312. {
  2313. if (!mddev->pers || !mddev->pers->sync_request)
  2314. return -EINVAL;
  2315. if (cmd_match(page, "idle")) {
  2316. if (mddev->sync_thread) {
  2317. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  2318. md_unregister_thread(mddev->sync_thread);
  2319. mddev->sync_thread = NULL;
  2320. mddev->recovery = 0;
  2321. }
  2322. } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
  2323. test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
  2324. return -EBUSY;
  2325. else if (cmd_match(page, "resync") || cmd_match(page, "recover"))
  2326. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  2327. else if (cmd_match(page, "reshape")) {
  2328. int err;
  2329. if (mddev->pers->start_reshape == NULL)
  2330. return -EINVAL;
  2331. err = mddev->pers->start_reshape(mddev);
  2332. if (err)
  2333. return err;
  2334. } else {
  2335. if (cmd_match(page, "check"))
  2336. set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
  2337. else if (!cmd_match(page, "repair"))
  2338. return -EINVAL;
  2339. set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
  2340. set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
  2341. }
  2342. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  2343. md_wakeup_thread(mddev->thread);
  2344. return len;
  2345. }
  2346. static ssize_t
  2347. mismatch_cnt_show(mddev_t *mddev, char *page)
  2348. {
  2349. return sprintf(page, "%llu\n",
  2350. (unsigned long long) mddev->resync_mismatches);
  2351. }
  2352. static struct md_sysfs_entry md_scan_mode =
  2353. __ATTR(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
  2354. static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
  2355. static ssize_t
  2356. sync_min_show(mddev_t *mddev, char *page)
  2357. {
  2358. return sprintf(page, "%d (%s)\n", speed_min(mddev),
  2359. mddev->sync_speed_min ? "local": "system");
  2360. }
  2361. static ssize_t
  2362. sync_min_store(mddev_t *mddev, const char *buf, size_t len)
  2363. {
  2364. int min;
  2365. char *e;
  2366. if (strncmp(buf, "system", 6)==0) {
  2367. mddev->sync_speed_min = 0;
  2368. return len;
  2369. }
  2370. min = simple_strtoul(buf, &e, 10);
  2371. if (buf == e || (*e && *e != '\n') || min <= 0)
  2372. return -EINVAL;
  2373. mddev->sync_speed_min = min;
  2374. return len;
  2375. }
  2376. static struct md_sysfs_entry md_sync_min =
  2377. __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
  2378. static ssize_t
  2379. sync_max_show(mddev_t *mddev, char *page)
  2380. {
  2381. return sprintf(page, "%d (%s)\n", speed_max(mddev),
  2382. mddev->sync_speed_max ? "local": "system");
  2383. }
  2384. static ssize_t
  2385. sync_max_store(mddev_t *mddev, const char *buf, size_t len)
  2386. {
  2387. int max;
  2388. char *e;
  2389. if (strncmp(buf, "system", 6)==0) {
  2390. mddev->sync_speed_max = 0;
  2391. return len;
  2392. }
  2393. max = simple_strtoul(buf, &e, 10);
  2394. if (buf == e || (*e && *e != '\n') || max <= 0)
  2395. return -EINVAL;
  2396. mddev->sync_speed_max = max;
  2397. return len;
  2398. }
  2399. static struct md_sysfs_entry md_sync_max =
  2400. __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
  2401. static ssize_t
  2402. sync_speed_show(mddev_t *mddev, char *page)
  2403. {
  2404. unsigned long resync, dt, db;
  2405. resync = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active));
  2406. dt = ((jiffies - mddev->resync_mark) / HZ);
  2407. if (!dt) dt++;
  2408. db = resync - (mddev->resync_mark_cnt);
  2409. return sprintf(page, "%ld\n", db/dt/2); /* K/sec */
  2410. }
  2411. static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
  2412. static ssize_t
  2413. sync_completed_show(mddev_t *mddev, char *page)
  2414. {
  2415. unsigned long max_blocks, resync;
  2416. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
  2417. max_blocks = mddev->resync_max_sectors;
  2418. else
  2419. max_blocks = mddev->size << 1;
  2420. resync = (mddev->curr_resync - atomic_read(&mddev->recovery_active));
  2421. return sprintf(page, "%lu / %lu\n", resync, max_blocks);
  2422. }
  2423. static struct md_sysfs_entry md_sync_completed = __ATTR_RO(sync_completed);
  2424. static ssize_t
  2425. suspend_lo_show(mddev_t *mddev, char *page)
  2426. {
  2427. return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
  2428. }
  2429. static ssize_t
  2430. suspend_lo_store(mddev_t *mddev, const char *buf, size_t len)
  2431. {
  2432. char *e;
  2433. unsigned long long new = simple_strtoull(buf, &e, 10);
  2434. if (mddev->pers->quiesce == NULL)
  2435. return -EINVAL;
  2436. if (buf == e || (*e && *e != '\n'))
  2437. return -EINVAL;
  2438. if (new >= mddev->suspend_hi ||
  2439. (new > mddev->suspend_lo && new < mddev->suspend_hi)) {
  2440. mddev->suspend_lo = new;
  2441. mddev->pers->quiesce(mddev, 2);
  2442. return len;
  2443. } else
  2444. return -EINVAL;
  2445. }
  2446. static struct md_sysfs_entry md_suspend_lo =
  2447. __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
  2448. static ssize_t
  2449. suspend_hi_show(mddev_t *mddev, char *page)
  2450. {
  2451. return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
  2452. }
  2453. static ssize_t
  2454. suspend_hi_store(mddev_t *mddev, const char *buf, size_t len)
  2455. {
  2456. char *e;
  2457. unsigned long long new = simple_strtoull(buf, &e, 10);
  2458. if (mddev->pers->quiesce == NULL)
  2459. return -EINVAL;
  2460. if (buf == e || (*e && *e != '\n'))
  2461. return -EINVAL;
  2462. if ((new <= mddev->suspend_lo && mddev->suspend_lo >= mddev->suspend_hi) ||
  2463. (new > mddev->suspend_lo && new > mddev->suspend_hi)) {
  2464. mddev->suspend_hi = new;
  2465. mddev->pers->quiesce(mddev, 1);
  2466. mddev->pers->quiesce(mddev, 0);
  2467. return len;
  2468. } else
  2469. return -EINVAL;
  2470. }
  2471. static struct md_sysfs_entry md_suspend_hi =
  2472. __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
  2473. static struct attribute *md_default_attrs[] = {
  2474. &md_level.attr,
  2475. &md_layout.attr,
  2476. &md_raid_disks.attr,
  2477. &md_chunk_size.attr,
  2478. &md_size.attr,
  2479. &md_resync_start.attr,
  2480. &md_metadata.attr,
  2481. &md_new_device.attr,
  2482. &md_safe_delay.attr,
  2483. &md_array_state.attr,
  2484. NULL,
  2485. };
  2486. static struct attribute *md_redundancy_attrs[] = {
  2487. &md_scan_mode.attr,
  2488. &md_mismatches.attr,
  2489. &md_sync_min.attr,
  2490. &md_sync_max.attr,
  2491. &md_sync_speed.attr,
  2492. &md_sync_completed.attr,
  2493. &md_suspend_lo.attr,
  2494. &md_suspend_hi.attr,
  2495. NULL,
  2496. };
  2497. static struct attribute_group md_redundancy_group = {
  2498. .name = NULL,
  2499. .attrs = md_redundancy_attrs,
  2500. };
  2501. static ssize_t
  2502. md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
  2503. {
  2504. struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
  2505. mddev_t *mddev = container_of(kobj, struct mddev_s, kobj);
  2506. ssize_t rv;
  2507. if (!entry->show)
  2508. return -EIO;
  2509. rv = mddev_lock(mddev);
  2510. if (!rv) {
  2511. rv = entry->show(mddev, page);
  2512. mddev_unlock(mddev);
  2513. }
  2514. return rv;
  2515. }
  2516. static ssize_t
  2517. md_attr_store(struct kobject *kobj, struct attribute *attr,
  2518. const char *page, size_t length)
  2519. {
  2520. struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
  2521. mddev_t *mddev = container_of(kobj, struct mddev_s, kobj);
  2522. ssize_t rv;
  2523. if (!entry->store)
  2524. return -EIO;
  2525. if (!capable(CAP_SYS_ADMIN))
  2526. return -EACCES;
  2527. rv = mddev_lock(mddev);
  2528. if (!rv) {
  2529. rv = entry->store(mddev, page, length);
  2530. mddev_unlock(mddev);
  2531. }
  2532. return rv;
  2533. }
  2534. static void md_free(struct kobject *ko)
  2535. {
  2536. mddev_t *mddev = container_of(ko, mddev_t, kobj);
  2537. kfree(mddev);
  2538. }
  2539. static struct sysfs_ops md_sysfs_ops = {
  2540. .show = md_attr_show,
  2541. .store = md_attr_store,
  2542. };
  2543. static struct kobj_type md_ktype = {
  2544. .release = md_free,
  2545. .sysfs_ops = &md_sysfs_ops,
  2546. .default_attrs = md_default_attrs,
  2547. };
  2548. int mdp_major = 0;
  2549. static struct kobject *md_probe(dev_t dev, int *part, void *data)
  2550. {
  2551. static DEFINE_MUTEX(disks_mutex);
  2552. mddev_t *mddev = mddev_find(dev);
  2553. struct gendisk *disk;
  2554. int partitioned = (MAJOR(dev) != MD_MAJOR);
  2555. int shift = partitioned ? MdpMinorShift : 0;
  2556. int unit = MINOR(dev) >> shift;
  2557. if (!mddev)
  2558. return NULL;
  2559. mutex_lock(&disks_mutex);
  2560. if (mddev->gendisk) {
  2561. mutex_unlock(&disks_mutex);
  2562. mddev_put(mddev);
  2563. return NULL;
  2564. }
  2565. disk = alloc_disk(1 << shift);
  2566. if (!disk) {
  2567. mutex_unlock(&disks_mutex);
  2568. mddev_put(mddev);
  2569. return NULL;
  2570. }
  2571. disk->major = MAJOR(dev);
  2572. disk->first_minor = unit << shift;
  2573. if (partitioned)
  2574. sprintf(disk->disk_name, "md_d%d", unit);
  2575. else
  2576. sprintf(disk->disk_name, "md%d", unit);
  2577. disk->fops = &md_fops;
  2578. disk->private_data = mddev;
  2579. disk->queue = mddev->queue;
  2580. add_disk(disk);
  2581. mddev->gendisk = disk;
  2582. mutex_unlock(&disks_mutex);
  2583. mddev->kobj.parent = &disk->kobj;
  2584. mddev->kobj.k_name = NULL;
  2585. snprintf(mddev->kobj.name, KOBJ_NAME_LEN, "%s", "md");
  2586. mddev->kobj.ktype = &md_ktype;
  2587. kobject_register(&mddev->kobj);
  2588. return NULL;
  2589. }
  2590. static void md_safemode_timeout(unsigned long data)
  2591. {
  2592. mddev_t *mddev = (mddev_t *) data;
  2593. mddev->safemode = 1;
  2594. md_wakeup_thread(mddev->thread);
  2595. }
  2596. static int start_dirty_degraded;
  2597. static int do_md_run(mddev_t * mddev)
  2598. {
  2599. int err;
  2600. int chunk_size;
  2601. struct list_head *tmp;
  2602. mdk_rdev_t *rdev;
  2603. struct gendisk *disk;
  2604. struct mdk_personality *pers;
  2605. char b[BDEVNAME_SIZE];
  2606. if (list_empty(&mddev->disks))
  2607. /* cannot run an array with no devices.. */
  2608. return -EINVAL;
  2609. if (mddev->pers)
  2610. return -EBUSY;
  2611. /*
  2612. * Analyze all RAID superblock(s)
  2613. */
  2614. if (!mddev->raid_disks)
  2615. analyze_sbs(mddev);
  2616. chunk_size = mddev->chunk_size;
  2617. if (chunk_size) {
  2618. if (chunk_size > MAX_CHUNK_SIZE) {
  2619. printk(KERN_ERR "too big chunk_size: %d > %d\n",
  2620. chunk_size, MAX_CHUNK_SIZE);
  2621. return -EINVAL;
  2622. }
  2623. /*
  2624. * chunk-size has to be a power of 2 and multiples of PAGE_SIZE
  2625. */
  2626. if ( (1 << ffz(~chunk_size)) != chunk_size) {
  2627. printk(KERN_ERR "chunk_size of %d not valid\n", chunk_size);
  2628. return -EINVAL;
  2629. }
  2630. if (chunk_size < PAGE_SIZE) {
  2631. printk(KERN_ERR "too small chunk_size: %d < %ld\n",
  2632. chunk_size, PAGE_SIZE);
  2633. return -EINVAL;
  2634. }
  2635. /* devices must have minimum size of one chunk */
  2636. ITERATE_RDEV(mddev,rdev,tmp) {
  2637. if (test_bit(Faulty, &rdev->flags))
  2638. continue;
  2639. if (rdev->size < chunk_size / 1024) {
  2640. printk(KERN_WARNING
  2641. "md: Dev %s smaller than chunk_size:"
  2642. " %lluk < %dk\n",
  2643. bdevname(rdev->bdev,b),
  2644. (unsigned long long)rdev->size,
  2645. chunk_size / 1024);
  2646. return -EINVAL;
  2647. }
  2648. }
  2649. }
  2650. #ifdef CONFIG_KMOD
  2651. if (mddev->level != LEVEL_NONE)
  2652. request_module("md-level-%d", mddev->level);
  2653. else if (mddev->clevel[0])
  2654. request_module("md-%s", mddev->clevel);
  2655. #endif
  2656. /*
  2657. * Drop all container device buffers, from now on
  2658. * the only valid external interface is through the md
  2659. * device.
  2660. * Also find largest hardsector size
  2661. */
  2662. ITERATE_RDEV(mddev,rdev,tmp) {
  2663. if (test_bit(Faulty, &rdev->flags))
  2664. continue;
  2665. sync_blockdev(rdev->bdev);
  2666. invalidate_bdev(rdev->bdev, 0);
  2667. }
  2668. md_probe(mddev->unit, NULL, NULL);
  2669. disk = mddev->gendisk;
  2670. if (!disk)
  2671. return -ENOMEM;
  2672. spin_lock(&pers_lock);
  2673. pers = find_pers(mddev->level, mddev->clevel);
  2674. if (!pers || !try_module_get(pers->owner)) {
  2675. spin_unlock(&pers_lock);
  2676. if (mddev->level != LEVEL_NONE)
  2677. printk(KERN_WARNING "md: personality for level %d is not loaded!\n",
  2678. mddev->level);
  2679. else
  2680. printk(KERN_WARNING "md: personality for level %s is not loaded!\n",
  2681. mddev->clevel);
  2682. return -EINVAL;
  2683. }
  2684. mddev->pers = pers;
  2685. spin_unlock(&pers_lock);
  2686. mddev->level = pers->level;
  2687. strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
  2688. if (mddev->reshape_position != MaxSector &&
  2689. pers->start_reshape == NULL) {
  2690. /* This personality cannot handle reshaping... */
  2691. mddev->pers = NULL;
  2692. module_put(pers->owner);
  2693. return -EINVAL;
  2694. }
  2695. mddev->recovery = 0;
  2696. mddev->resync_max_sectors = mddev->size << 1; /* may be over-ridden by personality */
  2697. mddev->barriers_work = 1;
  2698. mddev->ok_start_degraded = start_dirty_degraded;
  2699. if (start_readonly)
  2700. mddev->ro = 2; /* read-only, but switch on first write */
  2701. err = mddev->pers->run(mddev);
  2702. if (!err && mddev->pers->sync_request) {
  2703. err = bitmap_create(mddev);
  2704. if (err) {
  2705. printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
  2706. mdname(mddev), err);
  2707. mddev->pers->stop(mddev);
  2708. }
  2709. }
  2710. if (err) {
  2711. printk(KERN_ERR "md: pers->run() failed ...\n");
  2712. module_put(mddev->pers->owner);
  2713. mddev->pers = NULL;
  2714. bitmap_destroy(mddev);
  2715. return err;
  2716. }
  2717. if (mddev->pers->sync_request)
  2718. sysfs_create_group(&mddev->kobj, &md_redundancy_group);
  2719. else if (mddev->ro == 2) /* auto-readonly not meaningful */
  2720. mddev->ro = 0;
  2721. atomic_set(&mddev->writes_pending,0);
  2722. mddev->safemode = 0;
  2723. mddev->safemode_timer.function = md_safemode_timeout;
  2724. mddev->safemode_timer.data = (unsigned long) mddev;
  2725. mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */
  2726. mddev->in_sync = 1;
  2727. ITERATE_RDEV(mddev,rdev,tmp)
  2728. if (rdev->raid_disk >= 0) {
  2729. char nm[20];
  2730. sprintf(nm, "rd%d", rdev->raid_disk);
  2731. sysfs_create_link(&mddev->kobj, &rdev->kobj, nm);
  2732. }
  2733. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  2734. if (mddev->sb_dirty)
  2735. md_update_sb(mddev);
  2736. set_capacity(disk, mddev->array_size<<1);
  2737. /* If we call blk_queue_make_request here, it will
  2738. * re-initialise max_sectors etc which may have been
  2739. * refined inside -> run. So just set the bits we need to set.
  2740. * Most initialisation happended when we called
  2741. * blk_queue_make_request(..., md_fail_request)
  2742. * earlier.
  2743. */
  2744. mddev->queue->queuedata = mddev;
  2745. mddev->queue->make_request_fn = mddev->pers->make_request;
  2746. /* If there is a partially-recovered drive we need to
  2747. * start recovery here. If we leave it to md_check_recovery,
  2748. * it will remove the drives and not do the right thing
  2749. */
  2750. if (mddev->degraded && !mddev->sync_thread) {
  2751. struct list_head *rtmp;
  2752. int spares = 0;
  2753. ITERATE_RDEV(mddev,rdev,rtmp)
  2754. if (rdev->raid_disk >= 0 &&
  2755. !test_bit(In_sync, &rdev->flags) &&
  2756. !test_bit(Faulty, &rdev->flags))
  2757. /* complete an interrupted recovery */
  2758. spares++;
  2759. if (spares && mddev->pers->sync_request) {
  2760. mddev->recovery = 0;
  2761. set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
  2762. mddev->sync_thread = md_register_thread(md_do_sync,
  2763. mddev,
  2764. "%s_resync");
  2765. if (!mddev->sync_thread) {
  2766. printk(KERN_ERR "%s: could not start resync"
  2767. " thread...\n",
  2768. mdname(mddev));
  2769. /* leave the spares where they are, it shouldn't hurt */
  2770. mddev->recovery = 0;
  2771. }
  2772. }
  2773. }
  2774. md_wakeup_thread(mddev->thread);
  2775. md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
  2776. mddev->changed = 1;
  2777. md_new_event(mddev);
  2778. return 0;
  2779. }
  2780. static int restart_array(mddev_t *mddev)
  2781. {
  2782. struct gendisk *disk = mddev->gendisk;
  2783. int err;
  2784. /*
  2785. * Complain if it has no devices
  2786. */
  2787. err = -ENXIO;
  2788. if (list_empty(&mddev->disks))
  2789. goto out;
  2790. if (mddev->pers) {
  2791. err = -EBUSY;
  2792. if (!mddev->ro)
  2793. goto out;
  2794. mddev->safemode = 0;
  2795. mddev->ro = 0;
  2796. set_disk_ro(disk, 0);
  2797. printk(KERN_INFO "md: %s switched to read-write mode.\n",
  2798. mdname(mddev));
  2799. /*
  2800. * Kick recovery or resync if necessary
  2801. */
  2802. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  2803. md_wakeup_thread(mddev->thread);
  2804. md_wakeup_thread(mddev->sync_thread);
  2805. err = 0;
  2806. } else
  2807. err = -EINVAL;
  2808. out:
  2809. return err;
  2810. }
  2811. /* similar to deny_write_access, but accounts for our holding a reference
  2812. * to the file ourselves */
  2813. static int deny_bitmap_write_access(struct file * file)
  2814. {
  2815. struct inode *inode = file->f_mapping->host;
  2816. spin_lock(&inode->i_lock);
  2817. if (atomic_read(&inode->i_writecount) > 1) {
  2818. spin_unlock(&inode->i_lock);
  2819. return -ETXTBSY;
  2820. }
  2821. atomic_set(&inode->i_writecount, -1);
  2822. spin_unlock(&inode->i_lock);
  2823. return 0;
  2824. }
  2825. static void restore_bitmap_write_access(struct file *file)
  2826. {
  2827. struct inode *inode = file->f_mapping->host;
  2828. spin_lock(&inode->i_lock);
  2829. atomic_set(&inode->i_writecount, 1);
  2830. spin_unlock(&inode->i_lock);
  2831. }
  2832. /* mode:
  2833. * 0 - completely stop and dis-assemble array
  2834. * 1 - switch to readonly
  2835. * 2 - stop but do not disassemble array
  2836. */
  2837. static int do_md_stop(mddev_t * mddev, int mode)
  2838. {
  2839. int err = 0;
  2840. struct gendisk *disk = mddev->gendisk;
  2841. if (mddev->pers) {
  2842. if (atomic_read(&mddev->active)>2) {
  2843. printk("md: %s still in use.\n",mdname(mddev));
  2844. return -EBUSY;
  2845. }
  2846. if (mddev->sync_thread) {
  2847. set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
  2848. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  2849. md_unregister_thread(mddev->sync_thread);
  2850. mddev->sync_thread = NULL;
  2851. }
  2852. del_timer_sync(&mddev->safemode_timer);
  2853. invalidate_partition(disk, 0);
  2854. switch(mode) {
  2855. case 1: /* readonly */
  2856. err = -ENXIO;
  2857. if (mddev->ro==1)
  2858. goto out;
  2859. mddev->ro = 1;
  2860. break;
  2861. case 0: /* disassemble */
  2862. case 2: /* stop */
  2863. bitmap_flush(mddev);
  2864. md_super_wait(mddev);
  2865. if (mddev->ro)
  2866. set_disk_ro(disk, 0);
  2867. blk_queue_make_request(mddev->queue, md_fail_request);
  2868. mddev->pers->stop(mddev);
  2869. if (mddev->pers->sync_request)
  2870. sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
  2871. module_put(mddev->pers->owner);
  2872. mddev->pers = NULL;
  2873. if (mddev->ro)
  2874. mddev->ro = 0;
  2875. }
  2876. if (!mddev->in_sync || mddev->sb_dirty) {
  2877. /* mark array as shutdown cleanly */
  2878. mddev->in_sync = 1;
  2879. md_update_sb(mddev);
  2880. }
  2881. if (mode == 1)
  2882. set_disk_ro(disk, 1);
  2883. clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
  2884. }
  2885. /*
  2886. * Free resources if final stop
  2887. */
  2888. if (mode == 0) {
  2889. mdk_rdev_t *rdev;
  2890. struct list_head *tmp;
  2891. struct gendisk *disk;
  2892. printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
  2893. bitmap_destroy(mddev);
  2894. if (mddev->bitmap_file) {
  2895. restore_bitmap_write_access(mddev->bitmap_file);
  2896. fput(mddev->bitmap_file);
  2897. mddev->bitmap_file = NULL;
  2898. }
  2899. mddev->bitmap_offset = 0;
  2900. ITERATE_RDEV(mddev,rdev,tmp)
  2901. if (rdev->raid_disk >= 0) {
  2902. char nm[20];
  2903. sprintf(nm, "rd%d", rdev->raid_disk);
  2904. sysfs_remove_link(&mddev->kobj, nm);
  2905. }
  2906. export_array(mddev);
  2907. mddev->array_size = 0;
  2908. mddev->size = 0;
  2909. mddev->raid_disks = 0;
  2910. mddev->recovery_cp = 0;
  2911. disk = mddev->gendisk;
  2912. if (disk)
  2913. set_capacity(disk, 0);
  2914. mddev->changed = 1;
  2915. } else if (mddev->pers)
  2916. printk(KERN_INFO "md: %s switched to read-only mode.\n",
  2917. mdname(mddev));
  2918. err = 0;
  2919. md_new_event(mddev);
  2920. out:
  2921. return err;
  2922. }
  2923. static void autorun_array(mddev_t *mddev)
  2924. {
  2925. mdk_rdev_t *rdev;
  2926. struct list_head *tmp;
  2927. int err;
  2928. if (list_empty(&mddev->disks))
  2929. return;
  2930. printk(KERN_INFO "md: running: ");
  2931. ITERATE_RDEV(mddev,rdev,tmp) {
  2932. char b[BDEVNAME_SIZE];
  2933. printk("<%s>", bdevname(rdev->bdev,b));
  2934. }
  2935. printk("\n");
  2936. err = do_md_run (mddev);
  2937. if (err) {
  2938. printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
  2939. do_md_stop (mddev, 0);
  2940. }
  2941. }
  2942. /*
  2943. * lets try to run arrays based on all disks that have arrived
  2944. * until now. (those are in pending_raid_disks)
  2945. *
  2946. * the method: pick the first pending disk, collect all disks with
  2947. * the same UUID, remove all from the pending list and put them into
  2948. * the 'same_array' list. Then order this list based on superblock
  2949. * update time (freshest comes first), kick out 'old' disks and
  2950. * compare superblocks. If everything's fine then run it.
  2951. *
  2952. * If "unit" is allocated, then bump its reference count
  2953. */
  2954. static void autorun_devices(int part)
  2955. {
  2956. struct list_head *tmp;
  2957. mdk_rdev_t *rdev0, *rdev;
  2958. mddev_t *mddev;
  2959. char b[BDEVNAME_SIZE];
  2960. printk(KERN_INFO "md: autorun ...\n");
  2961. while (!list_empty(&pending_raid_disks)) {
  2962. dev_t dev;
  2963. LIST_HEAD(candidates);
  2964. rdev0 = list_entry(pending_raid_disks.next,
  2965. mdk_rdev_t, same_set);
  2966. printk(KERN_INFO "md: considering %s ...\n",
  2967. bdevname(rdev0->bdev,b));
  2968. INIT_LIST_HEAD(&candidates);
  2969. ITERATE_RDEV_PENDING(rdev,tmp)
  2970. if (super_90_load(rdev, rdev0, 0) >= 0) {
  2971. printk(KERN_INFO "md: adding %s ...\n",
  2972. bdevname(rdev->bdev,b));
  2973. list_move(&rdev->same_set, &candidates);
  2974. }
  2975. /*
  2976. * now we have a set of devices, with all of them having
  2977. * mostly sane superblocks. It's time to allocate the
  2978. * mddev.
  2979. */
  2980. if (rdev0->preferred_minor < 0 || rdev0->preferred_minor >= MAX_MD_DEVS) {
  2981. printk(KERN_INFO "md: unit number in %s is bad: %d\n",
  2982. bdevname(rdev0->bdev, b), rdev0->preferred_minor);
  2983. break;
  2984. }
  2985. if (part)
  2986. dev = MKDEV(mdp_major,
  2987. rdev0->preferred_minor << MdpMinorShift);
  2988. else
  2989. dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
  2990. md_probe(dev, NULL, NULL);
  2991. mddev = mddev_find(dev);
  2992. if (!mddev) {
  2993. printk(KERN_ERR
  2994. "md: cannot allocate memory for md drive.\n");
  2995. break;
  2996. }
  2997. if (mddev_lock(mddev))
  2998. printk(KERN_WARNING "md: %s locked, cannot run\n",
  2999. mdname(mddev));
  3000. else if (mddev->raid_disks || mddev->major_version
  3001. || !list_empty(&mddev->disks)) {
  3002. printk(KERN_WARNING
  3003. "md: %s already running, cannot run %s\n",
  3004. mdname(mddev), bdevname(rdev0->bdev,b));
  3005. mddev_unlock(mddev);
  3006. } else {
  3007. printk(KERN_INFO "md: created %s\n", mdname(mddev));
  3008. ITERATE_RDEV_GENERIC(candidates,rdev,tmp) {
  3009. list_del_init(&rdev->same_set);
  3010. if (bind_rdev_to_array(rdev, mddev))
  3011. export_rdev(rdev);
  3012. }
  3013. autorun_array(mddev);
  3014. mddev_unlock(mddev);
  3015. }
  3016. /* on success, candidates will be empty, on error
  3017. * it won't...
  3018. */
  3019. ITERATE_RDEV_GENERIC(candidates,rdev,tmp)
  3020. export_rdev(rdev);
  3021. mddev_put(mddev);
  3022. }
  3023. printk(KERN_INFO "md: ... autorun DONE.\n");
  3024. }
  3025. /*
  3026. * import RAID devices based on one partition
  3027. * if possible, the array gets run as well.
  3028. */
  3029. static int autostart_array(dev_t startdev)
  3030. {
  3031. char b[BDEVNAME_SIZE];
  3032. int err = -EINVAL, i;
  3033. mdp_super_t *sb = NULL;
  3034. mdk_rdev_t *start_rdev = NULL, *rdev;
  3035. start_rdev = md_import_device(startdev, 0, 0);
  3036. if (IS_ERR(start_rdev))
  3037. return err;
  3038. /* NOTE: this can only work for 0.90.0 superblocks */
  3039. sb = (mdp_super_t*)page_address(start_rdev->sb_page);
  3040. if (sb->major_version != 0 ||
  3041. sb->minor_version != 90 ) {
  3042. printk(KERN_WARNING "md: can only autostart 0.90.0 arrays\n");
  3043. export_rdev(start_rdev);
  3044. return err;
  3045. }
  3046. if (test_bit(Faulty, &start_rdev->flags)) {
  3047. printk(KERN_WARNING
  3048. "md: can not autostart based on faulty %s!\n",
  3049. bdevname(start_rdev->bdev,b));
  3050. export_rdev(start_rdev);
  3051. return err;
  3052. }
  3053. list_add(&start_rdev->same_set, &pending_raid_disks);
  3054. for (i = 0; i < MD_SB_DISKS; i++) {
  3055. mdp_disk_t *desc = sb->disks + i;
  3056. dev_t dev = MKDEV(desc->major, desc->minor);
  3057. if (!dev)
  3058. continue;
  3059. if (dev == startdev)
  3060. continue;
  3061. if (MAJOR(dev) != desc->major || MINOR(dev) != desc->minor)
  3062. continue;
  3063. rdev = md_import_device(dev, 0, 0);
  3064. if (IS_ERR(rdev))
  3065. continue;
  3066. list_add(&rdev->same_set, &pending_raid_disks);
  3067. }
  3068. /*
  3069. * possibly return codes
  3070. */
  3071. autorun_devices(0);
  3072. return 0;
  3073. }
  3074. static int get_version(void __user * arg)
  3075. {
  3076. mdu_version_t ver;
  3077. ver.major = MD_MAJOR_VERSION;
  3078. ver.minor = MD_MINOR_VERSION;
  3079. ver.patchlevel = MD_PATCHLEVEL_VERSION;
  3080. if (copy_to_user(arg, &ver, sizeof(ver)))
  3081. return -EFAULT;
  3082. return 0;
  3083. }
  3084. static int get_array_info(mddev_t * mddev, void __user * arg)
  3085. {
  3086. mdu_array_info_t info;
  3087. int nr,working,active,failed,spare;
  3088. mdk_rdev_t *rdev;
  3089. struct list_head *tmp;
  3090. nr=working=active=failed=spare=0;
  3091. ITERATE_RDEV(mddev,rdev,tmp) {
  3092. nr++;
  3093. if (test_bit(Faulty, &rdev->flags))
  3094. failed++;
  3095. else {
  3096. working++;
  3097. if (test_bit(In_sync, &rdev->flags))
  3098. active++;
  3099. else
  3100. spare++;
  3101. }
  3102. }
  3103. info.major_version = mddev->major_version;
  3104. info.minor_version = mddev->minor_version;
  3105. info.patch_version = MD_PATCHLEVEL_VERSION;
  3106. info.ctime = mddev->ctime;
  3107. info.level = mddev->level;
  3108. info.size = mddev->size;
  3109. if (info.size != mddev->size) /* overflow */
  3110. info.size = -1;
  3111. info.nr_disks = nr;
  3112. info.raid_disks = mddev->raid_disks;
  3113. info.md_minor = mddev->md_minor;
  3114. info.not_persistent= !mddev->persistent;
  3115. info.utime = mddev->utime;
  3116. info.state = 0;
  3117. if (mddev->in_sync)
  3118. info.state = (1<<MD_SB_CLEAN);
  3119. if (mddev->bitmap && mddev->bitmap_offset)
  3120. info.state = (1<<MD_SB_BITMAP_PRESENT);
  3121. info.active_disks = active;
  3122. info.working_disks = working;
  3123. info.failed_disks = failed;
  3124. info.spare_disks = spare;
  3125. info.layout = mddev->layout;
  3126. info.chunk_size = mddev->chunk_size;
  3127. if (copy_to_user(arg, &info, sizeof(info)))
  3128. return -EFAULT;
  3129. return 0;
  3130. }
  3131. static int get_bitmap_file(mddev_t * mddev, void __user * arg)
  3132. {
  3133. mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
  3134. char *ptr, *buf = NULL;
  3135. int err = -ENOMEM;
  3136. file = kmalloc(sizeof(*file), GFP_KERNEL);
  3137. if (!file)
  3138. goto out;
  3139. /* bitmap disabled, zero the first byte and copy out */
  3140. if (!mddev->bitmap || !mddev->bitmap->file) {
  3141. file->pathname[0] = '\0';
  3142. goto copy_out;
  3143. }
  3144. buf = kmalloc(sizeof(file->pathname), GFP_KERNEL);
  3145. if (!buf)
  3146. goto out;
  3147. ptr = file_path(mddev->bitmap->file, buf, sizeof(file->pathname));
  3148. if (!ptr)
  3149. goto out;
  3150. strcpy(file->pathname, ptr);
  3151. copy_out:
  3152. err = 0;
  3153. if (copy_to_user(arg, file, sizeof(*file)))
  3154. err = -EFAULT;
  3155. out:
  3156. kfree(buf);
  3157. kfree(file);
  3158. return err;
  3159. }
  3160. static int get_disk_info(mddev_t * mddev, void __user * arg)
  3161. {
  3162. mdu_disk_info_t info;
  3163. unsigned int nr;
  3164. mdk_rdev_t *rdev;
  3165. if (copy_from_user(&info, arg, sizeof(info)))
  3166. return -EFAULT;
  3167. nr = info.number;
  3168. rdev = find_rdev_nr(mddev, nr);
  3169. if (rdev) {
  3170. info.major = MAJOR(rdev->bdev->bd_dev);
  3171. info.minor = MINOR(rdev->bdev->bd_dev);
  3172. info.raid_disk = rdev->raid_disk;
  3173. info.state = 0;
  3174. if (test_bit(Faulty, &rdev->flags))
  3175. info.state |= (1<<MD_DISK_FAULTY);
  3176. else if (test_bit(In_sync, &rdev->flags)) {
  3177. info.state |= (1<<MD_DISK_ACTIVE);
  3178. info.state |= (1<<MD_DISK_SYNC);
  3179. }
  3180. if (test_bit(WriteMostly, &rdev->flags))
  3181. info.state |= (1<<MD_DISK_WRITEMOSTLY);
  3182. } else {
  3183. info.major = info.minor = 0;
  3184. info.raid_disk = -1;
  3185. info.state = (1<<MD_DISK_REMOVED);
  3186. }
  3187. if (copy_to_user(arg, &info, sizeof(info)))
  3188. return -EFAULT;
  3189. return 0;
  3190. }
  3191. static int add_new_disk(mddev_t * mddev, mdu_disk_info_t *info)
  3192. {
  3193. char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
  3194. mdk_rdev_t *rdev;
  3195. dev_t dev = MKDEV(info->major,info->minor);
  3196. if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
  3197. return -EOVERFLOW;
  3198. if (!mddev->raid_disks) {
  3199. int err;
  3200. /* expecting a device which has a superblock */
  3201. rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
  3202. if (IS_ERR(rdev)) {
  3203. printk(KERN_WARNING
  3204. "md: md_import_device returned %ld\n",
  3205. PTR_ERR(rdev));
  3206. return PTR_ERR(rdev);
  3207. }
  3208. if (!list_empty(&mddev->disks)) {
  3209. mdk_rdev_t *rdev0 = list_entry(mddev->disks.next,
  3210. mdk_rdev_t, same_set);
  3211. int err = super_types[mddev->major_version]
  3212. .load_super(rdev, rdev0, mddev->minor_version);
  3213. if (err < 0) {
  3214. printk(KERN_WARNING
  3215. "md: %s has different UUID to %s\n",
  3216. bdevname(rdev->bdev,b),
  3217. bdevname(rdev0->bdev,b2));
  3218. export_rdev(rdev);
  3219. return -EINVAL;
  3220. }
  3221. }
  3222. err = bind_rdev_to_array(rdev, mddev);
  3223. if (err)
  3224. export_rdev(rdev);
  3225. return err;
  3226. }
  3227. /*
  3228. * add_new_disk can be used once the array is assembled
  3229. * to add "hot spares". They must already have a superblock
  3230. * written
  3231. */
  3232. if (mddev->pers) {
  3233. int err;
  3234. if (!mddev->pers->hot_add_disk) {
  3235. printk(KERN_WARNING
  3236. "%s: personality does not support diskops!\n",
  3237. mdname(mddev));
  3238. return -EINVAL;
  3239. }
  3240. if (mddev->persistent)
  3241. rdev = md_import_device(dev, mddev->major_version,
  3242. mddev->minor_version);
  3243. else
  3244. rdev = md_import_device(dev, -1, -1);
  3245. if (IS_ERR(rdev)) {
  3246. printk(KERN_WARNING
  3247. "md: md_import_device returned %ld\n",
  3248. PTR_ERR(rdev));
  3249. return PTR_ERR(rdev);
  3250. }
  3251. /* set save_raid_disk if appropriate */
  3252. if (!mddev->persistent) {
  3253. if (info->state & (1<<MD_DISK_SYNC) &&
  3254. info->raid_disk < mddev->raid_disks)
  3255. rdev->raid_disk = info->raid_disk;
  3256. else
  3257. rdev->raid_disk = -1;
  3258. } else
  3259. super_types[mddev->major_version].
  3260. validate_super(mddev, rdev);
  3261. rdev->saved_raid_disk = rdev->raid_disk;
  3262. clear_bit(In_sync, &rdev->flags); /* just to be sure */
  3263. if (info->state & (1<<MD_DISK_WRITEMOSTLY))
  3264. set_bit(WriteMostly, &rdev->flags);
  3265. rdev->raid_disk = -1;
  3266. err = bind_rdev_to_array(rdev, mddev);
  3267. if (!err && !mddev->pers->hot_remove_disk) {
  3268. /* If there is hot_add_disk but no hot_remove_disk
  3269. * then added disks for geometry changes,
  3270. * and should be added immediately.
  3271. */
  3272. super_types[mddev->major_version].
  3273. validate_super(mddev, rdev);
  3274. err = mddev->pers->hot_add_disk(mddev, rdev);
  3275. if (err)
  3276. unbind_rdev_from_array(rdev);
  3277. }
  3278. if (err)
  3279. export_rdev(rdev);
  3280. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  3281. md_wakeup_thread(mddev->thread);
  3282. return err;
  3283. }
  3284. /* otherwise, add_new_disk is only allowed
  3285. * for major_version==0 superblocks
  3286. */
  3287. if (mddev->major_version != 0) {
  3288. printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
  3289. mdname(mddev));
  3290. return -EINVAL;
  3291. }
  3292. if (!(info->state & (1<<MD_DISK_FAULTY))) {
  3293. int err;
  3294. rdev = md_import_device (dev, -1, 0);
  3295. if (IS_ERR(rdev)) {
  3296. printk(KERN_WARNING
  3297. "md: error, md_import_device() returned %ld\n",
  3298. PTR_ERR(rdev));
  3299. return PTR_ERR(rdev);
  3300. }
  3301. rdev->desc_nr = info->number;
  3302. if (info->raid_disk < mddev->raid_disks)
  3303. rdev->raid_disk = info->raid_disk;
  3304. else
  3305. rdev->raid_disk = -1;
  3306. rdev->flags = 0;
  3307. if (rdev->raid_disk < mddev->raid_disks)
  3308. if (info->state & (1<<MD_DISK_SYNC))
  3309. set_bit(In_sync, &rdev->flags);
  3310. if (info->state & (1<<MD_DISK_WRITEMOSTLY))
  3311. set_bit(WriteMostly, &rdev->flags);
  3312. if (!mddev->persistent) {
  3313. printk(KERN_INFO "md: nonpersistent superblock ...\n");
  3314. rdev->sb_offset = rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
  3315. } else
  3316. rdev->sb_offset = calc_dev_sboffset(rdev->bdev);
  3317. rdev->size = calc_dev_size(rdev, mddev->chunk_size);
  3318. err = bind_rdev_to_array(rdev, mddev);
  3319. if (err) {
  3320. export_rdev(rdev);
  3321. return err;
  3322. }
  3323. }
  3324. return 0;
  3325. }
  3326. static int hot_remove_disk(mddev_t * mddev, dev_t dev)
  3327. {
  3328. char b[BDEVNAME_SIZE];
  3329. mdk_rdev_t *rdev;
  3330. if (!mddev->pers)
  3331. return -ENODEV;
  3332. rdev = find_rdev(mddev, dev);
  3333. if (!rdev)
  3334. return -ENXIO;
  3335. if (rdev->raid_disk >= 0)
  3336. goto busy;
  3337. kick_rdev_from_array(rdev);
  3338. md_update_sb(mddev);
  3339. md_new_event(mddev);
  3340. return 0;
  3341. busy:
  3342. printk(KERN_WARNING "md: cannot remove active disk %s from %s ... \n",
  3343. bdevname(rdev->bdev,b), mdname(mddev));
  3344. return -EBUSY;
  3345. }
  3346. static int hot_add_disk(mddev_t * mddev, dev_t dev)
  3347. {
  3348. char b[BDEVNAME_SIZE];
  3349. int err;
  3350. unsigned int size;
  3351. mdk_rdev_t *rdev;
  3352. if (!mddev->pers)
  3353. return -ENODEV;
  3354. if (mddev->major_version != 0) {
  3355. printk(KERN_WARNING "%s: HOT_ADD may only be used with"
  3356. " version-0 superblocks.\n",
  3357. mdname(mddev));
  3358. return -EINVAL;
  3359. }
  3360. if (!mddev->pers->hot_add_disk) {
  3361. printk(KERN_WARNING
  3362. "%s: personality does not support diskops!\n",
  3363. mdname(mddev));
  3364. return -EINVAL;
  3365. }
  3366. rdev = md_import_device (dev, -1, 0);
  3367. if (IS_ERR(rdev)) {
  3368. printk(KERN_WARNING
  3369. "md: error, md_import_device() returned %ld\n",
  3370. PTR_ERR(rdev));
  3371. return -EINVAL;
  3372. }
  3373. if (mddev->persistent)
  3374. rdev->sb_offset = calc_dev_sboffset(rdev->bdev);
  3375. else
  3376. rdev->sb_offset =
  3377. rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
  3378. size = calc_dev_size(rdev, mddev->chunk_size);
  3379. rdev->size = size;
  3380. if (test_bit(Faulty, &rdev->flags)) {
  3381. printk(KERN_WARNING
  3382. "md: can not hot-add faulty %s disk to %s!\n",
  3383. bdevname(rdev->bdev,b), mdname(mddev));
  3384. err = -EINVAL;
  3385. goto abort_export;
  3386. }
  3387. clear_bit(In_sync, &rdev->flags);
  3388. rdev->desc_nr = -1;
  3389. err = bind_rdev_to_array(rdev, mddev);
  3390. if (err)
  3391. goto abort_export;
  3392. /*
  3393. * The rest should better be atomic, we can have disk failures
  3394. * noticed in interrupt contexts ...
  3395. */
  3396. if (rdev->desc_nr == mddev->max_disks) {
  3397. printk(KERN_WARNING "%s: can not hot-add to full array!\n",
  3398. mdname(mddev));
  3399. err = -EBUSY;
  3400. goto abort_unbind_export;
  3401. }
  3402. rdev->raid_disk = -1;
  3403. md_update_sb(mddev);
  3404. /*
  3405. * Kick recovery, maybe this spare has to be added to the
  3406. * array immediately.
  3407. */
  3408. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  3409. md_wakeup_thread(mddev->thread);
  3410. md_new_event(mddev);
  3411. return 0;
  3412. abort_unbind_export:
  3413. unbind_rdev_from_array(rdev);
  3414. abort_export:
  3415. export_rdev(rdev);
  3416. return err;
  3417. }
  3418. static int set_bitmap_file(mddev_t *mddev, int fd)
  3419. {
  3420. int err;
  3421. if (mddev->pers) {
  3422. if (!mddev->pers->quiesce)
  3423. return -EBUSY;
  3424. if (mddev->recovery || mddev->sync_thread)
  3425. return -EBUSY;
  3426. /* we should be able to change the bitmap.. */
  3427. }
  3428. if (fd >= 0) {
  3429. if (mddev->bitmap)
  3430. return -EEXIST; /* cannot add when bitmap is present */
  3431. mddev->bitmap_file = fget(fd);
  3432. if (mddev->bitmap_file == NULL) {
  3433. printk(KERN_ERR "%s: error: failed to get bitmap file\n",
  3434. mdname(mddev));
  3435. return -EBADF;
  3436. }
  3437. err = deny_bitmap_write_access(mddev->bitmap_file);
  3438. if (err) {
  3439. printk(KERN_ERR "%s: error: bitmap file is already in use\n",
  3440. mdname(mddev));
  3441. fput(mddev->bitmap_file);
  3442. mddev->bitmap_file = NULL;
  3443. return err;
  3444. }
  3445. mddev->bitmap_offset = 0; /* file overrides offset */
  3446. } else if (mddev->bitmap == NULL)
  3447. return -ENOENT; /* cannot remove what isn't there */
  3448. err = 0;
  3449. if (mddev->pers) {
  3450. mddev->pers->quiesce(mddev, 1);
  3451. if (fd >= 0)
  3452. err = bitmap_create(mddev);
  3453. if (fd < 0 || err) {
  3454. bitmap_destroy(mddev);
  3455. fd = -1; /* make sure to put the file */
  3456. }
  3457. mddev->pers->quiesce(mddev, 0);
  3458. }
  3459. if (fd < 0) {
  3460. if (mddev->bitmap_file) {
  3461. restore_bitmap_write_access(mddev->bitmap_file);
  3462. fput(mddev->bitmap_file);
  3463. }
  3464. mddev->bitmap_file = NULL;
  3465. }
  3466. return err;
  3467. }
  3468. /*
  3469. * set_array_info is used two different ways
  3470. * The original usage is when creating a new array.
  3471. * In this usage, raid_disks is > 0 and it together with
  3472. * level, size, not_persistent,layout,chunksize determine the
  3473. * shape of the array.
  3474. * This will always create an array with a type-0.90.0 superblock.
  3475. * The newer usage is when assembling an array.
  3476. * In this case raid_disks will be 0, and the major_version field is
  3477. * use to determine which style super-blocks are to be found on the devices.
  3478. * The minor and patch _version numbers are also kept incase the
  3479. * super_block handler wishes to interpret them.
  3480. */
  3481. static int set_array_info(mddev_t * mddev, mdu_array_info_t *info)
  3482. {
  3483. if (info->raid_disks == 0) {
  3484. /* just setting version number for superblock loading */
  3485. if (info->major_version < 0 ||
  3486. info->major_version >= sizeof(super_types)/sizeof(super_types[0]) ||
  3487. super_types[info->major_version].name == NULL) {
  3488. /* maybe try to auto-load a module? */
  3489. printk(KERN_INFO
  3490. "md: superblock version %d not known\n",
  3491. info->major_version);
  3492. return -EINVAL;
  3493. }
  3494. mddev->major_version = info->major_version;
  3495. mddev->minor_version = info->minor_version;
  3496. mddev->patch_version = info->patch_version;
  3497. return 0;
  3498. }
  3499. mddev->major_version = MD_MAJOR_VERSION;
  3500. mddev->minor_version = MD_MINOR_VERSION;
  3501. mddev->patch_version = MD_PATCHLEVEL_VERSION;
  3502. mddev->ctime = get_seconds();
  3503. mddev->level = info->level;
  3504. mddev->clevel[0] = 0;
  3505. mddev->size = info->size;
  3506. mddev->raid_disks = info->raid_disks;
  3507. /* don't set md_minor, it is determined by which /dev/md* was
  3508. * openned
  3509. */
  3510. if (info->state & (1<<MD_SB_CLEAN))
  3511. mddev->recovery_cp = MaxSector;
  3512. else
  3513. mddev->recovery_cp = 0;
  3514. mddev->persistent = ! info->not_persistent;
  3515. mddev->layout = info->layout;
  3516. mddev->chunk_size = info->chunk_size;
  3517. mddev->max_disks = MD_SB_DISKS;
  3518. mddev->sb_dirty = 1;
  3519. mddev->default_bitmap_offset = MD_SB_BYTES >> 9;
  3520. mddev->bitmap_offset = 0;
  3521. mddev->reshape_position = MaxSector;
  3522. /*
  3523. * Generate a 128 bit UUID
  3524. */
  3525. get_random_bytes(mddev->uuid, 16);
  3526. mddev->new_level = mddev->level;
  3527. mddev->new_chunk = mddev->chunk_size;
  3528. mddev->new_layout = mddev->layout;
  3529. mddev->delta_disks = 0;
  3530. return 0;
  3531. }
  3532. static int update_size(mddev_t *mddev, unsigned long size)
  3533. {
  3534. mdk_rdev_t * rdev;
  3535. int rv;
  3536. struct list_head *tmp;
  3537. int fit = (size == 0);
  3538. if (mddev->pers->resize == NULL)
  3539. return -EINVAL;
  3540. /* The "size" is the amount of each device that is used.
  3541. * This can only make sense for arrays with redundancy.
  3542. * linear and raid0 always use whatever space is available
  3543. * We can only consider changing the size if no resync
  3544. * or reconstruction is happening, and if the new size
  3545. * is acceptable. It must fit before the sb_offset or,
  3546. * if that is <data_offset, it must fit before the
  3547. * size of each device.
  3548. * If size is zero, we find the largest size that fits.
  3549. */
  3550. if (mddev->sync_thread)
  3551. return -EBUSY;
  3552. ITERATE_RDEV(mddev,rdev,tmp) {
  3553. sector_t avail;
  3554. if (rdev->sb_offset > rdev->data_offset)
  3555. avail = (rdev->sb_offset*2) - rdev->data_offset;
  3556. else
  3557. avail = get_capacity(rdev->bdev->bd_disk)
  3558. - rdev->data_offset;
  3559. if (fit && (size == 0 || size > avail/2))
  3560. size = avail/2;
  3561. if (avail < ((sector_t)size << 1))
  3562. return -ENOSPC;
  3563. }
  3564. rv = mddev->pers->resize(mddev, (sector_t)size *2);
  3565. if (!rv) {
  3566. struct block_device *bdev;
  3567. bdev = bdget_disk(mddev->gendisk, 0);
  3568. if (bdev) {
  3569. mutex_lock(&bdev->bd_inode->i_mutex);
  3570. i_size_write(bdev->bd_inode, (loff_t)mddev->array_size << 10);
  3571. mutex_unlock(&bdev->bd_inode->i_mutex);
  3572. bdput(bdev);
  3573. }
  3574. }
  3575. return rv;
  3576. }
  3577. static int update_raid_disks(mddev_t *mddev, int raid_disks)
  3578. {
  3579. int rv;
  3580. /* change the number of raid disks */
  3581. if (mddev->pers->check_reshape == NULL)
  3582. return -EINVAL;
  3583. if (raid_disks <= 0 ||
  3584. raid_disks >= mddev->max_disks)
  3585. return -EINVAL;
  3586. if (mddev->sync_thread || mddev->reshape_position != MaxSector)
  3587. return -EBUSY;
  3588. mddev->delta_disks = raid_disks - mddev->raid_disks;
  3589. rv = mddev->pers->check_reshape(mddev);
  3590. return rv;
  3591. }
  3592. /*
  3593. * update_array_info is used to change the configuration of an
  3594. * on-line array.
  3595. * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
  3596. * fields in the info are checked against the array.
  3597. * Any differences that cannot be handled will cause an error.
  3598. * Normally, only one change can be managed at a time.
  3599. */
  3600. static int update_array_info(mddev_t *mddev, mdu_array_info_t *info)
  3601. {
  3602. int rv = 0;
  3603. int cnt = 0;
  3604. int state = 0;
  3605. /* calculate expected state,ignoring low bits */
  3606. if (mddev->bitmap && mddev->bitmap_offset)
  3607. state |= (1 << MD_SB_BITMAP_PRESENT);
  3608. if (mddev->major_version != info->major_version ||
  3609. mddev->minor_version != info->minor_version ||
  3610. /* mddev->patch_version != info->patch_version || */
  3611. mddev->ctime != info->ctime ||
  3612. mddev->level != info->level ||
  3613. /* mddev->layout != info->layout || */
  3614. !mddev->persistent != info->not_persistent||
  3615. mddev->chunk_size != info->chunk_size ||
  3616. /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
  3617. ((state^info->state) & 0xfffffe00)
  3618. )
  3619. return -EINVAL;
  3620. /* Check there is only one change */
  3621. if (info->size >= 0 && mddev->size != info->size) cnt++;
  3622. if (mddev->raid_disks != info->raid_disks) cnt++;
  3623. if (mddev->layout != info->layout) cnt++;
  3624. if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) cnt++;
  3625. if (cnt == 0) return 0;
  3626. if (cnt > 1) return -EINVAL;
  3627. if (mddev->layout != info->layout) {
  3628. /* Change layout
  3629. * we don't need to do anything at the md level, the
  3630. * personality will take care of it all.
  3631. */
  3632. if (mddev->pers->reconfig == NULL)
  3633. return -EINVAL;
  3634. else
  3635. return mddev->pers->reconfig(mddev, info->layout, -1);
  3636. }
  3637. if (info->size >= 0 && mddev->size != info->size)
  3638. rv = update_size(mddev, info->size);
  3639. if (mddev->raid_disks != info->raid_disks)
  3640. rv = update_raid_disks(mddev, info->raid_disks);
  3641. if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
  3642. if (mddev->pers->quiesce == NULL)
  3643. return -EINVAL;
  3644. if (mddev->recovery || mddev->sync_thread)
  3645. return -EBUSY;
  3646. if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
  3647. /* add the bitmap */
  3648. if (mddev->bitmap)
  3649. return -EEXIST;
  3650. if (mddev->default_bitmap_offset == 0)
  3651. return -EINVAL;
  3652. mddev->bitmap_offset = mddev->default_bitmap_offset;
  3653. mddev->pers->quiesce(mddev, 1);
  3654. rv = bitmap_create(mddev);
  3655. if (rv)
  3656. bitmap_destroy(mddev);
  3657. mddev->pers->quiesce(mddev, 0);
  3658. } else {
  3659. /* remove the bitmap */
  3660. if (!mddev->bitmap)
  3661. return -ENOENT;
  3662. if (mddev->bitmap->file)
  3663. return -EINVAL;
  3664. mddev->pers->quiesce(mddev, 1);
  3665. bitmap_destroy(mddev);
  3666. mddev->pers->quiesce(mddev, 0);
  3667. mddev->bitmap_offset = 0;
  3668. }
  3669. }
  3670. md_update_sb(mddev);
  3671. return rv;
  3672. }
  3673. static int set_disk_faulty(mddev_t *mddev, dev_t dev)
  3674. {
  3675. mdk_rdev_t *rdev;
  3676. if (mddev->pers == NULL)
  3677. return -ENODEV;
  3678. rdev = find_rdev(mddev, dev);
  3679. if (!rdev)
  3680. return -ENODEV;
  3681. md_error(mddev, rdev);
  3682. return 0;
  3683. }
  3684. static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
  3685. {
  3686. mddev_t *mddev = bdev->bd_disk->private_data;
  3687. geo->heads = 2;
  3688. geo->sectors = 4;
  3689. geo->cylinders = get_capacity(mddev->gendisk) / 8;
  3690. return 0;
  3691. }
  3692. static int md_ioctl(struct inode *inode, struct file *file,
  3693. unsigned int cmd, unsigned long arg)
  3694. {
  3695. int err = 0;
  3696. void __user *argp = (void __user *)arg;
  3697. mddev_t *mddev = NULL;
  3698. if (!capable(CAP_SYS_ADMIN))
  3699. return -EACCES;
  3700. /*
  3701. * Commands dealing with the RAID driver but not any
  3702. * particular array:
  3703. */
  3704. switch (cmd)
  3705. {
  3706. case RAID_VERSION:
  3707. err = get_version(argp);
  3708. goto done;
  3709. case PRINT_RAID_DEBUG:
  3710. err = 0;
  3711. md_print_devices();
  3712. goto done;
  3713. #ifndef MODULE
  3714. case RAID_AUTORUN:
  3715. err = 0;
  3716. autostart_arrays(arg);
  3717. goto done;
  3718. #endif
  3719. default:;
  3720. }
  3721. /*
  3722. * Commands creating/starting a new array:
  3723. */
  3724. mddev = inode->i_bdev->bd_disk->private_data;
  3725. if (!mddev) {
  3726. BUG();
  3727. goto abort;
  3728. }
  3729. if (cmd == START_ARRAY) {
  3730. /* START_ARRAY doesn't need to lock the array as autostart_array
  3731. * does the locking, and it could even be a different array
  3732. */
  3733. static int cnt = 3;
  3734. if (cnt > 0 ) {
  3735. printk(KERN_WARNING
  3736. "md: %s(pid %d) used deprecated START_ARRAY ioctl. "
  3737. "This will not be supported beyond July 2006\n",
  3738. current->comm, current->pid);
  3739. cnt--;
  3740. }
  3741. err = autostart_array(new_decode_dev(arg));
  3742. if (err) {
  3743. printk(KERN_WARNING "md: autostart failed!\n");
  3744. goto abort;
  3745. }
  3746. goto done;
  3747. }
  3748. err = mddev_lock(mddev);
  3749. if (err) {
  3750. printk(KERN_INFO
  3751. "md: ioctl lock interrupted, reason %d, cmd %d\n",
  3752. err, cmd);
  3753. goto abort;
  3754. }
  3755. switch (cmd)
  3756. {
  3757. case SET_ARRAY_INFO:
  3758. {
  3759. mdu_array_info_t info;
  3760. if (!arg)
  3761. memset(&info, 0, sizeof(info));
  3762. else if (copy_from_user(&info, argp, sizeof(info))) {
  3763. err = -EFAULT;
  3764. goto abort_unlock;
  3765. }
  3766. if (mddev->pers) {
  3767. err = update_array_info(mddev, &info);
  3768. if (err) {
  3769. printk(KERN_WARNING "md: couldn't update"
  3770. " array info. %d\n", err);
  3771. goto abort_unlock;
  3772. }
  3773. goto done_unlock;
  3774. }
  3775. if (!list_empty(&mddev->disks)) {
  3776. printk(KERN_WARNING
  3777. "md: array %s already has disks!\n",
  3778. mdname(mddev));
  3779. err = -EBUSY;
  3780. goto abort_unlock;
  3781. }
  3782. if (mddev->raid_disks) {
  3783. printk(KERN_WARNING
  3784. "md: array %s already initialised!\n",
  3785. mdname(mddev));
  3786. err = -EBUSY;
  3787. goto abort_unlock;
  3788. }
  3789. err = set_array_info(mddev, &info);
  3790. if (err) {
  3791. printk(KERN_WARNING "md: couldn't set"
  3792. " array info. %d\n", err);
  3793. goto abort_unlock;
  3794. }
  3795. }
  3796. goto done_unlock;
  3797. default:;
  3798. }
  3799. /*
  3800. * Commands querying/configuring an existing array:
  3801. */
  3802. /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
  3803. * RUN_ARRAY, and SET_BITMAP_FILE are allowed */
  3804. if (!mddev->raid_disks && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
  3805. && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE) {
  3806. err = -ENODEV;
  3807. goto abort_unlock;
  3808. }
  3809. /*
  3810. * Commands even a read-only array can execute:
  3811. */
  3812. switch (cmd)
  3813. {
  3814. case GET_ARRAY_INFO:
  3815. err = get_array_info(mddev, argp);
  3816. goto done_unlock;
  3817. case GET_BITMAP_FILE:
  3818. err = get_bitmap_file(mddev, argp);
  3819. goto done_unlock;
  3820. case GET_DISK_INFO:
  3821. err = get_disk_info(mddev, argp);
  3822. goto done_unlock;
  3823. case RESTART_ARRAY_RW:
  3824. err = restart_array(mddev);
  3825. goto done_unlock;
  3826. case STOP_ARRAY:
  3827. err = do_md_stop (mddev, 0);
  3828. goto done_unlock;
  3829. case STOP_ARRAY_RO:
  3830. err = do_md_stop (mddev, 1);
  3831. goto done_unlock;
  3832. /*
  3833. * We have a problem here : there is no easy way to give a CHS
  3834. * virtual geometry. We currently pretend that we have a 2 heads
  3835. * 4 sectors (with a BIG number of cylinders...). This drives
  3836. * dosfs just mad... ;-)
  3837. */
  3838. }
  3839. /*
  3840. * The remaining ioctls are changing the state of the
  3841. * superblock, so we do not allow them on read-only arrays.
  3842. * However non-MD ioctls (e.g. get-size) will still come through
  3843. * here and hit the 'default' below, so only disallow
  3844. * 'md' ioctls, and switch to rw mode if started auto-readonly.
  3845. */
  3846. if (_IOC_TYPE(cmd) == MD_MAJOR &&
  3847. mddev->ro && mddev->pers) {
  3848. if (mddev->ro == 2) {
  3849. mddev->ro = 0;
  3850. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  3851. md_wakeup_thread(mddev->thread);
  3852. } else {
  3853. err = -EROFS;
  3854. goto abort_unlock;
  3855. }
  3856. }
  3857. switch (cmd)
  3858. {
  3859. case ADD_NEW_DISK:
  3860. {
  3861. mdu_disk_info_t info;
  3862. if (copy_from_user(&info, argp, sizeof(info)))
  3863. err = -EFAULT;
  3864. else
  3865. err = add_new_disk(mddev, &info);
  3866. goto done_unlock;
  3867. }
  3868. case HOT_REMOVE_DISK:
  3869. err = hot_remove_disk(mddev, new_decode_dev(arg));
  3870. goto done_unlock;
  3871. case HOT_ADD_DISK:
  3872. err = hot_add_disk(mddev, new_decode_dev(arg));
  3873. goto done_unlock;
  3874. case SET_DISK_FAULTY:
  3875. err = set_disk_faulty(mddev, new_decode_dev(arg));
  3876. goto done_unlock;
  3877. case RUN_ARRAY:
  3878. err = do_md_run (mddev);
  3879. goto done_unlock;
  3880. case SET_BITMAP_FILE:
  3881. err = set_bitmap_file(mddev, (int)arg);
  3882. goto done_unlock;
  3883. default:
  3884. err = -EINVAL;
  3885. goto abort_unlock;
  3886. }
  3887. done_unlock:
  3888. abort_unlock:
  3889. mddev_unlock(mddev);
  3890. return err;
  3891. done:
  3892. if (err)
  3893. MD_BUG();
  3894. abort:
  3895. return err;
  3896. }
  3897. static int md_open(struct inode *inode, struct file *file)
  3898. {
  3899. /*
  3900. * Succeed if we can lock the mddev, which confirms that
  3901. * it isn't being stopped right now.
  3902. */
  3903. mddev_t *mddev = inode->i_bdev->bd_disk->private_data;
  3904. int err;
  3905. if ((err = mddev_lock(mddev)))
  3906. goto out;
  3907. err = 0;
  3908. mddev_get(mddev);
  3909. mddev_unlock(mddev);
  3910. check_disk_change(inode->i_bdev);
  3911. out:
  3912. return err;
  3913. }
  3914. static int md_release(struct inode *inode, struct file * file)
  3915. {
  3916. mddev_t *mddev = inode->i_bdev->bd_disk->private_data;
  3917. if (!mddev)
  3918. BUG();
  3919. mddev_put(mddev);
  3920. return 0;
  3921. }
  3922. static int md_media_changed(struct gendisk *disk)
  3923. {
  3924. mddev_t *mddev = disk->private_data;
  3925. return mddev->changed;
  3926. }
  3927. static int md_revalidate(struct gendisk *disk)
  3928. {
  3929. mddev_t *mddev = disk->private_data;
  3930. mddev->changed = 0;
  3931. return 0;
  3932. }
  3933. static struct block_device_operations md_fops =
  3934. {
  3935. .owner = THIS_MODULE,
  3936. .open = md_open,
  3937. .release = md_release,
  3938. .ioctl = md_ioctl,
  3939. .getgeo = md_getgeo,
  3940. .media_changed = md_media_changed,
  3941. .revalidate_disk= md_revalidate,
  3942. };
  3943. static int md_thread(void * arg)
  3944. {
  3945. mdk_thread_t *thread = arg;
  3946. /*
  3947. * md_thread is a 'system-thread', it's priority should be very
  3948. * high. We avoid resource deadlocks individually in each
  3949. * raid personality. (RAID5 does preallocation) We also use RR and
  3950. * the very same RT priority as kswapd, thus we will never get
  3951. * into a priority inversion deadlock.
  3952. *
  3953. * we definitely have to have equal or higher priority than
  3954. * bdflush, otherwise bdflush will deadlock if there are too
  3955. * many dirty RAID5 blocks.
  3956. */
  3957. allow_signal(SIGKILL);
  3958. while (!kthread_should_stop()) {
  3959. /* We need to wait INTERRUPTIBLE so that
  3960. * we don't add to the load-average.
  3961. * That means we need to be sure no signals are
  3962. * pending
  3963. */
  3964. if (signal_pending(current))
  3965. flush_signals(current);
  3966. wait_event_interruptible_timeout
  3967. (thread->wqueue,
  3968. test_bit(THREAD_WAKEUP, &thread->flags)
  3969. || kthread_should_stop(),
  3970. thread->timeout);
  3971. try_to_freeze();
  3972. clear_bit(THREAD_WAKEUP, &thread->flags);
  3973. thread->run(thread->mddev);
  3974. }
  3975. return 0;
  3976. }
  3977. void md_wakeup_thread(mdk_thread_t *thread)
  3978. {
  3979. if (thread) {
  3980. dprintk("md: waking up MD thread %s.\n", thread->tsk->comm);
  3981. set_bit(THREAD_WAKEUP, &thread->flags);
  3982. wake_up(&thread->wqueue);
  3983. }
  3984. }
  3985. mdk_thread_t *md_register_thread(void (*run) (mddev_t *), mddev_t *mddev,
  3986. const char *name)
  3987. {
  3988. mdk_thread_t *thread;
  3989. thread = kzalloc(sizeof(mdk_thread_t), GFP_KERNEL);
  3990. if (!thread)
  3991. return NULL;
  3992. init_waitqueue_head(&thread->wqueue);
  3993. thread->run = run;
  3994. thread->mddev = mddev;
  3995. thread->timeout = MAX_SCHEDULE_TIMEOUT;
  3996. thread->tsk = kthread_run(md_thread, thread, name, mdname(thread->mddev));
  3997. if (IS_ERR(thread->tsk)) {
  3998. kfree(thread);
  3999. return NULL;
  4000. }
  4001. return thread;
  4002. }
  4003. void md_unregister_thread(mdk_thread_t *thread)
  4004. {
  4005. dprintk("interrupting MD-thread pid %d\n", thread->tsk->pid);
  4006. kthread_stop(thread->tsk);
  4007. kfree(thread);
  4008. }
  4009. void md_error(mddev_t *mddev, mdk_rdev_t *rdev)
  4010. {
  4011. if (!mddev) {
  4012. MD_BUG();
  4013. return;
  4014. }
  4015. if (!rdev || test_bit(Faulty, &rdev->flags))
  4016. return;
  4017. /*
  4018. dprintk("md_error dev:%s, rdev:(%d:%d), (caller: %p,%p,%p,%p).\n",
  4019. mdname(mddev),
  4020. MAJOR(rdev->bdev->bd_dev), MINOR(rdev->bdev->bd_dev),
  4021. __builtin_return_address(0),__builtin_return_address(1),
  4022. __builtin_return_address(2),__builtin_return_address(3));
  4023. */
  4024. if (!mddev->pers)
  4025. return;
  4026. if (!mddev->pers->error_handler)
  4027. return;
  4028. mddev->pers->error_handler(mddev,rdev);
  4029. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  4030. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  4031. md_wakeup_thread(mddev->thread);
  4032. md_new_event_inintr(mddev);
  4033. }
  4034. /* seq_file implementation /proc/mdstat */
  4035. static void status_unused(struct seq_file *seq)
  4036. {
  4037. int i = 0;
  4038. mdk_rdev_t *rdev;
  4039. struct list_head *tmp;
  4040. seq_printf(seq, "unused devices: ");
  4041. ITERATE_RDEV_PENDING(rdev,tmp) {
  4042. char b[BDEVNAME_SIZE];
  4043. i++;
  4044. seq_printf(seq, "%s ",
  4045. bdevname(rdev->bdev,b));
  4046. }
  4047. if (!i)
  4048. seq_printf(seq, "<none>");
  4049. seq_printf(seq, "\n");
  4050. }
  4051. static void status_resync(struct seq_file *seq, mddev_t * mddev)
  4052. {
  4053. sector_t max_blocks, resync, res;
  4054. unsigned long dt, db, rt;
  4055. int scale;
  4056. unsigned int per_milli;
  4057. resync = (mddev->curr_resync - atomic_read(&mddev->recovery_active))/2;
  4058. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
  4059. max_blocks = mddev->resync_max_sectors >> 1;
  4060. else
  4061. max_blocks = mddev->size;
  4062. /*
  4063. * Should not happen.
  4064. */
  4065. if (!max_blocks) {
  4066. MD_BUG();
  4067. return;
  4068. }
  4069. /* Pick 'scale' such that (resync>>scale)*1000 will fit
  4070. * in a sector_t, and (max_blocks>>scale) will fit in a
  4071. * u32, as those are the requirements for sector_div.
  4072. * Thus 'scale' must be at least 10
  4073. */
  4074. scale = 10;
  4075. if (sizeof(sector_t) > sizeof(unsigned long)) {
  4076. while ( max_blocks/2 > (1ULL<<(scale+32)))
  4077. scale++;
  4078. }
  4079. res = (resync>>scale)*1000;
  4080. sector_div(res, (u32)((max_blocks>>scale)+1));
  4081. per_milli = res;
  4082. {
  4083. int i, x = per_milli/50, y = 20-x;
  4084. seq_printf(seq, "[");
  4085. for (i = 0; i < x; i++)
  4086. seq_printf(seq, "=");
  4087. seq_printf(seq, ">");
  4088. for (i = 0; i < y; i++)
  4089. seq_printf(seq, ".");
  4090. seq_printf(seq, "] ");
  4091. }
  4092. seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
  4093. (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
  4094. "reshape" :
  4095. (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
  4096. "resync" : "recovery")),
  4097. per_milli/10, per_milli % 10,
  4098. (unsigned long long) resync,
  4099. (unsigned long long) max_blocks);
  4100. /*
  4101. * We do not want to overflow, so the order of operands and
  4102. * the * 100 / 100 trick are important. We do a +1 to be
  4103. * safe against division by zero. We only estimate anyway.
  4104. *
  4105. * dt: time from mark until now
  4106. * db: blocks written from mark until now
  4107. * rt: remaining time
  4108. */
  4109. dt = ((jiffies - mddev->resync_mark) / HZ);
  4110. if (!dt) dt++;
  4111. db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active))
  4112. - mddev->resync_mark_cnt;
  4113. rt = (dt * ((unsigned long)(max_blocks-resync) / (db/2/100+1)))/100;
  4114. seq_printf(seq, " finish=%lu.%lumin", rt / 60, (rt % 60)/6);
  4115. seq_printf(seq, " speed=%ldK/sec", db/2/dt);
  4116. }
  4117. static void *md_seq_start(struct seq_file *seq, loff_t *pos)
  4118. {
  4119. struct list_head *tmp;
  4120. loff_t l = *pos;
  4121. mddev_t *mddev;
  4122. if (l >= 0x10000)
  4123. return NULL;
  4124. if (!l--)
  4125. /* header */
  4126. return (void*)1;
  4127. spin_lock(&all_mddevs_lock);
  4128. list_for_each(tmp,&all_mddevs)
  4129. if (!l--) {
  4130. mddev = list_entry(tmp, mddev_t, all_mddevs);
  4131. mddev_get(mddev);
  4132. spin_unlock(&all_mddevs_lock);
  4133. return mddev;
  4134. }
  4135. spin_unlock(&all_mddevs_lock);
  4136. if (!l--)
  4137. return (void*)2;/* tail */
  4138. return NULL;
  4139. }
  4140. static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
  4141. {
  4142. struct list_head *tmp;
  4143. mddev_t *next_mddev, *mddev = v;
  4144. ++*pos;
  4145. if (v == (void*)2)
  4146. return NULL;
  4147. spin_lock(&all_mddevs_lock);
  4148. if (v == (void*)1)
  4149. tmp = all_mddevs.next;
  4150. else
  4151. tmp = mddev->all_mddevs.next;
  4152. if (tmp != &all_mddevs)
  4153. next_mddev = mddev_get(list_entry(tmp,mddev_t,all_mddevs));
  4154. else {
  4155. next_mddev = (void*)2;
  4156. *pos = 0x10000;
  4157. }
  4158. spin_unlock(&all_mddevs_lock);
  4159. if (v != (void*)1)
  4160. mddev_put(mddev);
  4161. return next_mddev;
  4162. }
  4163. static void md_seq_stop(struct seq_file *seq, void *v)
  4164. {
  4165. mddev_t *mddev = v;
  4166. if (mddev && v != (void*)1 && v != (void*)2)
  4167. mddev_put(mddev);
  4168. }
  4169. struct mdstat_info {
  4170. int event;
  4171. };
  4172. static int md_seq_show(struct seq_file *seq, void *v)
  4173. {
  4174. mddev_t *mddev = v;
  4175. sector_t size;
  4176. struct list_head *tmp2;
  4177. mdk_rdev_t *rdev;
  4178. struct mdstat_info *mi = seq->private;
  4179. struct bitmap *bitmap;
  4180. if (v == (void*)1) {
  4181. struct mdk_personality *pers;
  4182. seq_printf(seq, "Personalities : ");
  4183. spin_lock(&pers_lock);
  4184. list_for_each_entry(pers, &pers_list, list)
  4185. seq_printf(seq, "[%s] ", pers->name);
  4186. spin_unlock(&pers_lock);
  4187. seq_printf(seq, "\n");
  4188. mi->event = atomic_read(&md_event_count);
  4189. return 0;
  4190. }
  4191. if (v == (void*)2) {
  4192. status_unused(seq);
  4193. return 0;
  4194. }
  4195. if (mddev_lock(mddev) < 0)
  4196. return -EINTR;
  4197. if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
  4198. seq_printf(seq, "%s : %sactive", mdname(mddev),
  4199. mddev->pers ? "" : "in");
  4200. if (mddev->pers) {
  4201. if (mddev->ro==1)
  4202. seq_printf(seq, " (read-only)");
  4203. if (mddev->ro==2)
  4204. seq_printf(seq, "(auto-read-only)");
  4205. seq_printf(seq, " %s", mddev->pers->name);
  4206. }
  4207. size = 0;
  4208. ITERATE_RDEV(mddev,rdev,tmp2) {
  4209. char b[BDEVNAME_SIZE];
  4210. seq_printf(seq, " %s[%d]",
  4211. bdevname(rdev->bdev,b), rdev->desc_nr);
  4212. if (test_bit(WriteMostly, &rdev->flags))
  4213. seq_printf(seq, "(W)");
  4214. if (test_bit(Faulty, &rdev->flags)) {
  4215. seq_printf(seq, "(F)");
  4216. continue;
  4217. } else if (rdev->raid_disk < 0)
  4218. seq_printf(seq, "(S)"); /* spare */
  4219. size += rdev->size;
  4220. }
  4221. if (!list_empty(&mddev->disks)) {
  4222. if (mddev->pers)
  4223. seq_printf(seq, "\n %llu blocks",
  4224. (unsigned long long)mddev->array_size);
  4225. else
  4226. seq_printf(seq, "\n %llu blocks",
  4227. (unsigned long long)size);
  4228. }
  4229. if (mddev->persistent) {
  4230. if (mddev->major_version != 0 ||
  4231. mddev->minor_version != 90) {
  4232. seq_printf(seq," super %d.%d",
  4233. mddev->major_version,
  4234. mddev->minor_version);
  4235. }
  4236. } else
  4237. seq_printf(seq, " super non-persistent");
  4238. if (mddev->pers) {
  4239. mddev->pers->status (seq, mddev);
  4240. seq_printf(seq, "\n ");
  4241. if (mddev->pers->sync_request) {
  4242. if (mddev->curr_resync > 2) {
  4243. status_resync (seq, mddev);
  4244. seq_printf(seq, "\n ");
  4245. } else if (mddev->curr_resync == 1 || mddev->curr_resync == 2)
  4246. seq_printf(seq, "\tresync=DELAYED\n ");
  4247. else if (mddev->recovery_cp < MaxSector)
  4248. seq_printf(seq, "\tresync=PENDING\n ");
  4249. }
  4250. } else
  4251. seq_printf(seq, "\n ");
  4252. if ((bitmap = mddev->bitmap)) {
  4253. unsigned long chunk_kb;
  4254. unsigned long flags;
  4255. spin_lock_irqsave(&bitmap->lock, flags);
  4256. chunk_kb = bitmap->chunksize >> 10;
  4257. seq_printf(seq, "bitmap: %lu/%lu pages [%luKB], "
  4258. "%lu%s chunk",
  4259. bitmap->pages - bitmap->missing_pages,
  4260. bitmap->pages,
  4261. (bitmap->pages - bitmap->missing_pages)
  4262. << (PAGE_SHIFT - 10),
  4263. chunk_kb ? chunk_kb : bitmap->chunksize,
  4264. chunk_kb ? "KB" : "B");
  4265. if (bitmap->file) {
  4266. seq_printf(seq, ", file: ");
  4267. seq_path(seq, bitmap->file->f_vfsmnt,
  4268. bitmap->file->f_dentry," \t\n");
  4269. }
  4270. seq_printf(seq, "\n");
  4271. spin_unlock_irqrestore(&bitmap->lock, flags);
  4272. }
  4273. seq_printf(seq, "\n");
  4274. }
  4275. mddev_unlock(mddev);
  4276. return 0;
  4277. }
  4278. static struct seq_operations md_seq_ops = {
  4279. .start = md_seq_start,
  4280. .next = md_seq_next,
  4281. .stop = md_seq_stop,
  4282. .show = md_seq_show,
  4283. };
  4284. static int md_seq_open(struct inode *inode, struct file *file)
  4285. {
  4286. int error;
  4287. struct mdstat_info *mi = kmalloc(sizeof(*mi), GFP_KERNEL);
  4288. if (mi == NULL)
  4289. return -ENOMEM;
  4290. error = seq_open(file, &md_seq_ops);
  4291. if (error)
  4292. kfree(mi);
  4293. else {
  4294. struct seq_file *p = file->private_data;
  4295. p->private = mi;
  4296. mi->event = atomic_read(&md_event_count);
  4297. }
  4298. return error;
  4299. }
  4300. static int md_seq_release(struct inode *inode, struct file *file)
  4301. {
  4302. struct seq_file *m = file->private_data;
  4303. struct mdstat_info *mi = m->private;
  4304. m->private = NULL;
  4305. kfree(mi);
  4306. return seq_release(inode, file);
  4307. }
  4308. static unsigned int mdstat_poll(struct file *filp, poll_table *wait)
  4309. {
  4310. struct seq_file *m = filp->private_data;
  4311. struct mdstat_info *mi = m->private;
  4312. int mask;
  4313. poll_wait(filp, &md_event_waiters, wait);
  4314. /* always allow read */
  4315. mask = POLLIN | POLLRDNORM;
  4316. if (mi->event != atomic_read(&md_event_count))
  4317. mask |= POLLERR | POLLPRI;
  4318. return mask;
  4319. }
  4320. static struct file_operations md_seq_fops = {
  4321. .open = md_seq_open,
  4322. .read = seq_read,
  4323. .llseek = seq_lseek,
  4324. .release = md_seq_release,
  4325. .poll = mdstat_poll,
  4326. };
  4327. int register_md_personality(struct mdk_personality *p)
  4328. {
  4329. spin_lock(&pers_lock);
  4330. list_add_tail(&p->list, &pers_list);
  4331. printk(KERN_INFO "md: %s personality registered for level %d\n", p->name, p->level);
  4332. spin_unlock(&pers_lock);
  4333. return 0;
  4334. }
  4335. int unregister_md_personality(struct mdk_personality *p)
  4336. {
  4337. printk(KERN_INFO "md: %s personality unregistered\n", p->name);
  4338. spin_lock(&pers_lock);
  4339. list_del_init(&p->list);
  4340. spin_unlock(&pers_lock);
  4341. return 0;
  4342. }
  4343. static int is_mddev_idle(mddev_t *mddev)
  4344. {
  4345. mdk_rdev_t * rdev;
  4346. struct list_head *tmp;
  4347. int idle;
  4348. unsigned long curr_events;
  4349. idle = 1;
  4350. ITERATE_RDEV(mddev,rdev,tmp) {
  4351. struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
  4352. curr_events = disk_stat_read(disk, sectors[0]) +
  4353. disk_stat_read(disk, sectors[1]) -
  4354. atomic_read(&disk->sync_io);
  4355. /* The difference between curr_events and last_events
  4356. * will be affected by any new non-sync IO (making
  4357. * curr_events bigger) and any difference in the amount of
  4358. * in-flight syncio (making current_events bigger or smaller)
  4359. * The amount in-flight is currently limited to
  4360. * 32*64K in raid1/10 and 256*PAGE_SIZE in raid5/6
  4361. * which is at most 4096 sectors.
  4362. * These numbers are fairly fragile and should be made
  4363. * more robust, probably by enforcing the
  4364. * 'window size' that md_do_sync sort-of uses.
  4365. *
  4366. * Note: the following is an unsigned comparison.
  4367. */
  4368. if ((curr_events - rdev->last_events + 4096) > 8192) {
  4369. rdev->last_events = curr_events;
  4370. idle = 0;
  4371. }
  4372. }
  4373. return idle;
  4374. }
  4375. void md_done_sync(mddev_t *mddev, int blocks, int ok)
  4376. {
  4377. /* another "blocks" (512byte) blocks have been synced */
  4378. atomic_sub(blocks, &mddev->recovery_active);
  4379. wake_up(&mddev->recovery_wait);
  4380. if (!ok) {
  4381. set_bit(MD_RECOVERY_ERR, &mddev->recovery);
  4382. md_wakeup_thread(mddev->thread);
  4383. // stop recovery, signal do_sync ....
  4384. }
  4385. }
  4386. /* md_write_start(mddev, bi)
  4387. * If we need to update some array metadata (e.g. 'active' flag
  4388. * in superblock) before writing, schedule a superblock update
  4389. * and wait for it to complete.
  4390. */
  4391. void md_write_start(mddev_t *mddev, struct bio *bi)
  4392. {
  4393. if (bio_data_dir(bi) != WRITE)
  4394. return;
  4395. BUG_ON(mddev->ro == 1);
  4396. if (mddev->ro == 2) {
  4397. /* need to switch to read/write */
  4398. mddev->ro = 0;
  4399. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  4400. md_wakeup_thread(mddev->thread);
  4401. }
  4402. atomic_inc(&mddev->writes_pending);
  4403. if (mddev->in_sync) {
  4404. spin_lock_irq(&mddev->write_lock);
  4405. if (mddev->in_sync) {
  4406. mddev->in_sync = 0;
  4407. mddev->sb_dirty = 3;
  4408. md_wakeup_thread(mddev->thread);
  4409. }
  4410. spin_unlock_irq(&mddev->write_lock);
  4411. }
  4412. wait_event(mddev->sb_wait, mddev->sb_dirty==0);
  4413. }
  4414. void md_write_end(mddev_t *mddev)
  4415. {
  4416. if (atomic_dec_and_test(&mddev->writes_pending)) {
  4417. if (mddev->safemode == 2)
  4418. md_wakeup_thread(mddev->thread);
  4419. else if (mddev->safemode_delay)
  4420. mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
  4421. }
  4422. }
  4423. static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
  4424. #define SYNC_MARKS 10
  4425. #define SYNC_MARK_STEP (3*HZ)
  4426. void md_do_sync(mddev_t *mddev)
  4427. {
  4428. mddev_t *mddev2;
  4429. unsigned int currspeed = 0,
  4430. window;
  4431. sector_t max_sectors,j, io_sectors;
  4432. unsigned long mark[SYNC_MARKS];
  4433. sector_t mark_cnt[SYNC_MARKS];
  4434. int last_mark,m;
  4435. struct list_head *tmp;
  4436. sector_t last_check;
  4437. int skipped = 0;
  4438. struct list_head *rtmp;
  4439. mdk_rdev_t *rdev;
  4440. /* just incase thread restarts... */
  4441. if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
  4442. return;
  4443. if (mddev->ro) /* never try to sync a read-only array */
  4444. return;
  4445. /* we overload curr_resync somewhat here.
  4446. * 0 == not engaged in resync at all
  4447. * 2 == checking that there is no conflict with another sync
  4448. * 1 == like 2, but have yielded to allow conflicting resync to
  4449. * commense
  4450. * other == active in resync - this many blocks
  4451. *
  4452. * Before starting a resync we must have set curr_resync to
  4453. * 2, and then checked that every "conflicting" array has curr_resync
  4454. * less than ours. When we find one that is the same or higher
  4455. * we wait on resync_wait. To avoid deadlock, we reduce curr_resync
  4456. * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
  4457. * This will mean we have to start checking from the beginning again.
  4458. *
  4459. */
  4460. do {
  4461. mddev->curr_resync = 2;
  4462. try_again:
  4463. if (kthread_should_stop()) {
  4464. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  4465. goto skip;
  4466. }
  4467. ITERATE_MDDEV(mddev2,tmp) {
  4468. if (mddev2 == mddev)
  4469. continue;
  4470. if (mddev2->curr_resync &&
  4471. match_mddev_units(mddev,mddev2)) {
  4472. DEFINE_WAIT(wq);
  4473. if (mddev < mddev2 && mddev->curr_resync == 2) {
  4474. /* arbitrarily yield */
  4475. mddev->curr_resync = 1;
  4476. wake_up(&resync_wait);
  4477. }
  4478. if (mddev > mddev2 && mddev->curr_resync == 1)
  4479. /* no need to wait here, we can wait the next
  4480. * time 'round when curr_resync == 2
  4481. */
  4482. continue;
  4483. prepare_to_wait(&resync_wait, &wq, TASK_UNINTERRUPTIBLE);
  4484. if (!kthread_should_stop() &&
  4485. mddev2->curr_resync >= mddev->curr_resync) {
  4486. printk(KERN_INFO "md: delaying resync of %s"
  4487. " until %s has finished resync (they"
  4488. " share one or more physical units)\n",
  4489. mdname(mddev), mdname(mddev2));
  4490. mddev_put(mddev2);
  4491. schedule();
  4492. finish_wait(&resync_wait, &wq);
  4493. goto try_again;
  4494. }
  4495. finish_wait(&resync_wait, &wq);
  4496. }
  4497. }
  4498. } while (mddev->curr_resync < 2);
  4499. j = 0;
  4500. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
  4501. /* resync follows the size requested by the personality,
  4502. * which defaults to physical size, but can be virtual size
  4503. */
  4504. max_sectors = mddev->resync_max_sectors;
  4505. mddev->resync_mismatches = 0;
  4506. /* we don't use the checkpoint if there's a bitmap */
  4507. if (!mddev->bitmap &&
  4508. !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
  4509. j = mddev->recovery_cp;
  4510. } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
  4511. max_sectors = mddev->size << 1;
  4512. else {
  4513. /* recovery follows the physical size of devices */
  4514. max_sectors = mddev->size << 1;
  4515. j = MaxSector;
  4516. ITERATE_RDEV(mddev,rdev,rtmp)
  4517. if (rdev->raid_disk >= 0 &&
  4518. !test_bit(Faulty, &rdev->flags) &&
  4519. !test_bit(In_sync, &rdev->flags) &&
  4520. rdev->recovery_offset < j)
  4521. j = rdev->recovery_offset;
  4522. }
  4523. printk(KERN_INFO "md: syncing RAID array %s\n", mdname(mddev));
  4524. printk(KERN_INFO "md: minimum _guaranteed_ reconstruction speed:"
  4525. " %d KB/sec/disc.\n", speed_min(mddev));
  4526. printk(KERN_INFO "md: using maximum available idle IO bandwidth "
  4527. "(but not more than %d KB/sec) for reconstruction.\n",
  4528. speed_max(mddev));
  4529. is_mddev_idle(mddev); /* this also initializes IO event counters */
  4530. io_sectors = 0;
  4531. for (m = 0; m < SYNC_MARKS; m++) {
  4532. mark[m] = jiffies;
  4533. mark_cnt[m] = io_sectors;
  4534. }
  4535. last_mark = 0;
  4536. mddev->resync_mark = mark[last_mark];
  4537. mddev->resync_mark_cnt = mark_cnt[last_mark];
  4538. /*
  4539. * Tune reconstruction:
  4540. */
  4541. window = 32*(PAGE_SIZE/512);
  4542. printk(KERN_INFO "md: using %dk window, over a total of %llu blocks.\n",
  4543. window/2,(unsigned long long) max_sectors/2);
  4544. atomic_set(&mddev->recovery_active, 0);
  4545. init_waitqueue_head(&mddev->recovery_wait);
  4546. last_check = 0;
  4547. if (j>2) {
  4548. printk(KERN_INFO
  4549. "md: resuming recovery of %s from checkpoint.\n",
  4550. mdname(mddev));
  4551. mddev->curr_resync = j;
  4552. }
  4553. while (j < max_sectors) {
  4554. sector_t sectors;
  4555. skipped = 0;
  4556. sectors = mddev->pers->sync_request(mddev, j, &skipped,
  4557. currspeed < speed_min(mddev));
  4558. if (sectors == 0) {
  4559. set_bit(MD_RECOVERY_ERR, &mddev->recovery);
  4560. goto out;
  4561. }
  4562. if (!skipped) { /* actual IO requested */
  4563. io_sectors += sectors;
  4564. atomic_add(sectors, &mddev->recovery_active);
  4565. }
  4566. j += sectors;
  4567. if (j>1) mddev->curr_resync = j;
  4568. mddev->curr_mark_cnt = io_sectors;
  4569. if (last_check == 0)
  4570. /* this is the earliers that rebuilt will be
  4571. * visible in /proc/mdstat
  4572. */
  4573. md_new_event(mddev);
  4574. if (last_check + window > io_sectors || j == max_sectors)
  4575. continue;
  4576. last_check = io_sectors;
  4577. if (test_bit(MD_RECOVERY_INTR, &mddev->recovery) ||
  4578. test_bit(MD_RECOVERY_ERR, &mddev->recovery))
  4579. break;
  4580. repeat:
  4581. if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
  4582. /* step marks */
  4583. int next = (last_mark+1) % SYNC_MARKS;
  4584. mddev->resync_mark = mark[next];
  4585. mddev->resync_mark_cnt = mark_cnt[next];
  4586. mark[next] = jiffies;
  4587. mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
  4588. last_mark = next;
  4589. }
  4590. if (kthread_should_stop()) {
  4591. /*
  4592. * got a signal, exit.
  4593. */
  4594. printk(KERN_INFO
  4595. "md: md_do_sync() got signal ... exiting\n");
  4596. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  4597. goto out;
  4598. }
  4599. /*
  4600. * this loop exits only if either when we are slower than
  4601. * the 'hard' speed limit, or the system was IO-idle for
  4602. * a jiffy.
  4603. * the system might be non-idle CPU-wise, but we only care
  4604. * about not overloading the IO subsystem. (things like an
  4605. * e2fsck being done on the RAID array should execute fast)
  4606. */
  4607. mddev->queue->unplug_fn(mddev->queue);
  4608. cond_resched();
  4609. currspeed = ((unsigned long)(io_sectors-mddev->resync_mark_cnt))/2
  4610. /((jiffies-mddev->resync_mark)/HZ +1) +1;
  4611. if (currspeed > speed_min(mddev)) {
  4612. if ((currspeed > speed_max(mddev)) ||
  4613. !is_mddev_idle(mddev)) {
  4614. msleep(500);
  4615. goto repeat;
  4616. }
  4617. }
  4618. }
  4619. printk(KERN_INFO "md: %s: sync done.\n",mdname(mddev));
  4620. /*
  4621. * this also signals 'finished resyncing' to md_stop
  4622. */
  4623. out:
  4624. mddev->queue->unplug_fn(mddev->queue);
  4625. wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
  4626. /* tell personality that we are finished */
  4627. mddev->pers->sync_request(mddev, max_sectors, &skipped, 1);
  4628. if (!test_bit(MD_RECOVERY_ERR, &mddev->recovery) &&
  4629. test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
  4630. !test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
  4631. mddev->curr_resync > 2) {
  4632. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
  4633. if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
  4634. if (mddev->curr_resync >= mddev->recovery_cp) {
  4635. printk(KERN_INFO
  4636. "md: checkpointing recovery of %s.\n",
  4637. mdname(mddev));
  4638. mddev->recovery_cp = mddev->curr_resync;
  4639. }
  4640. } else
  4641. mddev->recovery_cp = MaxSector;
  4642. } else {
  4643. if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
  4644. mddev->curr_resync = MaxSector;
  4645. ITERATE_RDEV(mddev,rdev,rtmp)
  4646. if (rdev->raid_disk >= 0 &&
  4647. !test_bit(Faulty, &rdev->flags) &&
  4648. !test_bit(In_sync, &rdev->flags) &&
  4649. rdev->recovery_offset < mddev->curr_resync)
  4650. rdev->recovery_offset = mddev->curr_resync;
  4651. mddev->sb_dirty = 1;
  4652. }
  4653. }
  4654. skip:
  4655. mddev->curr_resync = 0;
  4656. wake_up(&resync_wait);
  4657. set_bit(MD_RECOVERY_DONE, &mddev->recovery);
  4658. md_wakeup_thread(mddev->thread);
  4659. }
  4660. EXPORT_SYMBOL_GPL(md_do_sync);
  4661. /*
  4662. * This routine is regularly called by all per-raid-array threads to
  4663. * deal with generic issues like resync and super-block update.
  4664. * Raid personalities that don't have a thread (linear/raid0) do not
  4665. * need this as they never do any recovery or update the superblock.
  4666. *
  4667. * It does not do any resync itself, but rather "forks" off other threads
  4668. * to do that as needed.
  4669. * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
  4670. * "->recovery" and create a thread at ->sync_thread.
  4671. * When the thread finishes it sets MD_RECOVERY_DONE (and might set MD_RECOVERY_ERR)
  4672. * and wakeups up this thread which will reap the thread and finish up.
  4673. * This thread also removes any faulty devices (with nr_pending == 0).
  4674. *
  4675. * The overall approach is:
  4676. * 1/ if the superblock needs updating, update it.
  4677. * 2/ If a recovery thread is running, don't do anything else.
  4678. * 3/ If recovery has finished, clean up, possibly marking spares active.
  4679. * 4/ If there are any faulty devices, remove them.
  4680. * 5/ If array is degraded, try to add spares devices
  4681. * 6/ If array has spares or is not in-sync, start a resync thread.
  4682. */
  4683. void md_check_recovery(mddev_t *mddev)
  4684. {
  4685. mdk_rdev_t *rdev;
  4686. struct list_head *rtmp;
  4687. if (mddev->bitmap)
  4688. bitmap_daemon_work(mddev->bitmap);
  4689. if (mddev->ro)
  4690. return;
  4691. if (signal_pending(current)) {
  4692. if (mddev->pers->sync_request) {
  4693. printk(KERN_INFO "md: %s in immediate safe mode\n",
  4694. mdname(mddev));
  4695. mddev->safemode = 2;
  4696. }
  4697. flush_signals(current);
  4698. }
  4699. if ( ! (
  4700. mddev->sb_dirty ||
  4701. test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
  4702. test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
  4703. (mddev->safemode == 1) ||
  4704. (mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
  4705. && !mddev->in_sync && mddev->recovery_cp == MaxSector)
  4706. ))
  4707. return;
  4708. if (mddev_trylock(mddev)) {
  4709. int spares =0;
  4710. spin_lock_irq(&mddev->write_lock);
  4711. if (mddev->safemode && !atomic_read(&mddev->writes_pending) &&
  4712. !mddev->in_sync && mddev->recovery_cp == MaxSector) {
  4713. mddev->in_sync = 1;
  4714. mddev->sb_dirty = 3;
  4715. }
  4716. if (mddev->safemode == 1)
  4717. mddev->safemode = 0;
  4718. spin_unlock_irq(&mddev->write_lock);
  4719. if (mddev->sb_dirty)
  4720. md_update_sb(mddev);
  4721. if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
  4722. !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
  4723. /* resync/recovery still happening */
  4724. clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  4725. goto unlock;
  4726. }
  4727. if (mddev->sync_thread) {
  4728. /* resync has finished, collect result */
  4729. md_unregister_thread(mddev->sync_thread);
  4730. mddev->sync_thread = NULL;
  4731. if (!test_bit(MD_RECOVERY_ERR, &mddev->recovery) &&
  4732. !test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
  4733. /* success...*/
  4734. /* activate any spares */
  4735. mddev->pers->spare_active(mddev);
  4736. }
  4737. md_update_sb(mddev);
  4738. /* if array is no-longer degraded, then any saved_raid_disk
  4739. * information must be scrapped
  4740. */
  4741. if (!mddev->degraded)
  4742. ITERATE_RDEV(mddev,rdev,rtmp)
  4743. rdev->saved_raid_disk = -1;
  4744. mddev->recovery = 0;
  4745. /* flag recovery needed just to double check */
  4746. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  4747. md_new_event(mddev);
  4748. goto unlock;
  4749. }
  4750. /* Clear some bits that don't mean anything, but
  4751. * might be left set
  4752. */
  4753. clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  4754. clear_bit(MD_RECOVERY_ERR, &mddev->recovery);
  4755. clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
  4756. clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
  4757. if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
  4758. goto unlock;
  4759. /* no recovery is running.
  4760. * remove any failed drives, then
  4761. * add spares if possible.
  4762. * Spare are also removed and re-added, to allow
  4763. * the personality to fail the re-add.
  4764. */
  4765. ITERATE_RDEV(mddev,rdev,rtmp)
  4766. if (rdev->raid_disk >= 0 &&
  4767. (test_bit(Faulty, &rdev->flags) || ! test_bit(In_sync, &rdev->flags)) &&
  4768. atomic_read(&rdev->nr_pending)==0) {
  4769. if (mddev->pers->hot_remove_disk(mddev, rdev->raid_disk)==0) {
  4770. char nm[20];
  4771. sprintf(nm,"rd%d", rdev->raid_disk);
  4772. sysfs_remove_link(&mddev->kobj, nm);
  4773. rdev->raid_disk = -1;
  4774. }
  4775. }
  4776. if (mddev->degraded) {
  4777. ITERATE_RDEV(mddev,rdev,rtmp)
  4778. if (rdev->raid_disk < 0
  4779. && !test_bit(Faulty, &rdev->flags)) {
  4780. rdev->recovery_offset = 0;
  4781. if (mddev->pers->hot_add_disk(mddev,rdev)) {
  4782. char nm[20];
  4783. sprintf(nm, "rd%d", rdev->raid_disk);
  4784. sysfs_create_link(&mddev->kobj, &rdev->kobj, nm);
  4785. spares++;
  4786. md_new_event(mddev);
  4787. } else
  4788. break;
  4789. }
  4790. }
  4791. if (spares) {
  4792. clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
  4793. clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
  4794. } else if (mddev->recovery_cp < MaxSector) {
  4795. set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
  4796. } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
  4797. /* nothing to be done ... */
  4798. goto unlock;
  4799. if (mddev->pers->sync_request) {
  4800. set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
  4801. if (spares && mddev->bitmap && ! mddev->bitmap->file) {
  4802. /* We are adding a device or devices to an array
  4803. * which has the bitmap stored on all devices.
  4804. * So make sure all bitmap pages get written
  4805. */
  4806. bitmap_write_all(mddev->bitmap);
  4807. }
  4808. mddev->sync_thread = md_register_thread(md_do_sync,
  4809. mddev,
  4810. "%s_resync");
  4811. if (!mddev->sync_thread) {
  4812. printk(KERN_ERR "%s: could not start resync"
  4813. " thread...\n",
  4814. mdname(mddev));
  4815. /* leave the spares where they are, it shouldn't hurt */
  4816. mddev->recovery = 0;
  4817. } else
  4818. md_wakeup_thread(mddev->sync_thread);
  4819. md_new_event(mddev);
  4820. }
  4821. unlock:
  4822. mddev_unlock(mddev);
  4823. }
  4824. }
  4825. static int md_notify_reboot(struct notifier_block *this,
  4826. unsigned long code, void *x)
  4827. {
  4828. struct list_head *tmp;
  4829. mddev_t *mddev;
  4830. if ((code == SYS_DOWN) || (code == SYS_HALT) || (code == SYS_POWER_OFF)) {
  4831. printk(KERN_INFO "md: stopping all md devices.\n");
  4832. ITERATE_MDDEV(mddev,tmp)
  4833. if (mddev_trylock(mddev)) {
  4834. do_md_stop (mddev, 1);
  4835. mddev_unlock(mddev);
  4836. }
  4837. /*
  4838. * certain more exotic SCSI devices are known to be
  4839. * volatile wrt too early system reboots. While the
  4840. * right place to handle this issue is the given
  4841. * driver, we do want to have a safe RAID driver ...
  4842. */
  4843. mdelay(1000*1);
  4844. }
  4845. return NOTIFY_DONE;
  4846. }
  4847. static struct notifier_block md_notifier = {
  4848. .notifier_call = md_notify_reboot,
  4849. .next = NULL,
  4850. .priority = INT_MAX, /* before any real devices */
  4851. };
  4852. static void md_geninit(void)
  4853. {
  4854. struct proc_dir_entry *p;
  4855. dprintk("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
  4856. p = create_proc_entry("mdstat", S_IRUGO, NULL);
  4857. if (p)
  4858. p->proc_fops = &md_seq_fops;
  4859. }
  4860. static int __init md_init(void)
  4861. {
  4862. printk(KERN_INFO "md: md driver %d.%d.%d MAX_MD_DEVS=%d,"
  4863. " MD_SB_DISKS=%d\n",
  4864. MD_MAJOR_VERSION, MD_MINOR_VERSION,
  4865. MD_PATCHLEVEL_VERSION, MAX_MD_DEVS, MD_SB_DISKS);
  4866. printk(KERN_INFO "md: bitmap version %d.%d\n", BITMAP_MAJOR_HI,
  4867. BITMAP_MINOR);
  4868. if (register_blkdev(MAJOR_NR, "md"))
  4869. return -1;
  4870. if ((mdp_major=register_blkdev(0, "mdp"))<=0) {
  4871. unregister_blkdev(MAJOR_NR, "md");
  4872. return -1;
  4873. }
  4874. blk_register_region(MKDEV(MAJOR_NR, 0), MAX_MD_DEVS, THIS_MODULE,
  4875. md_probe, NULL, NULL);
  4876. blk_register_region(MKDEV(mdp_major, 0), MAX_MD_DEVS<<MdpMinorShift, THIS_MODULE,
  4877. md_probe, NULL, NULL);
  4878. register_reboot_notifier(&md_notifier);
  4879. raid_table_header = register_sysctl_table(raid_root_table, 1);
  4880. md_geninit();
  4881. return (0);
  4882. }
  4883. #ifndef MODULE
  4884. /*
  4885. * Searches all registered partitions for autorun RAID arrays
  4886. * at boot time.
  4887. */
  4888. static dev_t detected_devices[128];
  4889. static int dev_cnt;
  4890. void md_autodetect_dev(dev_t dev)
  4891. {
  4892. if (dev_cnt >= 0 && dev_cnt < 127)
  4893. detected_devices[dev_cnt++] = dev;
  4894. }
  4895. static void autostart_arrays(int part)
  4896. {
  4897. mdk_rdev_t *rdev;
  4898. int i;
  4899. printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
  4900. for (i = 0; i < dev_cnt; i++) {
  4901. dev_t dev = detected_devices[i];
  4902. rdev = md_import_device(dev,0, 0);
  4903. if (IS_ERR(rdev))
  4904. continue;
  4905. if (test_bit(Faulty, &rdev->flags)) {
  4906. MD_BUG();
  4907. continue;
  4908. }
  4909. list_add(&rdev->same_set, &pending_raid_disks);
  4910. }
  4911. dev_cnt = 0;
  4912. autorun_devices(part);
  4913. }
  4914. #endif
  4915. static __exit void md_exit(void)
  4916. {
  4917. mddev_t *mddev;
  4918. struct list_head *tmp;
  4919. blk_unregister_region(MKDEV(MAJOR_NR,0), MAX_MD_DEVS);
  4920. blk_unregister_region(MKDEV(mdp_major,0), MAX_MD_DEVS << MdpMinorShift);
  4921. unregister_blkdev(MAJOR_NR,"md");
  4922. unregister_blkdev(mdp_major, "mdp");
  4923. unregister_reboot_notifier(&md_notifier);
  4924. unregister_sysctl_table(raid_table_header);
  4925. remove_proc_entry("mdstat", NULL);
  4926. ITERATE_MDDEV(mddev,tmp) {
  4927. struct gendisk *disk = mddev->gendisk;
  4928. if (!disk)
  4929. continue;
  4930. export_array(mddev);
  4931. del_gendisk(disk);
  4932. put_disk(disk);
  4933. mddev->gendisk = NULL;
  4934. mddev_put(mddev);
  4935. }
  4936. }
  4937. module_init(md_init)
  4938. module_exit(md_exit)
  4939. static int get_ro(char *buffer, struct kernel_param *kp)
  4940. {
  4941. return sprintf(buffer, "%d", start_readonly);
  4942. }
  4943. static int set_ro(const char *val, struct kernel_param *kp)
  4944. {
  4945. char *e;
  4946. int num = simple_strtoul(val, &e, 10);
  4947. if (*val && (*e == '\0' || *e == '\n')) {
  4948. start_readonly = num;
  4949. return 0;
  4950. }
  4951. return -EINVAL;
  4952. }
  4953. module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
  4954. module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
  4955. EXPORT_SYMBOL(register_md_personality);
  4956. EXPORT_SYMBOL(unregister_md_personality);
  4957. EXPORT_SYMBOL(md_error);
  4958. EXPORT_SYMBOL(md_done_sync);
  4959. EXPORT_SYMBOL(md_write_start);
  4960. EXPORT_SYMBOL(md_write_end);
  4961. EXPORT_SYMBOL(md_register_thread);
  4962. EXPORT_SYMBOL(md_unregister_thread);
  4963. EXPORT_SYMBOL(md_wakeup_thread);
  4964. EXPORT_SYMBOL(md_check_recovery);
  4965. MODULE_LICENSE("GPL");
  4966. MODULE_ALIAS("md");
  4967. MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);