dm-crypt.c 22 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944
  1. /*
  2. * Copyright (C) 2003 Christophe Saout <christophe@saout.de>
  3. * Copyright (C) 2004 Clemens Fruhwirth <clemens@endorphin.org>
  4. *
  5. * This file is released under the GPL.
  6. */
  7. #include <linux/err.h>
  8. #include <linux/module.h>
  9. #include <linux/init.h>
  10. #include <linux/kernel.h>
  11. #include <linux/bio.h>
  12. #include <linux/blkdev.h>
  13. #include <linux/mempool.h>
  14. #include <linux/slab.h>
  15. #include <linux/crypto.h>
  16. #include <linux/workqueue.h>
  17. #include <asm/atomic.h>
  18. #include <linux/scatterlist.h>
  19. #include <asm/page.h>
  20. #include "dm.h"
  21. #define DM_MSG_PREFIX "crypt"
  22. /*
  23. * per bio private data
  24. */
  25. struct crypt_io {
  26. struct dm_target *target;
  27. struct bio *bio;
  28. struct bio *first_clone;
  29. struct work_struct work;
  30. atomic_t pending;
  31. int error;
  32. };
  33. /*
  34. * context holding the current state of a multi-part conversion
  35. */
  36. struct convert_context {
  37. struct bio *bio_in;
  38. struct bio *bio_out;
  39. unsigned int offset_in;
  40. unsigned int offset_out;
  41. unsigned int idx_in;
  42. unsigned int idx_out;
  43. sector_t sector;
  44. int write;
  45. };
  46. struct crypt_config;
  47. struct crypt_iv_operations {
  48. int (*ctr)(struct crypt_config *cc, struct dm_target *ti,
  49. const char *opts);
  50. void (*dtr)(struct crypt_config *cc);
  51. const char *(*status)(struct crypt_config *cc);
  52. int (*generator)(struct crypt_config *cc, u8 *iv, sector_t sector);
  53. };
  54. /*
  55. * Crypt: maps a linear range of a block device
  56. * and encrypts / decrypts at the same time.
  57. */
  58. struct crypt_config {
  59. struct dm_dev *dev;
  60. sector_t start;
  61. /*
  62. * pool for per bio private data and
  63. * for encryption buffer pages
  64. */
  65. mempool_t *io_pool;
  66. mempool_t *page_pool;
  67. /*
  68. * crypto related data
  69. */
  70. struct crypt_iv_operations *iv_gen_ops;
  71. char *iv_mode;
  72. struct crypto_cipher *iv_gen_private;
  73. sector_t iv_offset;
  74. unsigned int iv_size;
  75. char cipher[CRYPTO_MAX_ALG_NAME];
  76. char chainmode[CRYPTO_MAX_ALG_NAME];
  77. struct crypto_blkcipher *tfm;
  78. unsigned int key_size;
  79. u8 key[0];
  80. };
  81. #define MIN_IOS 256
  82. #define MIN_POOL_PAGES 32
  83. #define MIN_BIO_PAGES 8
  84. static kmem_cache_t *_crypt_io_pool;
  85. /*
  86. * Different IV generation algorithms:
  87. *
  88. * plain: the initial vector is the 32-bit little-endian version of the sector
  89. * number, padded with zeros if neccessary.
  90. *
  91. * essiv: "encrypted sector|salt initial vector", the sector number is
  92. * encrypted with the bulk cipher using a salt as key. The salt
  93. * should be derived from the bulk cipher's key via hashing.
  94. *
  95. * plumb: unimplemented, see:
  96. * http://article.gmane.org/gmane.linux.kernel.device-mapper.dm-crypt/454
  97. */
  98. static int crypt_iv_plain_gen(struct crypt_config *cc, u8 *iv, sector_t sector)
  99. {
  100. memset(iv, 0, cc->iv_size);
  101. *(u32 *)iv = cpu_to_le32(sector & 0xffffffff);
  102. return 0;
  103. }
  104. static int crypt_iv_essiv_ctr(struct crypt_config *cc, struct dm_target *ti,
  105. const char *opts)
  106. {
  107. struct crypto_cipher *essiv_tfm;
  108. struct crypto_hash *hash_tfm;
  109. struct hash_desc desc;
  110. struct scatterlist sg;
  111. unsigned int saltsize;
  112. u8 *salt;
  113. int err;
  114. if (opts == NULL) {
  115. ti->error = "Digest algorithm missing for ESSIV mode";
  116. return -EINVAL;
  117. }
  118. /* Hash the cipher key with the given hash algorithm */
  119. hash_tfm = crypto_alloc_hash(opts, 0, CRYPTO_ALG_ASYNC);
  120. if (IS_ERR(hash_tfm)) {
  121. ti->error = "Error initializing ESSIV hash";
  122. return PTR_ERR(hash_tfm);
  123. }
  124. saltsize = crypto_hash_digestsize(hash_tfm);
  125. salt = kmalloc(saltsize, GFP_KERNEL);
  126. if (salt == NULL) {
  127. ti->error = "Error kmallocing salt storage in ESSIV";
  128. crypto_free_hash(hash_tfm);
  129. return -ENOMEM;
  130. }
  131. sg_set_buf(&sg, cc->key, cc->key_size);
  132. desc.tfm = hash_tfm;
  133. desc.flags = CRYPTO_TFM_REQ_MAY_SLEEP;
  134. err = crypto_hash_digest(&desc, &sg, cc->key_size, salt);
  135. crypto_free_hash(hash_tfm);
  136. if (err) {
  137. ti->error = "Error calculating hash in ESSIV";
  138. return err;
  139. }
  140. /* Setup the essiv_tfm with the given salt */
  141. essiv_tfm = crypto_alloc_cipher(cc->cipher, 0, CRYPTO_ALG_ASYNC);
  142. if (IS_ERR(essiv_tfm)) {
  143. ti->error = "Error allocating crypto tfm for ESSIV";
  144. kfree(salt);
  145. return PTR_ERR(essiv_tfm);
  146. }
  147. if (crypto_cipher_blocksize(essiv_tfm) !=
  148. crypto_blkcipher_ivsize(cc->tfm)) {
  149. ti->error = "Block size of ESSIV cipher does "
  150. "not match IV size of block cipher";
  151. crypto_free_cipher(essiv_tfm);
  152. kfree(salt);
  153. return -EINVAL;
  154. }
  155. err = crypto_cipher_setkey(essiv_tfm, salt, saltsize);
  156. if (err) {
  157. ti->error = "Failed to set key for ESSIV cipher";
  158. crypto_free_cipher(essiv_tfm);
  159. kfree(salt);
  160. return err;
  161. }
  162. kfree(salt);
  163. cc->iv_gen_private = essiv_tfm;
  164. return 0;
  165. }
  166. static void crypt_iv_essiv_dtr(struct crypt_config *cc)
  167. {
  168. crypto_free_cipher(cc->iv_gen_private);
  169. cc->iv_gen_private = NULL;
  170. }
  171. static int crypt_iv_essiv_gen(struct crypt_config *cc, u8 *iv, sector_t sector)
  172. {
  173. memset(iv, 0, cc->iv_size);
  174. *(u64 *)iv = cpu_to_le64(sector);
  175. crypto_cipher_encrypt_one(cc->iv_gen_private, iv, iv);
  176. return 0;
  177. }
  178. static struct crypt_iv_operations crypt_iv_plain_ops = {
  179. .generator = crypt_iv_plain_gen
  180. };
  181. static struct crypt_iv_operations crypt_iv_essiv_ops = {
  182. .ctr = crypt_iv_essiv_ctr,
  183. .dtr = crypt_iv_essiv_dtr,
  184. .generator = crypt_iv_essiv_gen
  185. };
  186. static int
  187. crypt_convert_scatterlist(struct crypt_config *cc, struct scatterlist *out,
  188. struct scatterlist *in, unsigned int length,
  189. int write, sector_t sector)
  190. {
  191. u8 iv[cc->iv_size];
  192. struct blkcipher_desc desc = {
  193. .tfm = cc->tfm,
  194. .info = iv,
  195. .flags = CRYPTO_TFM_REQ_MAY_SLEEP,
  196. };
  197. int r;
  198. if (cc->iv_gen_ops) {
  199. r = cc->iv_gen_ops->generator(cc, iv, sector);
  200. if (r < 0)
  201. return r;
  202. if (write)
  203. r = crypto_blkcipher_encrypt_iv(&desc, out, in, length);
  204. else
  205. r = crypto_blkcipher_decrypt_iv(&desc, out, in, length);
  206. } else {
  207. if (write)
  208. r = crypto_blkcipher_encrypt(&desc, out, in, length);
  209. else
  210. r = crypto_blkcipher_decrypt(&desc, out, in, length);
  211. }
  212. return r;
  213. }
  214. static void
  215. crypt_convert_init(struct crypt_config *cc, struct convert_context *ctx,
  216. struct bio *bio_out, struct bio *bio_in,
  217. sector_t sector, int write)
  218. {
  219. ctx->bio_in = bio_in;
  220. ctx->bio_out = bio_out;
  221. ctx->offset_in = 0;
  222. ctx->offset_out = 0;
  223. ctx->idx_in = bio_in ? bio_in->bi_idx : 0;
  224. ctx->idx_out = bio_out ? bio_out->bi_idx : 0;
  225. ctx->sector = sector + cc->iv_offset;
  226. ctx->write = write;
  227. }
  228. /*
  229. * Encrypt / decrypt data from one bio to another one (can be the same one)
  230. */
  231. static int crypt_convert(struct crypt_config *cc,
  232. struct convert_context *ctx)
  233. {
  234. int r = 0;
  235. while(ctx->idx_in < ctx->bio_in->bi_vcnt &&
  236. ctx->idx_out < ctx->bio_out->bi_vcnt) {
  237. struct bio_vec *bv_in = bio_iovec_idx(ctx->bio_in, ctx->idx_in);
  238. struct bio_vec *bv_out = bio_iovec_idx(ctx->bio_out, ctx->idx_out);
  239. struct scatterlist sg_in = {
  240. .page = bv_in->bv_page,
  241. .offset = bv_in->bv_offset + ctx->offset_in,
  242. .length = 1 << SECTOR_SHIFT
  243. };
  244. struct scatterlist sg_out = {
  245. .page = bv_out->bv_page,
  246. .offset = bv_out->bv_offset + ctx->offset_out,
  247. .length = 1 << SECTOR_SHIFT
  248. };
  249. ctx->offset_in += sg_in.length;
  250. if (ctx->offset_in >= bv_in->bv_len) {
  251. ctx->offset_in = 0;
  252. ctx->idx_in++;
  253. }
  254. ctx->offset_out += sg_out.length;
  255. if (ctx->offset_out >= bv_out->bv_len) {
  256. ctx->offset_out = 0;
  257. ctx->idx_out++;
  258. }
  259. r = crypt_convert_scatterlist(cc, &sg_out, &sg_in, sg_in.length,
  260. ctx->write, ctx->sector);
  261. if (r < 0)
  262. break;
  263. ctx->sector++;
  264. }
  265. return r;
  266. }
  267. /*
  268. * Generate a new unfragmented bio with the given size
  269. * This should never violate the device limitations
  270. * May return a smaller bio when running out of pages
  271. */
  272. static struct bio *
  273. crypt_alloc_buffer(struct crypt_config *cc, unsigned int size,
  274. struct bio *base_bio, unsigned int *bio_vec_idx)
  275. {
  276. struct bio *bio;
  277. unsigned int nr_iovecs = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
  278. gfp_t gfp_mask = GFP_NOIO | __GFP_HIGHMEM;
  279. unsigned int i;
  280. /*
  281. * Use __GFP_NOMEMALLOC to tell the VM to act less aggressively and
  282. * to fail earlier. This is not necessary but increases throughput.
  283. * FIXME: Is this really intelligent?
  284. */
  285. if (base_bio)
  286. bio = bio_clone(base_bio, GFP_NOIO|__GFP_NOMEMALLOC);
  287. else
  288. bio = bio_alloc(GFP_NOIO|__GFP_NOMEMALLOC, nr_iovecs);
  289. if (!bio)
  290. return NULL;
  291. /* if the last bio was not complete, continue where that one ended */
  292. bio->bi_idx = *bio_vec_idx;
  293. bio->bi_vcnt = *bio_vec_idx;
  294. bio->bi_size = 0;
  295. bio->bi_flags &= ~(1 << BIO_SEG_VALID);
  296. /* bio->bi_idx pages have already been allocated */
  297. size -= bio->bi_idx * PAGE_SIZE;
  298. for(i = bio->bi_idx; i < nr_iovecs; i++) {
  299. struct bio_vec *bv = bio_iovec_idx(bio, i);
  300. bv->bv_page = mempool_alloc(cc->page_pool, gfp_mask);
  301. if (!bv->bv_page)
  302. break;
  303. /*
  304. * if additional pages cannot be allocated without waiting,
  305. * return a partially allocated bio, the caller will then try
  306. * to allocate additional bios while submitting this partial bio
  307. */
  308. if ((i - bio->bi_idx) == (MIN_BIO_PAGES - 1))
  309. gfp_mask = (gfp_mask | __GFP_NOWARN) & ~__GFP_WAIT;
  310. bv->bv_offset = 0;
  311. if (size > PAGE_SIZE)
  312. bv->bv_len = PAGE_SIZE;
  313. else
  314. bv->bv_len = size;
  315. bio->bi_size += bv->bv_len;
  316. bio->bi_vcnt++;
  317. size -= bv->bv_len;
  318. }
  319. if (!bio->bi_size) {
  320. bio_put(bio);
  321. return NULL;
  322. }
  323. /*
  324. * Remember the last bio_vec allocated to be able
  325. * to correctly continue after the splitting.
  326. */
  327. *bio_vec_idx = bio->bi_vcnt;
  328. return bio;
  329. }
  330. static void crypt_free_buffer_pages(struct crypt_config *cc,
  331. struct bio *bio, unsigned int bytes)
  332. {
  333. unsigned int i, start, end;
  334. struct bio_vec *bv;
  335. /*
  336. * This is ugly, but Jens Axboe thinks that using bi_idx in the
  337. * endio function is too dangerous at the moment, so I calculate the
  338. * correct position using bi_vcnt and bi_size.
  339. * The bv_offset and bv_len fields might already be modified but we
  340. * know that we always allocated whole pages.
  341. * A fix to the bi_idx issue in the kernel is in the works, so
  342. * we will hopefully be able to revert to the cleaner solution soon.
  343. */
  344. i = bio->bi_vcnt - 1;
  345. bv = bio_iovec_idx(bio, i);
  346. end = (i << PAGE_SHIFT) + (bv->bv_offset + bv->bv_len) - bio->bi_size;
  347. start = end - bytes;
  348. start >>= PAGE_SHIFT;
  349. if (!bio->bi_size)
  350. end = bio->bi_vcnt;
  351. else
  352. end >>= PAGE_SHIFT;
  353. for(i = start; i < end; i++) {
  354. bv = bio_iovec_idx(bio, i);
  355. BUG_ON(!bv->bv_page);
  356. mempool_free(bv->bv_page, cc->page_pool);
  357. bv->bv_page = NULL;
  358. }
  359. }
  360. /*
  361. * One of the bios was finished. Check for completion of
  362. * the whole request and correctly clean up the buffer.
  363. */
  364. static void dec_pending(struct crypt_io *io, int error)
  365. {
  366. struct crypt_config *cc = (struct crypt_config *) io->target->private;
  367. if (error < 0)
  368. io->error = error;
  369. if (!atomic_dec_and_test(&io->pending))
  370. return;
  371. if (io->first_clone)
  372. bio_put(io->first_clone);
  373. bio_endio(io->bio, io->bio->bi_size, io->error);
  374. mempool_free(io, cc->io_pool);
  375. }
  376. /*
  377. * kcryptd:
  378. *
  379. * Needed because it would be very unwise to do decryption in an
  380. * interrupt context, so bios returning from read requests get
  381. * queued here.
  382. */
  383. static struct workqueue_struct *_kcryptd_workqueue;
  384. static void kcryptd_do_work(void *data)
  385. {
  386. struct crypt_io *io = (struct crypt_io *) data;
  387. struct crypt_config *cc = (struct crypt_config *) io->target->private;
  388. struct convert_context ctx;
  389. int r;
  390. crypt_convert_init(cc, &ctx, io->bio, io->bio,
  391. io->bio->bi_sector - io->target->begin, 0);
  392. r = crypt_convert(cc, &ctx);
  393. dec_pending(io, r);
  394. }
  395. static void kcryptd_queue_io(struct crypt_io *io)
  396. {
  397. INIT_WORK(&io->work, kcryptd_do_work, io);
  398. queue_work(_kcryptd_workqueue, &io->work);
  399. }
  400. /*
  401. * Decode key from its hex representation
  402. */
  403. static int crypt_decode_key(u8 *key, char *hex, unsigned int size)
  404. {
  405. char buffer[3];
  406. char *endp;
  407. unsigned int i;
  408. buffer[2] = '\0';
  409. for(i = 0; i < size; i++) {
  410. buffer[0] = *hex++;
  411. buffer[1] = *hex++;
  412. key[i] = (u8)simple_strtoul(buffer, &endp, 16);
  413. if (endp != &buffer[2])
  414. return -EINVAL;
  415. }
  416. if (*hex != '\0')
  417. return -EINVAL;
  418. return 0;
  419. }
  420. /*
  421. * Encode key into its hex representation
  422. */
  423. static void crypt_encode_key(char *hex, u8 *key, unsigned int size)
  424. {
  425. unsigned int i;
  426. for(i = 0; i < size; i++) {
  427. sprintf(hex, "%02x", *key);
  428. hex += 2;
  429. key++;
  430. }
  431. }
  432. /*
  433. * Construct an encryption mapping:
  434. * <cipher> <key> <iv_offset> <dev_path> <start>
  435. */
  436. static int crypt_ctr(struct dm_target *ti, unsigned int argc, char **argv)
  437. {
  438. struct crypt_config *cc;
  439. struct crypto_blkcipher *tfm;
  440. char *tmp;
  441. char *cipher;
  442. char *chainmode;
  443. char *ivmode;
  444. char *ivopts;
  445. unsigned int key_size;
  446. unsigned long long tmpll;
  447. if (argc != 5) {
  448. ti->error = "Not enough arguments";
  449. return -EINVAL;
  450. }
  451. tmp = argv[0];
  452. cipher = strsep(&tmp, "-");
  453. chainmode = strsep(&tmp, "-");
  454. ivopts = strsep(&tmp, "-");
  455. ivmode = strsep(&ivopts, ":");
  456. if (tmp)
  457. DMWARN("Unexpected additional cipher options");
  458. key_size = strlen(argv[1]) >> 1;
  459. cc = kmalloc(sizeof(*cc) + key_size * sizeof(u8), GFP_KERNEL);
  460. if (cc == NULL) {
  461. ti->error =
  462. "Cannot allocate transparent encryption context";
  463. return -ENOMEM;
  464. }
  465. cc->key_size = key_size;
  466. if ((!key_size && strcmp(argv[1], "-") != 0) ||
  467. (key_size && crypt_decode_key(cc->key, argv[1], key_size) < 0)) {
  468. ti->error = "Error decoding key";
  469. goto bad1;
  470. }
  471. /* Compatiblity mode for old dm-crypt cipher strings */
  472. if (!chainmode || (strcmp(chainmode, "plain") == 0 && !ivmode)) {
  473. chainmode = "cbc";
  474. ivmode = "plain";
  475. }
  476. if (strcmp(chainmode, "ecb") && !ivmode) {
  477. ti->error = "This chaining mode requires an IV mechanism";
  478. goto bad1;
  479. }
  480. if (snprintf(cc->cipher, CRYPTO_MAX_ALG_NAME, "%s(%s)", chainmode,
  481. cipher) >= CRYPTO_MAX_ALG_NAME) {
  482. ti->error = "Chain mode + cipher name is too long";
  483. goto bad1;
  484. }
  485. tfm = crypto_alloc_blkcipher(cc->cipher, 0, CRYPTO_ALG_ASYNC);
  486. if (IS_ERR(tfm)) {
  487. ti->error = "Error allocating crypto tfm";
  488. goto bad1;
  489. }
  490. strcpy(cc->cipher, cipher);
  491. strcpy(cc->chainmode, chainmode);
  492. cc->tfm = tfm;
  493. /*
  494. * Choose ivmode. Valid modes: "plain", "essiv:<esshash>".
  495. * See comments at iv code
  496. */
  497. if (ivmode == NULL)
  498. cc->iv_gen_ops = NULL;
  499. else if (strcmp(ivmode, "plain") == 0)
  500. cc->iv_gen_ops = &crypt_iv_plain_ops;
  501. else if (strcmp(ivmode, "essiv") == 0)
  502. cc->iv_gen_ops = &crypt_iv_essiv_ops;
  503. else {
  504. ti->error = "Invalid IV mode";
  505. goto bad2;
  506. }
  507. if (cc->iv_gen_ops && cc->iv_gen_ops->ctr &&
  508. cc->iv_gen_ops->ctr(cc, ti, ivopts) < 0)
  509. goto bad2;
  510. cc->iv_size = crypto_blkcipher_ivsize(tfm);
  511. if (cc->iv_size)
  512. /* at least a 64 bit sector number should fit in our buffer */
  513. cc->iv_size = max(cc->iv_size,
  514. (unsigned int)(sizeof(u64) / sizeof(u8)));
  515. else {
  516. if (cc->iv_gen_ops) {
  517. DMWARN("Selected cipher does not support IVs");
  518. if (cc->iv_gen_ops->dtr)
  519. cc->iv_gen_ops->dtr(cc);
  520. cc->iv_gen_ops = NULL;
  521. }
  522. }
  523. cc->io_pool = mempool_create_slab_pool(MIN_IOS, _crypt_io_pool);
  524. if (!cc->io_pool) {
  525. ti->error = "Cannot allocate crypt io mempool";
  526. goto bad3;
  527. }
  528. cc->page_pool = mempool_create_page_pool(MIN_POOL_PAGES, 0);
  529. if (!cc->page_pool) {
  530. ti->error = "Cannot allocate page mempool";
  531. goto bad4;
  532. }
  533. if (crypto_blkcipher_setkey(tfm, cc->key, key_size) < 0) {
  534. ti->error = "Error setting key";
  535. goto bad5;
  536. }
  537. if (sscanf(argv[2], "%llu", &tmpll) != 1) {
  538. ti->error = "Invalid iv_offset sector";
  539. goto bad5;
  540. }
  541. cc->iv_offset = tmpll;
  542. if (sscanf(argv[4], "%llu", &tmpll) != 1) {
  543. ti->error = "Invalid device sector";
  544. goto bad5;
  545. }
  546. cc->start = tmpll;
  547. if (dm_get_device(ti, argv[3], cc->start, ti->len,
  548. dm_table_get_mode(ti->table), &cc->dev)) {
  549. ti->error = "Device lookup failed";
  550. goto bad5;
  551. }
  552. if (ivmode && cc->iv_gen_ops) {
  553. if (ivopts)
  554. *(ivopts - 1) = ':';
  555. cc->iv_mode = kmalloc(strlen(ivmode) + 1, GFP_KERNEL);
  556. if (!cc->iv_mode) {
  557. ti->error = "Error kmallocing iv_mode string";
  558. goto bad5;
  559. }
  560. strcpy(cc->iv_mode, ivmode);
  561. } else
  562. cc->iv_mode = NULL;
  563. ti->private = cc;
  564. return 0;
  565. bad5:
  566. mempool_destroy(cc->page_pool);
  567. bad4:
  568. mempool_destroy(cc->io_pool);
  569. bad3:
  570. if (cc->iv_gen_ops && cc->iv_gen_ops->dtr)
  571. cc->iv_gen_ops->dtr(cc);
  572. bad2:
  573. crypto_free_blkcipher(tfm);
  574. bad1:
  575. /* Must zero key material before freeing */
  576. memset(cc, 0, sizeof(*cc) + cc->key_size * sizeof(u8));
  577. kfree(cc);
  578. return -EINVAL;
  579. }
  580. static void crypt_dtr(struct dm_target *ti)
  581. {
  582. struct crypt_config *cc = (struct crypt_config *) ti->private;
  583. mempool_destroy(cc->page_pool);
  584. mempool_destroy(cc->io_pool);
  585. kfree(cc->iv_mode);
  586. if (cc->iv_gen_ops && cc->iv_gen_ops->dtr)
  587. cc->iv_gen_ops->dtr(cc);
  588. crypto_free_blkcipher(cc->tfm);
  589. dm_put_device(ti, cc->dev);
  590. /* Must zero key material before freeing */
  591. memset(cc, 0, sizeof(*cc) + cc->key_size * sizeof(u8));
  592. kfree(cc);
  593. }
  594. static int crypt_endio(struct bio *bio, unsigned int done, int error)
  595. {
  596. struct crypt_io *io = (struct crypt_io *) bio->bi_private;
  597. struct crypt_config *cc = (struct crypt_config *) io->target->private;
  598. if (bio_data_dir(bio) == WRITE) {
  599. /*
  600. * free the processed pages, even if
  601. * it's only a partially completed write
  602. */
  603. crypt_free_buffer_pages(cc, bio, done);
  604. }
  605. if (bio->bi_size)
  606. return 1;
  607. bio_put(bio);
  608. /*
  609. * successful reads are decrypted by the worker thread
  610. */
  611. if ((bio_data_dir(bio) == READ)
  612. && bio_flagged(bio, BIO_UPTODATE)) {
  613. kcryptd_queue_io(io);
  614. return 0;
  615. }
  616. dec_pending(io, error);
  617. return error;
  618. }
  619. static inline struct bio *
  620. crypt_clone(struct crypt_config *cc, struct crypt_io *io, struct bio *bio,
  621. sector_t sector, unsigned int *bvec_idx,
  622. struct convert_context *ctx)
  623. {
  624. struct bio *clone;
  625. if (bio_data_dir(bio) == WRITE) {
  626. clone = crypt_alloc_buffer(cc, bio->bi_size,
  627. io->first_clone, bvec_idx);
  628. if (clone) {
  629. ctx->bio_out = clone;
  630. if (crypt_convert(cc, ctx) < 0) {
  631. crypt_free_buffer_pages(cc, clone,
  632. clone->bi_size);
  633. bio_put(clone);
  634. return NULL;
  635. }
  636. }
  637. } else {
  638. /*
  639. * The block layer might modify the bvec array, so always
  640. * copy the required bvecs because we need the original
  641. * one in order to decrypt the whole bio data *afterwards*.
  642. */
  643. clone = bio_alloc(GFP_NOIO, bio_segments(bio));
  644. if (clone) {
  645. clone->bi_idx = 0;
  646. clone->bi_vcnt = bio_segments(bio);
  647. clone->bi_size = bio->bi_size;
  648. memcpy(clone->bi_io_vec, bio_iovec(bio),
  649. sizeof(struct bio_vec) * clone->bi_vcnt);
  650. }
  651. }
  652. if (!clone)
  653. return NULL;
  654. clone->bi_private = io;
  655. clone->bi_end_io = crypt_endio;
  656. clone->bi_bdev = cc->dev->bdev;
  657. clone->bi_sector = cc->start + sector;
  658. clone->bi_rw = bio->bi_rw;
  659. return clone;
  660. }
  661. static int crypt_map(struct dm_target *ti, struct bio *bio,
  662. union map_info *map_context)
  663. {
  664. struct crypt_config *cc = (struct crypt_config *) ti->private;
  665. struct crypt_io *io = mempool_alloc(cc->io_pool, GFP_NOIO);
  666. struct convert_context ctx;
  667. struct bio *clone;
  668. unsigned int remaining = bio->bi_size;
  669. sector_t sector = bio->bi_sector - ti->begin;
  670. unsigned int bvec_idx = 0;
  671. io->target = ti;
  672. io->bio = bio;
  673. io->first_clone = NULL;
  674. io->error = 0;
  675. atomic_set(&io->pending, 1); /* hold a reference */
  676. if (bio_data_dir(bio) == WRITE)
  677. crypt_convert_init(cc, &ctx, NULL, bio, sector, 1);
  678. /*
  679. * The allocated buffers can be smaller than the whole bio,
  680. * so repeat the whole process until all the data can be handled.
  681. */
  682. while (remaining) {
  683. clone = crypt_clone(cc, io, bio, sector, &bvec_idx, &ctx);
  684. if (!clone)
  685. goto cleanup;
  686. if (!io->first_clone) {
  687. /*
  688. * hold a reference to the first clone, because it
  689. * holds the bio_vec array and that can't be freed
  690. * before all other clones are released
  691. */
  692. bio_get(clone);
  693. io->first_clone = clone;
  694. }
  695. atomic_inc(&io->pending);
  696. remaining -= clone->bi_size;
  697. sector += bio_sectors(clone);
  698. generic_make_request(clone);
  699. /* out of memory -> run queues */
  700. if (remaining)
  701. blk_congestion_wait(bio_data_dir(clone), HZ/100);
  702. }
  703. /* drop reference, clones could have returned before we reach this */
  704. dec_pending(io, 0);
  705. return 0;
  706. cleanup:
  707. if (io->first_clone) {
  708. dec_pending(io, -ENOMEM);
  709. return 0;
  710. }
  711. /* if no bio has been dispatched yet, we can directly return the error */
  712. mempool_free(io, cc->io_pool);
  713. return -ENOMEM;
  714. }
  715. static int crypt_status(struct dm_target *ti, status_type_t type,
  716. char *result, unsigned int maxlen)
  717. {
  718. struct crypt_config *cc = (struct crypt_config *) ti->private;
  719. const char *cipher;
  720. const char *chainmode = NULL;
  721. unsigned int sz = 0;
  722. switch (type) {
  723. case STATUSTYPE_INFO:
  724. result[0] = '\0';
  725. break;
  726. case STATUSTYPE_TABLE:
  727. cipher = crypto_blkcipher_name(cc->tfm);
  728. chainmode = cc->chainmode;
  729. if (cc->iv_mode)
  730. DMEMIT("%s-%s-%s ", cipher, chainmode, cc->iv_mode);
  731. else
  732. DMEMIT("%s-%s ", cipher, chainmode);
  733. if (cc->key_size > 0) {
  734. if ((maxlen - sz) < ((cc->key_size << 1) + 1))
  735. return -ENOMEM;
  736. crypt_encode_key(result + sz, cc->key, cc->key_size);
  737. sz += cc->key_size << 1;
  738. } else {
  739. if (sz >= maxlen)
  740. return -ENOMEM;
  741. result[sz++] = '-';
  742. }
  743. DMEMIT(" %llu %s %llu", (unsigned long long)cc->iv_offset,
  744. cc->dev->name, (unsigned long long)cc->start);
  745. break;
  746. }
  747. return 0;
  748. }
  749. static struct target_type crypt_target = {
  750. .name = "crypt",
  751. .version= {1, 1, 0},
  752. .module = THIS_MODULE,
  753. .ctr = crypt_ctr,
  754. .dtr = crypt_dtr,
  755. .map = crypt_map,
  756. .status = crypt_status,
  757. };
  758. static int __init dm_crypt_init(void)
  759. {
  760. int r;
  761. _crypt_io_pool = kmem_cache_create("dm-crypt_io",
  762. sizeof(struct crypt_io),
  763. 0, 0, NULL, NULL);
  764. if (!_crypt_io_pool)
  765. return -ENOMEM;
  766. _kcryptd_workqueue = create_workqueue("kcryptd");
  767. if (!_kcryptd_workqueue) {
  768. r = -ENOMEM;
  769. DMERR("couldn't create kcryptd");
  770. goto bad1;
  771. }
  772. r = dm_register_target(&crypt_target);
  773. if (r < 0) {
  774. DMERR("register failed %d", r);
  775. goto bad2;
  776. }
  777. return 0;
  778. bad2:
  779. destroy_workqueue(_kcryptd_workqueue);
  780. bad1:
  781. kmem_cache_destroy(_crypt_io_pool);
  782. return r;
  783. }
  784. static void __exit dm_crypt_exit(void)
  785. {
  786. int r = dm_unregister_target(&crypt_target);
  787. if (r < 0)
  788. DMERR("unregister failed %d", r);
  789. destroy_workqueue(_kcryptd_workqueue);
  790. kmem_cache_destroy(_crypt_io_pool);
  791. }
  792. module_init(dm_crypt_init);
  793. module_exit(dm_crypt_exit);
  794. MODULE_AUTHOR("Christophe Saout <christophe@saout.de>");
  795. MODULE_DESCRIPTION(DM_NAME " target for transparent encryption / decryption");
  796. MODULE_LICENSE("GPL");