ieee1394_transactions.c 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613
  1. /*
  2. * IEEE 1394 for Linux
  3. *
  4. * Transaction support.
  5. *
  6. * Copyright (C) 1999 Andreas E. Bombe
  7. *
  8. * This code is licensed under the GPL. See the file COPYING in the root
  9. * directory of the kernel sources for details.
  10. */
  11. #include <linux/sched.h>
  12. #include <linux/bitops.h>
  13. #include <linux/smp_lock.h>
  14. #include <linux/interrupt.h>
  15. #include <asm/errno.h>
  16. #include "ieee1394.h"
  17. #include "ieee1394_types.h"
  18. #include "hosts.h"
  19. #include "ieee1394_core.h"
  20. #include "highlevel.h"
  21. #include "nodemgr.h"
  22. #include "ieee1394_transactions.h"
  23. #define PREP_ASYNC_HEAD_ADDRESS(tc) \
  24. packet->tcode = tc; \
  25. packet->header[0] = (packet->node_id << 16) | (packet->tlabel << 10) \
  26. | (1 << 8) | (tc << 4); \
  27. packet->header[1] = (packet->host->node_id << 16) | (addr >> 32); \
  28. packet->header[2] = addr & 0xffffffff
  29. static void fill_async_readquad(struct hpsb_packet *packet, u64 addr)
  30. {
  31. PREP_ASYNC_HEAD_ADDRESS(TCODE_READQ);
  32. packet->header_size = 12;
  33. packet->data_size = 0;
  34. packet->expect_response = 1;
  35. }
  36. static void fill_async_readblock(struct hpsb_packet *packet, u64 addr,
  37. int length)
  38. {
  39. PREP_ASYNC_HEAD_ADDRESS(TCODE_READB);
  40. packet->header[3] = length << 16;
  41. packet->header_size = 16;
  42. packet->data_size = 0;
  43. packet->expect_response = 1;
  44. }
  45. static void fill_async_writequad(struct hpsb_packet *packet, u64 addr,
  46. quadlet_t data)
  47. {
  48. PREP_ASYNC_HEAD_ADDRESS(TCODE_WRITEQ);
  49. packet->header[3] = data;
  50. packet->header_size = 16;
  51. packet->data_size = 0;
  52. packet->expect_response = 1;
  53. }
  54. static void fill_async_writeblock(struct hpsb_packet *packet, u64 addr,
  55. int length)
  56. {
  57. PREP_ASYNC_HEAD_ADDRESS(TCODE_WRITEB);
  58. packet->header[3] = length << 16;
  59. packet->header_size = 16;
  60. packet->expect_response = 1;
  61. packet->data_size = length + (length % 4 ? 4 - (length % 4) : 0);
  62. }
  63. static void fill_async_lock(struct hpsb_packet *packet, u64 addr, int extcode,
  64. int length)
  65. {
  66. PREP_ASYNC_HEAD_ADDRESS(TCODE_LOCK_REQUEST);
  67. packet->header[3] = (length << 16) | extcode;
  68. packet->header_size = 16;
  69. packet->data_size = length;
  70. packet->expect_response = 1;
  71. }
  72. static void fill_iso_packet(struct hpsb_packet *packet, int length, int channel,
  73. int tag, int sync)
  74. {
  75. packet->header[0] = (length << 16) | (tag << 14) | (channel << 8)
  76. | (TCODE_ISO_DATA << 4) | sync;
  77. packet->header_size = 4;
  78. packet->data_size = length;
  79. packet->type = hpsb_iso;
  80. packet->tcode = TCODE_ISO_DATA;
  81. }
  82. static void fill_phy_packet(struct hpsb_packet *packet, quadlet_t data)
  83. {
  84. packet->header[0] = data;
  85. packet->header[1] = ~data;
  86. packet->header_size = 8;
  87. packet->data_size = 0;
  88. packet->expect_response = 0;
  89. packet->type = hpsb_raw; /* No CRC added */
  90. packet->speed_code = IEEE1394_SPEED_100; /* Force speed to be 100Mbps */
  91. }
  92. static void fill_async_stream_packet(struct hpsb_packet *packet, int length,
  93. int channel, int tag, int sync)
  94. {
  95. packet->header[0] = (length << 16) | (tag << 14) | (channel << 8)
  96. | (TCODE_STREAM_DATA << 4) | sync;
  97. packet->header_size = 4;
  98. packet->data_size = length;
  99. packet->type = hpsb_async;
  100. packet->tcode = TCODE_ISO_DATA;
  101. }
  102. /**
  103. * hpsb_get_tlabel - allocate a transaction label
  104. * @packet: the packet who's tlabel/tpool we set
  105. *
  106. * Every asynchronous transaction on the 1394 bus needs a transaction
  107. * label to match the response to the request. This label has to be
  108. * different from any other transaction label in an outstanding request to
  109. * the same node to make matching possible without ambiguity.
  110. *
  111. * There are 64 different tlabels, so an allocated tlabel has to be freed
  112. * with hpsb_free_tlabel() after the transaction is complete (unless it's
  113. * reused again for the same target node).
  114. *
  115. * Return value: Zero on success, otherwise non-zero. A non-zero return
  116. * generally means there are no available tlabels. If this is called out
  117. * of interrupt or atomic context, then it will sleep until can return a
  118. * tlabel.
  119. */
  120. int hpsb_get_tlabel(struct hpsb_packet *packet)
  121. {
  122. unsigned long flags;
  123. struct hpsb_tlabel_pool *tp;
  124. int n = NODEID_TO_NODE(packet->node_id);
  125. if (unlikely(n == ALL_NODES))
  126. return 0;
  127. tp = &packet->host->tpool[n];
  128. if (irqs_disabled() || in_atomic()) {
  129. if (down_trylock(&tp->count))
  130. return 1;
  131. } else {
  132. down(&tp->count);
  133. }
  134. spin_lock_irqsave(&tp->lock, flags);
  135. packet->tlabel = find_next_zero_bit(tp->pool, 64, tp->next);
  136. if (packet->tlabel > 63)
  137. packet->tlabel = find_first_zero_bit(tp->pool, 64);
  138. tp->next = (packet->tlabel + 1) % 64;
  139. /* Should _never_ happen */
  140. BUG_ON(test_and_set_bit(packet->tlabel, tp->pool));
  141. tp->allocations++;
  142. spin_unlock_irqrestore(&tp->lock, flags);
  143. return 0;
  144. }
  145. /**
  146. * hpsb_free_tlabel - free an allocated transaction label
  147. * @packet: packet whos tlabel/tpool needs to be cleared
  148. *
  149. * Frees the transaction label allocated with hpsb_get_tlabel(). The
  150. * tlabel has to be freed after the transaction is complete (i.e. response
  151. * was received for a split transaction or packet was sent for a unified
  152. * transaction).
  153. *
  154. * A tlabel must not be freed twice.
  155. */
  156. void hpsb_free_tlabel(struct hpsb_packet *packet)
  157. {
  158. unsigned long flags;
  159. struct hpsb_tlabel_pool *tp;
  160. int n = NODEID_TO_NODE(packet->node_id);
  161. if (unlikely(n == ALL_NODES))
  162. return;
  163. tp = &packet->host->tpool[n];
  164. BUG_ON(packet->tlabel > 63 || packet->tlabel < 0);
  165. spin_lock_irqsave(&tp->lock, flags);
  166. BUG_ON(!test_and_clear_bit(packet->tlabel, tp->pool));
  167. spin_unlock_irqrestore(&tp->lock, flags);
  168. up(&tp->count);
  169. }
  170. int hpsb_packet_success(struct hpsb_packet *packet)
  171. {
  172. switch (packet->ack_code) {
  173. case ACK_PENDING:
  174. switch ((packet->header[1] >> 12) & 0xf) {
  175. case RCODE_COMPLETE:
  176. return 0;
  177. case RCODE_CONFLICT_ERROR:
  178. return -EAGAIN;
  179. case RCODE_DATA_ERROR:
  180. return -EREMOTEIO;
  181. case RCODE_TYPE_ERROR:
  182. return -EACCES;
  183. case RCODE_ADDRESS_ERROR:
  184. return -EINVAL;
  185. default:
  186. HPSB_ERR("received reserved rcode %d from node %d",
  187. (packet->header[1] >> 12) & 0xf,
  188. packet->node_id);
  189. return -EAGAIN;
  190. }
  191. HPSB_PANIC("reached unreachable code 1 in %s", __FUNCTION__);
  192. case ACK_BUSY_X:
  193. case ACK_BUSY_A:
  194. case ACK_BUSY_B:
  195. return -EBUSY;
  196. case ACK_TYPE_ERROR:
  197. return -EACCES;
  198. case ACK_COMPLETE:
  199. if (packet->tcode == TCODE_WRITEQ
  200. || packet->tcode == TCODE_WRITEB) {
  201. return 0;
  202. } else {
  203. HPSB_ERR("impossible ack_complete from node %d "
  204. "(tcode %d)", packet->node_id, packet->tcode);
  205. return -EAGAIN;
  206. }
  207. case ACK_DATA_ERROR:
  208. if (packet->tcode == TCODE_WRITEB
  209. || packet->tcode == TCODE_LOCK_REQUEST) {
  210. return -EAGAIN;
  211. } else {
  212. HPSB_ERR("impossible ack_data_error from node %d "
  213. "(tcode %d)", packet->node_id, packet->tcode);
  214. return -EAGAIN;
  215. }
  216. case ACK_ADDRESS_ERROR:
  217. return -EINVAL;
  218. case ACK_TARDY:
  219. case ACK_CONFLICT_ERROR:
  220. case ACKX_NONE:
  221. case ACKX_SEND_ERROR:
  222. case ACKX_ABORTED:
  223. case ACKX_TIMEOUT:
  224. /* error while sending */
  225. return -EAGAIN;
  226. default:
  227. HPSB_ERR("got invalid ack %d from node %d (tcode %d)",
  228. packet->ack_code, packet->node_id, packet->tcode);
  229. return -EAGAIN;
  230. }
  231. HPSB_PANIC("reached unreachable code 2 in %s", __FUNCTION__);
  232. }
  233. struct hpsb_packet *hpsb_make_readpacket(struct hpsb_host *host, nodeid_t node,
  234. u64 addr, size_t length)
  235. {
  236. struct hpsb_packet *packet;
  237. if (length == 0)
  238. return NULL;
  239. packet = hpsb_alloc_packet(length);
  240. if (!packet)
  241. return NULL;
  242. packet->host = host;
  243. packet->node_id = node;
  244. if (hpsb_get_tlabel(packet)) {
  245. hpsb_free_packet(packet);
  246. return NULL;
  247. }
  248. if (length == 4)
  249. fill_async_readquad(packet, addr);
  250. else
  251. fill_async_readblock(packet, addr, length);
  252. return packet;
  253. }
  254. struct hpsb_packet *hpsb_make_writepacket(struct hpsb_host *host, nodeid_t node,
  255. u64 addr, quadlet_t * buffer,
  256. size_t length)
  257. {
  258. struct hpsb_packet *packet;
  259. if (length == 0)
  260. return NULL;
  261. packet = hpsb_alloc_packet(length);
  262. if (!packet)
  263. return NULL;
  264. if (length % 4) { /* zero padding bytes */
  265. packet->data[length >> 2] = 0;
  266. }
  267. packet->host = host;
  268. packet->node_id = node;
  269. if (hpsb_get_tlabel(packet)) {
  270. hpsb_free_packet(packet);
  271. return NULL;
  272. }
  273. if (length == 4) {
  274. fill_async_writequad(packet, addr, buffer ? *buffer : 0);
  275. } else {
  276. fill_async_writeblock(packet, addr, length);
  277. if (buffer)
  278. memcpy(packet->data, buffer, length);
  279. }
  280. return packet;
  281. }
  282. struct hpsb_packet *hpsb_make_streampacket(struct hpsb_host *host, u8 * buffer,
  283. int length, int channel, int tag,
  284. int sync)
  285. {
  286. struct hpsb_packet *packet;
  287. if (length == 0)
  288. return NULL;
  289. packet = hpsb_alloc_packet(length);
  290. if (!packet)
  291. return NULL;
  292. if (length % 4) { /* zero padding bytes */
  293. packet->data[length >> 2] = 0;
  294. }
  295. packet->host = host;
  296. if (hpsb_get_tlabel(packet)) {
  297. hpsb_free_packet(packet);
  298. return NULL;
  299. }
  300. fill_async_stream_packet(packet, length, channel, tag, sync);
  301. if (buffer)
  302. memcpy(packet->data, buffer, length);
  303. return packet;
  304. }
  305. struct hpsb_packet *hpsb_make_lockpacket(struct hpsb_host *host, nodeid_t node,
  306. u64 addr, int extcode,
  307. quadlet_t * data, quadlet_t arg)
  308. {
  309. struct hpsb_packet *p;
  310. u32 length;
  311. p = hpsb_alloc_packet(8);
  312. if (!p)
  313. return NULL;
  314. p->host = host;
  315. p->node_id = node;
  316. if (hpsb_get_tlabel(p)) {
  317. hpsb_free_packet(p);
  318. return NULL;
  319. }
  320. switch (extcode) {
  321. case EXTCODE_FETCH_ADD:
  322. case EXTCODE_LITTLE_ADD:
  323. length = 4;
  324. if (data)
  325. p->data[0] = *data;
  326. break;
  327. default:
  328. length = 8;
  329. if (data) {
  330. p->data[0] = arg;
  331. p->data[1] = *data;
  332. }
  333. break;
  334. }
  335. fill_async_lock(p, addr, extcode, length);
  336. return p;
  337. }
  338. struct hpsb_packet *hpsb_make_lock64packet(struct hpsb_host *host,
  339. nodeid_t node, u64 addr, int extcode,
  340. octlet_t * data, octlet_t arg)
  341. {
  342. struct hpsb_packet *p;
  343. u32 length;
  344. p = hpsb_alloc_packet(16);
  345. if (!p)
  346. return NULL;
  347. p->host = host;
  348. p->node_id = node;
  349. if (hpsb_get_tlabel(p)) {
  350. hpsb_free_packet(p);
  351. return NULL;
  352. }
  353. switch (extcode) {
  354. case EXTCODE_FETCH_ADD:
  355. case EXTCODE_LITTLE_ADD:
  356. length = 8;
  357. if (data) {
  358. p->data[0] = *data >> 32;
  359. p->data[1] = *data & 0xffffffff;
  360. }
  361. break;
  362. default:
  363. length = 16;
  364. if (data) {
  365. p->data[0] = arg >> 32;
  366. p->data[1] = arg & 0xffffffff;
  367. p->data[2] = *data >> 32;
  368. p->data[3] = *data & 0xffffffff;
  369. }
  370. break;
  371. }
  372. fill_async_lock(p, addr, extcode, length);
  373. return p;
  374. }
  375. struct hpsb_packet *hpsb_make_phypacket(struct hpsb_host *host, quadlet_t data)
  376. {
  377. struct hpsb_packet *p;
  378. p = hpsb_alloc_packet(0);
  379. if (!p)
  380. return NULL;
  381. p->host = host;
  382. fill_phy_packet(p, data);
  383. return p;
  384. }
  385. struct hpsb_packet *hpsb_make_isopacket(struct hpsb_host *host,
  386. int length, int channel,
  387. int tag, int sync)
  388. {
  389. struct hpsb_packet *p;
  390. p = hpsb_alloc_packet(length);
  391. if (!p)
  392. return NULL;
  393. p->host = host;
  394. fill_iso_packet(p, length, channel, tag, sync);
  395. p->generation = get_hpsb_generation(host);
  396. return p;
  397. }
  398. /*
  399. * FIXME - these functions should probably read from / write to user space to
  400. * avoid in kernel buffers for user space callers
  401. */
  402. int hpsb_read(struct hpsb_host *host, nodeid_t node, unsigned int generation,
  403. u64 addr, quadlet_t * buffer, size_t length)
  404. {
  405. struct hpsb_packet *packet;
  406. int retval = 0;
  407. if (length == 0)
  408. return -EINVAL;
  409. BUG_ON(in_interrupt()); // We can't be called in an interrupt, yet
  410. packet = hpsb_make_readpacket(host, node, addr, length);
  411. if (!packet) {
  412. return -ENOMEM;
  413. }
  414. packet->generation = generation;
  415. retval = hpsb_send_packet_and_wait(packet);
  416. if (retval < 0)
  417. goto hpsb_read_fail;
  418. retval = hpsb_packet_success(packet);
  419. if (retval == 0) {
  420. if (length == 4) {
  421. *buffer = packet->header[3];
  422. } else {
  423. memcpy(buffer, packet->data, length);
  424. }
  425. }
  426. hpsb_read_fail:
  427. hpsb_free_tlabel(packet);
  428. hpsb_free_packet(packet);
  429. return retval;
  430. }
  431. int hpsb_write(struct hpsb_host *host, nodeid_t node, unsigned int generation,
  432. u64 addr, quadlet_t * buffer, size_t length)
  433. {
  434. struct hpsb_packet *packet;
  435. int retval;
  436. if (length == 0)
  437. return -EINVAL;
  438. BUG_ON(in_interrupt()); // We can't be called in an interrupt, yet
  439. packet = hpsb_make_writepacket(host, node, addr, buffer, length);
  440. if (!packet)
  441. return -ENOMEM;
  442. packet->generation = generation;
  443. retval = hpsb_send_packet_and_wait(packet);
  444. if (retval < 0)
  445. goto hpsb_write_fail;
  446. retval = hpsb_packet_success(packet);
  447. hpsb_write_fail:
  448. hpsb_free_tlabel(packet);
  449. hpsb_free_packet(packet);
  450. return retval;
  451. }
  452. #if 0
  453. int hpsb_lock(struct hpsb_host *host, nodeid_t node, unsigned int generation,
  454. u64 addr, int extcode, quadlet_t * data, quadlet_t arg)
  455. {
  456. struct hpsb_packet *packet;
  457. int retval = 0;
  458. BUG_ON(in_interrupt()); // We can't be called in an interrupt, yet
  459. packet = hpsb_make_lockpacket(host, node, addr, extcode, data, arg);
  460. if (!packet)
  461. return -ENOMEM;
  462. packet->generation = generation;
  463. retval = hpsb_send_packet_and_wait(packet);
  464. if (retval < 0)
  465. goto hpsb_lock_fail;
  466. retval = hpsb_packet_success(packet);
  467. if (retval == 0) {
  468. *data = packet->data[0];
  469. }
  470. hpsb_lock_fail:
  471. hpsb_free_tlabel(packet);
  472. hpsb_free_packet(packet);
  473. return retval;
  474. }
  475. int hpsb_send_gasp(struct hpsb_host *host, int channel, unsigned int generation,
  476. quadlet_t * buffer, size_t length, u32 specifier_id,
  477. unsigned int version)
  478. {
  479. struct hpsb_packet *packet;
  480. int retval = 0;
  481. u16 specifier_id_hi = (specifier_id & 0x00ffff00) >> 8;
  482. u8 specifier_id_lo = specifier_id & 0xff;
  483. HPSB_VERBOSE("Send GASP: channel = %d, length = %Zd", channel, length);
  484. length += 8;
  485. packet = hpsb_make_streampacket(host, NULL, length, channel, 3, 0);
  486. if (!packet)
  487. return -ENOMEM;
  488. packet->data[0] = cpu_to_be32((host->node_id << 16) | specifier_id_hi);
  489. packet->data[1] =
  490. cpu_to_be32((specifier_id_lo << 24) | (version & 0x00ffffff));
  491. memcpy(&(packet->data[2]), buffer, length - 8);
  492. packet->generation = generation;
  493. packet->no_waiter = 1;
  494. retval = hpsb_send_packet(packet);
  495. if (retval < 0)
  496. hpsb_free_packet(packet);
  497. return retval;
  498. }
  499. #endif /* 0 */