ide-dma.c 25 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952
  1. /*
  2. * linux/drivers/ide/ide-dma.c Version 4.10 June 9, 2000
  3. *
  4. * Copyright (c) 1999-2000 Andre Hedrick <andre@linux-ide.org>
  5. * May be copied or modified under the terms of the GNU General Public License
  6. */
  7. /*
  8. * Special Thanks to Mark for his Six years of work.
  9. *
  10. * Copyright (c) 1995-1998 Mark Lord
  11. * May be copied or modified under the terms of the GNU General Public License
  12. */
  13. /*
  14. * This module provides support for the bus-master IDE DMA functions
  15. * of various PCI chipsets, including the Intel PIIX (i82371FB for
  16. * the 430 FX chipset), the PIIX3 (i82371SB for the 430 HX/VX and
  17. * 440 chipsets), and the PIIX4 (i82371AB for the 430 TX chipset)
  18. * ("PIIX" stands for "PCI ISA IDE Xcellerator").
  19. *
  20. * Pretty much the same code works for other IDE PCI bus-mastering chipsets.
  21. *
  22. * DMA is supported for all IDE devices (disk drives, cdroms, tapes, floppies).
  23. *
  24. * By default, DMA support is prepared for use, but is currently enabled only
  25. * for drives which already have DMA enabled (UltraDMA or mode 2 multi/single),
  26. * or which are recognized as "good" (see table below). Drives with only mode0
  27. * or mode1 (multi/single) DMA should also work with this chipset/driver
  28. * (eg. MC2112A) but are not enabled by default.
  29. *
  30. * Use "hdparm -i" to view modes supported by a given drive.
  31. *
  32. * The hdparm-3.5 (or later) utility can be used for manually enabling/disabling
  33. * DMA support, but must be (re-)compiled against this kernel version or later.
  34. *
  35. * To enable DMA, use "hdparm -d1 /dev/hd?" on a per-drive basis after booting.
  36. * If problems arise, ide.c will disable DMA operation after a few retries.
  37. * This error recovery mechanism works and has been extremely well exercised.
  38. *
  39. * IDE drives, depending on their vintage, may support several different modes
  40. * of DMA operation. The boot-time modes are indicated with a "*" in
  41. * the "hdparm -i" listing, and can be changed with *knowledgeable* use of
  42. * the "hdparm -X" feature. There is seldom a need to do this, as drives
  43. * normally power-up with their "best" PIO/DMA modes enabled.
  44. *
  45. * Testing has been done with a rather extensive number of drives,
  46. * with Quantum & Western Digital models generally outperforming the pack,
  47. * and Fujitsu & Conner (and some Seagate which are really Conner) drives
  48. * showing more lackluster throughput.
  49. *
  50. * Keep an eye on /var/adm/messages for "DMA disabled" messages.
  51. *
  52. * Some people have reported trouble with Intel Zappa motherboards.
  53. * This can be fixed by upgrading the AMI BIOS to version 1.00.04.BS0,
  54. * available from ftp://ftp.intel.com/pub/bios/10004bs0.exe
  55. * (thanks to Glen Morrell <glen@spin.Stanford.edu> for researching this).
  56. *
  57. * Thanks to "Christopher J. Reimer" <reimer@doe.carleton.ca> for
  58. * fixing the problem with the BIOS on some Acer motherboards.
  59. *
  60. * Thanks to "Benoit Poulot-Cazajous" <poulot@chorus.fr> for testing
  61. * "TX" chipset compatibility and for providing patches for the "TX" chipset.
  62. *
  63. * Thanks to Christian Brunner <chb@muc.de> for taking a good first crack
  64. * at generic DMA -- his patches were referred to when preparing this code.
  65. *
  66. * Most importantly, thanks to Robert Bringman <rob@mars.trion.com>
  67. * for supplying a Promise UDMA board & WD UDMA drive for this work!
  68. *
  69. * And, yes, Intel Zappa boards really *do* use both PIIX IDE ports.
  70. *
  71. * ATA-66/100 and recovery functions, I forgot the rest......
  72. *
  73. */
  74. #include <linux/module.h>
  75. #include <linux/types.h>
  76. #include <linux/kernel.h>
  77. #include <linux/timer.h>
  78. #include <linux/mm.h>
  79. #include <linux/interrupt.h>
  80. #include <linux/pci.h>
  81. #include <linux/init.h>
  82. #include <linux/ide.h>
  83. #include <linux/delay.h>
  84. #include <linux/scatterlist.h>
  85. #include <asm/io.h>
  86. #include <asm/irq.h>
  87. static const struct drive_list_entry drive_whitelist [] = {
  88. { "Micropolis 2112A" , "ALL" },
  89. { "CONNER CTMA 4000" , "ALL" },
  90. { "CONNER CTT8000-A" , "ALL" },
  91. { "ST34342A" , "ALL" },
  92. { NULL , NULL }
  93. };
  94. static const struct drive_list_entry drive_blacklist [] = {
  95. { "WDC AC11000H" , "ALL" },
  96. { "WDC AC22100H" , "ALL" },
  97. { "WDC AC32500H" , "ALL" },
  98. { "WDC AC33100H" , "ALL" },
  99. { "WDC AC31600H" , "ALL" },
  100. { "WDC AC32100H" , "24.09P07" },
  101. { "WDC AC23200L" , "21.10N21" },
  102. { "Compaq CRD-8241B" , "ALL" },
  103. { "CRD-8400B" , "ALL" },
  104. { "CRD-8480B", "ALL" },
  105. { "CRD-8482B", "ALL" },
  106. { "CRD-84" , "ALL" },
  107. { "SanDisk SDP3B" , "ALL" },
  108. { "SanDisk SDP3B-64" , "ALL" },
  109. { "SANYO CD-ROM CRD" , "ALL" },
  110. { "HITACHI CDR-8" , "ALL" },
  111. { "HITACHI CDR-8335" , "ALL" },
  112. { "HITACHI CDR-8435" , "ALL" },
  113. { "Toshiba CD-ROM XM-6202B" , "ALL" },
  114. { "CD-532E-A" , "ALL" },
  115. { "E-IDE CD-ROM CR-840", "ALL" },
  116. { "CD-ROM Drive/F5A", "ALL" },
  117. { "WPI CDD-820", "ALL" },
  118. { "SAMSUNG CD-ROM SC-148C", "ALL" },
  119. { "SAMSUNG CD-ROM SC", "ALL" },
  120. { "SanDisk SDP3B-64" , "ALL" },
  121. { "ATAPI CD-ROM DRIVE 40X MAXIMUM", "ALL" },
  122. { "_NEC DV5800A", "ALL" },
  123. { NULL , NULL }
  124. };
  125. /**
  126. * ide_in_drive_list - look for drive in black/white list
  127. * @id: drive identifier
  128. * @drive_table: list to inspect
  129. *
  130. * Look for a drive in the blacklist and the whitelist tables
  131. * Returns 1 if the drive is found in the table.
  132. */
  133. int ide_in_drive_list(struct hd_driveid *id, const struct drive_list_entry *drive_table)
  134. {
  135. for ( ; drive_table->id_model ; drive_table++)
  136. if ((!strcmp(drive_table->id_model, id->model)) &&
  137. ((strstr(drive_table->id_firmware, id->fw_rev)) ||
  138. (!strcmp(drive_table->id_firmware, "ALL"))))
  139. return 1;
  140. return 0;
  141. }
  142. EXPORT_SYMBOL_GPL(ide_in_drive_list);
  143. /**
  144. * ide_dma_intr - IDE DMA interrupt handler
  145. * @drive: the drive the interrupt is for
  146. *
  147. * Handle an interrupt completing a read/write DMA transfer on an
  148. * IDE device
  149. */
  150. ide_startstop_t ide_dma_intr (ide_drive_t *drive)
  151. {
  152. u8 stat = 0, dma_stat = 0;
  153. dma_stat = HWIF(drive)->ide_dma_end(drive);
  154. stat = HWIF(drive)->INB(IDE_STATUS_REG); /* get drive status */
  155. if (OK_STAT(stat,DRIVE_READY,drive->bad_wstat|DRQ_STAT)) {
  156. if (!dma_stat) {
  157. struct request *rq = HWGROUP(drive)->rq;
  158. if (rq->rq_disk) {
  159. ide_driver_t *drv;
  160. drv = *(ide_driver_t **)rq->rq_disk->private_data;
  161. drv->end_request(drive, 1, rq->nr_sectors);
  162. } else
  163. ide_end_request(drive, 1, rq->nr_sectors);
  164. return ide_stopped;
  165. }
  166. printk(KERN_ERR "%s: dma_intr: bad DMA status (dma_stat=%x)\n",
  167. drive->name, dma_stat);
  168. }
  169. return ide_error(drive, "dma_intr", stat);
  170. }
  171. EXPORT_SYMBOL_GPL(ide_dma_intr);
  172. #ifdef CONFIG_BLK_DEV_IDEDMA_PCI
  173. /**
  174. * ide_build_sglist - map IDE scatter gather for DMA I/O
  175. * @drive: the drive to build the DMA table for
  176. * @rq: the request holding the sg list
  177. *
  178. * Perform the PCI mapping magic necessary to access the source or
  179. * target buffers of a request via PCI DMA. The lower layers of the
  180. * kernel provide the necessary cache management so that we can
  181. * operate in a portable fashion
  182. */
  183. int ide_build_sglist(ide_drive_t *drive, struct request *rq)
  184. {
  185. ide_hwif_t *hwif = HWIF(drive);
  186. struct scatterlist *sg = hwif->sg_table;
  187. BUG_ON((rq->flags & REQ_DRIVE_TASKFILE) && rq->nr_sectors > 256);
  188. ide_map_sg(drive, rq);
  189. if (rq_data_dir(rq) == READ)
  190. hwif->sg_dma_direction = PCI_DMA_FROMDEVICE;
  191. else
  192. hwif->sg_dma_direction = PCI_DMA_TODEVICE;
  193. return pci_map_sg(hwif->pci_dev, sg, hwif->sg_nents, hwif->sg_dma_direction);
  194. }
  195. EXPORT_SYMBOL_GPL(ide_build_sglist);
  196. /**
  197. * ide_build_dmatable - build IDE DMA table
  198. *
  199. * ide_build_dmatable() prepares a dma request. We map the command
  200. * to get the pci bus addresses of the buffers and then build up
  201. * the PRD table that the IDE layer wants to be fed. The code
  202. * knows about the 64K wrap bug in the CS5530.
  203. *
  204. * Returns the number of built PRD entries if all went okay,
  205. * returns 0 otherwise.
  206. *
  207. * May also be invoked from trm290.c
  208. */
  209. int ide_build_dmatable (ide_drive_t *drive, struct request *rq)
  210. {
  211. ide_hwif_t *hwif = HWIF(drive);
  212. unsigned int *table = hwif->dmatable_cpu;
  213. unsigned int is_trm290 = (hwif->chipset == ide_trm290) ? 1 : 0;
  214. unsigned int count = 0;
  215. int i;
  216. struct scatterlist *sg;
  217. hwif->sg_nents = i = ide_build_sglist(drive, rq);
  218. if (!i)
  219. return 0;
  220. sg = hwif->sg_table;
  221. while (i) {
  222. u32 cur_addr;
  223. u32 cur_len;
  224. cur_addr = sg_dma_address(sg);
  225. cur_len = sg_dma_len(sg);
  226. /*
  227. * Fill in the dma table, without crossing any 64kB boundaries.
  228. * Most hardware requires 16-bit alignment of all blocks,
  229. * but the trm290 requires 32-bit alignment.
  230. */
  231. while (cur_len) {
  232. if (count++ >= PRD_ENTRIES) {
  233. printk(KERN_ERR "%s: DMA table too small\n", drive->name);
  234. goto use_pio_instead;
  235. } else {
  236. u32 xcount, bcount = 0x10000 - (cur_addr & 0xffff);
  237. if (bcount > cur_len)
  238. bcount = cur_len;
  239. *table++ = cpu_to_le32(cur_addr);
  240. xcount = bcount & 0xffff;
  241. if (is_trm290)
  242. xcount = ((xcount >> 2) - 1) << 16;
  243. if (xcount == 0x0000) {
  244. /*
  245. * Most chipsets correctly interpret a length of 0x0000 as 64KB,
  246. * but at least one (e.g. CS5530) misinterprets it as zero (!).
  247. * So here we break the 64KB entry into two 32KB entries instead.
  248. */
  249. if (count++ >= PRD_ENTRIES) {
  250. printk(KERN_ERR "%s: DMA table too small\n", drive->name);
  251. goto use_pio_instead;
  252. }
  253. *table++ = cpu_to_le32(0x8000);
  254. *table++ = cpu_to_le32(cur_addr + 0x8000);
  255. xcount = 0x8000;
  256. }
  257. *table++ = cpu_to_le32(xcount);
  258. cur_addr += bcount;
  259. cur_len -= bcount;
  260. }
  261. }
  262. sg++;
  263. i--;
  264. }
  265. if (count) {
  266. if (!is_trm290)
  267. *--table |= cpu_to_le32(0x80000000);
  268. return count;
  269. }
  270. printk(KERN_ERR "%s: empty DMA table?\n", drive->name);
  271. use_pio_instead:
  272. pci_unmap_sg(hwif->pci_dev,
  273. hwif->sg_table,
  274. hwif->sg_nents,
  275. hwif->sg_dma_direction);
  276. return 0; /* revert to PIO for this request */
  277. }
  278. EXPORT_SYMBOL_GPL(ide_build_dmatable);
  279. /**
  280. * ide_destroy_dmatable - clean up DMA mapping
  281. * @drive: The drive to unmap
  282. *
  283. * Teardown mappings after DMA has completed. This must be called
  284. * after the completion of each use of ide_build_dmatable and before
  285. * the next use of ide_build_dmatable. Failure to do so will cause
  286. * an oops as only one mapping can be live for each target at a given
  287. * time.
  288. */
  289. void ide_destroy_dmatable (ide_drive_t *drive)
  290. {
  291. struct pci_dev *dev = HWIF(drive)->pci_dev;
  292. struct scatterlist *sg = HWIF(drive)->sg_table;
  293. int nents = HWIF(drive)->sg_nents;
  294. pci_unmap_sg(dev, sg, nents, HWIF(drive)->sg_dma_direction);
  295. }
  296. EXPORT_SYMBOL_GPL(ide_destroy_dmatable);
  297. /**
  298. * config_drive_for_dma - attempt to activate IDE DMA
  299. * @drive: the drive to place in DMA mode
  300. *
  301. * If the drive supports at least mode 2 DMA or UDMA of any kind
  302. * then attempt to place it into DMA mode. Drives that are known to
  303. * support DMA but predate the DMA properties or that are known
  304. * to have DMA handling bugs are also set up appropriately based
  305. * on the good/bad drive lists.
  306. */
  307. static int config_drive_for_dma (ide_drive_t *drive)
  308. {
  309. struct hd_driveid *id = drive->id;
  310. ide_hwif_t *hwif = HWIF(drive);
  311. if ((id->capability & 1) && hwif->autodma) {
  312. /*
  313. * Enable DMA on any drive that has
  314. * UltraDMA (mode 0/1/2/3/4/5/6) enabled
  315. */
  316. if ((id->field_valid & 4) && ((id->dma_ultra >> 8) & 0x7f))
  317. return hwif->ide_dma_on(drive);
  318. /*
  319. * Enable DMA on any drive that has mode2 DMA
  320. * (multi or single) enabled
  321. */
  322. if (id->field_valid & 2) /* regular DMA */
  323. if ((id->dma_mword & 0x404) == 0x404 ||
  324. (id->dma_1word & 0x404) == 0x404)
  325. return hwif->ide_dma_on(drive);
  326. /* Consult the list of known "good" drives */
  327. if (__ide_dma_good_drive(drive))
  328. return hwif->ide_dma_on(drive);
  329. }
  330. // if (hwif->tuneproc != NULL) hwif->tuneproc(drive, 255);
  331. return hwif->ide_dma_off_quietly(drive);
  332. }
  333. /**
  334. * dma_timer_expiry - handle a DMA timeout
  335. * @drive: Drive that timed out
  336. *
  337. * An IDE DMA transfer timed out. In the event of an error we ask
  338. * the driver to resolve the problem, if a DMA transfer is still
  339. * in progress we continue to wait (arguably we need to add a
  340. * secondary 'I don't care what the drive thinks' timeout here)
  341. * Finally if we have an interrupt we let it complete the I/O.
  342. * But only one time - we clear expiry and if it's still not
  343. * completed after WAIT_CMD, we error and retry in PIO.
  344. * This can occur if an interrupt is lost or due to hang or bugs.
  345. */
  346. static int dma_timer_expiry (ide_drive_t *drive)
  347. {
  348. ide_hwif_t *hwif = HWIF(drive);
  349. u8 dma_stat = hwif->INB(hwif->dma_status);
  350. printk(KERN_WARNING "%s: dma_timer_expiry: dma status == 0x%02x\n",
  351. drive->name, dma_stat);
  352. if ((dma_stat & 0x18) == 0x18) /* BUSY Stupid Early Timer !! */
  353. return WAIT_CMD;
  354. HWGROUP(drive)->expiry = NULL; /* one free ride for now */
  355. /* 1 dmaing, 2 error, 4 intr */
  356. if (dma_stat & 2) /* ERROR */
  357. return -1;
  358. if (dma_stat & 1) /* DMAing */
  359. return WAIT_CMD;
  360. if (dma_stat & 4) /* Got an Interrupt */
  361. return WAIT_CMD;
  362. return 0; /* Status is unknown -- reset the bus */
  363. }
  364. /**
  365. * __ide_dma_host_off - Generic DMA kill
  366. * @drive: drive to control
  367. *
  368. * Perform the generic IDE controller DMA off operation. This
  369. * works for most IDE bus mastering controllers
  370. */
  371. int __ide_dma_host_off (ide_drive_t *drive)
  372. {
  373. ide_hwif_t *hwif = HWIF(drive);
  374. u8 unit = (drive->select.b.unit & 0x01);
  375. u8 dma_stat = hwif->INB(hwif->dma_status);
  376. hwif->OUTB((dma_stat & ~(1<<(5+unit))), hwif->dma_status);
  377. return 0;
  378. }
  379. EXPORT_SYMBOL(__ide_dma_host_off);
  380. /**
  381. * __ide_dma_host_off_quietly - Generic DMA kill
  382. * @drive: drive to control
  383. *
  384. * Turn off the current DMA on this IDE controller.
  385. */
  386. int __ide_dma_off_quietly (ide_drive_t *drive)
  387. {
  388. drive->using_dma = 0;
  389. ide_toggle_bounce(drive, 0);
  390. if (HWIF(drive)->ide_dma_host_off(drive))
  391. return 1;
  392. return 0;
  393. }
  394. EXPORT_SYMBOL(__ide_dma_off_quietly);
  395. #endif /* CONFIG_BLK_DEV_IDEDMA_PCI */
  396. /**
  397. * __ide_dma_off - disable DMA on a device
  398. * @drive: drive to disable DMA on
  399. *
  400. * Disable IDE DMA for a device on this IDE controller.
  401. * Inform the user that DMA has been disabled.
  402. */
  403. int __ide_dma_off (ide_drive_t *drive)
  404. {
  405. printk(KERN_INFO "%s: DMA disabled\n", drive->name);
  406. return HWIF(drive)->ide_dma_off_quietly(drive);
  407. }
  408. EXPORT_SYMBOL(__ide_dma_off);
  409. #ifdef CONFIG_BLK_DEV_IDEDMA_PCI
  410. /**
  411. * __ide_dma_host_on - Enable DMA on a host
  412. * @drive: drive to enable for DMA
  413. *
  414. * Enable DMA on an IDE controller following generic bus mastering
  415. * IDE controller behaviour
  416. */
  417. int __ide_dma_host_on (ide_drive_t *drive)
  418. {
  419. if (drive->using_dma) {
  420. ide_hwif_t *hwif = HWIF(drive);
  421. u8 unit = (drive->select.b.unit & 0x01);
  422. u8 dma_stat = hwif->INB(hwif->dma_status);
  423. hwif->OUTB((dma_stat|(1<<(5+unit))), hwif->dma_status);
  424. return 0;
  425. }
  426. return 1;
  427. }
  428. EXPORT_SYMBOL(__ide_dma_host_on);
  429. /**
  430. * __ide_dma_on - Enable DMA on a device
  431. * @drive: drive to enable DMA on
  432. *
  433. * Enable IDE DMA for a device on this IDE controller.
  434. */
  435. int __ide_dma_on (ide_drive_t *drive)
  436. {
  437. /* consult the list of known "bad" drives */
  438. if (__ide_dma_bad_drive(drive))
  439. return 1;
  440. drive->using_dma = 1;
  441. ide_toggle_bounce(drive, 1);
  442. if (HWIF(drive)->ide_dma_host_on(drive))
  443. return 1;
  444. return 0;
  445. }
  446. EXPORT_SYMBOL(__ide_dma_on);
  447. /**
  448. * __ide_dma_check - check DMA setup
  449. * @drive: drive to check
  450. *
  451. * Don't use - due for extermination
  452. */
  453. int __ide_dma_check (ide_drive_t *drive)
  454. {
  455. return config_drive_for_dma(drive);
  456. }
  457. EXPORT_SYMBOL(__ide_dma_check);
  458. /**
  459. * ide_dma_setup - begin a DMA phase
  460. * @drive: target device
  461. *
  462. * Build an IDE DMA PRD (IDE speak for scatter gather table)
  463. * and then set up the DMA transfer registers for a device
  464. * that follows generic IDE PCI DMA behaviour. Controllers can
  465. * override this function if they need to
  466. *
  467. * Returns 0 on success. If a PIO fallback is required then 1
  468. * is returned.
  469. */
  470. int ide_dma_setup(ide_drive_t *drive)
  471. {
  472. ide_hwif_t *hwif = drive->hwif;
  473. struct request *rq = HWGROUP(drive)->rq;
  474. unsigned int reading;
  475. u8 dma_stat;
  476. if (rq_data_dir(rq))
  477. reading = 0;
  478. else
  479. reading = 1 << 3;
  480. /* fall back to pio! */
  481. if (!ide_build_dmatable(drive, rq)) {
  482. ide_map_sg(drive, rq);
  483. return 1;
  484. }
  485. /* PRD table */
  486. hwif->OUTL(hwif->dmatable_dma, hwif->dma_prdtable);
  487. /* specify r/w */
  488. hwif->OUTB(reading, hwif->dma_command);
  489. /* read dma_status for INTR & ERROR flags */
  490. dma_stat = hwif->INB(hwif->dma_status);
  491. /* clear INTR & ERROR flags */
  492. hwif->OUTB(dma_stat|6, hwif->dma_status);
  493. drive->waiting_for_dma = 1;
  494. return 0;
  495. }
  496. EXPORT_SYMBOL_GPL(ide_dma_setup);
  497. static void ide_dma_exec_cmd(ide_drive_t *drive, u8 command)
  498. {
  499. /* issue cmd to drive */
  500. ide_execute_command(drive, command, &ide_dma_intr, 2*WAIT_CMD, dma_timer_expiry);
  501. }
  502. void ide_dma_start(ide_drive_t *drive)
  503. {
  504. ide_hwif_t *hwif = HWIF(drive);
  505. u8 dma_cmd = hwif->INB(hwif->dma_command);
  506. /* Note that this is done *after* the cmd has
  507. * been issued to the drive, as per the BM-IDE spec.
  508. * The Promise Ultra33 doesn't work correctly when
  509. * we do this part before issuing the drive cmd.
  510. */
  511. /* start DMA */
  512. hwif->OUTB(dma_cmd|1, hwif->dma_command);
  513. hwif->dma = 1;
  514. wmb();
  515. }
  516. EXPORT_SYMBOL_GPL(ide_dma_start);
  517. /* returns 1 on error, 0 otherwise */
  518. int __ide_dma_end (ide_drive_t *drive)
  519. {
  520. ide_hwif_t *hwif = HWIF(drive);
  521. u8 dma_stat = 0, dma_cmd = 0;
  522. drive->waiting_for_dma = 0;
  523. /* get dma_command mode */
  524. dma_cmd = hwif->INB(hwif->dma_command);
  525. /* stop DMA */
  526. hwif->OUTB(dma_cmd&~1, hwif->dma_command);
  527. /* get DMA status */
  528. dma_stat = hwif->INB(hwif->dma_status);
  529. /* clear the INTR & ERROR bits */
  530. hwif->OUTB(dma_stat|6, hwif->dma_status);
  531. /* purge DMA mappings */
  532. ide_destroy_dmatable(drive);
  533. /* verify good DMA status */
  534. hwif->dma = 0;
  535. wmb();
  536. return (dma_stat & 7) != 4 ? (0x10 | dma_stat) : 0;
  537. }
  538. EXPORT_SYMBOL(__ide_dma_end);
  539. /* returns 1 if dma irq issued, 0 otherwise */
  540. static int __ide_dma_test_irq(ide_drive_t *drive)
  541. {
  542. ide_hwif_t *hwif = HWIF(drive);
  543. u8 dma_stat = hwif->INB(hwif->dma_status);
  544. #if 0 /* do not set unless you know what you are doing */
  545. if (dma_stat & 4) {
  546. u8 stat = hwif->INB(IDE_STATUS_REG);
  547. hwif->OUTB(hwif->dma_status, dma_stat & 0xE4);
  548. }
  549. #endif
  550. /* return 1 if INTR asserted */
  551. if ((dma_stat & 4) == 4)
  552. return 1;
  553. if (!drive->waiting_for_dma)
  554. printk(KERN_WARNING "%s: (%s) called while not waiting\n",
  555. drive->name, __FUNCTION__);
  556. return 0;
  557. }
  558. #endif /* CONFIG_BLK_DEV_IDEDMA_PCI */
  559. int __ide_dma_bad_drive (ide_drive_t *drive)
  560. {
  561. struct hd_driveid *id = drive->id;
  562. int blacklist = ide_in_drive_list(id, drive_blacklist);
  563. if (blacklist) {
  564. printk(KERN_WARNING "%s: Disabling (U)DMA for %s (blacklisted)\n",
  565. drive->name, id->model);
  566. return blacklist;
  567. }
  568. return 0;
  569. }
  570. EXPORT_SYMBOL(__ide_dma_bad_drive);
  571. int __ide_dma_good_drive (ide_drive_t *drive)
  572. {
  573. struct hd_driveid *id = drive->id;
  574. return ide_in_drive_list(id, drive_whitelist);
  575. }
  576. EXPORT_SYMBOL(__ide_dma_good_drive);
  577. int ide_use_dma(ide_drive_t *drive)
  578. {
  579. struct hd_driveid *id = drive->id;
  580. ide_hwif_t *hwif = drive->hwif;
  581. /* consult the list of known "bad" drives */
  582. if (__ide_dma_bad_drive(drive))
  583. return 0;
  584. /* capable of UltraDMA modes */
  585. if (id->field_valid & 4) {
  586. if (hwif->ultra_mask & id->dma_ultra)
  587. return 1;
  588. }
  589. /* capable of regular DMA modes */
  590. if (id->field_valid & 2) {
  591. if (hwif->mwdma_mask & id->dma_mword)
  592. return 1;
  593. if (hwif->swdma_mask & id->dma_1word)
  594. return 1;
  595. }
  596. /* consult the list of known "good" drives */
  597. if (__ide_dma_good_drive(drive) && id->eide_dma_time < 150)
  598. return 1;
  599. return 0;
  600. }
  601. EXPORT_SYMBOL_GPL(ide_use_dma);
  602. void ide_dma_verbose(ide_drive_t *drive)
  603. {
  604. struct hd_driveid *id = drive->id;
  605. ide_hwif_t *hwif = HWIF(drive);
  606. if (id->field_valid & 4) {
  607. if ((id->dma_ultra >> 8) && (id->dma_mword >> 8))
  608. goto bug_dma_off;
  609. if (id->dma_ultra & ((id->dma_ultra >> 8) & hwif->ultra_mask)) {
  610. if (((id->dma_ultra >> 11) & 0x1F) &&
  611. eighty_ninty_three(drive)) {
  612. if ((id->dma_ultra >> 15) & 1) {
  613. printk(", UDMA(mode 7)");
  614. } else if ((id->dma_ultra >> 14) & 1) {
  615. printk(", UDMA(133)");
  616. } else if ((id->dma_ultra >> 13) & 1) {
  617. printk(", UDMA(100)");
  618. } else if ((id->dma_ultra >> 12) & 1) {
  619. printk(", UDMA(66)");
  620. } else if ((id->dma_ultra >> 11) & 1) {
  621. printk(", UDMA(44)");
  622. } else
  623. goto mode_two;
  624. } else {
  625. mode_two:
  626. if ((id->dma_ultra >> 10) & 1) {
  627. printk(", UDMA(33)");
  628. } else if ((id->dma_ultra >> 9) & 1) {
  629. printk(", UDMA(25)");
  630. } else if ((id->dma_ultra >> 8) & 1) {
  631. printk(", UDMA(16)");
  632. }
  633. }
  634. } else {
  635. printk(", (U)DMA"); /* Can be BIOS-enabled! */
  636. }
  637. } else if (id->field_valid & 2) {
  638. if ((id->dma_mword >> 8) && (id->dma_1word >> 8))
  639. goto bug_dma_off;
  640. printk(", DMA");
  641. } else if (id->field_valid & 1) {
  642. goto bug_dma_off;
  643. }
  644. return;
  645. bug_dma_off:
  646. printk(", BUG DMA OFF");
  647. hwif->ide_dma_off_quietly(drive);
  648. return;
  649. }
  650. EXPORT_SYMBOL(ide_dma_verbose);
  651. #ifdef CONFIG_BLK_DEV_IDEDMA_PCI
  652. int __ide_dma_lostirq (ide_drive_t *drive)
  653. {
  654. printk("%s: DMA interrupt recovery\n", drive->name);
  655. return 1;
  656. }
  657. EXPORT_SYMBOL(__ide_dma_lostirq);
  658. int __ide_dma_timeout (ide_drive_t *drive)
  659. {
  660. printk(KERN_ERR "%s: timeout waiting for DMA\n", drive->name);
  661. if (HWIF(drive)->ide_dma_test_irq(drive))
  662. return 0;
  663. return HWIF(drive)->ide_dma_end(drive);
  664. }
  665. EXPORT_SYMBOL(__ide_dma_timeout);
  666. /*
  667. * Needed for allowing full modular support of ide-driver
  668. */
  669. static int ide_release_dma_engine(ide_hwif_t *hwif)
  670. {
  671. if (hwif->dmatable_cpu) {
  672. pci_free_consistent(hwif->pci_dev,
  673. PRD_ENTRIES * PRD_BYTES,
  674. hwif->dmatable_cpu,
  675. hwif->dmatable_dma);
  676. hwif->dmatable_cpu = NULL;
  677. }
  678. return 1;
  679. }
  680. static int ide_release_iomio_dma(ide_hwif_t *hwif)
  681. {
  682. if ((hwif->dma_extra) && (hwif->channel == 0))
  683. release_region((hwif->dma_base + 16), hwif->dma_extra);
  684. release_region(hwif->dma_base, 8);
  685. if (hwif->dma_base2)
  686. release_region(hwif->dma_base, 8);
  687. return 1;
  688. }
  689. /*
  690. * Needed for allowing full modular support of ide-driver
  691. */
  692. int ide_release_dma (ide_hwif_t *hwif)
  693. {
  694. if (hwif->mmio == 2)
  695. return 1;
  696. if (hwif->chipset == ide_etrax100)
  697. return 1;
  698. ide_release_dma_engine(hwif);
  699. return ide_release_iomio_dma(hwif);
  700. }
  701. static int ide_allocate_dma_engine(ide_hwif_t *hwif)
  702. {
  703. hwif->dmatable_cpu = pci_alloc_consistent(hwif->pci_dev,
  704. PRD_ENTRIES * PRD_BYTES,
  705. &hwif->dmatable_dma);
  706. if (hwif->dmatable_cpu)
  707. return 0;
  708. printk(KERN_ERR "%s: -- Error, unable to allocate%s DMA table(s).\n",
  709. hwif->cds->name, !hwif->dmatable_cpu ? " CPU" : "");
  710. ide_release_dma_engine(hwif);
  711. return 1;
  712. }
  713. static int ide_mapped_mmio_dma(ide_hwif_t *hwif, unsigned long base, unsigned int ports)
  714. {
  715. printk(KERN_INFO " %s: MMIO-DMA ", hwif->name);
  716. hwif->dma_base = base;
  717. if (hwif->cds->extra && hwif->channel == 0)
  718. hwif->dma_extra = hwif->cds->extra;
  719. if(hwif->mate)
  720. hwif->dma_master = (hwif->channel) ? hwif->mate->dma_base : base;
  721. else
  722. hwif->dma_master = base;
  723. return 0;
  724. }
  725. static int ide_iomio_dma(ide_hwif_t *hwif, unsigned long base, unsigned int ports)
  726. {
  727. printk(KERN_INFO " %s: BM-DMA at 0x%04lx-0x%04lx",
  728. hwif->name, base, base + ports - 1);
  729. if (!request_region(base, ports, hwif->name)) {
  730. printk(" -- Error, ports in use.\n");
  731. return 1;
  732. }
  733. hwif->dma_base = base;
  734. if ((hwif->cds->extra) && (hwif->channel == 0)) {
  735. request_region(base+16, hwif->cds->extra, hwif->cds->name);
  736. hwif->dma_extra = hwif->cds->extra;
  737. }
  738. if(hwif->mate)
  739. hwif->dma_master = (hwif->channel) ? hwif->mate->dma_base : base;
  740. else
  741. hwif->dma_master = base;
  742. if (hwif->dma_base2) {
  743. if (!request_region(hwif->dma_base2, ports, hwif->name))
  744. {
  745. printk(" -- Error, secondary ports in use.\n");
  746. release_region(base, ports);
  747. return 1;
  748. }
  749. }
  750. return 0;
  751. }
  752. static int ide_dma_iobase(ide_hwif_t *hwif, unsigned long base, unsigned int ports)
  753. {
  754. if (hwif->mmio == 2)
  755. return ide_mapped_mmio_dma(hwif, base,ports);
  756. BUG_ON(hwif->mmio == 1);
  757. return ide_iomio_dma(hwif, base, ports);
  758. }
  759. /*
  760. * This can be called for a dynamically installed interface. Don't __init it
  761. */
  762. void ide_setup_dma (ide_hwif_t *hwif, unsigned long dma_base, unsigned int num_ports)
  763. {
  764. if (ide_dma_iobase(hwif, dma_base, num_ports))
  765. return;
  766. if (ide_allocate_dma_engine(hwif)) {
  767. ide_release_dma(hwif);
  768. return;
  769. }
  770. if (!(hwif->dma_command))
  771. hwif->dma_command = hwif->dma_base;
  772. if (!(hwif->dma_vendor1))
  773. hwif->dma_vendor1 = (hwif->dma_base + 1);
  774. if (!(hwif->dma_status))
  775. hwif->dma_status = (hwif->dma_base + 2);
  776. if (!(hwif->dma_vendor3))
  777. hwif->dma_vendor3 = (hwif->dma_base + 3);
  778. if (!(hwif->dma_prdtable))
  779. hwif->dma_prdtable = (hwif->dma_base + 4);
  780. if (!hwif->ide_dma_off_quietly)
  781. hwif->ide_dma_off_quietly = &__ide_dma_off_quietly;
  782. if (!hwif->ide_dma_host_off)
  783. hwif->ide_dma_host_off = &__ide_dma_host_off;
  784. if (!hwif->ide_dma_on)
  785. hwif->ide_dma_on = &__ide_dma_on;
  786. if (!hwif->ide_dma_host_on)
  787. hwif->ide_dma_host_on = &__ide_dma_host_on;
  788. if (!hwif->ide_dma_check)
  789. hwif->ide_dma_check = &__ide_dma_check;
  790. if (!hwif->dma_setup)
  791. hwif->dma_setup = &ide_dma_setup;
  792. if (!hwif->dma_exec_cmd)
  793. hwif->dma_exec_cmd = &ide_dma_exec_cmd;
  794. if (!hwif->dma_start)
  795. hwif->dma_start = &ide_dma_start;
  796. if (!hwif->ide_dma_end)
  797. hwif->ide_dma_end = &__ide_dma_end;
  798. if (!hwif->ide_dma_test_irq)
  799. hwif->ide_dma_test_irq = &__ide_dma_test_irq;
  800. if (!hwif->ide_dma_timeout)
  801. hwif->ide_dma_timeout = &__ide_dma_timeout;
  802. if (!hwif->ide_dma_lostirq)
  803. hwif->ide_dma_lostirq = &__ide_dma_lostirq;
  804. if (hwif->chipset != ide_trm290) {
  805. u8 dma_stat = hwif->INB(hwif->dma_status);
  806. printk(", BIOS settings: %s:%s, %s:%s",
  807. hwif->drives[0].name, (dma_stat & 0x20) ? "DMA" : "pio",
  808. hwif->drives[1].name, (dma_stat & 0x40) ? "DMA" : "pio");
  809. }
  810. printk("\n");
  811. BUG_ON(!hwif->dma_master);
  812. }
  813. EXPORT_SYMBOL_GPL(ide_setup_dma);
  814. #endif /* CONFIG_BLK_DEV_IDEDMA_PCI */