loop.c 33 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330
  1. /*
  2. * linux/drivers/block/loop.c
  3. *
  4. * Written by Theodore Ts'o, 3/29/93
  5. *
  6. * Copyright 1993 by Theodore Ts'o. Redistribution of this file is
  7. * permitted under the GNU General Public License.
  8. *
  9. * DES encryption plus some minor changes by Werner Almesberger, 30-MAY-1993
  10. * more DES encryption plus IDEA encryption by Nicholas J. Leon, June 20, 1996
  11. *
  12. * Modularized and updated for 1.1.16 kernel - Mitch Dsouza 28th May 1994
  13. * Adapted for 1.3.59 kernel - Andries Brouwer, 1 Feb 1996
  14. *
  15. * Fixed do_loop_request() re-entrancy - Vincent.Renardias@waw.com Mar 20, 1997
  16. *
  17. * Added devfs support - Richard Gooch <rgooch@atnf.csiro.au> 16-Jan-1998
  18. *
  19. * Handle sparse backing files correctly - Kenn Humborg, Jun 28, 1998
  20. *
  21. * Loadable modules and other fixes by AK, 1998
  22. *
  23. * Make real block number available to downstream transfer functions, enables
  24. * CBC (and relatives) mode encryption requiring unique IVs per data block.
  25. * Reed H. Petty, rhp@draper.net
  26. *
  27. * Maximum number of loop devices now dynamic via max_loop module parameter.
  28. * Russell Kroll <rkroll@exploits.org> 19990701
  29. *
  30. * Maximum number of loop devices when compiled-in now selectable by passing
  31. * max_loop=<1-255> to the kernel on boot.
  32. * Erik I. Bolsø, <eriki@himolde.no>, Oct 31, 1999
  33. *
  34. * Completely rewrite request handling to be make_request_fn style and
  35. * non blocking, pushing work to a helper thread. Lots of fixes from
  36. * Al Viro too.
  37. * Jens Axboe <axboe@suse.de>, Nov 2000
  38. *
  39. * Support up to 256 loop devices
  40. * Heinz Mauelshagen <mge@sistina.com>, Feb 2002
  41. *
  42. * Support for falling back on the write file operation when the address space
  43. * operations prepare_write and/or commit_write are not available on the
  44. * backing filesystem.
  45. * Anton Altaparmakov, 16 Feb 2005
  46. *
  47. * Still To Fix:
  48. * - Advisory locking is ignored here.
  49. * - Should use an own CAP_* category instead of CAP_SYS_ADMIN
  50. *
  51. */
  52. #include <linux/module.h>
  53. #include <linux/moduleparam.h>
  54. #include <linux/sched.h>
  55. #include <linux/fs.h>
  56. #include <linux/file.h>
  57. #include <linux/stat.h>
  58. #include <linux/errno.h>
  59. #include <linux/major.h>
  60. #include <linux/wait.h>
  61. #include <linux/blkdev.h>
  62. #include <linux/blkpg.h>
  63. #include <linux/init.h>
  64. #include <linux/smp_lock.h>
  65. #include <linux/swap.h>
  66. #include <linux/slab.h>
  67. #include <linux/loop.h>
  68. #include <linux/suspend.h>
  69. #include <linux/writeback.h>
  70. #include <linux/buffer_head.h> /* for invalidate_bdev() */
  71. #include <linux/completion.h>
  72. #include <linux/highmem.h>
  73. #include <linux/gfp.h>
  74. #include <linux/kthread.h>
  75. #include <asm/uaccess.h>
  76. static int max_loop = 8;
  77. static struct loop_device *loop_dev;
  78. static struct gendisk **disks;
  79. /*
  80. * Transfer functions
  81. */
  82. static int transfer_none(struct loop_device *lo, int cmd,
  83. struct page *raw_page, unsigned raw_off,
  84. struct page *loop_page, unsigned loop_off,
  85. int size, sector_t real_block)
  86. {
  87. char *raw_buf = kmap_atomic(raw_page, KM_USER0) + raw_off;
  88. char *loop_buf = kmap_atomic(loop_page, KM_USER1) + loop_off;
  89. if (cmd == READ)
  90. memcpy(loop_buf, raw_buf, size);
  91. else
  92. memcpy(raw_buf, loop_buf, size);
  93. kunmap_atomic(raw_buf, KM_USER0);
  94. kunmap_atomic(loop_buf, KM_USER1);
  95. cond_resched();
  96. return 0;
  97. }
  98. static int transfer_xor(struct loop_device *lo, int cmd,
  99. struct page *raw_page, unsigned raw_off,
  100. struct page *loop_page, unsigned loop_off,
  101. int size, sector_t real_block)
  102. {
  103. char *raw_buf = kmap_atomic(raw_page, KM_USER0) + raw_off;
  104. char *loop_buf = kmap_atomic(loop_page, KM_USER1) + loop_off;
  105. char *in, *out, *key;
  106. int i, keysize;
  107. if (cmd == READ) {
  108. in = raw_buf;
  109. out = loop_buf;
  110. } else {
  111. in = loop_buf;
  112. out = raw_buf;
  113. }
  114. key = lo->lo_encrypt_key;
  115. keysize = lo->lo_encrypt_key_size;
  116. for (i = 0; i < size; i++)
  117. *out++ = *in++ ^ key[(i & 511) % keysize];
  118. kunmap_atomic(raw_buf, KM_USER0);
  119. kunmap_atomic(loop_buf, KM_USER1);
  120. cond_resched();
  121. return 0;
  122. }
  123. static int xor_init(struct loop_device *lo, const struct loop_info64 *info)
  124. {
  125. if (unlikely(info->lo_encrypt_key_size <= 0))
  126. return -EINVAL;
  127. return 0;
  128. }
  129. static struct loop_func_table none_funcs = {
  130. .number = LO_CRYPT_NONE,
  131. .transfer = transfer_none,
  132. };
  133. static struct loop_func_table xor_funcs = {
  134. .number = LO_CRYPT_XOR,
  135. .transfer = transfer_xor,
  136. .init = xor_init
  137. };
  138. /* xfer_funcs[0] is special - its release function is never called */
  139. static struct loop_func_table *xfer_funcs[MAX_LO_CRYPT] = {
  140. &none_funcs,
  141. &xor_funcs
  142. };
  143. static loff_t get_loop_size(struct loop_device *lo, struct file *file)
  144. {
  145. loff_t size, offset, loopsize;
  146. /* Compute loopsize in bytes */
  147. size = i_size_read(file->f_mapping->host);
  148. offset = lo->lo_offset;
  149. loopsize = size - offset;
  150. if (lo->lo_sizelimit > 0 && lo->lo_sizelimit < loopsize)
  151. loopsize = lo->lo_sizelimit;
  152. /*
  153. * Unfortunately, if we want to do I/O on the device,
  154. * the number of 512-byte sectors has to fit into a sector_t.
  155. */
  156. return loopsize >> 9;
  157. }
  158. static int
  159. figure_loop_size(struct loop_device *lo)
  160. {
  161. loff_t size = get_loop_size(lo, lo->lo_backing_file);
  162. sector_t x = (sector_t)size;
  163. if (unlikely((loff_t)x != size))
  164. return -EFBIG;
  165. set_capacity(disks[lo->lo_number], x);
  166. return 0;
  167. }
  168. static inline int
  169. lo_do_transfer(struct loop_device *lo, int cmd,
  170. struct page *rpage, unsigned roffs,
  171. struct page *lpage, unsigned loffs,
  172. int size, sector_t rblock)
  173. {
  174. if (unlikely(!lo->transfer))
  175. return 0;
  176. return lo->transfer(lo, cmd, rpage, roffs, lpage, loffs, size, rblock);
  177. }
  178. /**
  179. * do_lo_send_aops - helper for writing data to a loop device
  180. *
  181. * This is the fast version for backing filesystems which implement the address
  182. * space operations prepare_write and commit_write.
  183. */
  184. static int do_lo_send_aops(struct loop_device *lo, struct bio_vec *bvec,
  185. int bsize, loff_t pos, struct page *page)
  186. {
  187. struct file *file = lo->lo_backing_file; /* kudos to NFsckingS */
  188. struct address_space *mapping = file->f_mapping;
  189. const struct address_space_operations *aops = mapping->a_ops;
  190. pgoff_t index;
  191. unsigned offset, bv_offs;
  192. int len, ret;
  193. mutex_lock(&mapping->host->i_mutex);
  194. index = pos >> PAGE_CACHE_SHIFT;
  195. offset = pos & ((pgoff_t)PAGE_CACHE_SIZE - 1);
  196. bv_offs = bvec->bv_offset;
  197. len = bvec->bv_len;
  198. while (len > 0) {
  199. sector_t IV;
  200. unsigned size;
  201. int transfer_result;
  202. IV = ((sector_t)index << (PAGE_CACHE_SHIFT - 9))+(offset >> 9);
  203. size = PAGE_CACHE_SIZE - offset;
  204. if (size > len)
  205. size = len;
  206. page = grab_cache_page(mapping, index);
  207. if (unlikely(!page))
  208. goto fail;
  209. ret = aops->prepare_write(file, page, offset,
  210. offset + size);
  211. if (unlikely(ret)) {
  212. if (ret == AOP_TRUNCATED_PAGE) {
  213. page_cache_release(page);
  214. continue;
  215. }
  216. goto unlock;
  217. }
  218. transfer_result = lo_do_transfer(lo, WRITE, page, offset,
  219. bvec->bv_page, bv_offs, size, IV);
  220. if (unlikely(transfer_result)) {
  221. char *kaddr;
  222. /*
  223. * The transfer failed, but we still write the data to
  224. * keep prepare/commit calls balanced.
  225. */
  226. printk(KERN_ERR "loop: transfer error block %llu\n",
  227. (unsigned long long)index);
  228. kaddr = kmap_atomic(page, KM_USER0);
  229. memset(kaddr + offset, 0, size);
  230. kunmap_atomic(kaddr, KM_USER0);
  231. }
  232. flush_dcache_page(page);
  233. ret = aops->commit_write(file, page, offset,
  234. offset + size);
  235. if (unlikely(ret)) {
  236. if (ret == AOP_TRUNCATED_PAGE) {
  237. page_cache_release(page);
  238. continue;
  239. }
  240. goto unlock;
  241. }
  242. if (unlikely(transfer_result))
  243. goto unlock;
  244. bv_offs += size;
  245. len -= size;
  246. offset = 0;
  247. index++;
  248. pos += size;
  249. unlock_page(page);
  250. page_cache_release(page);
  251. }
  252. ret = 0;
  253. out:
  254. mutex_unlock(&mapping->host->i_mutex);
  255. return ret;
  256. unlock:
  257. unlock_page(page);
  258. page_cache_release(page);
  259. fail:
  260. ret = -1;
  261. goto out;
  262. }
  263. /**
  264. * __do_lo_send_write - helper for writing data to a loop device
  265. *
  266. * This helper just factors out common code between do_lo_send_direct_write()
  267. * and do_lo_send_write().
  268. */
  269. static int __do_lo_send_write(struct file *file,
  270. u8 __user *buf, const int len, loff_t pos)
  271. {
  272. ssize_t bw;
  273. mm_segment_t old_fs = get_fs();
  274. set_fs(get_ds());
  275. bw = file->f_op->write(file, buf, len, &pos);
  276. set_fs(old_fs);
  277. if (likely(bw == len))
  278. return 0;
  279. printk(KERN_ERR "loop: Write error at byte offset %llu, length %i.\n",
  280. (unsigned long long)pos, len);
  281. if (bw >= 0)
  282. bw = -EIO;
  283. return bw;
  284. }
  285. /**
  286. * do_lo_send_direct_write - helper for writing data to a loop device
  287. *
  288. * This is the fast, non-transforming version for backing filesystems which do
  289. * not implement the address space operations prepare_write and commit_write.
  290. * It uses the write file operation which should be present on all writeable
  291. * filesystems.
  292. */
  293. static int do_lo_send_direct_write(struct loop_device *lo,
  294. struct bio_vec *bvec, int bsize, loff_t pos, struct page *page)
  295. {
  296. ssize_t bw = __do_lo_send_write(lo->lo_backing_file,
  297. (u8 __user *)kmap(bvec->bv_page) + bvec->bv_offset,
  298. bvec->bv_len, pos);
  299. kunmap(bvec->bv_page);
  300. cond_resched();
  301. return bw;
  302. }
  303. /**
  304. * do_lo_send_write - helper for writing data to a loop device
  305. *
  306. * This is the slow, transforming version for filesystems which do not
  307. * implement the address space operations prepare_write and commit_write. It
  308. * uses the write file operation which should be present on all writeable
  309. * filesystems.
  310. *
  311. * Using fops->write is slower than using aops->{prepare,commit}_write in the
  312. * transforming case because we need to double buffer the data as we cannot do
  313. * the transformations in place as we do not have direct access to the
  314. * destination pages of the backing file.
  315. */
  316. static int do_lo_send_write(struct loop_device *lo, struct bio_vec *bvec,
  317. int bsize, loff_t pos, struct page *page)
  318. {
  319. int ret = lo_do_transfer(lo, WRITE, page, 0, bvec->bv_page,
  320. bvec->bv_offset, bvec->bv_len, pos >> 9);
  321. if (likely(!ret))
  322. return __do_lo_send_write(lo->lo_backing_file,
  323. (u8 __user *)page_address(page), bvec->bv_len,
  324. pos);
  325. printk(KERN_ERR "loop: Transfer error at byte offset %llu, "
  326. "length %i.\n", (unsigned long long)pos, bvec->bv_len);
  327. if (ret > 0)
  328. ret = -EIO;
  329. return ret;
  330. }
  331. static int lo_send(struct loop_device *lo, struct bio *bio, int bsize,
  332. loff_t pos)
  333. {
  334. int (*do_lo_send)(struct loop_device *, struct bio_vec *, int, loff_t,
  335. struct page *page);
  336. struct bio_vec *bvec;
  337. struct page *page = NULL;
  338. int i, ret = 0;
  339. do_lo_send = do_lo_send_aops;
  340. if (!(lo->lo_flags & LO_FLAGS_USE_AOPS)) {
  341. do_lo_send = do_lo_send_direct_write;
  342. if (lo->transfer != transfer_none) {
  343. page = alloc_page(GFP_NOIO | __GFP_HIGHMEM);
  344. if (unlikely(!page))
  345. goto fail;
  346. kmap(page);
  347. do_lo_send = do_lo_send_write;
  348. }
  349. }
  350. bio_for_each_segment(bvec, bio, i) {
  351. ret = do_lo_send(lo, bvec, bsize, pos, page);
  352. if (ret < 0)
  353. break;
  354. pos += bvec->bv_len;
  355. }
  356. if (page) {
  357. kunmap(page);
  358. __free_page(page);
  359. }
  360. out:
  361. return ret;
  362. fail:
  363. printk(KERN_ERR "loop: Failed to allocate temporary page for write.\n");
  364. ret = -ENOMEM;
  365. goto out;
  366. }
  367. struct lo_read_data {
  368. struct loop_device *lo;
  369. struct page *page;
  370. unsigned offset;
  371. int bsize;
  372. };
  373. static int
  374. lo_read_actor(read_descriptor_t *desc, struct page *page,
  375. unsigned long offset, unsigned long size)
  376. {
  377. unsigned long count = desc->count;
  378. struct lo_read_data *p = desc->arg.data;
  379. struct loop_device *lo = p->lo;
  380. sector_t IV;
  381. IV = ((sector_t) page->index << (PAGE_CACHE_SHIFT - 9))+(offset >> 9);
  382. if (size > count)
  383. size = count;
  384. if (lo_do_transfer(lo, READ, page, offset, p->page, p->offset, size, IV)) {
  385. size = 0;
  386. printk(KERN_ERR "loop: transfer error block %ld\n",
  387. page->index);
  388. desc->error = -EINVAL;
  389. }
  390. flush_dcache_page(p->page);
  391. desc->count = count - size;
  392. desc->written += size;
  393. p->offset += size;
  394. return size;
  395. }
  396. static int
  397. do_lo_receive(struct loop_device *lo,
  398. struct bio_vec *bvec, int bsize, loff_t pos)
  399. {
  400. struct lo_read_data cookie;
  401. struct file *file;
  402. int retval;
  403. cookie.lo = lo;
  404. cookie.page = bvec->bv_page;
  405. cookie.offset = bvec->bv_offset;
  406. cookie.bsize = bsize;
  407. file = lo->lo_backing_file;
  408. retval = file->f_op->sendfile(file, &pos, bvec->bv_len,
  409. lo_read_actor, &cookie);
  410. return (retval < 0)? retval: 0;
  411. }
  412. static int
  413. lo_receive(struct loop_device *lo, struct bio *bio, int bsize, loff_t pos)
  414. {
  415. struct bio_vec *bvec;
  416. int i, ret = 0;
  417. bio_for_each_segment(bvec, bio, i) {
  418. ret = do_lo_receive(lo, bvec, bsize, pos);
  419. if (ret < 0)
  420. break;
  421. pos += bvec->bv_len;
  422. }
  423. return ret;
  424. }
  425. static int do_bio_filebacked(struct loop_device *lo, struct bio *bio)
  426. {
  427. loff_t pos;
  428. int ret;
  429. pos = ((loff_t) bio->bi_sector << 9) + lo->lo_offset;
  430. if (bio_rw(bio) == WRITE)
  431. ret = lo_send(lo, bio, lo->lo_blocksize, pos);
  432. else
  433. ret = lo_receive(lo, bio, lo->lo_blocksize, pos);
  434. return ret;
  435. }
  436. /*
  437. * Add bio to back of pending list
  438. */
  439. static void loop_add_bio(struct loop_device *lo, struct bio *bio)
  440. {
  441. if (lo->lo_biotail) {
  442. lo->lo_biotail->bi_next = bio;
  443. lo->lo_biotail = bio;
  444. } else
  445. lo->lo_bio = lo->lo_biotail = bio;
  446. }
  447. /*
  448. * Grab first pending buffer
  449. */
  450. static struct bio *loop_get_bio(struct loop_device *lo)
  451. {
  452. struct bio *bio;
  453. if ((bio = lo->lo_bio)) {
  454. if (bio == lo->lo_biotail)
  455. lo->lo_biotail = NULL;
  456. lo->lo_bio = bio->bi_next;
  457. bio->bi_next = NULL;
  458. }
  459. return bio;
  460. }
  461. static int loop_make_request(request_queue_t *q, struct bio *old_bio)
  462. {
  463. struct loop_device *lo = q->queuedata;
  464. int rw = bio_rw(old_bio);
  465. if (rw == READA)
  466. rw = READ;
  467. BUG_ON(!lo || (rw != READ && rw != WRITE));
  468. spin_lock_irq(&lo->lo_lock);
  469. if (lo->lo_state != Lo_bound)
  470. goto out;
  471. if (unlikely(rw == WRITE && (lo->lo_flags & LO_FLAGS_READ_ONLY)))
  472. goto out;
  473. loop_add_bio(lo, old_bio);
  474. wake_up(&lo->lo_event);
  475. spin_unlock_irq(&lo->lo_lock);
  476. return 0;
  477. out:
  478. spin_unlock_irq(&lo->lo_lock);
  479. bio_io_error(old_bio, old_bio->bi_size);
  480. return 0;
  481. }
  482. /*
  483. * kick off io on the underlying address space
  484. */
  485. static void loop_unplug(request_queue_t *q)
  486. {
  487. struct loop_device *lo = q->queuedata;
  488. clear_bit(QUEUE_FLAG_PLUGGED, &q->queue_flags);
  489. blk_run_address_space(lo->lo_backing_file->f_mapping);
  490. }
  491. struct switch_request {
  492. struct file *file;
  493. struct completion wait;
  494. };
  495. static void do_loop_switch(struct loop_device *, struct switch_request *);
  496. static inline void loop_handle_bio(struct loop_device *lo, struct bio *bio)
  497. {
  498. if (unlikely(!bio->bi_bdev)) {
  499. do_loop_switch(lo, bio->bi_private);
  500. bio_put(bio);
  501. } else {
  502. int ret = do_bio_filebacked(lo, bio);
  503. bio_endio(bio, bio->bi_size, ret);
  504. }
  505. }
  506. /*
  507. * worker thread that handles reads/writes to file backed loop devices,
  508. * to avoid blocking in our make_request_fn. it also does loop decrypting
  509. * on reads for block backed loop, as that is too heavy to do from
  510. * b_end_io context where irqs may be disabled.
  511. *
  512. * Loop explanation: loop_clr_fd() sets lo_state to Lo_rundown before
  513. * calling kthread_stop(). Therefore once kthread_should_stop() is
  514. * true, make_request will not place any more requests. Therefore
  515. * once kthread_should_stop() is true and lo_bio is NULL, we are
  516. * done with the loop.
  517. */
  518. static int loop_thread(void *data)
  519. {
  520. struct loop_device *lo = data;
  521. struct bio *bio;
  522. /*
  523. * loop can be used in an encrypted device,
  524. * hence, it mustn't be stopped at all
  525. * because it could be indirectly used during suspension
  526. */
  527. current->flags |= PF_NOFREEZE;
  528. set_user_nice(current, -20);
  529. while (!kthread_should_stop() || lo->lo_bio) {
  530. wait_event_interruptible(lo->lo_event,
  531. lo->lo_bio || kthread_should_stop());
  532. if (!lo->lo_bio)
  533. continue;
  534. spin_lock_irq(&lo->lo_lock);
  535. bio = loop_get_bio(lo);
  536. spin_unlock_irq(&lo->lo_lock);
  537. BUG_ON(!bio);
  538. loop_handle_bio(lo, bio);
  539. }
  540. return 0;
  541. }
  542. /*
  543. * loop_switch performs the hard work of switching a backing store.
  544. * First it needs to flush existing IO, it does this by sending a magic
  545. * BIO down the pipe. The completion of this BIO does the actual switch.
  546. */
  547. static int loop_switch(struct loop_device *lo, struct file *file)
  548. {
  549. struct switch_request w;
  550. struct bio *bio = bio_alloc(GFP_KERNEL, 1);
  551. if (!bio)
  552. return -ENOMEM;
  553. init_completion(&w.wait);
  554. w.file = file;
  555. bio->bi_private = &w;
  556. bio->bi_bdev = NULL;
  557. loop_make_request(lo->lo_queue, bio);
  558. wait_for_completion(&w.wait);
  559. return 0;
  560. }
  561. /*
  562. * Do the actual switch; called from the BIO completion routine
  563. */
  564. static void do_loop_switch(struct loop_device *lo, struct switch_request *p)
  565. {
  566. struct file *file = p->file;
  567. struct file *old_file = lo->lo_backing_file;
  568. struct address_space *mapping = file->f_mapping;
  569. mapping_set_gfp_mask(old_file->f_mapping, lo->old_gfp_mask);
  570. lo->lo_backing_file = file;
  571. lo->lo_blocksize = S_ISBLK(mapping->host->i_mode) ?
  572. mapping->host->i_bdev->bd_block_size : PAGE_SIZE;
  573. lo->old_gfp_mask = mapping_gfp_mask(mapping);
  574. mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
  575. complete(&p->wait);
  576. }
  577. /*
  578. * loop_change_fd switched the backing store of a loopback device to
  579. * a new file. This is useful for operating system installers to free up
  580. * the original file and in High Availability environments to switch to
  581. * an alternative location for the content in case of server meltdown.
  582. * This can only work if the loop device is used read-only, and if the
  583. * new backing store is the same size and type as the old backing store.
  584. */
  585. static int loop_change_fd(struct loop_device *lo, struct file *lo_file,
  586. struct block_device *bdev, unsigned int arg)
  587. {
  588. struct file *file, *old_file;
  589. struct inode *inode;
  590. int error;
  591. error = -ENXIO;
  592. if (lo->lo_state != Lo_bound)
  593. goto out;
  594. /* the loop device has to be read-only */
  595. error = -EINVAL;
  596. if (!(lo->lo_flags & LO_FLAGS_READ_ONLY))
  597. goto out;
  598. error = -EBADF;
  599. file = fget(arg);
  600. if (!file)
  601. goto out;
  602. inode = file->f_mapping->host;
  603. old_file = lo->lo_backing_file;
  604. error = -EINVAL;
  605. if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode))
  606. goto out_putf;
  607. /* new backing store needs to support loop (eg sendfile) */
  608. if (!inode->i_fop->sendfile)
  609. goto out_putf;
  610. /* size of the new backing store needs to be the same */
  611. if (get_loop_size(lo, file) != get_loop_size(lo, old_file))
  612. goto out_putf;
  613. /* and ... switch */
  614. error = loop_switch(lo, file);
  615. if (error)
  616. goto out_putf;
  617. fput(old_file);
  618. return 0;
  619. out_putf:
  620. fput(file);
  621. out:
  622. return error;
  623. }
  624. static inline int is_loop_device(struct file *file)
  625. {
  626. struct inode *i = file->f_mapping->host;
  627. return i && S_ISBLK(i->i_mode) && MAJOR(i->i_rdev) == LOOP_MAJOR;
  628. }
  629. static int loop_set_fd(struct loop_device *lo, struct file *lo_file,
  630. struct block_device *bdev, unsigned int arg)
  631. {
  632. struct file *file, *f;
  633. struct inode *inode;
  634. struct address_space *mapping;
  635. unsigned lo_blocksize;
  636. int lo_flags = 0;
  637. int error;
  638. loff_t size;
  639. /* This is safe, since we have a reference from open(). */
  640. __module_get(THIS_MODULE);
  641. error = -EBADF;
  642. file = fget(arg);
  643. if (!file)
  644. goto out;
  645. error = -EBUSY;
  646. if (lo->lo_state != Lo_unbound)
  647. goto out_putf;
  648. /* Avoid recursion */
  649. f = file;
  650. while (is_loop_device(f)) {
  651. struct loop_device *l;
  652. if (f->f_mapping->host->i_rdev == lo_file->f_mapping->host->i_rdev)
  653. goto out_putf;
  654. l = f->f_mapping->host->i_bdev->bd_disk->private_data;
  655. if (l->lo_state == Lo_unbound) {
  656. error = -EINVAL;
  657. goto out_putf;
  658. }
  659. f = l->lo_backing_file;
  660. }
  661. mapping = file->f_mapping;
  662. inode = mapping->host;
  663. if (!(file->f_mode & FMODE_WRITE))
  664. lo_flags |= LO_FLAGS_READ_ONLY;
  665. error = -EINVAL;
  666. if (S_ISREG(inode->i_mode) || S_ISBLK(inode->i_mode)) {
  667. const struct address_space_operations *aops = mapping->a_ops;
  668. /*
  669. * If we can't read - sorry. If we only can't write - well,
  670. * it's going to be read-only.
  671. */
  672. if (!file->f_op->sendfile)
  673. goto out_putf;
  674. if (aops->prepare_write && aops->commit_write)
  675. lo_flags |= LO_FLAGS_USE_AOPS;
  676. if (!(lo_flags & LO_FLAGS_USE_AOPS) && !file->f_op->write)
  677. lo_flags |= LO_FLAGS_READ_ONLY;
  678. lo_blocksize = S_ISBLK(inode->i_mode) ?
  679. inode->i_bdev->bd_block_size : PAGE_SIZE;
  680. error = 0;
  681. } else {
  682. goto out_putf;
  683. }
  684. size = get_loop_size(lo, file);
  685. if ((loff_t)(sector_t)size != size) {
  686. error = -EFBIG;
  687. goto out_putf;
  688. }
  689. if (!(lo_file->f_mode & FMODE_WRITE))
  690. lo_flags |= LO_FLAGS_READ_ONLY;
  691. set_device_ro(bdev, (lo_flags & LO_FLAGS_READ_ONLY) != 0);
  692. lo->lo_blocksize = lo_blocksize;
  693. lo->lo_device = bdev;
  694. lo->lo_flags = lo_flags;
  695. lo->lo_backing_file = file;
  696. lo->transfer = transfer_none;
  697. lo->ioctl = NULL;
  698. lo->lo_sizelimit = 0;
  699. lo->old_gfp_mask = mapping_gfp_mask(mapping);
  700. mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
  701. lo->lo_bio = lo->lo_biotail = NULL;
  702. /*
  703. * set queue make_request_fn, and add limits based on lower level
  704. * device
  705. */
  706. blk_queue_make_request(lo->lo_queue, loop_make_request);
  707. lo->lo_queue->queuedata = lo;
  708. lo->lo_queue->unplug_fn = loop_unplug;
  709. set_capacity(disks[lo->lo_number], size);
  710. bd_set_size(bdev, size << 9);
  711. set_blocksize(bdev, lo_blocksize);
  712. lo->lo_thread = kthread_create(loop_thread, lo, "loop%d",
  713. lo->lo_number);
  714. if (IS_ERR(lo->lo_thread)) {
  715. error = PTR_ERR(lo->lo_thread);
  716. lo->lo_thread = NULL;
  717. goto out_putf;
  718. }
  719. lo->lo_state = Lo_bound;
  720. wake_up_process(lo->lo_thread);
  721. return 0;
  722. out_putf:
  723. fput(file);
  724. out:
  725. /* This is safe: open() is still holding a reference. */
  726. module_put(THIS_MODULE);
  727. return error;
  728. }
  729. static int
  730. loop_release_xfer(struct loop_device *lo)
  731. {
  732. int err = 0;
  733. struct loop_func_table *xfer = lo->lo_encryption;
  734. if (xfer) {
  735. if (xfer->release)
  736. err = xfer->release(lo);
  737. lo->transfer = NULL;
  738. lo->lo_encryption = NULL;
  739. module_put(xfer->owner);
  740. }
  741. return err;
  742. }
  743. static int
  744. loop_init_xfer(struct loop_device *lo, struct loop_func_table *xfer,
  745. const struct loop_info64 *i)
  746. {
  747. int err = 0;
  748. if (xfer) {
  749. struct module *owner = xfer->owner;
  750. if (!try_module_get(owner))
  751. return -EINVAL;
  752. if (xfer->init)
  753. err = xfer->init(lo, i);
  754. if (err)
  755. module_put(owner);
  756. else
  757. lo->lo_encryption = xfer;
  758. }
  759. return err;
  760. }
  761. static int loop_clr_fd(struct loop_device *lo, struct block_device *bdev)
  762. {
  763. struct file *filp = lo->lo_backing_file;
  764. gfp_t gfp = lo->old_gfp_mask;
  765. if (lo->lo_state != Lo_bound)
  766. return -ENXIO;
  767. if (lo->lo_refcnt > 1) /* we needed one fd for the ioctl */
  768. return -EBUSY;
  769. if (filp == NULL)
  770. return -EINVAL;
  771. spin_lock_irq(&lo->lo_lock);
  772. lo->lo_state = Lo_rundown;
  773. spin_unlock_irq(&lo->lo_lock);
  774. kthread_stop(lo->lo_thread);
  775. lo->lo_backing_file = NULL;
  776. loop_release_xfer(lo);
  777. lo->transfer = NULL;
  778. lo->ioctl = NULL;
  779. lo->lo_device = NULL;
  780. lo->lo_encryption = NULL;
  781. lo->lo_offset = 0;
  782. lo->lo_sizelimit = 0;
  783. lo->lo_encrypt_key_size = 0;
  784. lo->lo_flags = 0;
  785. lo->lo_thread = NULL;
  786. memset(lo->lo_encrypt_key, 0, LO_KEY_SIZE);
  787. memset(lo->lo_crypt_name, 0, LO_NAME_SIZE);
  788. memset(lo->lo_file_name, 0, LO_NAME_SIZE);
  789. invalidate_bdev(bdev, 0);
  790. set_capacity(disks[lo->lo_number], 0);
  791. bd_set_size(bdev, 0);
  792. mapping_set_gfp_mask(filp->f_mapping, gfp);
  793. lo->lo_state = Lo_unbound;
  794. fput(filp);
  795. /* This is safe: open() is still holding a reference. */
  796. module_put(THIS_MODULE);
  797. return 0;
  798. }
  799. static int
  800. loop_set_status(struct loop_device *lo, const struct loop_info64 *info)
  801. {
  802. int err;
  803. struct loop_func_table *xfer;
  804. if (lo->lo_encrypt_key_size && lo->lo_key_owner != current->uid &&
  805. !capable(CAP_SYS_ADMIN))
  806. return -EPERM;
  807. if (lo->lo_state != Lo_bound)
  808. return -ENXIO;
  809. if ((unsigned int) info->lo_encrypt_key_size > LO_KEY_SIZE)
  810. return -EINVAL;
  811. err = loop_release_xfer(lo);
  812. if (err)
  813. return err;
  814. if (info->lo_encrypt_type) {
  815. unsigned int type = info->lo_encrypt_type;
  816. if (type >= MAX_LO_CRYPT)
  817. return -EINVAL;
  818. xfer = xfer_funcs[type];
  819. if (xfer == NULL)
  820. return -EINVAL;
  821. } else
  822. xfer = NULL;
  823. err = loop_init_xfer(lo, xfer, info);
  824. if (err)
  825. return err;
  826. if (lo->lo_offset != info->lo_offset ||
  827. lo->lo_sizelimit != info->lo_sizelimit) {
  828. lo->lo_offset = info->lo_offset;
  829. lo->lo_sizelimit = info->lo_sizelimit;
  830. if (figure_loop_size(lo))
  831. return -EFBIG;
  832. }
  833. memcpy(lo->lo_file_name, info->lo_file_name, LO_NAME_SIZE);
  834. memcpy(lo->lo_crypt_name, info->lo_crypt_name, LO_NAME_SIZE);
  835. lo->lo_file_name[LO_NAME_SIZE-1] = 0;
  836. lo->lo_crypt_name[LO_NAME_SIZE-1] = 0;
  837. if (!xfer)
  838. xfer = &none_funcs;
  839. lo->transfer = xfer->transfer;
  840. lo->ioctl = xfer->ioctl;
  841. lo->lo_encrypt_key_size = info->lo_encrypt_key_size;
  842. lo->lo_init[0] = info->lo_init[0];
  843. lo->lo_init[1] = info->lo_init[1];
  844. if (info->lo_encrypt_key_size) {
  845. memcpy(lo->lo_encrypt_key, info->lo_encrypt_key,
  846. info->lo_encrypt_key_size);
  847. lo->lo_key_owner = current->uid;
  848. }
  849. return 0;
  850. }
  851. static int
  852. loop_get_status(struct loop_device *lo, struct loop_info64 *info)
  853. {
  854. struct file *file = lo->lo_backing_file;
  855. struct kstat stat;
  856. int error;
  857. if (lo->lo_state != Lo_bound)
  858. return -ENXIO;
  859. error = vfs_getattr(file->f_vfsmnt, file->f_dentry, &stat);
  860. if (error)
  861. return error;
  862. memset(info, 0, sizeof(*info));
  863. info->lo_number = lo->lo_number;
  864. info->lo_device = huge_encode_dev(stat.dev);
  865. info->lo_inode = stat.ino;
  866. info->lo_rdevice = huge_encode_dev(lo->lo_device ? stat.rdev : stat.dev);
  867. info->lo_offset = lo->lo_offset;
  868. info->lo_sizelimit = lo->lo_sizelimit;
  869. info->lo_flags = lo->lo_flags;
  870. memcpy(info->lo_file_name, lo->lo_file_name, LO_NAME_SIZE);
  871. memcpy(info->lo_crypt_name, lo->lo_crypt_name, LO_NAME_SIZE);
  872. info->lo_encrypt_type =
  873. lo->lo_encryption ? lo->lo_encryption->number : 0;
  874. if (lo->lo_encrypt_key_size && capable(CAP_SYS_ADMIN)) {
  875. info->lo_encrypt_key_size = lo->lo_encrypt_key_size;
  876. memcpy(info->lo_encrypt_key, lo->lo_encrypt_key,
  877. lo->lo_encrypt_key_size);
  878. }
  879. return 0;
  880. }
  881. static void
  882. loop_info64_from_old(const struct loop_info *info, struct loop_info64 *info64)
  883. {
  884. memset(info64, 0, sizeof(*info64));
  885. info64->lo_number = info->lo_number;
  886. info64->lo_device = info->lo_device;
  887. info64->lo_inode = info->lo_inode;
  888. info64->lo_rdevice = info->lo_rdevice;
  889. info64->lo_offset = info->lo_offset;
  890. info64->lo_sizelimit = 0;
  891. info64->lo_encrypt_type = info->lo_encrypt_type;
  892. info64->lo_encrypt_key_size = info->lo_encrypt_key_size;
  893. info64->lo_flags = info->lo_flags;
  894. info64->lo_init[0] = info->lo_init[0];
  895. info64->lo_init[1] = info->lo_init[1];
  896. if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
  897. memcpy(info64->lo_crypt_name, info->lo_name, LO_NAME_SIZE);
  898. else
  899. memcpy(info64->lo_file_name, info->lo_name, LO_NAME_SIZE);
  900. memcpy(info64->lo_encrypt_key, info->lo_encrypt_key, LO_KEY_SIZE);
  901. }
  902. static int
  903. loop_info64_to_old(const struct loop_info64 *info64, struct loop_info *info)
  904. {
  905. memset(info, 0, sizeof(*info));
  906. info->lo_number = info64->lo_number;
  907. info->lo_device = info64->lo_device;
  908. info->lo_inode = info64->lo_inode;
  909. info->lo_rdevice = info64->lo_rdevice;
  910. info->lo_offset = info64->lo_offset;
  911. info->lo_encrypt_type = info64->lo_encrypt_type;
  912. info->lo_encrypt_key_size = info64->lo_encrypt_key_size;
  913. info->lo_flags = info64->lo_flags;
  914. info->lo_init[0] = info64->lo_init[0];
  915. info->lo_init[1] = info64->lo_init[1];
  916. if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
  917. memcpy(info->lo_name, info64->lo_crypt_name, LO_NAME_SIZE);
  918. else
  919. memcpy(info->lo_name, info64->lo_file_name, LO_NAME_SIZE);
  920. memcpy(info->lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE);
  921. /* error in case values were truncated */
  922. if (info->lo_device != info64->lo_device ||
  923. info->lo_rdevice != info64->lo_rdevice ||
  924. info->lo_inode != info64->lo_inode ||
  925. info->lo_offset != info64->lo_offset)
  926. return -EOVERFLOW;
  927. return 0;
  928. }
  929. static int
  930. loop_set_status_old(struct loop_device *lo, const struct loop_info __user *arg)
  931. {
  932. struct loop_info info;
  933. struct loop_info64 info64;
  934. if (copy_from_user(&info, arg, sizeof (struct loop_info)))
  935. return -EFAULT;
  936. loop_info64_from_old(&info, &info64);
  937. return loop_set_status(lo, &info64);
  938. }
  939. static int
  940. loop_set_status64(struct loop_device *lo, const struct loop_info64 __user *arg)
  941. {
  942. struct loop_info64 info64;
  943. if (copy_from_user(&info64, arg, sizeof (struct loop_info64)))
  944. return -EFAULT;
  945. return loop_set_status(lo, &info64);
  946. }
  947. static int
  948. loop_get_status_old(struct loop_device *lo, struct loop_info __user *arg) {
  949. struct loop_info info;
  950. struct loop_info64 info64;
  951. int err = 0;
  952. if (!arg)
  953. err = -EINVAL;
  954. if (!err)
  955. err = loop_get_status(lo, &info64);
  956. if (!err)
  957. err = loop_info64_to_old(&info64, &info);
  958. if (!err && copy_to_user(arg, &info, sizeof(info)))
  959. err = -EFAULT;
  960. return err;
  961. }
  962. static int
  963. loop_get_status64(struct loop_device *lo, struct loop_info64 __user *arg) {
  964. struct loop_info64 info64;
  965. int err = 0;
  966. if (!arg)
  967. err = -EINVAL;
  968. if (!err)
  969. err = loop_get_status(lo, &info64);
  970. if (!err && copy_to_user(arg, &info64, sizeof(info64)))
  971. err = -EFAULT;
  972. return err;
  973. }
  974. static int lo_ioctl(struct inode * inode, struct file * file,
  975. unsigned int cmd, unsigned long arg)
  976. {
  977. struct loop_device *lo = inode->i_bdev->bd_disk->private_data;
  978. int err;
  979. mutex_lock(&lo->lo_ctl_mutex);
  980. switch (cmd) {
  981. case LOOP_SET_FD:
  982. err = loop_set_fd(lo, file, inode->i_bdev, arg);
  983. break;
  984. case LOOP_CHANGE_FD:
  985. err = loop_change_fd(lo, file, inode->i_bdev, arg);
  986. break;
  987. case LOOP_CLR_FD:
  988. err = loop_clr_fd(lo, inode->i_bdev);
  989. break;
  990. case LOOP_SET_STATUS:
  991. err = loop_set_status_old(lo, (struct loop_info __user *) arg);
  992. break;
  993. case LOOP_GET_STATUS:
  994. err = loop_get_status_old(lo, (struct loop_info __user *) arg);
  995. break;
  996. case LOOP_SET_STATUS64:
  997. err = loop_set_status64(lo, (struct loop_info64 __user *) arg);
  998. break;
  999. case LOOP_GET_STATUS64:
  1000. err = loop_get_status64(lo, (struct loop_info64 __user *) arg);
  1001. break;
  1002. default:
  1003. err = lo->ioctl ? lo->ioctl(lo, cmd, arg) : -EINVAL;
  1004. }
  1005. mutex_unlock(&lo->lo_ctl_mutex);
  1006. return err;
  1007. }
  1008. static int lo_open(struct inode *inode, struct file *file)
  1009. {
  1010. struct loop_device *lo = inode->i_bdev->bd_disk->private_data;
  1011. mutex_lock(&lo->lo_ctl_mutex);
  1012. lo->lo_refcnt++;
  1013. mutex_unlock(&lo->lo_ctl_mutex);
  1014. return 0;
  1015. }
  1016. static int lo_release(struct inode *inode, struct file *file)
  1017. {
  1018. struct loop_device *lo = inode->i_bdev->bd_disk->private_data;
  1019. mutex_lock(&lo->lo_ctl_mutex);
  1020. --lo->lo_refcnt;
  1021. mutex_unlock(&lo->lo_ctl_mutex);
  1022. return 0;
  1023. }
  1024. static struct block_device_operations lo_fops = {
  1025. .owner = THIS_MODULE,
  1026. .open = lo_open,
  1027. .release = lo_release,
  1028. .ioctl = lo_ioctl,
  1029. };
  1030. /*
  1031. * And now the modules code and kernel interface.
  1032. */
  1033. module_param(max_loop, int, 0);
  1034. MODULE_PARM_DESC(max_loop, "Maximum number of loop devices (1-256)");
  1035. MODULE_LICENSE("GPL");
  1036. MODULE_ALIAS_BLOCKDEV_MAJOR(LOOP_MAJOR);
  1037. int loop_register_transfer(struct loop_func_table *funcs)
  1038. {
  1039. unsigned int n = funcs->number;
  1040. if (n >= MAX_LO_CRYPT || xfer_funcs[n])
  1041. return -EINVAL;
  1042. xfer_funcs[n] = funcs;
  1043. return 0;
  1044. }
  1045. int loop_unregister_transfer(int number)
  1046. {
  1047. unsigned int n = number;
  1048. struct loop_device *lo;
  1049. struct loop_func_table *xfer;
  1050. if (n == 0 || n >= MAX_LO_CRYPT || (xfer = xfer_funcs[n]) == NULL)
  1051. return -EINVAL;
  1052. xfer_funcs[n] = NULL;
  1053. for (lo = &loop_dev[0]; lo < &loop_dev[max_loop]; lo++) {
  1054. mutex_lock(&lo->lo_ctl_mutex);
  1055. if (lo->lo_encryption == xfer)
  1056. loop_release_xfer(lo);
  1057. mutex_unlock(&lo->lo_ctl_mutex);
  1058. }
  1059. return 0;
  1060. }
  1061. EXPORT_SYMBOL(loop_register_transfer);
  1062. EXPORT_SYMBOL(loop_unregister_transfer);
  1063. static int __init loop_init(void)
  1064. {
  1065. int i;
  1066. if (max_loop < 1 || max_loop > 256) {
  1067. printk(KERN_WARNING "loop: invalid max_loop (must be between"
  1068. " 1 and 256), using default (8)\n");
  1069. max_loop = 8;
  1070. }
  1071. if (register_blkdev(LOOP_MAJOR, "loop"))
  1072. return -EIO;
  1073. loop_dev = kmalloc(max_loop * sizeof(struct loop_device), GFP_KERNEL);
  1074. if (!loop_dev)
  1075. goto out_mem1;
  1076. memset(loop_dev, 0, max_loop * sizeof(struct loop_device));
  1077. disks = kmalloc(max_loop * sizeof(struct gendisk *), GFP_KERNEL);
  1078. if (!disks)
  1079. goto out_mem2;
  1080. for (i = 0; i < max_loop; i++) {
  1081. disks[i] = alloc_disk(1);
  1082. if (!disks[i])
  1083. goto out_mem3;
  1084. }
  1085. for (i = 0; i < max_loop; i++) {
  1086. struct loop_device *lo = &loop_dev[i];
  1087. struct gendisk *disk = disks[i];
  1088. memset(lo, 0, sizeof(*lo));
  1089. lo->lo_queue = blk_alloc_queue(GFP_KERNEL);
  1090. if (!lo->lo_queue)
  1091. goto out_mem4;
  1092. mutex_init(&lo->lo_ctl_mutex);
  1093. lo->lo_number = i;
  1094. lo->lo_thread = NULL;
  1095. init_waitqueue_head(&lo->lo_event);
  1096. spin_lock_init(&lo->lo_lock);
  1097. disk->major = LOOP_MAJOR;
  1098. disk->first_minor = i;
  1099. disk->fops = &lo_fops;
  1100. sprintf(disk->disk_name, "loop%d", i);
  1101. disk->private_data = lo;
  1102. disk->queue = lo->lo_queue;
  1103. }
  1104. /* We cannot fail after we call this, so another loop!*/
  1105. for (i = 0; i < max_loop; i++)
  1106. add_disk(disks[i]);
  1107. printk(KERN_INFO "loop: loaded (max %d devices)\n", max_loop);
  1108. return 0;
  1109. out_mem4:
  1110. while (i--)
  1111. blk_cleanup_queue(loop_dev[i].lo_queue);
  1112. i = max_loop;
  1113. out_mem3:
  1114. while (i--)
  1115. put_disk(disks[i]);
  1116. kfree(disks);
  1117. out_mem2:
  1118. kfree(loop_dev);
  1119. out_mem1:
  1120. unregister_blkdev(LOOP_MAJOR, "loop");
  1121. printk(KERN_ERR "loop: ran out of memory\n");
  1122. return -ENOMEM;
  1123. }
  1124. static void loop_exit(void)
  1125. {
  1126. int i;
  1127. for (i = 0; i < max_loop; i++) {
  1128. del_gendisk(disks[i]);
  1129. blk_cleanup_queue(loop_dev[i].lo_queue);
  1130. put_disk(disks[i]);
  1131. }
  1132. if (unregister_blkdev(LOOP_MAJOR, "loop"))
  1133. printk(KERN_WARNING "loop: cannot unregister blkdev\n");
  1134. kfree(disks);
  1135. kfree(loop_dev);
  1136. }
  1137. module_init(loop_init);
  1138. module_exit(loop_exit);
  1139. #ifndef MODULE
  1140. static int __init max_loop_setup(char *str)
  1141. {
  1142. max_loop = simple_strtol(str, NULL, 0);
  1143. return 1;
  1144. }
  1145. __setup("max_loop=", max_loop_setup);
  1146. #endif