pdc_adma.c 18 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740
  1. /*
  2. * pdc_adma.c - Pacific Digital Corporation ADMA
  3. *
  4. * Maintained by: Mark Lord <mlord@pobox.com>
  5. *
  6. * Copyright 2005 Mark Lord
  7. *
  8. * This program is free software; you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation; either version 2, or (at your option)
  11. * any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program; see the file COPYING. If not, write to
  20. * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
  21. *
  22. *
  23. * libata documentation is available via 'make {ps|pdf}docs',
  24. * as Documentation/DocBook/libata.*
  25. *
  26. *
  27. * Supports ATA disks in single-packet ADMA mode.
  28. * Uses PIO for everything else.
  29. *
  30. * TODO: Use ADMA transfers for ATAPI devices, when possible.
  31. * This requires careful attention to a number of quirks of the chip.
  32. *
  33. */
  34. #include <linux/kernel.h>
  35. #include <linux/module.h>
  36. #include <linux/pci.h>
  37. #include <linux/init.h>
  38. #include <linux/blkdev.h>
  39. #include <linux/delay.h>
  40. #include <linux/interrupt.h>
  41. #include <linux/sched.h>
  42. #include <linux/device.h>
  43. #include <scsi/scsi_host.h>
  44. #include <asm/io.h>
  45. #include <linux/libata.h>
  46. #define DRV_NAME "pdc_adma"
  47. #define DRV_VERSION "0.04"
  48. /* macro to calculate base address for ATA regs */
  49. #define ADMA_ATA_REGS(base,port_no) ((base) + ((port_no) * 0x40))
  50. /* macro to calculate base address for ADMA regs */
  51. #define ADMA_REGS(base,port_no) ((base) + 0x80 + ((port_no) * 0x20))
  52. enum {
  53. ADMA_PORTS = 2,
  54. ADMA_CPB_BYTES = 40,
  55. ADMA_PRD_BYTES = LIBATA_MAX_PRD * 16,
  56. ADMA_PKT_BYTES = ADMA_CPB_BYTES + ADMA_PRD_BYTES,
  57. ADMA_DMA_BOUNDARY = 0xffffffff,
  58. /* global register offsets */
  59. ADMA_MODE_LOCK = 0x00c7,
  60. /* per-channel register offsets */
  61. ADMA_CONTROL = 0x0000, /* ADMA control */
  62. ADMA_STATUS = 0x0002, /* ADMA status */
  63. ADMA_CPB_COUNT = 0x0004, /* CPB count */
  64. ADMA_CPB_CURRENT = 0x000c, /* current CPB address */
  65. ADMA_CPB_NEXT = 0x000c, /* next CPB address */
  66. ADMA_CPB_LOOKUP = 0x0010, /* CPB lookup table */
  67. ADMA_FIFO_IN = 0x0014, /* input FIFO threshold */
  68. ADMA_FIFO_OUT = 0x0016, /* output FIFO threshold */
  69. /* ADMA_CONTROL register bits */
  70. aNIEN = (1 << 8), /* irq mask: 1==masked */
  71. aGO = (1 << 7), /* packet trigger ("Go!") */
  72. aRSTADM = (1 << 5), /* ADMA logic reset */
  73. aPIOMD4 = 0x0003, /* PIO mode 4 */
  74. /* ADMA_STATUS register bits */
  75. aPSD = (1 << 6),
  76. aUIRQ = (1 << 4),
  77. aPERR = (1 << 0),
  78. /* CPB bits */
  79. cDONE = (1 << 0),
  80. cVLD = (1 << 0),
  81. cDAT = (1 << 2),
  82. cIEN = (1 << 3),
  83. /* PRD bits */
  84. pORD = (1 << 4),
  85. pDIRO = (1 << 5),
  86. pEND = (1 << 7),
  87. /* ATA register flags */
  88. rIGN = (1 << 5),
  89. rEND = (1 << 7),
  90. /* ATA register addresses */
  91. ADMA_REGS_CONTROL = 0x0e,
  92. ADMA_REGS_SECTOR_COUNT = 0x12,
  93. ADMA_REGS_LBA_LOW = 0x13,
  94. ADMA_REGS_LBA_MID = 0x14,
  95. ADMA_REGS_LBA_HIGH = 0x15,
  96. ADMA_REGS_DEVICE = 0x16,
  97. ADMA_REGS_COMMAND = 0x17,
  98. /* PCI device IDs */
  99. board_1841_idx = 0, /* ADMA 2-port controller */
  100. };
  101. typedef enum { adma_state_idle, adma_state_pkt, adma_state_mmio } adma_state_t;
  102. struct adma_port_priv {
  103. u8 *pkt;
  104. dma_addr_t pkt_dma;
  105. adma_state_t state;
  106. };
  107. static int adma_ata_init_one (struct pci_dev *pdev,
  108. const struct pci_device_id *ent);
  109. static irqreturn_t adma_intr (int irq, void *dev_instance,
  110. struct pt_regs *regs);
  111. static int adma_port_start(struct ata_port *ap);
  112. static void adma_host_stop(struct ata_host *host);
  113. static void adma_port_stop(struct ata_port *ap);
  114. static void adma_phy_reset(struct ata_port *ap);
  115. static void adma_qc_prep(struct ata_queued_cmd *qc);
  116. static unsigned int adma_qc_issue(struct ata_queued_cmd *qc);
  117. static int adma_check_atapi_dma(struct ata_queued_cmd *qc);
  118. static void adma_bmdma_stop(struct ata_queued_cmd *qc);
  119. static u8 adma_bmdma_status(struct ata_port *ap);
  120. static void adma_irq_clear(struct ata_port *ap);
  121. static void adma_eng_timeout(struct ata_port *ap);
  122. static struct scsi_host_template adma_ata_sht = {
  123. .module = THIS_MODULE,
  124. .name = DRV_NAME,
  125. .ioctl = ata_scsi_ioctl,
  126. .queuecommand = ata_scsi_queuecmd,
  127. .can_queue = ATA_DEF_QUEUE,
  128. .this_id = ATA_SHT_THIS_ID,
  129. .sg_tablesize = LIBATA_MAX_PRD,
  130. .cmd_per_lun = ATA_SHT_CMD_PER_LUN,
  131. .emulated = ATA_SHT_EMULATED,
  132. .use_clustering = ENABLE_CLUSTERING,
  133. .proc_name = DRV_NAME,
  134. .dma_boundary = ADMA_DMA_BOUNDARY,
  135. .slave_configure = ata_scsi_slave_config,
  136. .slave_destroy = ata_scsi_slave_destroy,
  137. .bios_param = ata_std_bios_param,
  138. };
  139. static const struct ata_port_operations adma_ata_ops = {
  140. .port_disable = ata_port_disable,
  141. .tf_load = ata_tf_load,
  142. .tf_read = ata_tf_read,
  143. .check_status = ata_check_status,
  144. .check_atapi_dma = adma_check_atapi_dma,
  145. .exec_command = ata_exec_command,
  146. .dev_select = ata_std_dev_select,
  147. .phy_reset = adma_phy_reset,
  148. .qc_prep = adma_qc_prep,
  149. .qc_issue = adma_qc_issue,
  150. .eng_timeout = adma_eng_timeout,
  151. .data_xfer = ata_mmio_data_xfer,
  152. .irq_handler = adma_intr,
  153. .irq_clear = adma_irq_clear,
  154. .port_start = adma_port_start,
  155. .port_stop = adma_port_stop,
  156. .host_stop = adma_host_stop,
  157. .bmdma_stop = adma_bmdma_stop,
  158. .bmdma_status = adma_bmdma_status,
  159. };
  160. static struct ata_port_info adma_port_info[] = {
  161. /* board_1841_idx */
  162. {
  163. .sht = &adma_ata_sht,
  164. .flags = ATA_FLAG_SLAVE_POSS | ATA_FLAG_SRST |
  165. ATA_FLAG_NO_LEGACY | ATA_FLAG_MMIO |
  166. ATA_FLAG_PIO_POLLING,
  167. .pio_mask = 0x10, /* pio4 */
  168. .udma_mask = 0x1f, /* udma0-4 */
  169. .port_ops = &adma_ata_ops,
  170. },
  171. };
  172. static const struct pci_device_id adma_ata_pci_tbl[] = {
  173. { PCI_VENDOR_ID_PDC, 0x1841, PCI_ANY_ID, PCI_ANY_ID, 0, 0,
  174. board_1841_idx },
  175. { } /* terminate list */
  176. };
  177. static struct pci_driver adma_ata_pci_driver = {
  178. .name = DRV_NAME,
  179. .id_table = adma_ata_pci_tbl,
  180. .probe = adma_ata_init_one,
  181. .remove = ata_pci_remove_one,
  182. };
  183. static int adma_check_atapi_dma(struct ata_queued_cmd *qc)
  184. {
  185. return 1; /* ATAPI DMA not yet supported */
  186. }
  187. static void adma_bmdma_stop(struct ata_queued_cmd *qc)
  188. {
  189. /* nothing */
  190. }
  191. static u8 adma_bmdma_status(struct ata_port *ap)
  192. {
  193. return 0;
  194. }
  195. static void adma_irq_clear(struct ata_port *ap)
  196. {
  197. /* nothing */
  198. }
  199. static void adma_reset_engine(void __iomem *chan)
  200. {
  201. /* reset ADMA to idle state */
  202. writew(aPIOMD4 | aNIEN | aRSTADM, chan + ADMA_CONTROL);
  203. udelay(2);
  204. writew(aPIOMD4, chan + ADMA_CONTROL);
  205. udelay(2);
  206. }
  207. static void adma_reinit_engine(struct ata_port *ap)
  208. {
  209. struct adma_port_priv *pp = ap->private_data;
  210. void __iomem *mmio_base = ap->host->mmio_base;
  211. void __iomem *chan = ADMA_REGS(mmio_base, ap->port_no);
  212. /* mask/clear ATA interrupts */
  213. writeb(ATA_NIEN, (void __iomem *)ap->ioaddr.ctl_addr);
  214. ata_check_status(ap);
  215. /* reset the ADMA engine */
  216. adma_reset_engine(chan);
  217. /* set in-FIFO threshold to 0x100 */
  218. writew(0x100, chan + ADMA_FIFO_IN);
  219. /* set CPB pointer */
  220. writel((u32)pp->pkt_dma, chan + ADMA_CPB_NEXT);
  221. /* set out-FIFO threshold to 0x100 */
  222. writew(0x100, chan + ADMA_FIFO_OUT);
  223. /* set CPB count */
  224. writew(1, chan + ADMA_CPB_COUNT);
  225. /* read/discard ADMA status */
  226. readb(chan + ADMA_STATUS);
  227. }
  228. static inline void adma_enter_reg_mode(struct ata_port *ap)
  229. {
  230. void __iomem *chan = ADMA_REGS(ap->host->mmio_base, ap->port_no);
  231. writew(aPIOMD4, chan + ADMA_CONTROL);
  232. readb(chan + ADMA_STATUS); /* flush */
  233. }
  234. static void adma_phy_reset(struct ata_port *ap)
  235. {
  236. struct adma_port_priv *pp = ap->private_data;
  237. pp->state = adma_state_idle;
  238. adma_reinit_engine(ap);
  239. ata_port_probe(ap);
  240. ata_bus_reset(ap);
  241. }
  242. static void adma_eng_timeout(struct ata_port *ap)
  243. {
  244. struct adma_port_priv *pp = ap->private_data;
  245. if (pp->state != adma_state_idle) /* healthy paranoia */
  246. pp->state = adma_state_mmio;
  247. adma_reinit_engine(ap);
  248. ata_eng_timeout(ap);
  249. }
  250. static int adma_fill_sg(struct ata_queued_cmd *qc)
  251. {
  252. struct scatterlist *sg;
  253. struct ata_port *ap = qc->ap;
  254. struct adma_port_priv *pp = ap->private_data;
  255. u8 *buf = pp->pkt;
  256. int i = (2 + buf[3]) * 8;
  257. u8 pFLAGS = pORD | ((qc->tf.flags & ATA_TFLAG_WRITE) ? pDIRO : 0);
  258. ata_for_each_sg(sg, qc) {
  259. u32 addr;
  260. u32 len;
  261. addr = (u32)sg_dma_address(sg);
  262. *(__le32 *)(buf + i) = cpu_to_le32(addr);
  263. i += 4;
  264. len = sg_dma_len(sg) >> 3;
  265. *(__le32 *)(buf + i) = cpu_to_le32(len);
  266. i += 4;
  267. if (ata_sg_is_last(sg, qc))
  268. pFLAGS |= pEND;
  269. buf[i++] = pFLAGS;
  270. buf[i++] = qc->dev->dma_mode & 0xf;
  271. buf[i++] = 0; /* pPKLW */
  272. buf[i++] = 0; /* reserved */
  273. *(__le32 *)(buf + i)
  274. = (pFLAGS & pEND) ? 0 : cpu_to_le32(pp->pkt_dma + i + 4);
  275. i += 4;
  276. VPRINTK("PRD[%u] = (0x%lX, 0x%X)\n", i/4,
  277. (unsigned long)addr, len);
  278. }
  279. return i;
  280. }
  281. static void adma_qc_prep(struct ata_queued_cmd *qc)
  282. {
  283. struct adma_port_priv *pp = qc->ap->private_data;
  284. u8 *buf = pp->pkt;
  285. u32 pkt_dma = (u32)pp->pkt_dma;
  286. int i = 0;
  287. VPRINTK("ENTER\n");
  288. adma_enter_reg_mode(qc->ap);
  289. if (qc->tf.protocol != ATA_PROT_DMA) {
  290. ata_qc_prep(qc);
  291. return;
  292. }
  293. buf[i++] = 0; /* Response flags */
  294. buf[i++] = 0; /* reserved */
  295. buf[i++] = cVLD | cDAT | cIEN;
  296. i++; /* cLEN, gets filled in below */
  297. *(__le32 *)(buf+i) = cpu_to_le32(pkt_dma); /* cNCPB */
  298. i += 4; /* cNCPB */
  299. i += 4; /* cPRD, gets filled in below */
  300. buf[i++] = 0; /* reserved */
  301. buf[i++] = 0; /* reserved */
  302. buf[i++] = 0; /* reserved */
  303. buf[i++] = 0; /* reserved */
  304. /* ATA registers; must be a multiple of 4 */
  305. buf[i++] = qc->tf.device;
  306. buf[i++] = ADMA_REGS_DEVICE;
  307. if ((qc->tf.flags & ATA_TFLAG_LBA48)) {
  308. buf[i++] = qc->tf.hob_nsect;
  309. buf[i++] = ADMA_REGS_SECTOR_COUNT;
  310. buf[i++] = qc->tf.hob_lbal;
  311. buf[i++] = ADMA_REGS_LBA_LOW;
  312. buf[i++] = qc->tf.hob_lbam;
  313. buf[i++] = ADMA_REGS_LBA_MID;
  314. buf[i++] = qc->tf.hob_lbah;
  315. buf[i++] = ADMA_REGS_LBA_HIGH;
  316. }
  317. buf[i++] = qc->tf.nsect;
  318. buf[i++] = ADMA_REGS_SECTOR_COUNT;
  319. buf[i++] = qc->tf.lbal;
  320. buf[i++] = ADMA_REGS_LBA_LOW;
  321. buf[i++] = qc->tf.lbam;
  322. buf[i++] = ADMA_REGS_LBA_MID;
  323. buf[i++] = qc->tf.lbah;
  324. buf[i++] = ADMA_REGS_LBA_HIGH;
  325. buf[i++] = 0;
  326. buf[i++] = ADMA_REGS_CONTROL;
  327. buf[i++] = rIGN;
  328. buf[i++] = 0;
  329. buf[i++] = qc->tf.command;
  330. buf[i++] = ADMA_REGS_COMMAND | rEND;
  331. buf[3] = (i >> 3) - 2; /* cLEN */
  332. *(__le32 *)(buf+8) = cpu_to_le32(pkt_dma + i); /* cPRD */
  333. i = adma_fill_sg(qc);
  334. wmb(); /* flush PRDs and pkt to memory */
  335. #if 0
  336. /* dump out CPB + PRDs for debug */
  337. {
  338. int j, len = 0;
  339. static char obuf[2048];
  340. for (j = 0; j < i; ++j) {
  341. len += sprintf(obuf+len, "%02x ", buf[j]);
  342. if ((j & 7) == 7) {
  343. printk("%s\n", obuf);
  344. len = 0;
  345. }
  346. }
  347. if (len)
  348. printk("%s\n", obuf);
  349. }
  350. #endif
  351. }
  352. static inline void adma_packet_start(struct ata_queued_cmd *qc)
  353. {
  354. struct ata_port *ap = qc->ap;
  355. void __iomem *chan = ADMA_REGS(ap->host->mmio_base, ap->port_no);
  356. VPRINTK("ENTER, ap %p\n", ap);
  357. /* fire up the ADMA engine */
  358. writew(aPIOMD4 | aGO, chan + ADMA_CONTROL);
  359. }
  360. static unsigned int adma_qc_issue(struct ata_queued_cmd *qc)
  361. {
  362. struct adma_port_priv *pp = qc->ap->private_data;
  363. switch (qc->tf.protocol) {
  364. case ATA_PROT_DMA:
  365. pp->state = adma_state_pkt;
  366. adma_packet_start(qc);
  367. return 0;
  368. case ATA_PROT_ATAPI_DMA:
  369. BUG();
  370. break;
  371. default:
  372. break;
  373. }
  374. pp->state = adma_state_mmio;
  375. return ata_qc_issue_prot(qc);
  376. }
  377. static inline unsigned int adma_intr_pkt(struct ata_host *host)
  378. {
  379. unsigned int handled = 0, port_no;
  380. u8 __iomem *mmio_base = host->mmio_base;
  381. for (port_no = 0; port_no < host->n_ports; ++port_no) {
  382. struct ata_port *ap = host->ports[port_no];
  383. struct adma_port_priv *pp;
  384. struct ata_queued_cmd *qc;
  385. void __iomem *chan = ADMA_REGS(mmio_base, port_no);
  386. u8 status = readb(chan + ADMA_STATUS);
  387. if (status == 0)
  388. continue;
  389. handled = 1;
  390. adma_enter_reg_mode(ap);
  391. if (ap->flags & ATA_FLAG_DISABLED)
  392. continue;
  393. pp = ap->private_data;
  394. if (!pp || pp->state != adma_state_pkt)
  395. continue;
  396. qc = ata_qc_from_tag(ap, ap->active_tag);
  397. if (qc && (!(qc->tf.flags & ATA_TFLAG_POLLING))) {
  398. if ((status & (aPERR | aPSD | aUIRQ)))
  399. qc->err_mask |= AC_ERR_OTHER;
  400. else if (pp->pkt[0] != cDONE)
  401. qc->err_mask |= AC_ERR_OTHER;
  402. ata_qc_complete(qc);
  403. }
  404. }
  405. return handled;
  406. }
  407. static inline unsigned int adma_intr_mmio(struct ata_host *host)
  408. {
  409. unsigned int handled = 0, port_no;
  410. for (port_no = 0; port_no < host->n_ports; ++port_no) {
  411. struct ata_port *ap;
  412. ap = host->ports[port_no];
  413. if (ap && (!(ap->flags & ATA_FLAG_DISABLED))) {
  414. struct ata_queued_cmd *qc;
  415. struct adma_port_priv *pp = ap->private_data;
  416. if (!pp || pp->state != adma_state_mmio)
  417. continue;
  418. qc = ata_qc_from_tag(ap, ap->active_tag);
  419. if (qc && (!(qc->tf.flags & ATA_TFLAG_POLLING))) {
  420. /* check main status, clearing INTRQ */
  421. u8 status = ata_check_status(ap);
  422. if ((status & ATA_BUSY))
  423. continue;
  424. DPRINTK("ata%u: protocol %d (dev_stat 0x%X)\n",
  425. ap->id, qc->tf.protocol, status);
  426. /* complete taskfile transaction */
  427. pp->state = adma_state_idle;
  428. qc->err_mask |= ac_err_mask(status);
  429. ata_qc_complete(qc);
  430. handled = 1;
  431. }
  432. }
  433. }
  434. return handled;
  435. }
  436. static irqreturn_t adma_intr(int irq, void *dev_instance, struct pt_regs *regs)
  437. {
  438. struct ata_host *host = dev_instance;
  439. unsigned int handled = 0;
  440. VPRINTK("ENTER\n");
  441. spin_lock(&host->lock);
  442. handled = adma_intr_pkt(host) | adma_intr_mmio(host);
  443. spin_unlock(&host->lock);
  444. VPRINTK("EXIT\n");
  445. return IRQ_RETVAL(handled);
  446. }
  447. static void adma_ata_setup_port(struct ata_ioports *port, unsigned long base)
  448. {
  449. port->cmd_addr =
  450. port->data_addr = base + 0x000;
  451. port->error_addr =
  452. port->feature_addr = base + 0x004;
  453. port->nsect_addr = base + 0x008;
  454. port->lbal_addr = base + 0x00c;
  455. port->lbam_addr = base + 0x010;
  456. port->lbah_addr = base + 0x014;
  457. port->device_addr = base + 0x018;
  458. port->status_addr =
  459. port->command_addr = base + 0x01c;
  460. port->altstatus_addr =
  461. port->ctl_addr = base + 0x038;
  462. }
  463. static int adma_port_start(struct ata_port *ap)
  464. {
  465. struct device *dev = ap->host->dev;
  466. struct adma_port_priv *pp;
  467. int rc;
  468. rc = ata_port_start(ap);
  469. if (rc)
  470. return rc;
  471. adma_enter_reg_mode(ap);
  472. rc = -ENOMEM;
  473. pp = kcalloc(1, sizeof(*pp), GFP_KERNEL);
  474. if (!pp)
  475. goto err_out;
  476. pp->pkt = dma_alloc_coherent(dev, ADMA_PKT_BYTES, &pp->pkt_dma,
  477. GFP_KERNEL);
  478. if (!pp->pkt)
  479. goto err_out_kfree;
  480. /* paranoia? */
  481. if ((pp->pkt_dma & 7) != 0) {
  482. printk("bad alignment for pp->pkt_dma: %08x\n",
  483. (u32)pp->pkt_dma);
  484. dma_free_coherent(dev, ADMA_PKT_BYTES,
  485. pp->pkt, pp->pkt_dma);
  486. goto err_out_kfree;
  487. }
  488. memset(pp->pkt, 0, ADMA_PKT_BYTES);
  489. ap->private_data = pp;
  490. adma_reinit_engine(ap);
  491. return 0;
  492. err_out_kfree:
  493. kfree(pp);
  494. err_out:
  495. ata_port_stop(ap);
  496. return rc;
  497. }
  498. static void adma_port_stop(struct ata_port *ap)
  499. {
  500. struct device *dev = ap->host->dev;
  501. struct adma_port_priv *pp = ap->private_data;
  502. adma_reset_engine(ADMA_REGS(ap->host->mmio_base, ap->port_no));
  503. if (pp != NULL) {
  504. ap->private_data = NULL;
  505. if (pp->pkt != NULL)
  506. dma_free_coherent(dev, ADMA_PKT_BYTES,
  507. pp->pkt, pp->pkt_dma);
  508. kfree(pp);
  509. }
  510. ata_port_stop(ap);
  511. }
  512. static void adma_host_stop(struct ata_host *host)
  513. {
  514. unsigned int port_no;
  515. for (port_no = 0; port_no < ADMA_PORTS; ++port_no)
  516. adma_reset_engine(ADMA_REGS(host->mmio_base, port_no));
  517. ata_pci_host_stop(host);
  518. }
  519. static void adma_host_init(unsigned int chip_id,
  520. struct ata_probe_ent *probe_ent)
  521. {
  522. unsigned int port_no;
  523. void __iomem *mmio_base = probe_ent->mmio_base;
  524. /* enable/lock aGO operation */
  525. writeb(7, mmio_base + ADMA_MODE_LOCK);
  526. /* reset the ADMA logic */
  527. for (port_no = 0; port_no < ADMA_PORTS; ++port_no)
  528. adma_reset_engine(ADMA_REGS(mmio_base, port_no));
  529. }
  530. static int adma_set_dma_masks(struct pci_dev *pdev, void __iomem *mmio_base)
  531. {
  532. int rc;
  533. rc = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
  534. if (rc) {
  535. dev_printk(KERN_ERR, &pdev->dev,
  536. "32-bit DMA enable failed\n");
  537. return rc;
  538. }
  539. rc = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
  540. if (rc) {
  541. dev_printk(KERN_ERR, &pdev->dev,
  542. "32-bit consistent DMA enable failed\n");
  543. return rc;
  544. }
  545. return 0;
  546. }
  547. static int adma_ata_init_one(struct pci_dev *pdev,
  548. const struct pci_device_id *ent)
  549. {
  550. static int printed_version;
  551. struct ata_probe_ent *probe_ent = NULL;
  552. void __iomem *mmio_base;
  553. unsigned int board_idx = (unsigned int) ent->driver_data;
  554. int rc, port_no;
  555. if (!printed_version++)
  556. dev_printk(KERN_DEBUG, &pdev->dev, "version " DRV_VERSION "\n");
  557. rc = pci_enable_device(pdev);
  558. if (rc)
  559. return rc;
  560. rc = pci_request_regions(pdev, DRV_NAME);
  561. if (rc)
  562. goto err_out;
  563. if ((pci_resource_flags(pdev, 4) & IORESOURCE_MEM) == 0) {
  564. rc = -ENODEV;
  565. goto err_out_regions;
  566. }
  567. mmio_base = pci_iomap(pdev, 4, 0);
  568. if (mmio_base == NULL) {
  569. rc = -ENOMEM;
  570. goto err_out_regions;
  571. }
  572. rc = adma_set_dma_masks(pdev, mmio_base);
  573. if (rc)
  574. goto err_out_iounmap;
  575. probe_ent = kcalloc(1, sizeof(*probe_ent), GFP_KERNEL);
  576. if (probe_ent == NULL) {
  577. rc = -ENOMEM;
  578. goto err_out_iounmap;
  579. }
  580. probe_ent->dev = pci_dev_to_dev(pdev);
  581. INIT_LIST_HEAD(&probe_ent->node);
  582. probe_ent->sht = adma_port_info[board_idx].sht;
  583. probe_ent->port_flags = adma_port_info[board_idx].flags;
  584. probe_ent->pio_mask = adma_port_info[board_idx].pio_mask;
  585. probe_ent->mwdma_mask = adma_port_info[board_idx].mwdma_mask;
  586. probe_ent->udma_mask = adma_port_info[board_idx].udma_mask;
  587. probe_ent->port_ops = adma_port_info[board_idx].port_ops;
  588. probe_ent->irq = pdev->irq;
  589. probe_ent->irq_flags = IRQF_SHARED;
  590. probe_ent->mmio_base = mmio_base;
  591. probe_ent->n_ports = ADMA_PORTS;
  592. for (port_no = 0; port_no < probe_ent->n_ports; ++port_no) {
  593. adma_ata_setup_port(&probe_ent->port[port_no],
  594. ADMA_ATA_REGS((unsigned long)mmio_base, port_no));
  595. }
  596. pci_set_master(pdev);
  597. /* initialize adapter */
  598. adma_host_init(board_idx, probe_ent);
  599. rc = ata_device_add(probe_ent);
  600. kfree(probe_ent);
  601. if (rc != ADMA_PORTS)
  602. goto err_out_iounmap;
  603. return 0;
  604. err_out_iounmap:
  605. pci_iounmap(pdev, mmio_base);
  606. err_out_regions:
  607. pci_release_regions(pdev);
  608. err_out:
  609. pci_disable_device(pdev);
  610. return rc;
  611. }
  612. static int __init adma_ata_init(void)
  613. {
  614. return pci_register_driver(&adma_ata_pci_driver);
  615. }
  616. static void __exit adma_ata_exit(void)
  617. {
  618. pci_unregister_driver(&adma_ata_pci_driver);
  619. }
  620. MODULE_AUTHOR("Mark Lord");
  621. MODULE_DESCRIPTION("Pacific Digital Corporation ADMA low-level driver");
  622. MODULE_LICENSE("GPL");
  623. MODULE_DEVICE_TABLE(pci, adma_ata_pci_tbl);
  624. MODULE_VERSION(DRV_VERSION);
  625. module_init(adma_ata_init);
  626. module_exit(adma_ata_exit);