process.c 10 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477
  1. /* $Id: process.c,v 1.28 2004/05/05 16:54:23 lethal Exp $
  2. *
  3. * linux/arch/sh/kernel/process.c
  4. *
  5. * Copyright (C) 1995 Linus Torvalds
  6. *
  7. * SuperH version: Copyright (C) 1999, 2000 Niibe Yutaka & Kaz Kojima
  8. */
  9. /*
  10. * This file handles the architecture-dependent parts of process handling..
  11. */
  12. #include <linux/module.h>
  13. #include <linux/unistd.h>
  14. #include <linux/mm.h>
  15. #include <linux/elfcore.h>
  16. #include <linux/a.out.h>
  17. #include <linux/slab.h>
  18. #include <linux/pm.h>
  19. #include <linux/ptrace.h>
  20. #include <linux/kallsyms.h>
  21. #include <linux/kexec.h>
  22. #include <asm/io.h>
  23. #include <asm/uaccess.h>
  24. #include <asm/mmu_context.h>
  25. #include <asm/elf.h>
  26. #include <asm/ubc.h>
  27. static int hlt_counter=0;
  28. int ubc_usercnt = 0;
  29. #define HARD_IDLE_TIMEOUT (HZ / 3)
  30. void (*pm_idle)(void);
  31. void (*pm_power_off)(void);
  32. EXPORT_SYMBOL(pm_power_off);
  33. void disable_hlt(void)
  34. {
  35. hlt_counter++;
  36. }
  37. EXPORT_SYMBOL(disable_hlt);
  38. void enable_hlt(void)
  39. {
  40. hlt_counter--;
  41. }
  42. EXPORT_SYMBOL(enable_hlt);
  43. void default_idle(void)
  44. {
  45. if (!hlt_counter)
  46. cpu_sleep();
  47. else
  48. cpu_relax();
  49. }
  50. void cpu_idle(void)
  51. {
  52. /* endless idle loop with no priority at all */
  53. while (1) {
  54. void (*idle)(void) = pm_idle;
  55. if (!idle)
  56. idle = default_idle;
  57. while (!need_resched())
  58. idle();
  59. preempt_enable_no_resched();
  60. schedule();
  61. preempt_disable();
  62. }
  63. }
  64. void machine_restart(char * __unused)
  65. {
  66. /* SR.BL=1 and invoke address error to let CPU reset (manual reset) */
  67. asm volatile("ldc %0, sr\n\t"
  68. "mov.l @%1, %0" : : "r" (0x10000000), "r" (0x80000001));
  69. }
  70. void machine_halt(void)
  71. {
  72. local_irq_disable();
  73. while (1)
  74. cpu_sleep();
  75. }
  76. void machine_power_off(void)
  77. {
  78. if (pm_power_off)
  79. pm_power_off();
  80. }
  81. void show_regs(struct pt_regs * regs)
  82. {
  83. printk("\n");
  84. printk("Pid : %d, Comm: %20s\n", current->pid, current->comm);
  85. print_symbol("PC is at %s\n", regs->pc);
  86. printk("PC : %08lx SP : %08lx SR : %08lx ",
  87. regs->pc, regs->regs[15], regs->sr);
  88. #ifdef CONFIG_MMU
  89. printk("TEA : %08x ", ctrl_inl(MMU_TEA));
  90. #else
  91. printk(" ");
  92. #endif
  93. printk("%s\n", print_tainted());
  94. printk("R0 : %08lx R1 : %08lx R2 : %08lx R3 : %08lx\n",
  95. regs->regs[0],regs->regs[1],
  96. regs->regs[2],regs->regs[3]);
  97. printk("R4 : %08lx R5 : %08lx R6 : %08lx R7 : %08lx\n",
  98. regs->regs[4],regs->regs[5],
  99. regs->regs[6],regs->regs[7]);
  100. printk("R8 : %08lx R9 : %08lx R10 : %08lx R11 : %08lx\n",
  101. regs->regs[8],regs->regs[9],
  102. regs->regs[10],regs->regs[11]);
  103. printk("R12 : %08lx R13 : %08lx R14 : %08lx\n",
  104. regs->regs[12],regs->regs[13],
  105. regs->regs[14]);
  106. printk("MACH: %08lx MACL: %08lx GBR : %08lx PR : %08lx\n",
  107. regs->mach, regs->macl, regs->gbr, regs->pr);
  108. /*
  109. * If we're in kernel mode, dump the stack too..
  110. */
  111. if (!user_mode(regs)) {
  112. extern void show_task(unsigned long *sp);
  113. unsigned long sp = regs->regs[15];
  114. show_task((unsigned long *)sp);
  115. }
  116. }
  117. /*
  118. * Create a kernel thread
  119. */
  120. /*
  121. * This is the mechanism for creating a new kernel thread.
  122. *
  123. */
  124. extern void kernel_thread_helper(void);
  125. __asm__(".align 5\n"
  126. "kernel_thread_helper:\n\t"
  127. "jsr @r5\n\t"
  128. " nop\n\t"
  129. "mov.l 1f, r1\n\t"
  130. "jsr @r1\n\t"
  131. " mov r0, r4\n\t"
  132. ".align 2\n\t"
  133. "1:.long do_exit");
  134. int kernel_thread(int (*fn)(void *), void * arg, unsigned long flags)
  135. { /* Don't use this in BL=1(cli). Or else, CPU resets! */
  136. struct pt_regs regs;
  137. memset(&regs, 0, sizeof(regs));
  138. regs.regs[4] = (unsigned long) arg;
  139. regs.regs[5] = (unsigned long) fn;
  140. regs.pc = (unsigned long) kernel_thread_helper;
  141. regs.sr = (1 << 30);
  142. /* Ok, create the new process.. */
  143. return do_fork(flags | CLONE_VM | CLONE_UNTRACED, 0, &regs, 0, NULL, NULL);
  144. }
  145. /*
  146. * Free current thread data structures etc..
  147. */
  148. void exit_thread(void)
  149. {
  150. if (current->thread.ubc_pc) {
  151. current->thread.ubc_pc = 0;
  152. ubc_usercnt -= 1;
  153. }
  154. }
  155. void flush_thread(void)
  156. {
  157. #if defined(CONFIG_SH_FPU)
  158. struct task_struct *tsk = current;
  159. /* Forget lazy FPU state */
  160. clear_fpu(tsk, task_pt_regs(tsk));
  161. clear_used_math();
  162. #endif
  163. }
  164. void release_thread(struct task_struct *dead_task)
  165. {
  166. /* do nothing */
  167. }
  168. /* Fill in the fpu structure for a core dump.. */
  169. int dump_fpu(struct pt_regs *regs, elf_fpregset_t *fpu)
  170. {
  171. int fpvalid = 0;
  172. #if defined(CONFIG_SH_FPU)
  173. struct task_struct *tsk = current;
  174. fpvalid = !!tsk_used_math(tsk);
  175. if (fpvalid) {
  176. unlazy_fpu(tsk, regs);
  177. memcpy(fpu, &tsk->thread.fpu.hard, sizeof(*fpu));
  178. }
  179. #endif
  180. return fpvalid;
  181. }
  182. /*
  183. * Capture the user space registers if the task is not running (in user space)
  184. */
  185. int dump_task_regs(struct task_struct *tsk, elf_gregset_t *regs)
  186. {
  187. struct pt_regs ptregs;
  188. ptregs = *task_pt_regs(tsk);
  189. elf_core_copy_regs(regs, &ptregs);
  190. return 1;
  191. }
  192. int
  193. dump_task_fpu (struct task_struct *tsk, elf_fpregset_t *fpu)
  194. {
  195. int fpvalid = 0;
  196. #if defined(CONFIG_SH_FPU)
  197. fpvalid = !!tsk_used_math(tsk);
  198. if (fpvalid) {
  199. unlazy_fpu(tsk, task_pt_regs(tsk));
  200. memcpy(fpu, &tsk->thread.fpu.hard, sizeof(*fpu));
  201. }
  202. #endif
  203. return fpvalid;
  204. }
  205. asmlinkage void ret_from_fork(void);
  206. int copy_thread(int nr, unsigned long clone_flags, unsigned long usp,
  207. unsigned long unused,
  208. struct task_struct *p, struct pt_regs *regs)
  209. {
  210. struct thread_info *ti = task_thread_info(p);
  211. struct pt_regs *childregs;
  212. #if defined(CONFIG_SH_FPU)
  213. struct task_struct *tsk = current;
  214. unlazy_fpu(tsk, regs);
  215. p->thread.fpu = tsk->thread.fpu;
  216. copy_to_stopped_child_used_math(p);
  217. #endif
  218. childregs = task_pt_regs(p);
  219. *childregs = *regs;
  220. if (user_mode(regs)) {
  221. childregs->regs[15] = usp;
  222. ti->addr_limit = USER_DS;
  223. } else {
  224. childregs->regs[15] = (unsigned long)task_stack_page(p) + THREAD_SIZE;
  225. ti->addr_limit = KERNEL_DS;
  226. }
  227. if (clone_flags & CLONE_SETTLS) {
  228. childregs->gbr = childregs->regs[0];
  229. }
  230. childregs->regs[0] = 0; /* Set return value for child */
  231. p->thread.sp = (unsigned long) childregs;
  232. p->thread.pc = (unsigned long) ret_from_fork;
  233. p->thread.ubc_pc = 0;
  234. return 0;
  235. }
  236. /* Tracing by user break controller. */
  237. static void
  238. ubc_set_tracing(int asid, unsigned long pc)
  239. {
  240. ctrl_outl(pc, UBC_BARA);
  241. #ifdef CONFIG_MMU
  242. /* We don't have any ASID settings for the SH-2! */
  243. if (cpu_data->type != CPU_SH7604)
  244. ctrl_outb(asid, UBC_BASRA);
  245. #endif
  246. ctrl_outl(0, UBC_BAMRA);
  247. if (cpu_data->type == CPU_SH7729 || cpu_data->type == CPU_SH7710) {
  248. ctrl_outw(BBR_INST | BBR_READ | BBR_CPU, UBC_BBRA);
  249. ctrl_outl(BRCR_PCBA | BRCR_PCTE, UBC_BRCR);
  250. } else {
  251. ctrl_outw(BBR_INST | BBR_READ, UBC_BBRA);
  252. ctrl_outw(BRCR_PCBA, UBC_BRCR);
  253. }
  254. }
  255. /*
  256. * switch_to(x,y) should switch tasks from x to y.
  257. *
  258. */
  259. struct task_struct *__switch_to(struct task_struct *prev, struct task_struct *next)
  260. {
  261. #if defined(CONFIG_SH_FPU)
  262. unlazy_fpu(prev, task_pt_regs(prev));
  263. #endif
  264. #ifdef CONFIG_PREEMPT
  265. {
  266. unsigned long flags;
  267. struct pt_regs *regs;
  268. local_irq_save(flags);
  269. regs = task_pt_regs(prev);
  270. if (user_mode(regs) && regs->regs[15] >= 0xc0000000) {
  271. int offset = (int)regs->regs[15];
  272. /* Reset stack pointer: clear critical region mark */
  273. regs->regs[15] = regs->regs[1];
  274. if (regs->pc < regs->regs[0])
  275. /* Go to rewind point */
  276. regs->pc = regs->regs[0] + offset;
  277. }
  278. local_irq_restore(flags);
  279. }
  280. #endif
  281. #ifdef CONFIG_MMU
  282. /*
  283. * Restore the kernel mode register
  284. * k7 (r7_bank1)
  285. */
  286. asm volatile("ldc %0, r7_bank"
  287. : /* no output */
  288. : "r" (task_thread_info(next)));
  289. #endif
  290. /* If no tasks are using the UBC, we're done */
  291. if (ubc_usercnt == 0)
  292. /* If no tasks are using the UBC, we're done */;
  293. else if (next->thread.ubc_pc && next->mm) {
  294. int asid = 0;
  295. #ifdef CONFIG_MMU
  296. asid |= next->mm->context.id & MMU_CONTEXT_ASID_MASK;
  297. #endif
  298. ubc_set_tracing(asid, next->thread.ubc_pc);
  299. } else {
  300. ctrl_outw(0, UBC_BBRA);
  301. ctrl_outw(0, UBC_BBRB);
  302. }
  303. return prev;
  304. }
  305. asmlinkage int sys_fork(unsigned long r4, unsigned long r5,
  306. unsigned long r6, unsigned long r7,
  307. struct pt_regs regs)
  308. {
  309. #ifdef CONFIG_MMU
  310. return do_fork(SIGCHLD, regs.regs[15], &regs, 0, NULL, NULL);
  311. #else
  312. /* fork almost works, enough to trick you into looking elsewhere :-( */
  313. return -EINVAL;
  314. #endif
  315. }
  316. asmlinkage int sys_clone(unsigned long clone_flags, unsigned long newsp,
  317. unsigned long parent_tidptr,
  318. unsigned long child_tidptr,
  319. struct pt_regs regs)
  320. {
  321. if (!newsp)
  322. newsp = regs.regs[15];
  323. return do_fork(clone_flags, newsp, &regs, 0,
  324. (int __user *)parent_tidptr, (int __user *)child_tidptr);
  325. }
  326. /*
  327. * This is trivial, and on the face of it looks like it
  328. * could equally well be done in user mode.
  329. *
  330. * Not so, for quite unobvious reasons - register pressure.
  331. * In user mode vfork() cannot have a stack frame, and if
  332. * done by calling the "clone()" system call directly, you
  333. * do not have enough call-clobbered registers to hold all
  334. * the information you need.
  335. */
  336. asmlinkage int sys_vfork(unsigned long r4, unsigned long r5,
  337. unsigned long r6, unsigned long r7,
  338. struct pt_regs regs)
  339. {
  340. return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, regs.regs[15], &regs,
  341. 0, NULL, NULL);
  342. }
  343. /*
  344. * sys_execve() executes a new program.
  345. */
  346. asmlinkage int sys_execve(char *ufilename, char **uargv,
  347. char **uenvp, unsigned long r7,
  348. struct pt_regs regs)
  349. {
  350. int error;
  351. char *filename;
  352. filename = getname((char __user *)ufilename);
  353. error = PTR_ERR(filename);
  354. if (IS_ERR(filename))
  355. goto out;
  356. error = do_execve(filename,
  357. (char __user * __user *)uargv,
  358. (char __user * __user *)uenvp,
  359. &regs);
  360. if (error == 0) {
  361. task_lock(current);
  362. current->ptrace &= ~PT_DTRACE;
  363. task_unlock(current);
  364. }
  365. putname(filename);
  366. out:
  367. return error;
  368. }
  369. unsigned long get_wchan(struct task_struct *p)
  370. {
  371. unsigned long schedule_frame;
  372. unsigned long pc;
  373. if (!p || p == current || p->state == TASK_RUNNING)
  374. return 0;
  375. /*
  376. * The same comment as on the Alpha applies here, too ...
  377. */
  378. pc = thread_saved_pc(p);
  379. if (in_sched_functions(pc)) {
  380. schedule_frame = ((unsigned long *)(long)p->thread.sp)[1];
  381. return (unsigned long)((unsigned long *)schedule_frame)[1];
  382. }
  383. return pc;
  384. }
  385. asmlinkage void break_point_trap(unsigned long r4, unsigned long r5,
  386. unsigned long r6, unsigned long r7,
  387. struct pt_regs regs)
  388. {
  389. /* Clear tracing. */
  390. ctrl_outw(0, UBC_BBRA);
  391. ctrl_outw(0, UBC_BBRB);
  392. current->thread.ubc_pc = 0;
  393. ubc_usercnt -= 1;
  394. force_sig(SIGTRAP, current);
  395. }
  396. asmlinkage void break_point_trap_software(unsigned long r4, unsigned long r5,
  397. unsigned long r6, unsigned long r7,
  398. struct pt_regs regs)
  399. {
  400. regs.pc -= 2;
  401. force_sig(SIGTRAP, current);
  402. }