time.c 6.1 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259
  1. /*
  2. * linux/arch/parisc/kernel/time.c
  3. *
  4. * Copyright (C) 1991, 1992, 1995 Linus Torvalds
  5. * Modifications for ARM (C) 1994, 1995, 1996,1997 Russell King
  6. * Copyright (C) 1999 SuSE GmbH, (Philipp Rumpf, prumpf@tux.org)
  7. *
  8. * 1994-07-02 Alan Modra
  9. * fixed set_rtc_mmss, fixed time.year for >= 2000, new mktime
  10. * 1998-12-20 Updated NTP code according to technical memorandum Jan '96
  11. * "A Kernel Model for Precision Timekeeping" by Dave Mills
  12. */
  13. #include <linux/errno.h>
  14. #include <linux/module.h>
  15. #include <linux/sched.h>
  16. #include <linux/kernel.h>
  17. #include <linux/param.h>
  18. #include <linux/string.h>
  19. #include <linux/mm.h>
  20. #include <linux/interrupt.h>
  21. #include <linux/time.h>
  22. #include <linux/init.h>
  23. #include <linux/smp.h>
  24. #include <linux/profile.h>
  25. #include <asm/uaccess.h>
  26. #include <asm/io.h>
  27. #include <asm/irq.h>
  28. #include <asm/param.h>
  29. #include <asm/pdc.h>
  30. #include <asm/led.h>
  31. #include <linux/timex.h>
  32. /* xtime and wall_jiffies keep wall-clock time */
  33. extern unsigned long wall_jiffies;
  34. static long clocktick __read_mostly; /* timer cycles per tick */
  35. static long halftick __read_mostly;
  36. #ifdef CONFIG_SMP
  37. extern void smp_do_timer(struct pt_regs *regs);
  38. #endif
  39. irqreturn_t timer_interrupt(int irq, void *dev_id, struct pt_regs *regs)
  40. {
  41. long now;
  42. long next_tick;
  43. int nticks;
  44. int cpu = smp_processor_id();
  45. profile_tick(CPU_PROFILING, regs);
  46. now = mfctl(16);
  47. /* initialize next_tick to time at last clocktick */
  48. next_tick = cpu_data[cpu].it_value;
  49. /* since time passes between the interrupt and the mfctl()
  50. * above, it is never true that last_tick + clocktick == now. If we
  51. * never miss a clocktick, we could set next_tick = last_tick + clocktick
  52. * but maybe we'll miss ticks, hence the loop.
  53. *
  54. * Variables are *signed*.
  55. */
  56. nticks = 0;
  57. while((next_tick - now) < halftick) {
  58. next_tick += clocktick;
  59. nticks++;
  60. }
  61. mtctl(next_tick, 16);
  62. cpu_data[cpu].it_value = next_tick;
  63. while (nticks--) {
  64. #ifdef CONFIG_SMP
  65. smp_do_timer(regs);
  66. #else
  67. update_process_times(user_mode(regs));
  68. #endif
  69. if (cpu == 0) {
  70. write_seqlock(&xtime_lock);
  71. do_timer(regs);
  72. write_sequnlock(&xtime_lock);
  73. }
  74. }
  75. /* check soft power switch status */
  76. if (cpu == 0 && !atomic_read(&power_tasklet.count))
  77. tasklet_schedule(&power_tasklet);
  78. return IRQ_HANDLED;
  79. }
  80. unsigned long profile_pc(struct pt_regs *regs)
  81. {
  82. unsigned long pc = instruction_pointer(regs);
  83. if (regs->gr[0] & PSW_N)
  84. pc -= 4;
  85. #ifdef CONFIG_SMP
  86. if (in_lock_functions(pc))
  87. pc = regs->gr[2];
  88. #endif
  89. return pc;
  90. }
  91. EXPORT_SYMBOL(profile_pc);
  92. /*** converted from ia64 ***/
  93. /*
  94. * Return the number of micro-seconds that elapsed since the last
  95. * update to wall time (aka xtime aka wall_jiffies). The xtime_lock
  96. * must be at least read-locked when calling this routine.
  97. */
  98. static inline unsigned long
  99. gettimeoffset (void)
  100. {
  101. #ifndef CONFIG_SMP
  102. /*
  103. * FIXME: This won't work on smp because jiffies are updated by cpu 0.
  104. * Once parisc-linux learns the cr16 difference between processors,
  105. * this could be made to work.
  106. */
  107. long last_tick;
  108. long elapsed_cycles;
  109. /* it_value is the intended time of the next tick */
  110. last_tick = cpu_data[smp_processor_id()].it_value;
  111. /* Subtract one tick and account for possible difference between
  112. * when we expected the tick and when it actually arrived.
  113. * (aka wall vs real)
  114. */
  115. last_tick -= clocktick * (jiffies - wall_jiffies + 1);
  116. elapsed_cycles = mfctl(16) - last_tick;
  117. /* the precision of this math could be improved */
  118. return elapsed_cycles / (PAGE0->mem_10msec / 10000);
  119. #else
  120. return 0;
  121. #endif
  122. }
  123. void
  124. do_gettimeofday (struct timeval *tv)
  125. {
  126. unsigned long flags, seq, usec, sec;
  127. do {
  128. seq = read_seqbegin_irqsave(&xtime_lock, flags);
  129. usec = gettimeoffset();
  130. sec = xtime.tv_sec;
  131. usec += (xtime.tv_nsec / 1000);
  132. } while (read_seqretry_irqrestore(&xtime_lock, seq, flags));
  133. if (unlikely(usec > LONG_MAX)) {
  134. /* This can happen if the gettimeoffset adjustment is
  135. * negative and xtime.tv_nsec is smaller than the
  136. * adjustment */
  137. printk(KERN_ERR "do_gettimeofday() spurious xtime.tv_nsec of %ld\n", usec);
  138. usec += USEC_PER_SEC;
  139. --sec;
  140. /* This should never happen, it means the negative
  141. * time adjustment was more than a second, so there's
  142. * something seriously wrong */
  143. BUG_ON(usec > LONG_MAX);
  144. }
  145. while (usec >= USEC_PER_SEC) {
  146. usec -= USEC_PER_SEC;
  147. ++sec;
  148. }
  149. tv->tv_sec = sec;
  150. tv->tv_usec = usec;
  151. }
  152. EXPORT_SYMBOL(do_gettimeofday);
  153. int
  154. do_settimeofday (struct timespec *tv)
  155. {
  156. time_t wtm_sec, sec = tv->tv_sec;
  157. long wtm_nsec, nsec = tv->tv_nsec;
  158. if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC)
  159. return -EINVAL;
  160. write_seqlock_irq(&xtime_lock);
  161. {
  162. /*
  163. * This is revolting. We need to set "xtime"
  164. * correctly. However, the value in this location is
  165. * the value at the most recent update of wall time.
  166. * Discover what correction gettimeofday would have
  167. * done, and then undo it!
  168. */
  169. nsec -= gettimeoffset() * 1000;
  170. wtm_sec = wall_to_monotonic.tv_sec + (xtime.tv_sec - sec);
  171. wtm_nsec = wall_to_monotonic.tv_nsec + (xtime.tv_nsec - nsec);
  172. set_normalized_timespec(&xtime, sec, nsec);
  173. set_normalized_timespec(&wall_to_monotonic, wtm_sec, wtm_nsec);
  174. ntp_clear();
  175. }
  176. write_sequnlock_irq(&xtime_lock);
  177. clock_was_set();
  178. return 0;
  179. }
  180. EXPORT_SYMBOL(do_settimeofday);
  181. /*
  182. * XXX: We can do better than this.
  183. * Returns nanoseconds
  184. */
  185. unsigned long long sched_clock(void)
  186. {
  187. return (unsigned long long)jiffies * (1000000000 / HZ);
  188. }
  189. void __init time_init(void)
  190. {
  191. unsigned long next_tick;
  192. static struct pdc_tod tod_data;
  193. clocktick = (100 * PAGE0->mem_10msec) / HZ;
  194. halftick = clocktick / 2;
  195. /* Setup clock interrupt timing */
  196. next_tick = mfctl(16);
  197. next_tick += clocktick;
  198. cpu_data[smp_processor_id()].it_value = next_tick;
  199. /* kick off Itimer (CR16) */
  200. mtctl(next_tick, 16);
  201. if(pdc_tod_read(&tod_data) == 0) {
  202. write_seqlock_irq(&xtime_lock);
  203. xtime.tv_sec = tod_data.tod_sec;
  204. xtime.tv_nsec = tod_data.tod_usec * 1000;
  205. set_normalized_timespec(&wall_to_monotonic,
  206. -xtime.tv_sec, -xtime.tv_nsec);
  207. write_sequnlock_irq(&xtime_lock);
  208. } else {
  209. printk(KERN_ERR "Error reading tod clock\n");
  210. xtime.tv_sec = 0;
  211. xtime.tv_nsec = 0;
  212. }
  213. }