extents_status.c 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643
  1. /*
  2. * fs/ext4/extents_status.c
  3. *
  4. * Written by Yongqiang Yang <xiaoqiangnk@gmail.com>
  5. * Modified by
  6. * Allison Henderson <achender@linux.vnet.ibm.com>
  7. * Hugh Dickins <hughd@google.com>
  8. * Zheng Liu <wenqing.lz@taobao.com>
  9. *
  10. * Ext4 extents status tree core functions.
  11. */
  12. #include <linux/rbtree.h>
  13. #include "ext4.h"
  14. #include "extents_status.h"
  15. #include "ext4_extents.h"
  16. #include <trace/events/ext4.h>
  17. /*
  18. * According to previous discussion in Ext4 Developer Workshop, we
  19. * will introduce a new structure called io tree to track all extent
  20. * status in order to solve some problems that we have met
  21. * (e.g. Reservation space warning), and provide extent-level locking.
  22. * Delay extent tree is the first step to achieve this goal. It is
  23. * original built by Yongqiang Yang. At that time it is called delay
  24. * extent tree, whose goal is only track delayed extents in memory to
  25. * simplify the implementation of fiemap and bigalloc, and introduce
  26. * lseek SEEK_DATA/SEEK_HOLE support. That is why it is still called
  27. * delay extent tree at the first commit. But for better understand
  28. * what it does, it has been rename to extent status tree.
  29. *
  30. * Step1:
  31. * Currently the first step has been done. All delayed extents are
  32. * tracked in the tree. It maintains the delayed extent when a delayed
  33. * allocation is issued, and the delayed extent is written out or
  34. * invalidated. Therefore the implementation of fiemap and bigalloc
  35. * are simplified, and SEEK_DATA/SEEK_HOLE are introduced.
  36. *
  37. * The following comment describes the implemenmtation of extent
  38. * status tree and future works.
  39. *
  40. * Step2:
  41. * In this step all extent status are tracked by extent status tree.
  42. * Thus, we can first try to lookup a block mapping in this tree before
  43. * finding it in extent tree. Hence, single extent cache can be removed
  44. * because extent status tree can do a better job. Extents in status
  45. * tree are loaded on-demand. Therefore, the extent status tree may not
  46. * contain all of the extents in a file. Meanwhile we define a shrinker
  47. * to reclaim memory from extent status tree because fragmented extent
  48. * tree will make status tree cost too much memory. written/unwritten/-
  49. * hole extents in the tree will be reclaimed by this shrinker when we
  50. * are under high memory pressure. Delayed extents will not be
  51. * reclimed because fiemap, bigalloc, and seek_data/hole need it.
  52. */
  53. /*
  54. * Extent status tree implementation for ext4.
  55. *
  56. *
  57. * ==========================================================================
  58. * Extent status tree tracks all extent status.
  59. *
  60. * 1. Why we need to implement extent status tree?
  61. *
  62. * Without extent status tree, ext4 identifies a delayed extent by looking
  63. * up page cache, this has several deficiencies - complicated, buggy,
  64. * and inefficient code.
  65. *
  66. * FIEMAP, SEEK_HOLE/DATA, bigalloc, and writeout all need to know if a
  67. * block or a range of blocks are belonged to a delayed extent.
  68. *
  69. * Let us have a look at how they do without extent status tree.
  70. * -- FIEMAP
  71. * FIEMAP looks up page cache to identify delayed allocations from holes.
  72. *
  73. * -- SEEK_HOLE/DATA
  74. * SEEK_HOLE/DATA has the same problem as FIEMAP.
  75. *
  76. * -- bigalloc
  77. * bigalloc looks up page cache to figure out if a block is
  78. * already under delayed allocation or not to determine whether
  79. * quota reserving is needed for the cluster.
  80. *
  81. * -- writeout
  82. * Writeout looks up whole page cache to see if a buffer is
  83. * mapped, If there are not very many delayed buffers, then it is
  84. * time comsuming.
  85. *
  86. * With extent status tree implementation, FIEMAP, SEEK_HOLE/DATA,
  87. * bigalloc and writeout can figure out if a block or a range of
  88. * blocks is under delayed allocation(belonged to a delayed extent) or
  89. * not by searching the extent tree.
  90. *
  91. *
  92. * ==========================================================================
  93. * 2. Ext4 extent status tree impelmentation
  94. *
  95. * -- extent
  96. * A extent is a range of blocks which are contiguous logically and
  97. * physically. Unlike extent in extent tree, this extent in ext4 is
  98. * a in-memory struct, there is no corresponding on-disk data. There
  99. * is no limit on length of extent, so an extent can contain as many
  100. * blocks as they are contiguous logically and physically.
  101. *
  102. * -- extent status tree
  103. * Every inode has an extent status tree and all allocation blocks
  104. * are added to the tree with different status. The extent in the
  105. * tree are ordered by logical block no.
  106. *
  107. * -- operations on a extent status tree
  108. * There are three important operations on a delayed extent tree: find
  109. * next extent, adding a extent(a range of blocks) and removing a extent.
  110. *
  111. * -- race on a extent status tree
  112. * Extent status tree is protected by inode->i_es_lock.
  113. *
  114. * -- memory consumption
  115. * Fragmented extent tree will make extent status tree cost too much
  116. * memory. Hence, we will reclaim written/unwritten/hole extents from
  117. * the tree under a heavy memory pressure.
  118. *
  119. *
  120. * ==========================================================================
  121. * 3. Performance analysis
  122. *
  123. * -- overhead
  124. * 1. There is a cache extent for write access, so if writes are
  125. * not very random, adding space operaions are in O(1) time.
  126. *
  127. * -- gain
  128. * 2. Code is much simpler, more readable, more maintainable and
  129. * more efficient.
  130. *
  131. *
  132. * ==========================================================================
  133. * 4. TODO list
  134. *
  135. * -- Refactor delayed space reservation
  136. *
  137. * -- Extent-level locking
  138. */
  139. static struct kmem_cache *ext4_es_cachep;
  140. static int __es_insert_extent(struct ext4_es_tree *tree,
  141. struct extent_status *newes);
  142. static int __es_remove_extent(struct ext4_es_tree *tree, ext4_lblk_t lblk,
  143. ext4_lblk_t end);
  144. int __init ext4_init_es(void)
  145. {
  146. ext4_es_cachep = KMEM_CACHE(extent_status, SLAB_RECLAIM_ACCOUNT);
  147. if (ext4_es_cachep == NULL)
  148. return -ENOMEM;
  149. return 0;
  150. }
  151. void ext4_exit_es(void)
  152. {
  153. if (ext4_es_cachep)
  154. kmem_cache_destroy(ext4_es_cachep);
  155. }
  156. void ext4_es_init_tree(struct ext4_es_tree *tree)
  157. {
  158. tree->root = RB_ROOT;
  159. tree->cache_es = NULL;
  160. }
  161. #ifdef ES_DEBUG__
  162. static void ext4_es_print_tree(struct inode *inode)
  163. {
  164. struct ext4_es_tree *tree;
  165. struct rb_node *node;
  166. printk(KERN_DEBUG "status extents for inode %lu:", inode->i_ino);
  167. tree = &EXT4_I(inode)->i_es_tree;
  168. node = rb_first(&tree->root);
  169. while (node) {
  170. struct extent_status *es;
  171. es = rb_entry(node, struct extent_status, rb_node);
  172. printk(KERN_DEBUG " [%u/%u) %llu %llx",
  173. es->es_lblk, es->es_len,
  174. ext4_es_pblock(es), ext4_es_status(es));
  175. node = rb_next(node);
  176. }
  177. printk(KERN_DEBUG "\n");
  178. }
  179. #else
  180. #define ext4_es_print_tree(inode)
  181. #endif
  182. static inline ext4_lblk_t ext4_es_end(struct extent_status *es)
  183. {
  184. BUG_ON(es->es_lblk + es->es_len < es->es_lblk);
  185. return es->es_lblk + es->es_len - 1;
  186. }
  187. /*
  188. * search through the tree for an delayed extent with a given offset. If
  189. * it can't be found, try to find next extent.
  190. */
  191. static struct extent_status *__es_tree_search(struct rb_root *root,
  192. ext4_lblk_t lblk)
  193. {
  194. struct rb_node *node = root->rb_node;
  195. struct extent_status *es = NULL;
  196. while (node) {
  197. es = rb_entry(node, struct extent_status, rb_node);
  198. if (lblk < es->es_lblk)
  199. node = node->rb_left;
  200. else if (lblk > ext4_es_end(es))
  201. node = node->rb_right;
  202. else
  203. return es;
  204. }
  205. if (es && lblk < es->es_lblk)
  206. return es;
  207. if (es && lblk > ext4_es_end(es)) {
  208. node = rb_next(&es->rb_node);
  209. return node ? rb_entry(node, struct extent_status, rb_node) :
  210. NULL;
  211. }
  212. return NULL;
  213. }
  214. /*
  215. * ext4_es_find_delayed_extent: find the 1st delayed extent covering @es->lblk
  216. * if it exists, otherwise, the next extent after @es->lblk.
  217. *
  218. * @inode: the inode which owns delayed extents
  219. * @lblk: the offset where we start to search
  220. * @es: delayed extent that we found
  221. */
  222. void ext4_es_find_delayed_extent(struct inode *inode, ext4_lblk_t lblk,
  223. struct extent_status *es)
  224. {
  225. struct ext4_es_tree *tree = NULL;
  226. struct extent_status *es1 = NULL;
  227. struct rb_node *node;
  228. BUG_ON(es == NULL);
  229. trace_ext4_es_find_delayed_extent_enter(inode, lblk);
  230. read_lock(&EXT4_I(inode)->i_es_lock);
  231. tree = &EXT4_I(inode)->i_es_tree;
  232. /* find extent in cache firstly */
  233. es->es_lblk = es->es_len = es->es_pblk = 0;
  234. if (tree->cache_es) {
  235. es1 = tree->cache_es;
  236. if (in_range(lblk, es1->es_lblk, es1->es_len)) {
  237. es_debug("%u cached by [%u/%u) %llu %llx\n",
  238. lblk, es1->es_lblk, es1->es_len,
  239. ext4_es_pblock(es1), ext4_es_status(es1));
  240. goto out;
  241. }
  242. }
  243. es1 = __es_tree_search(&tree->root, lblk);
  244. out:
  245. if (es1 && !ext4_es_is_delayed(es1)) {
  246. while ((node = rb_next(&es1->rb_node)) != NULL) {
  247. es1 = rb_entry(node, struct extent_status, rb_node);
  248. if (ext4_es_is_delayed(es1))
  249. break;
  250. }
  251. }
  252. if (es1 && ext4_es_is_delayed(es1)) {
  253. tree->cache_es = es1;
  254. es->es_lblk = es1->es_lblk;
  255. es->es_len = es1->es_len;
  256. es->es_pblk = es1->es_pblk;
  257. }
  258. read_unlock(&EXT4_I(inode)->i_es_lock);
  259. trace_ext4_es_find_delayed_extent_exit(inode, es);
  260. }
  261. static struct extent_status *
  262. ext4_es_alloc_extent(ext4_lblk_t lblk, ext4_lblk_t len, ext4_fsblk_t pblk)
  263. {
  264. struct extent_status *es;
  265. es = kmem_cache_alloc(ext4_es_cachep, GFP_ATOMIC);
  266. if (es == NULL)
  267. return NULL;
  268. es->es_lblk = lblk;
  269. es->es_len = len;
  270. es->es_pblk = pblk;
  271. return es;
  272. }
  273. static void ext4_es_free_extent(struct extent_status *es)
  274. {
  275. kmem_cache_free(ext4_es_cachep, es);
  276. }
  277. /*
  278. * Check whether or not two extents can be merged
  279. * Condition:
  280. * - logical block number is contiguous
  281. * - physical block number is contiguous
  282. * - status is equal
  283. */
  284. static int ext4_es_can_be_merged(struct extent_status *es1,
  285. struct extent_status *es2)
  286. {
  287. if (es1->es_lblk + es1->es_len != es2->es_lblk)
  288. return 0;
  289. if (ext4_es_status(es1) != ext4_es_status(es2))
  290. return 0;
  291. if ((ext4_es_is_written(es1) || ext4_es_is_unwritten(es1)) &&
  292. (ext4_es_pblock(es1) + es1->es_len != ext4_es_pblock(es2)))
  293. return 0;
  294. return 1;
  295. }
  296. static struct extent_status *
  297. ext4_es_try_to_merge_left(struct ext4_es_tree *tree, struct extent_status *es)
  298. {
  299. struct extent_status *es1;
  300. struct rb_node *node;
  301. node = rb_prev(&es->rb_node);
  302. if (!node)
  303. return es;
  304. es1 = rb_entry(node, struct extent_status, rb_node);
  305. if (ext4_es_can_be_merged(es1, es)) {
  306. es1->es_len += es->es_len;
  307. rb_erase(&es->rb_node, &tree->root);
  308. ext4_es_free_extent(es);
  309. es = es1;
  310. }
  311. return es;
  312. }
  313. static struct extent_status *
  314. ext4_es_try_to_merge_right(struct ext4_es_tree *tree, struct extent_status *es)
  315. {
  316. struct extent_status *es1;
  317. struct rb_node *node;
  318. node = rb_next(&es->rb_node);
  319. if (!node)
  320. return es;
  321. es1 = rb_entry(node, struct extent_status, rb_node);
  322. if (ext4_es_can_be_merged(es, es1)) {
  323. es->es_len += es1->es_len;
  324. rb_erase(node, &tree->root);
  325. ext4_es_free_extent(es1);
  326. }
  327. return es;
  328. }
  329. static int __es_insert_extent(struct ext4_es_tree *tree,
  330. struct extent_status *newes)
  331. {
  332. struct rb_node **p = &tree->root.rb_node;
  333. struct rb_node *parent = NULL;
  334. struct extent_status *es;
  335. while (*p) {
  336. parent = *p;
  337. es = rb_entry(parent, struct extent_status, rb_node);
  338. if (newes->es_lblk < es->es_lblk) {
  339. if (ext4_es_can_be_merged(newes, es)) {
  340. /*
  341. * Here we can modify es_lblk directly
  342. * because it isn't overlapped.
  343. */
  344. es->es_lblk = newes->es_lblk;
  345. es->es_len += newes->es_len;
  346. if (ext4_es_is_written(es) ||
  347. ext4_es_is_unwritten(es))
  348. ext4_es_store_pblock(es,
  349. newes->es_pblk);
  350. es = ext4_es_try_to_merge_left(tree, es);
  351. goto out;
  352. }
  353. p = &(*p)->rb_left;
  354. } else if (newes->es_lblk > ext4_es_end(es)) {
  355. if (ext4_es_can_be_merged(es, newes)) {
  356. es->es_len += newes->es_len;
  357. es = ext4_es_try_to_merge_right(tree, es);
  358. goto out;
  359. }
  360. p = &(*p)->rb_right;
  361. } else {
  362. BUG_ON(1);
  363. return -EINVAL;
  364. }
  365. }
  366. es = ext4_es_alloc_extent(newes->es_lblk, newes->es_len,
  367. newes->es_pblk);
  368. if (!es)
  369. return -ENOMEM;
  370. rb_link_node(&es->rb_node, parent, p);
  371. rb_insert_color(&es->rb_node, &tree->root);
  372. out:
  373. tree->cache_es = es;
  374. return 0;
  375. }
  376. /*
  377. * ext4_es_insert_extent() adds a space to a extent status tree.
  378. *
  379. * ext4_es_insert_extent is called by ext4_da_write_begin and
  380. * ext4_es_remove_extent.
  381. *
  382. * Return 0 on success, error code on failure.
  383. */
  384. int ext4_es_insert_extent(struct inode *inode, ext4_lblk_t lblk,
  385. ext4_lblk_t len, ext4_fsblk_t pblk,
  386. unsigned long long status)
  387. {
  388. struct ext4_es_tree *tree;
  389. struct extent_status newes;
  390. ext4_lblk_t end = lblk + len - 1;
  391. int err = 0;
  392. es_debug("add [%u/%u) %llu %llx to extent status tree of inode %lu\n",
  393. lblk, len, pblk, status, inode->i_ino);
  394. BUG_ON(end < lblk);
  395. newes.es_lblk = lblk;
  396. newes.es_len = len;
  397. ext4_es_store_pblock(&newes, pblk);
  398. ext4_es_store_status(&newes, status);
  399. trace_ext4_es_insert_extent(inode, &newes);
  400. write_lock(&EXT4_I(inode)->i_es_lock);
  401. tree = &EXT4_I(inode)->i_es_tree;
  402. err = __es_remove_extent(tree, lblk, end);
  403. if (err != 0)
  404. goto error;
  405. err = __es_insert_extent(tree, &newes);
  406. error:
  407. write_unlock(&EXT4_I(inode)->i_es_lock);
  408. ext4_es_print_tree(inode);
  409. return err;
  410. }
  411. /*
  412. * ext4_es_lookup_extent() looks up an extent in extent status tree.
  413. *
  414. * ext4_es_lookup_extent is called by ext4_map_blocks/ext4_da_map_blocks.
  415. *
  416. * Return: 1 on found, 0 on not
  417. */
  418. int ext4_es_lookup_extent(struct inode *inode, ext4_lblk_t lblk,
  419. struct extent_status *es)
  420. {
  421. struct ext4_es_tree *tree;
  422. struct extent_status *es1 = NULL;
  423. struct rb_node *node;
  424. int found = 0;
  425. trace_ext4_es_lookup_extent_enter(inode, lblk);
  426. es_debug("lookup extent in block %u\n", lblk);
  427. tree = &EXT4_I(inode)->i_es_tree;
  428. read_lock(&EXT4_I(inode)->i_es_lock);
  429. /* find extent in cache firstly */
  430. es->es_lblk = es->es_len = es->es_pblk = 0;
  431. if (tree->cache_es) {
  432. es1 = tree->cache_es;
  433. if (in_range(lblk, es1->es_lblk, es1->es_len)) {
  434. es_debug("%u cached by [%u/%u)\n",
  435. lblk, es1->es_lblk, es1->es_len);
  436. found = 1;
  437. goto out;
  438. }
  439. }
  440. node = tree->root.rb_node;
  441. while (node) {
  442. es1 = rb_entry(node, struct extent_status, rb_node);
  443. if (lblk < es1->es_lblk)
  444. node = node->rb_left;
  445. else if (lblk > ext4_es_end(es1))
  446. node = node->rb_right;
  447. else {
  448. found = 1;
  449. break;
  450. }
  451. }
  452. out:
  453. if (found) {
  454. BUG_ON(!es1);
  455. es->es_lblk = es1->es_lblk;
  456. es->es_len = es1->es_len;
  457. es->es_pblk = es1->es_pblk;
  458. }
  459. read_unlock(&EXT4_I(inode)->i_es_lock);
  460. trace_ext4_es_lookup_extent_exit(inode, es, found);
  461. return found;
  462. }
  463. static int __es_remove_extent(struct ext4_es_tree *tree, ext4_lblk_t lblk,
  464. ext4_lblk_t end)
  465. {
  466. struct rb_node *node;
  467. struct extent_status *es;
  468. struct extent_status orig_es;
  469. ext4_lblk_t len1, len2;
  470. ext4_fsblk_t block;
  471. int err = 0;
  472. es = __es_tree_search(&tree->root, lblk);
  473. if (!es)
  474. goto out;
  475. if (es->es_lblk > end)
  476. goto out;
  477. /* Simply invalidate cache_es. */
  478. tree->cache_es = NULL;
  479. orig_es.es_lblk = es->es_lblk;
  480. orig_es.es_len = es->es_len;
  481. orig_es.es_pblk = es->es_pblk;
  482. len1 = lblk > es->es_lblk ? lblk - es->es_lblk : 0;
  483. len2 = ext4_es_end(es) > end ? ext4_es_end(es) - end : 0;
  484. if (len1 > 0)
  485. es->es_len = len1;
  486. if (len2 > 0) {
  487. if (len1 > 0) {
  488. struct extent_status newes;
  489. newes.es_lblk = end + 1;
  490. newes.es_len = len2;
  491. if (ext4_es_is_written(&orig_es) ||
  492. ext4_es_is_unwritten(&orig_es)) {
  493. block = ext4_es_pblock(&orig_es) +
  494. orig_es.es_len - len2;
  495. ext4_es_store_pblock(&newes, block);
  496. }
  497. ext4_es_store_status(&newes, ext4_es_status(&orig_es));
  498. err = __es_insert_extent(tree, &newes);
  499. if (err) {
  500. es->es_lblk = orig_es.es_lblk;
  501. es->es_len = orig_es.es_len;
  502. goto out;
  503. }
  504. } else {
  505. es->es_lblk = end + 1;
  506. es->es_len = len2;
  507. if (ext4_es_is_written(es) ||
  508. ext4_es_is_unwritten(es)) {
  509. block = orig_es.es_pblk + orig_es.es_len - len2;
  510. ext4_es_store_pblock(es, block);
  511. }
  512. }
  513. goto out;
  514. }
  515. if (len1 > 0) {
  516. node = rb_next(&es->rb_node);
  517. if (node)
  518. es = rb_entry(node, struct extent_status, rb_node);
  519. else
  520. es = NULL;
  521. }
  522. while (es && ext4_es_end(es) <= end) {
  523. node = rb_next(&es->rb_node);
  524. rb_erase(&es->rb_node, &tree->root);
  525. ext4_es_free_extent(es);
  526. if (!node) {
  527. es = NULL;
  528. break;
  529. }
  530. es = rb_entry(node, struct extent_status, rb_node);
  531. }
  532. if (es && es->es_lblk < end + 1) {
  533. ext4_lblk_t orig_len = es->es_len;
  534. len1 = ext4_es_end(es) - end;
  535. es->es_lblk = end + 1;
  536. es->es_len = len1;
  537. if (ext4_es_is_written(es) || ext4_es_is_unwritten(es)) {
  538. block = es->es_pblk + orig_len - len1;
  539. ext4_es_store_pblock(es, block);
  540. }
  541. }
  542. out:
  543. return err;
  544. }
  545. /*
  546. * ext4_es_remove_extent() removes a space from a extent status tree.
  547. *
  548. * Return 0 on success, error code on failure.
  549. */
  550. int ext4_es_remove_extent(struct inode *inode, ext4_lblk_t lblk,
  551. ext4_lblk_t len)
  552. {
  553. struct ext4_es_tree *tree;
  554. ext4_lblk_t end;
  555. int err = 0;
  556. trace_ext4_es_remove_extent(inode, lblk, len);
  557. es_debug("remove [%u/%u) from extent status tree of inode %lu\n",
  558. lblk, len, inode->i_ino);
  559. end = lblk + len - 1;
  560. BUG_ON(end < lblk);
  561. tree = &EXT4_I(inode)->i_es_tree;
  562. write_lock(&EXT4_I(inode)->i_es_lock);
  563. err = __es_remove_extent(tree, lblk, end);
  564. write_unlock(&EXT4_I(inode)->i_es_lock);
  565. ext4_es_print_tree(inode);
  566. return err;
  567. }