memory.c 97 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591
  1. /*
  2. * linux/mm/memory.c
  3. *
  4. * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
  5. */
  6. /*
  7. * demand-loading started 01.12.91 - seems it is high on the list of
  8. * things wanted, and it should be easy to implement. - Linus
  9. */
  10. /*
  11. * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
  12. * pages started 02.12.91, seems to work. - Linus.
  13. *
  14. * Tested sharing by executing about 30 /bin/sh: under the old kernel it
  15. * would have taken more than the 6M I have free, but it worked well as
  16. * far as I could see.
  17. *
  18. * Also corrected some "invalidate()"s - I wasn't doing enough of them.
  19. */
  20. /*
  21. * Real VM (paging to/from disk) started 18.12.91. Much more work and
  22. * thought has to go into this. Oh, well..
  23. * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
  24. * Found it. Everything seems to work now.
  25. * 20.12.91 - Ok, making the swap-device changeable like the root.
  26. */
  27. /*
  28. * 05.04.94 - Multi-page memory management added for v1.1.
  29. * Idea by Alex Bligh (alex@cconcepts.co.uk)
  30. *
  31. * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
  32. * (Gerhard.Wichert@pdb.siemens.de)
  33. *
  34. * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
  35. */
  36. #include <linux/kernel_stat.h>
  37. #include <linux/mm.h>
  38. #include <linux/hugetlb.h>
  39. #include <linux/mman.h>
  40. #include <linux/swap.h>
  41. #include <linux/highmem.h>
  42. #include <linux/pagemap.h>
  43. #include <linux/ksm.h>
  44. #include <linux/rmap.h>
  45. #include <linux/module.h>
  46. #include <linux/delayacct.h>
  47. #include <linux/init.h>
  48. #include <linux/writeback.h>
  49. #include <linux/memcontrol.h>
  50. #include <linux/mmu_notifier.h>
  51. #include <linux/kallsyms.h>
  52. #include <linux/swapops.h>
  53. #include <linux/elf.h>
  54. #include <linux/gfp.h>
  55. #include <asm/io.h>
  56. #include <asm/pgalloc.h>
  57. #include <asm/uaccess.h>
  58. #include <asm/tlb.h>
  59. #include <asm/tlbflush.h>
  60. #include <asm/pgtable.h>
  61. #include "internal.h"
  62. #ifndef CONFIG_NEED_MULTIPLE_NODES
  63. /* use the per-pgdat data instead for discontigmem - mbligh */
  64. unsigned long max_mapnr;
  65. struct page *mem_map;
  66. EXPORT_SYMBOL(max_mapnr);
  67. EXPORT_SYMBOL(mem_map);
  68. #endif
  69. unsigned long num_physpages;
  70. /*
  71. * A number of key systems in x86 including ioremap() rely on the assumption
  72. * that high_memory defines the upper bound on direct map memory, then end
  73. * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
  74. * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
  75. * and ZONE_HIGHMEM.
  76. */
  77. void * high_memory;
  78. EXPORT_SYMBOL(num_physpages);
  79. EXPORT_SYMBOL(high_memory);
  80. /*
  81. * Randomize the address space (stacks, mmaps, brk, etc.).
  82. *
  83. * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
  84. * as ancient (libc5 based) binaries can segfault. )
  85. */
  86. int randomize_va_space __read_mostly =
  87. #ifdef CONFIG_COMPAT_BRK
  88. 1;
  89. #else
  90. 2;
  91. #endif
  92. static int __init disable_randmaps(char *s)
  93. {
  94. randomize_va_space = 0;
  95. return 1;
  96. }
  97. __setup("norandmaps", disable_randmaps);
  98. unsigned long zero_pfn __read_mostly;
  99. unsigned long highest_memmap_pfn __read_mostly;
  100. /*
  101. * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
  102. */
  103. static int __init init_zero_pfn(void)
  104. {
  105. zero_pfn = page_to_pfn(ZERO_PAGE(0));
  106. return 0;
  107. }
  108. core_initcall(init_zero_pfn);
  109. #if defined(SPLIT_RSS_COUNTING)
  110. static void __sync_task_rss_stat(struct task_struct *task, struct mm_struct *mm)
  111. {
  112. int i;
  113. for (i = 0; i < NR_MM_COUNTERS; i++) {
  114. if (task->rss_stat.count[i]) {
  115. add_mm_counter(mm, i, task->rss_stat.count[i]);
  116. task->rss_stat.count[i] = 0;
  117. }
  118. }
  119. task->rss_stat.events = 0;
  120. }
  121. static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
  122. {
  123. struct task_struct *task = current;
  124. if (likely(task->mm == mm))
  125. task->rss_stat.count[member] += val;
  126. else
  127. add_mm_counter(mm, member, val);
  128. }
  129. #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
  130. #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
  131. /* sync counter once per 64 page faults */
  132. #define TASK_RSS_EVENTS_THRESH (64)
  133. static void check_sync_rss_stat(struct task_struct *task)
  134. {
  135. if (unlikely(task != current))
  136. return;
  137. if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
  138. __sync_task_rss_stat(task, task->mm);
  139. }
  140. unsigned long get_mm_counter(struct mm_struct *mm, int member)
  141. {
  142. long val = 0;
  143. /*
  144. * Don't use task->mm here...for avoiding to use task_get_mm()..
  145. * The caller must guarantee task->mm is not invalid.
  146. */
  147. val = atomic_long_read(&mm->rss_stat.count[member]);
  148. /*
  149. * counter is updated in asynchronous manner and may go to minus.
  150. * But it's never be expected number for users.
  151. */
  152. if (val < 0)
  153. return 0;
  154. return (unsigned long)val;
  155. }
  156. void sync_mm_rss(struct task_struct *task, struct mm_struct *mm)
  157. {
  158. __sync_task_rss_stat(task, mm);
  159. }
  160. #else
  161. #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
  162. #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
  163. static void check_sync_rss_stat(struct task_struct *task)
  164. {
  165. }
  166. #endif
  167. /*
  168. * If a p?d_bad entry is found while walking page tables, report
  169. * the error, before resetting entry to p?d_none. Usually (but
  170. * very seldom) called out from the p?d_none_or_clear_bad macros.
  171. */
  172. void pgd_clear_bad(pgd_t *pgd)
  173. {
  174. pgd_ERROR(*pgd);
  175. pgd_clear(pgd);
  176. }
  177. void pud_clear_bad(pud_t *pud)
  178. {
  179. pud_ERROR(*pud);
  180. pud_clear(pud);
  181. }
  182. void pmd_clear_bad(pmd_t *pmd)
  183. {
  184. pmd_ERROR(*pmd);
  185. pmd_clear(pmd);
  186. }
  187. /*
  188. * Note: this doesn't free the actual pages themselves. That
  189. * has been handled earlier when unmapping all the memory regions.
  190. */
  191. static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
  192. unsigned long addr)
  193. {
  194. pgtable_t token = pmd_pgtable(*pmd);
  195. pmd_clear(pmd);
  196. pte_free_tlb(tlb, token, addr);
  197. tlb->mm->nr_ptes--;
  198. }
  199. static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
  200. unsigned long addr, unsigned long end,
  201. unsigned long floor, unsigned long ceiling)
  202. {
  203. pmd_t *pmd;
  204. unsigned long next;
  205. unsigned long start;
  206. start = addr;
  207. pmd = pmd_offset(pud, addr);
  208. do {
  209. next = pmd_addr_end(addr, end);
  210. if (pmd_none_or_clear_bad(pmd))
  211. continue;
  212. free_pte_range(tlb, pmd, addr);
  213. } while (pmd++, addr = next, addr != end);
  214. start &= PUD_MASK;
  215. if (start < floor)
  216. return;
  217. if (ceiling) {
  218. ceiling &= PUD_MASK;
  219. if (!ceiling)
  220. return;
  221. }
  222. if (end - 1 > ceiling - 1)
  223. return;
  224. pmd = pmd_offset(pud, start);
  225. pud_clear(pud);
  226. pmd_free_tlb(tlb, pmd, start);
  227. }
  228. static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
  229. unsigned long addr, unsigned long end,
  230. unsigned long floor, unsigned long ceiling)
  231. {
  232. pud_t *pud;
  233. unsigned long next;
  234. unsigned long start;
  235. start = addr;
  236. pud = pud_offset(pgd, addr);
  237. do {
  238. next = pud_addr_end(addr, end);
  239. if (pud_none_or_clear_bad(pud))
  240. continue;
  241. free_pmd_range(tlb, pud, addr, next, floor, ceiling);
  242. } while (pud++, addr = next, addr != end);
  243. start &= PGDIR_MASK;
  244. if (start < floor)
  245. return;
  246. if (ceiling) {
  247. ceiling &= PGDIR_MASK;
  248. if (!ceiling)
  249. return;
  250. }
  251. if (end - 1 > ceiling - 1)
  252. return;
  253. pud = pud_offset(pgd, start);
  254. pgd_clear(pgd);
  255. pud_free_tlb(tlb, pud, start);
  256. }
  257. /*
  258. * This function frees user-level page tables of a process.
  259. *
  260. * Must be called with pagetable lock held.
  261. */
  262. void free_pgd_range(struct mmu_gather *tlb,
  263. unsigned long addr, unsigned long end,
  264. unsigned long floor, unsigned long ceiling)
  265. {
  266. pgd_t *pgd;
  267. unsigned long next;
  268. /*
  269. * The next few lines have given us lots of grief...
  270. *
  271. * Why are we testing PMD* at this top level? Because often
  272. * there will be no work to do at all, and we'd prefer not to
  273. * go all the way down to the bottom just to discover that.
  274. *
  275. * Why all these "- 1"s? Because 0 represents both the bottom
  276. * of the address space and the top of it (using -1 for the
  277. * top wouldn't help much: the masks would do the wrong thing).
  278. * The rule is that addr 0 and floor 0 refer to the bottom of
  279. * the address space, but end 0 and ceiling 0 refer to the top
  280. * Comparisons need to use "end - 1" and "ceiling - 1" (though
  281. * that end 0 case should be mythical).
  282. *
  283. * Wherever addr is brought up or ceiling brought down, we must
  284. * be careful to reject "the opposite 0" before it confuses the
  285. * subsequent tests. But what about where end is brought down
  286. * by PMD_SIZE below? no, end can't go down to 0 there.
  287. *
  288. * Whereas we round start (addr) and ceiling down, by different
  289. * masks at different levels, in order to test whether a table
  290. * now has no other vmas using it, so can be freed, we don't
  291. * bother to round floor or end up - the tests don't need that.
  292. */
  293. addr &= PMD_MASK;
  294. if (addr < floor) {
  295. addr += PMD_SIZE;
  296. if (!addr)
  297. return;
  298. }
  299. if (ceiling) {
  300. ceiling &= PMD_MASK;
  301. if (!ceiling)
  302. return;
  303. }
  304. if (end - 1 > ceiling - 1)
  305. end -= PMD_SIZE;
  306. if (addr > end - 1)
  307. return;
  308. pgd = pgd_offset(tlb->mm, addr);
  309. do {
  310. next = pgd_addr_end(addr, end);
  311. if (pgd_none_or_clear_bad(pgd))
  312. continue;
  313. free_pud_range(tlb, pgd, addr, next, floor, ceiling);
  314. } while (pgd++, addr = next, addr != end);
  315. }
  316. void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
  317. unsigned long floor, unsigned long ceiling)
  318. {
  319. while (vma) {
  320. struct vm_area_struct *next = vma->vm_next;
  321. unsigned long addr = vma->vm_start;
  322. /*
  323. * Hide vma from rmap and truncate_pagecache before freeing
  324. * pgtables
  325. */
  326. unlink_anon_vmas(vma);
  327. unlink_file_vma(vma);
  328. if (is_vm_hugetlb_page(vma)) {
  329. hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
  330. floor, next? next->vm_start: ceiling);
  331. } else {
  332. /*
  333. * Optimization: gather nearby vmas into one call down
  334. */
  335. while (next && next->vm_start <= vma->vm_end + PMD_SIZE
  336. && !is_vm_hugetlb_page(next)) {
  337. vma = next;
  338. next = vma->vm_next;
  339. unlink_anon_vmas(vma);
  340. unlink_file_vma(vma);
  341. }
  342. free_pgd_range(tlb, addr, vma->vm_end,
  343. floor, next? next->vm_start: ceiling);
  344. }
  345. vma = next;
  346. }
  347. }
  348. int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
  349. {
  350. pgtable_t new = pte_alloc_one(mm, address);
  351. if (!new)
  352. return -ENOMEM;
  353. /*
  354. * Ensure all pte setup (eg. pte page lock and page clearing) are
  355. * visible before the pte is made visible to other CPUs by being
  356. * put into page tables.
  357. *
  358. * The other side of the story is the pointer chasing in the page
  359. * table walking code (when walking the page table without locking;
  360. * ie. most of the time). Fortunately, these data accesses consist
  361. * of a chain of data-dependent loads, meaning most CPUs (alpha
  362. * being the notable exception) will already guarantee loads are
  363. * seen in-order. See the alpha page table accessors for the
  364. * smp_read_barrier_depends() barriers in page table walking code.
  365. */
  366. smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
  367. spin_lock(&mm->page_table_lock);
  368. if (!pmd_present(*pmd)) { /* Has another populated it ? */
  369. mm->nr_ptes++;
  370. pmd_populate(mm, pmd, new);
  371. new = NULL;
  372. }
  373. spin_unlock(&mm->page_table_lock);
  374. if (new)
  375. pte_free(mm, new);
  376. return 0;
  377. }
  378. int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
  379. {
  380. pte_t *new = pte_alloc_one_kernel(&init_mm, address);
  381. if (!new)
  382. return -ENOMEM;
  383. smp_wmb(); /* See comment in __pte_alloc */
  384. spin_lock(&init_mm.page_table_lock);
  385. if (!pmd_present(*pmd)) { /* Has another populated it ? */
  386. pmd_populate_kernel(&init_mm, pmd, new);
  387. new = NULL;
  388. }
  389. spin_unlock(&init_mm.page_table_lock);
  390. if (new)
  391. pte_free_kernel(&init_mm, new);
  392. return 0;
  393. }
  394. static inline void init_rss_vec(int *rss)
  395. {
  396. memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
  397. }
  398. static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
  399. {
  400. int i;
  401. if (current->mm == mm)
  402. sync_mm_rss(current, mm);
  403. for (i = 0; i < NR_MM_COUNTERS; i++)
  404. if (rss[i])
  405. add_mm_counter(mm, i, rss[i]);
  406. }
  407. /*
  408. * This function is called to print an error when a bad pte
  409. * is found. For example, we might have a PFN-mapped pte in
  410. * a region that doesn't allow it.
  411. *
  412. * The calling function must still handle the error.
  413. */
  414. static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
  415. pte_t pte, struct page *page)
  416. {
  417. pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
  418. pud_t *pud = pud_offset(pgd, addr);
  419. pmd_t *pmd = pmd_offset(pud, addr);
  420. struct address_space *mapping;
  421. pgoff_t index;
  422. static unsigned long resume;
  423. static unsigned long nr_shown;
  424. static unsigned long nr_unshown;
  425. /*
  426. * Allow a burst of 60 reports, then keep quiet for that minute;
  427. * or allow a steady drip of one report per second.
  428. */
  429. if (nr_shown == 60) {
  430. if (time_before(jiffies, resume)) {
  431. nr_unshown++;
  432. return;
  433. }
  434. if (nr_unshown) {
  435. printk(KERN_ALERT
  436. "BUG: Bad page map: %lu messages suppressed\n",
  437. nr_unshown);
  438. nr_unshown = 0;
  439. }
  440. nr_shown = 0;
  441. }
  442. if (nr_shown++ == 0)
  443. resume = jiffies + 60 * HZ;
  444. mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
  445. index = linear_page_index(vma, addr);
  446. printk(KERN_ALERT
  447. "BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
  448. current->comm,
  449. (long long)pte_val(pte), (long long)pmd_val(*pmd));
  450. if (page)
  451. dump_page(page);
  452. printk(KERN_ALERT
  453. "addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
  454. (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
  455. /*
  456. * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
  457. */
  458. if (vma->vm_ops)
  459. print_symbol(KERN_ALERT "vma->vm_ops->fault: %s\n",
  460. (unsigned long)vma->vm_ops->fault);
  461. if (vma->vm_file && vma->vm_file->f_op)
  462. print_symbol(KERN_ALERT "vma->vm_file->f_op->mmap: %s\n",
  463. (unsigned long)vma->vm_file->f_op->mmap);
  464. dump_stack();
  465. add_taint(TAINT_BAD_PAGE);
  466. }
  467. static inline int is_cow_mapping(unsigned int flags)
  468. {
  469. return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
  470. }
  471. #ifndef is_zero_pfn
  472. static inline int is_zero_pfn(unsigned long pfn)
  473. {
  474. return pfn == zero_pfn;
  475. }
  476. #endif
  477. #ifndef my_zero_pfn
  478. static inline unsigned long my_zero_pfn(unsigned long addr)
  479. {
  480. return zero_pfn;
  481. }
  482. #endif
  483. /*
  484. * vm_normal_page -- This function gets the "struct page" associated with a pte.
  485. *
  486. * "Special" mappings do not wish to be associated with a "struct page" (either
  487. * it doesn't exist, or it exists but they don't want to touch it). In this
  488. * case, NULL is returned here. "Normal" mappings do have a struct page.
  489. *
  490. * There are 2 broad cases. Firstly, an architecture may define a pte_special()
  491. * pte bit, in which case this function is trivial. Secondly, an architecture
  492. * may not have a spare pte bit, which requires a more complicated scheme,
  493. * described below.
  494. *
  495. * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
  496. * special mapping (even if there are underlying and valid "struct pages").
  497. * COWed pages of a VM_PFNMAP are always normal.
  498. *
  499. * The way we recognize COWed pages within VM_PFNMAP mappings is through the
  500. * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
  501. * set, and the vm_pgoff will point to the first PFN mapped: thus every special
  502. * mapping will always honor the rule
  503. *
  504. * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
  505. *
  506. * And for normal mappings this is false.
  507. *
  508. * This restricts such mappings to be a linear translation from virtual address
  509. * to pfn. To get around this restriction, we allow arbitrary mappings so long
  510. * as the vma is not a COW mapping; in that case, we know that all ptes are
  511. * special (because none can have been COWed).
  512. *
  513. *
  514. * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
  515. *
  516. * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
  517. * page" backing, however the difference is that _all_ pages with a struct
  518. * page (that is, those where pfn_valid is true) are refcounted and considered
  519. * normal pages by the VM. The disadvantage is that pages are refcounted
  520. * (which can be slower and simply not an option for some PFNMAP users). The
  521. * advantage is that we don't have to follow the strict linearity rule of
  522. * PFNMAP mappings in order to support COWable mappings.
  523. *
  524. */
  525. #ifdef __HAVE_ARCH_PTE_SPECIAL
  526. # define HAVE_PTE_SPECIAL 1
  527. #else
  528. # define HAVE_PTE_SPECIAL 0
  529. #endif
  530. struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
  531. pte_t pte)
  532. {
  533. unsigned long pfn = pte_pfn(pte);
  534. if (HAVE_PTE_SPECIAL) {
  535. if (likely(!pte_special(pte)))
  536. goto check_pfn;
  537. if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
  538. return NULL;
  539. if (!is_zero_pfn(pfn))
  540. print_bad_pte(vma, addr, pte, NULL);
  541. return NULL;
  542. }
  543. /* !HAVE_PTE_SPECIAL case follows: */
  544. if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
  545. if (vma->vm_flags & VM_MIXEDMAP) {
  546. if (!pfn_valid(pfn))
  547. return NULL;
  548. goto out;
  549. } else {
  550. unsigned long off;
  551. off = (addr - vma->vm_start) >> PAGE_SHIFT;
  552. if (pfn == vma->vm_pgoff + off)
  553. return NULL;
  554. if (!is_cow_mapping(vma->vm_flags))
  555. return NULL;
  556. }
  557. }
  558. if (is_zero_pfn(pfn))
  559. return NULL;
  560. check_pfn:
  561. if (unlikely(pfn > highest_memmap_pfn)) {
  562. print_bad_pte(vma, addr, pte, NULL);
  563. return NULL;
  564. }
  565. /*
  566. * NOTE! We still have PageReserved() pages in the page tables.
  567. * eg. VDSO mappings can cause them to exist.
  568. */
  569. out:
  570. return pfn_to_page(pfn);
  571. }
  572. /*
  573. * copy one vm_area from one task to the other. Assumes the page tables
  574. * already present in the new task to be cleared in the whole range
  575. * covered by this vma.
  576. */
  577. static inline unsigned long
  578. copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  579. pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
  580. unsigned long addr, int *rss)
  581. {
  582. unsigned long vm_flags = vma->vm_flags;
  583. pte_t pte = *src_pte;
  584. struct page *page;
  585. /* pte contains position in swap or file, so copy. */
  586. if (unlikely(!pte_present(pte))) {
  587. if (!pte_file(pte)) {
  588. swp_entry_t entry = pte_to_swp_entry(pte);
  589. if (swap_duplicate(entry) < 0)
  590. return entry.val;
  591. /* make sure dst_mm is on swapoff's mmlist. */
  592. if (unlikely(list_empty(&dst_mm->mmlist))) {
  593. spin_lock(&mmlist_lock);
  594. if (list_empty(&dst_mm->mmlist))
  595. list_add(&dst_mm->mmlist,
  596. &src_mm->mmlist);
  597. spin_unlock(&mmlist_lock);
  598. }
  599. if (likely(!non_swap_entry(entry)))
  600. rss[MM_SWAPENTS]++;
  601. else if (is_write_migration_entry(entry) &&
  602. is_cow_mapping(vm_flags)) {
  603. /*
  604. * COW mappings require pages in both parent
  605. * and child to be set to read.
  606. */
  607. make_migration_entry_read(&entry);
  608. pte = swp_entry_to_pte(entry);
  609. set_pte_at(src_mm, addr, src_pte, pte);
  610. }
  611. }
  612. goto out_set_pte;
  613. }
  614. /*
  615. * If it's a COW mapping, write protect it both
  616. * in the parent and the child
  617. */
  618. if (is_cow_mapping(vm_flags)) {
  619. ptep_set_wrprotect(src_mm, addr, src_pte);
  620. pte = pte_wrprotect(pte);
  621. }
  622. /*
  623. * If it's a shared mapping, mark it clean in
  624. * the child
  625. */
  626. if (vm_flags & VM_SHARED)
  627. pte = pte_mkclean(pte);
  628. pte = pte_mkold(pte);
  629. page = vm_normal_page(vma, addr, pte);
  630. if (page) {
  631. get_page(page);
  632. page_dup_rmap(page);
  633. if (PageAnon(page))
  634. rss[MM_ANONPAGES]++;
  635. else
  636. rss[MM_FILEPAGES]++;
  637. }
  638. out_set_pte:
  639. set_pte_at(dst_mm, addr, dst_pte, pte);
  640. return 0;
  641. }
  642. static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  643. pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
  644. unsigned long addr, unsigned long end)
  645. {
  646. pte_t *orig_src_pte, *orig_dst_pte;
  647. pte_t *src_pte, *dst_pte;
  648. spinlock_t *src_ptl, *dst_ptl;
  649. int progress = 0;
  650. int rss[NR_MM_COUNTERS];
  651. swp_entry_t entry = (swp_entry_t){0};
  652. again:
  653. init_rss_vec(rss);
  654. dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
  655. if (!dst_pte)
  656. return -ENOMEM;
  657. src_pte = pte_offset_map_nested(src_pmd, addr);
  658. src_ptl = pte_lockptr(src_mm, src_pmd);
  659. spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
  660. orig_src_pte = src_pte;
  661. orig_dst_pte = dst_pte;
  662. arch_enter_lazy_mmu_mode();
  663. do {
  664. /*
  665. * We are holding two locks at this point - either of them
  666. * could generate latencies in another task on another CPU.
  667. */
  668. if (progress >= 32) {
  669. progress = 0;
  670. if (need_resched() ||
  671. spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
  672. break;
  673. }
  674. if (pte_none(*src_pte)) {
  675. progress++;
  676. continue;
  677. }
  678. entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
  679. vma, addr, rss);
  680. if (entry.val)
  681. break;
  682. progress += 8;
  683. } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
  684. arch_leave_lazy_mmu_mode();
  685. spin_unlock(src_ptl);
  686. pte_unmap_nested(orig_src_pte);
  687. add_mm_rss_vec(dst_mm, rss);
  688. pte_unmap_unlock(orig_dst_pte, dst_ptl);
  689. cond_resched();
  690. if (entry.val) {
  691. if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
  692. return -ENOMEM;
  693. progress = 0;
  694. }
  695. if (addr != end)
  696. goto again;
  697. return 0;
  698. }
  699. static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  700. pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
  701. unsigned long addr, unsigned long end)
  702. {
  703. pmd_t *src_pmd, *dst_pmd;
  704. unsigned long next;
  705. dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
  706. if (!dst_pmd)
  707. return -ENOMEM;
  708. src_pmd = pmd_offset(src_pud, addr);
  709. do {
  710. next = pmd_addr_end(addr, end);
  711. if (pmd_none_or_clear_bad(src_pmd))
  712. continue;
  713. if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
  714. vma, addr, next))
  715. return -ENOMEM;
  716. } while (dst_pmd++, src_pmd++, addr = next, addr != end);
  717. return 0;
  718. }
  719. static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  720. pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
  721. unsigned long addr, unsigned long end)
  722. {
  723. pud_t *src_pud, *dst_pud;
  724. unsigned long next;
  725. dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
  726. if (!dst_pud)
  727. return -ENOMEM;
  728. src_pud = pud_offset(src_pgd, addr);
  729. do {
  730. next = pud_addr_end(addr, end);
  731. if (pud_none_or_clear_bad(src_pud))
  732. continue;
  733. if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
  734. vma, addr, next))
  735. return -ENOMEM;
  736. } while (dst_pud++, src_pud++, addr = next, addr != end);
  737. return 0;
  738. }
  739. int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  740. struct vm_area_struct *vma)
  741. {
  742. pgd_t *src_pgd, *dst_pgd;
  743. unsigned long next;
  744. unsigned long addr = vma->vm_start;
  745. unsigned long end = vma->vm_end;
  746. int ret;
  747. /*
  748. * Don't copy ptes where a page fault will fill them correctly.
  749. * Fork becomes much lighter when there are big shared or private
  750. * readonly mappings. The tradeoff is that copy_page_range is more
  751. * efficient than faulting.
  752. */
  753. if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_PFNMAP|VM_INSERTPAGE))) {
  754. if (!vma->anon_vma)
  755. return 0;
  756. }
  757. if (is_vm_hugetlb_page(vma))
  758. return copy_hugetlb_page_range(dst_mm, src_mm, vma);
  759. if (unlikely(is_pfn_mapping(vma))) {
  760. /*
  761. * We do not free on error cases below as remove_vma
  762. * gets called on error from higher level routine
  763. */
  764. ret = track_pfn_vma_copy(vma);
  765. if (ret)
  766. return ret;
  767. }
  768. /*
  769. * We need to invalidate the secondary MMU mappings only when
  770. * there could be a permission downgrade on the ptes of the
  771. * parent mm. And a permission downgrade will only happen if
  772. * is_cow_mapping() returns true.
  773. */
  774. if (is_cow_mapping(vma->vm_flags))
  775. mmu_notifier_invalidate_range_start(src_mm, addr, end);
  776. ret = 0;
  777. dst_pgd = pgd_offset(dst_mm, addr);
  778. src_pgd = pgd_offset(src_mm, addr);
  779. do {
  780. next = pgd_addr_end(addr, end);
  781. if (pgd_none_or_clear_bad(src_pgd))
  782. continue;
  783. if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
  784. vma, addr, next))) {
  785. ret = -ENOMEM;
  786. break;
  787. }
  788. } while (dst_pgd++, src_pgd++, addr = next, addr != end);
  789. if (is_cow_mapping(vma->vm_flags))
  790. mmu_notifier_invalidate_range_end(src_mm,
  791. vma->vm_start, end);
  792. return ret;
  793. }
  794. static unsigned long zap_pte_range(struct mmu_gather *tlb,
  795. struct vm_area_struct *vma, pmd_t *pmd,
  796. unsigned long addr, unsigned long end,
  797. long *zap_work, struct zap_details *details)
  798. {
  799. struct mm_struct *mm = tlb->mm;
  800. pte_t *pte;
  801. spinlock_t *ptl;
  802. int rss[NR_MM_COUNTERS];
  803. init_rss_vec(rss);
  804. pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
  805. arch_enter_lazy_mmu_mode();
  806. do {
  807. pte_t ptent = *pte;
  808. if (pte_none(ptent)) {
  809. (*zap_work)--;
  810. continue;
  811. }
  812. (*zap_work) -= PAGE_SIZE;
  813. if (pte_present(ptent)) {
  814. struct page *page;
  815. page = vm_normal_page(vma, addr, ptent);
  816. if (unlikely(details) && page) {
  817. /*
  818. * unmap_shared_mapping_pages() wants to
  819. * invalidate cache without truncating:
  820. * unmap shared but keep private pages.
  821. */
  822. if (details->check_mapping &&
  823. details->check_mapping != page->mapping)
  824. continue;
  825. /*
  826. * Each page->index must be checked when
  827. * invalidating or truncating nonlinear.
  828. */
  829. if (details->nonlinear_vma &&
  830. (page->index < details->first_index ||
  831. page->index > details->last_index))
  832. continue;
  833. }
  834. ptent = ptep_get_and_clear_full(mm, addr, pte,
  835. tlb->fullmm);
  836. tlb_remove_tlb_entry(tlb, pte, addr);
  837. if (unlikely(!page))
  838. continue;
  839. if (unlikely(details) && details->nonlinear_vma
  840. && linear_page_index(details->nonlinear_vma,
  841. addr) != page->index)
  842. set_pte_at(mm, addr, pte,
  843. pgoff_to_pte(page->index));
  844. if (PageAnon(page))
  845. rss[MM_ANONPAGES]--;
  846. else {
  847. if (pte_dirty(ptent))
  848. set_page_dirty(page);
  849. if (pte_young(ptent) &&
  850. likely(!VM_SequentialReadHint(vma)))
  851. mark_page_accessed(page);
  852. rss[MM_FILEPAGES]--;
  853. }
  854. page_remove_rmap(page);
  855. if (unlikely(page_mapcount(page) < 0))
  856. print_bad_pte(vma, addr, ptent, page);
  857. tlb_remove_page(tlb, page);
  858. continue;
  859. }
  860. /*
  861. * If details->check_mapping, we leave swap entries;
  862. * if details->nonlinear_vma, we leave file entries.
  863. */
  864. if (unlikely(details))
  865. continue;
  866. if (pte_file(ptent)) {
  867. if (unlikely(!(vma->vm_flags & VM_NONLINEAR)))
  868. print_bad_pte(vma, addr, ptent, NULL);
  869. } else {
  870. swp_entry_t entry = pte_to_swp_entry(ptent);
  871. if (!non_swap_entry(entry))
  872. rss[MM_SWAPENTS]--;
  873. if (unlikely(!free_swap_and_cache(entry)))
  874. print_bad_pte(vma, addr, ptent, NULL);
  875. }
  876. pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
  877. } while (pte++, addr += PAGE_SIZE, (addr != end && *zap_work > 0));
  878. add_mm_rss_vec(mm, rss);
  879. arch_leave_lazy_mmu_mode();
  880. pte_unmap_unlock(pte - 1, ptl);
  881. return addr;
  882. }
  883. static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
  884. struct vm_area_struct *vma, pud_t *pud,
  885. unsigned long addr, unsigned long end,
  886. long *zap_work, struct zap_details *details)
  887. {
  888. pmd_t *pmd;
  889. unsigned long next;
  890. pmd = pmd_offset(pud, addr);
  891. do {
  892. next = pmd_addr_end(addr, end);
  893. if (pmd_none_or_clear_bad(pmd)) {
  894. (*zap_work)--;
  895. continue;
  896. }
  897. next = zap_pte_range(tlb, vma, pmd, addr, next,
  898. zap_work, details);
  899. } while (pmd++, addr = next, (addr != end && *zap_work > 0));
  900. return addr;
  901. }
  902. static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
  903. struct vm_area_struct *vma, pgd_t *pgd,
  904. unsigned long addr, unsigned long end,
  905. long *zap_work, struct zap_details *details)
  906. {
  907. pud_t *pud;
  908. unsigned long next;
  909. pud = pud_offset(pgd, addr);
  910. do {
  911. next = pud_addr_end(addr, end);
  912. if (pud_none_or_clear_bad(pud)) {
  913. (*zap_work)--;
  914. continue;
  915. }
  916. next = zap_pmd_range(tlb, vma, pud, addr, next,
  917. zap_work, details);
  918. } while (pud++, addr = next, (addr != end && *zap_work > 0));
  919. return addr;
  920. }
  921. static unsigned long unmap_page_range(struct mmu_gather *tlb,
  922. struct vm_area_struct *vma,
  923. unsigned long addr, unsigned long end,
  924. long *zap_work, struct zap_details *details)
  925. {
  926. pgd_t *pgd;
  927. unsigned long next;
  928. if (details && !details->check_mapping && !details->nonlinear_vma)
  929. details = NULL;
  930. BUG_ON(addr >= end);
  931. mem_cgroup_uncharge_start();
  932. tlb_start_vma(tlb, vma);
  933. pgd = pgd_offset(vma->vm_mm, addr);
  934. do {
  935. next = pgd_addr_end(addr, end);
  936. if (pgd_none_or_clear_bad(pgd)) {
  937. (*zap_work)--;
  938. continue;
  939. }
  940. next = zap_pud_range(tlb, vma, pgd, addr, next,
  941. zap_work, details);
  942. } while (pgd++, addr = next, (addr != end && *zap_work > 0));
  943. tlb_end_vma(tlb, vma);
  944. mem_cgroup_uncharge_end();
  945. return addr;
  946. }
  947. #ifdef CONFIG_PREEMPT
  948. # define ZAP_BLOCK_SIZE (8 * PAGE_SIZE)
  949. #else
  950. /* No preempt: go for improved straight-line efficiency */
  951. # define ZAP_BLOCK_SIZE (1024 * PAGE_SIZE)
  952. #endif
  953. /**
  954. * unmap_vmas - unmap a range of memory covered by a list of vma's
  955. * @tlbp: address of the caller's struct mmu_gather
  956. * @vma: the starting vma
  957. * @start_addr: virtual address at which to start unmapping
  958. * @end_addr: virtual address at which to end unmapping
  959. * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here
  960. * @details: details of nonlinear truncation or shared cache invalidation
  961. *
  962. * Returns the end address of the unmapping (restart addr if interrupted).
  963. *
  964. * Unmap all pages in the vma list.
  965. *
  966. * We aim to not hold locks for too long (for scheduling latency reasons).
  967. * So zap pages in ZAP_BLOCK_SIZE bytecounts. This means we need to
  968. * return the ending mmu_gather to the caller.
  969. *
  970. * Only addresses between `start' and `end' will be unmapped.
  971. *
  972. * The VMA list must be sorted in ascending virtual address order.
  973. *
  974. * unmap_vmas() assumes that the caller will flush the whole unmapped address
  975. * range after unmap_vmas() returns. So the only responsibility here is to
  976. * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
  977. * drops the lock and schedules.
  978. */
  979. unsigned long unmap_vmas(struct mmu_gather **tlbp,
  980. struct vm_area_struct *vma, unsigned long start_addr,
  981. unsigned long end_addr, unsigned long *nr_accounted,
  982. struct zap_details *details)
  983. {
  984. long zap_work = ZAP_BLOCK_SIZE;
  985. unsigned long tlb_start = 0; /* For tlb_finish_mmu */
  986. int tlb_start_valid = 0;
  987. unsigned long start = start_addr;
  988. spinlock_t *i_mmap_lock = details? details->i_mmap_lock: NULL;
  989. int fullmm = (*tlbp)->fullmm;
  990. struct mm_struct *mm = vma->vm_mm;
  991. mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
  992. for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) {
  993. unsigned long end;
  994. start = max(vma->vm_start, start_addr);
  995. if (start >= vma->vm_end)
  996. continue;
  997. end = min(vma->vm_end, end_addr);
  998. if (end <= vma->vm_start)
  999. continue;
  1000. if (vma->vm_flags & VM_ACCOUNT)
  1001. *nr_accounted += (end - start) >> PAGE_SHIFT;
  1002. if (unlikely(is_pfn_mapping(vma)))
  1003. untrack_pfn_vma(vma, 0, 0);
  1004. while (start != end) {
  1005. if (!tlb_start_valid) {
  1006. tlb_start = start;
  1007. tlb_start_valid = 1;
  1008. }
  1009. if (unlikely(is_vm_hugetlb_page(vma))) {
  1010. /*
  1011. * It is undesirable to test vma->vm_file as it
  1012. * should be non-null for valid hugetlb area.
  1013. * However, vm_file will be NULL in the error
  1014. * cleanup path of do_mmap_pgoff. When
  1015. * hugetlbfs ->mmap method fails,
  1016. * do_mmap_pgoff() nullifies vma->vm_file
  1017. * before calling this function to clean up.
  1018. * Since no pte has actually been setup, it is
  1019. * safe to do nothing in this case.
  1020. */
  1021. if (vma->vm_file) {
  1022. unmap_hugepage_range(vma, start, end, NULL);
  1023. zap_work -= (end - start) /
  1024. pages_per_huge_page(hstate_vma(vma));
  1025. }
  1026. start = end;
  1027. } else
  1028. start = unmap_page_range(*tlbp, vma,
  1029. start, end, &zap_work, details);
  1030. if (zap_work > 0) {
  1031. BUG_ON(start != end);
  1032. break;
  1033. }
  1034. tlb_finish_mmu(*tlbp, tlb_start, start);
  1035. if (need_resched() ||
  1036. (i_mmap_lock && spin_needbreak(i_mmap_lock))) {
  1037. if (i_mmap_lock) {
  1038. *tlbp = NULL;
  1039. goto out;
  1040. }
  1041. cond_resched();
  1042. }
  1043. *tlbp = tlb_gather_mmu(vma->vm_mm, fullmm);
  1044. tlb_start_valid = 0;
  1045. zap_work = ZAP_BLOCK_SIZE;
  1046. }
  1047. }
  1048. out:
  1049. mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
  1050. return start; /* which is now the end (or restart) address */
  1051. }
  1052. /**
  1053. * zap_page_range - remove user pages in a given range
  1054. * @vma: vm_area_struct holding the applicable pages
  1055. * @address: starting address of pages to zap
  1056. * @size: number of bytes to zap
  1057. * @details: details of nonlinear truncation or shared cache invalidation
  1058. */
  1059. unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
  1060. unsigned long size, struct zap_details *details)
  1061. {
  1062. struct mm_struct *mm = vma->vm_mm;
  1063. struct mmu_gather *tlb;
  1064. unsigned long end = address + size;
  1065. unsigned long nr_accounted = 0;
  1066. lru_add_drain();
  1067. tlb = tlb_gather_mmu(mm, 0);
  1068. update_hiwater_rss(mm);
  1069. end = unmap_vmas(&tlb, vma, address, end, &nr_accounted, details);
  1070. if (tlb)
  1071. tlb_finish_mmu(tlb, address, end);
  1072. return end;
  1073. }
  1074. /**
  1075. * zap_vma_ptes - remove ptes mapping the vma
  1076. * @vma: vm_area_struct holding ptes to be zapped
  1077. * @address: starting address of pages to zap
  1078. * @size: number of bytes to zap
  1079. *
  1080. * This function only unmaps ptes assigned to VM_PFNMAP vmas.
  1081. *
  1082. * The entire address range must be fully contained within the vma.
  1083. *
  1084. * Returns 0 if successful.
  1085. */
  1086. int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
  1087. unsigned long size)
  1088. {
  1089. if (address < vma->vm_start || address + size > vma->vm_end ||
  1090. !(vma->vm_flags & VM_PFNMAP))
  1091. return -1;
  1092. zap_page_range(vma, address, size, NULL);
  1093. return 0;
  1094. }
  1095. EXPORT_SYMBOL_GPL(zap_vma_ptes);
  1096. /**
  1097. * follow_page - look up a page descriptor from a user-virtual address
  1098. * @vma: vm_area_struct mapping @address
  1099. * @address: virtual address to look up
  1100. * @flags: flags modifying lookup behaviour
  1101. *
  1102. * @flags can have FOLL_ flags set, defined in <linux/mm.h>
  1103. *
  1104. * Returns the mapped (struct page *), %NULL if no mapping exists, or
  1105. * an error pointer if there is a mapping to something not represented
  1106. * by a page descriptor (see also vm_normal_page()).
  1107. */
  1108. struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
  1109. unsigned int flags)
  1110. {
  1111. pgd_t *pgd;
  1112. pud_t *pud;
  1113. pmd_t *pmd;
  1114. pte_t *ptep, pte;
  1115. spinlock_t *ptl;
  1116. struct page *page;
  1117. struct mm_struct *mm = vma->vm_mm;
  1118. page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
  1119. if (!IS_ERR(page)) {
  1120. BUG_ON(flags & FOLL_GET);
  1121. goto out;
  1122. }
  1123. page = NULL;
  1124. pgd = pgd_offset(mm, address);
  1125. if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
  1126. goto no_page_table;
  1127. pud = pud_offset(pgd, address);
  1128. if (pud_none(*pud))
  1129. goto no_page_table;
  1130. if (pud_huge(*pud)) {
  1131. BUG_ON(flags & FOLL_GET);
  1132. page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE);
  1133. goto out;
  1134. }
  1135. if (unlikely(pud_bad(*pud)))
  1136. goto no_page_table;
  1137. pmd = pmd_offset(pud, address);
  1138. if (pmd_none(*pmd))
  1139. goto no_page_table;
  1140. if (pmd_huge(*pmd)) {
  1141. BUG_ON(flags & FOLL_GET);
  1142. page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
  1143. goto out;
  1144. }
  1145. if (unlikely(pmd_bad(*pmd)))
  1146. goto no_page_table;
  1147. ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
  1148. pte = *ptep;
  1149. if (!pte_present(pte))
  1150. goto no_page;
  1151. if ((flags & FOLL_WRITE) && !pte_write(pte))
  1152. goto unlock;
  1153. page = vm_normal_page(vma, address, pte);
  1154. if (unlikely(!page)) {
  1155. if ((flags & FOLL_DUMP) ||
  1156. !is_zero_pfn(pte_pfn(pte)))
  1157. goto bad_page;
  1158. page = pte_page(pte);
  1159. }
  1160. if (flags & FOLL_GET)
  1161. get_page(page);
  1162. if (flags & FOLL_TOUCH) {
  1163. if ((flags & FOLL_WRITE) &&
  1164. !pte_dirty(pte) && !PageDirty(page))
  1165. set_page_dirty(page);
  1166. /*
  1167. * pte_mkyoung() would be more correct here, but atomic care
  1168. * is needed to avoid losing the dirty bit: it is easier to use
  1169. * mark_page_accessed().
  1170. */
  1171. mark_page_accessed(page);
  1172. }
  1173. unlock:
  1174. pte_unmap_unlock(ptep, ptl);
  1175. out:
  1176. return page;
  1177. bad_page:
  1178. pte_unmap_unlock(ptep, ptl);
  1179. return ERR_PTR(-EFAULT);
  1180. no_page:
  1181. pte_unmap_unlock(ptep, ptl);
  1182. if (!pte_none(pte))
  1183. return page;
  1184. no_page_table:
  1185. /*
  1186. * When core dumping an enormous anonymous area that nobody
  1187. * has touched so far, we don't want to allocate unnecessary pages or
  1188. * page tables. Return error instead of NULL to skip handle_mm_fault,
  1189. * then get_dump_page() will return NULL to leave a hole in the dump.
  1190. * But we can only make this optimization where a hole would surely
  1191. * be zero-filled if handle_mm_fault() actually did handle it.
  1192. */
  1193. if ((flags & FOLL_DUMP) &&
  1194. (!vma->vm_ops || !vma->vm_ops->fault))
  1195. return ERR_PTR(-EFAULT);
  1196. return page;
  1197. }
  1198. int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
  1199. unsigned long start, int nr_pages, unsigned int gup_flags,
  1200. struct page **pages, struct vm_area_struct **vmas)
  1201. {
  1202. int i;
  1203. unsigned long vm_flags;
  1204. if (nr_pages <= 0)
  1205. return 0;
  1206. VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET));
  1207. /*
  1208. * Require read or write permissions.
  1209. * If FOLL_FORCE is set, we only require the "MAY" flags.
  1210. */
  1211. vm_flags = (gup_flags & FOLL_WRITE) ?
  1212. (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
  1213. vm_flags &= (gup_flags & FOLL_FORCE) ?
  1214. (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
  1215. i = 0;
  1216. do {
  1217. struct vm_area_struct *vma;
  1218. vma = find_extend_vma(mm, start);
  1219. if (!vma && in_gate_area(tsk, start)) {
  1220. unsigned long pg = start & PAGE_MASK;
  1221. struct vm_area_struct *gate_vma = get_gate_vma(tsk);
  1222. pgd_t *pgd;
  1223. pud_t *pud;
  1224. pmd_t *pmd;
  1225. pte_t *pte;
  1226. /* user gate pages are read-only */
  1227. if (gup_flags & FOLL_WRITE)
  1228. return i ? : -EFAULT;
  1229. if (pg > TASK_SIZE)
  1230. pgd = pgd_offset_k(pg);
  1231. else
  1232. pgd = pgd_offset_gate(mm, pg);
  1233. BUG_ON(pgd_none(*pgd));
  1234. pud = pud_offset(pgd, pg);
  1235. BUG_ON(pud_none(*pud));
  1236. pmd = pmd_offset(pud, pg);
  1237. if (pmd_none(*pmd))
  1238. return i ? : -EFAULT;
  1239. pte = pte_offset_map(pmd, pg);
  1240. if (pte_none(*pte)) {
  1241. pte_unmap(pte);
  1242. return i ? : -EFAULT;
  1243. }
  1244. if (pages) {
  1245. struct page *page;
  1246. page = vm_normal_page(gate_vma, start, *pte);
  1247. if (!page) {
  1248. if (!(gup_flags & FOLL_DUMP) &&
  1249. is_zero_pfn(pte_pfn(*pte)))
  1250. page = pte_page(*pte);
  1251. else {
  1252. pte_unmap(pte);
  1253. return i ? : -EFAULT;
  1254. }
  1255. }
  1256. pages[i] = page;
  1257. get_page(page);
  1258. }
  1259. pte_unmap(pte);
  1260. if (vmas)
  1261. vmas[i] = gate_vma;
  1262. i++;
  1263. start += PAGE_SIZE;
  1264. nr_pages--;
  1265. continue;
  1266. }
  1267. if (!vma ||
  1268. (vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
  1269. !(vm_flags & vma->vm_flags))
  1270. return i ? : -EFAULT;
  1271. if (is_vm_hugetlb_page(vma)) {
  1272. i = follow_hugetlb_page(mm, vma, pages, vmas,
  1273. &start, &nr_pages, i, gup_flags);
  1274. continue;
  1275. }
  1276. do {
  1277. struct page *page;
  1278. unsigned int foll_flags = gup_flags;
  1279. /*
  1280. * If we have a pending SIGKILL, don't keep faulting
  1281. * pages and potentially allocating memory.
  1282. */
  1283. if (unlikely(fatal_signal_pending(current)))
  1284. return i ? i : -ERESTARTSYS;
  1285. cond_resched();
  1286. while (!(page = follow_page(vma, start, foll_flags))) {
  1287. int ret;
  1288. ret = handle_mm_fault(mm, vma, start,
  1289. (foll_flags & FOLL_WRITE) ?
  1290. FAULT_FLAG_WRITE : 0);
  1291. if (ret & VM_FAULT_ERROR) {
  1292. if (ret & VM_FAULT_OOM)
  1293. return i ? i : -ENOMEM;
  1294. if (ret &
  1295. (VM_FAULT_HWPOISON|VM_FAULT_SIGBUS))
  1296. return i ? i : -EFAULT;
  1297. BUG();
  1298. }
  1299. if (ret & VM_FAULT_MAJOR)
  1300. tsk->maj_flt++;
  1301. else
  1302. tsk->min_flt++;
  1303. /*
  1304. * The VM_FAULT_WRITE bit tells us that
  1305. * do_wp_page has broken COW when necessary,
  1306. * even if maybe_mkwrite decided not to set
  1307. * pte_write. We can thus safely do subsequent
  1308. * page lookups as if they were reads. But only
  1309. * do so when looping for pte_write is futile:
  1310. * in some cases userspace may also be wanting
  1311. * to write to the gotten user page, which a
  1312. * read fault here might prevent (a readonly
  1313. * page might get reCOWed by userspace write).
  1314. */
  1315. if ((ret & VM_FAULT_WRITE) &&
  1316. !(vma->vm_flags & VM_WRITE))
  1317. foll_flags &= ~FOLL_WRITE;
  1318. cond_resched();
  1319. }
  1320. if (IS_ERR(page))
  1321. return i ? i : PTR_ERR(page);
  1322. if (pages) {
  1323. pages[i] = page;
  1324. flush_anon_page(vma, page, start);
  1325. flush_dcache_page(page);
  1326. }
  1327. if (vmas)
  1328. vmas[i] = vma;
  1329. i++;
  1330. start += PAGE_SIZE;
  1331. nr_pages--;
  1332. } while (nr_pages && start < vma->vm_end);
  1333. } while (nr_pages);
  1334. return i;
  1335. }
  1336. /**
  1337. * get_user_pages() - pin user pages in memory
  1338. * @tsk: task_struct of target task
  1339. * @mm: mm_struct of target mm
  1340. * @start: starting user address
  1341. * @nr_pages: number of pages from start to pin
  1342. * @write: whether pages will be written to by the caller
  1343. * @force: whether to force write access even if user mapping is
  1344. * readonly. This will result in the page being COWed even
  1345. * in MAP_SHARED mappings. You do not want this.
  1346. * @pages: array that receives pointers to the pages pinned.
  1347. * Should be at least nr_pages long. Or NULL, if caller
  1348. * only intends to ensure the pages are faulted in.
  1349. * @vmas: array of pointers to vmas corresponding to each page.
  1350. * Or NULL if the caller does not require them.
  1351. *
  1352. * Returns number of pages pinned. This may be fewer than the number
  1353. * requested. If nr_pages is 0 or negative, returns 0. If no pages
  1354. * were pinned, returns -errno. Each page returned must be released
  1355. * with a put_page() call when it is finished with. vmas will only
  1356. * remain valid while mmap_sem is held.
  1357. *
  1358. * Must be called with mmap_sem held for read or write.
  1359. *
  1360. * get_user_pages walks a process's page tables and takes a reference to
  1361. * each struct page that each user address corresponds to at a given
  1362. * instant. That is, it takes the page that would be accessed if a user
  1363. * thread accesses the given user virtual address at that instant.
  1364. *
  1365. * This does not guarantee that the page exists in the user mappings when
  1366. * get_user_pages returns, and there may even be a completely different
  1367. * page there in some cases (eg. if mmapped pagecache has been invalidated
  1368. * and subsequently re faulted). However it does guarantee that the page
  1369. * won't be freed completely. And mostly callers simply care that the page
  1370. * contains data that was valid *at some point in time*. Typically, an IO
  1371. * or similar operation cannot guarantee anything stronger anyway because
  1372. * locks can't be held over the syscall boundary.
  1373. *
  1374. * If write=0, the page must not be written to. If the page is written to,
  1375. * set_page_dirty (or set_page_dirty_lock, as appropriate) must be called
  1376. * after the page is finished with, and before put_page is called.
  1377. *
  1378. * get_user_pages is typically used for fewer-copy IO operations, to get a
  1379. * handle on the memory by some means other than accesses via the user virtual
  1380. * addresses. The pages may be submitted for DMA to devices or accessed via
  1381. * their kernel linear mapping (via the kmap APIs). Care should be taken to
  1382. * use the correct cache flushing APIs.
  1383. *
  1384. * See also get_user_pages_fast, for performance critical applications.
  1385. */
  1386. int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
  1387. unsigned long start, int nr_pages, int write, int force,
  1388. struct page **pages, struct vm_area_struct **vmas)
  1389. {
  1390. int flags = FOLL_TOUCH;
  1391. if (pages)
  1392. flags |= FOLL_GET;
  1393. if (write)
  1394. flags |= FOLL_WRITE;
  1395. if (force)
  1396. flags |= FOLL_FORCE;
  1397. return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas);
  1398. }
  1399. EXPORT_SYMBOL(get_user_pages);
  1400. /**
  1401. * get_dump_page() - pin user page in memory while writing it to core dump
  1402. * @addr: user address
  1403. *
  1404. * Returns struct page pointer of user page pinned for dump,
  1405. * to be freed afterwards by page_cache_release() or put_page().
  1406. *
  1407. * Returns NULL on any kind of failure - a hole must then be inserted into
  1408. * the corefile, to preserve alignment with its headers; and also returns
  1409. * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
  1410. * allowing a hole to be left in the corefile to save diskspace.
  1411. *
  1412. * Called without mmap_sem, but after all other threads have been killed.
  1413. */
  1414. #ifdef CONFIG_ELF_CORE
  1415. struct page *get_dump_page(unsigned long addr)
  1416. {
  1417. struct vm_area_struct *vma;
  1418. struct page *page;
  1419. if (__get_user_pages(current, current->mm, addr, 1,
  1420. FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma) < 1)
  1421. return NULL;
  1422. flush_cache_page(vma, addr, page_to_pfn(page));
  1423. return page;
  1424. }
  1425. #endif /* CONFIG_ELF_CORE */
  1426. pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
  1427. spinlock_t **ptl)
  1428. {
  1429. pgd_t * pgd = pgd_offset(mm, addr);
  1430. pud_t * pud = pud_alloc(mm, pgd, addr);
  1431. if (pud) {
  1432. pmd_t * pmd = pmd_alloc(mm, pud, addr);
  1433. if (pmd)
  1434. return pte_alloc_map_lock(mm, pmd, addr, ptl);
  1435. }
  1436. return NULL;
  1437. }
  1438. /*
  1439. * This is the old fallback for page remapping.
  1440. *
  1441. * For historical reasons, it only allows reserved pages. Only
  1442. * old drivers should use this, and they needed to mark their
  1443. * pages reserved for the old functions anyway.
  1444. */
  1445. static int insert_page(struct vm_area_struct *vma, unsigned long addr,
  1446. struct page *page, pgprot_t prot)
  1447. {
  1448. struct mm_struct *mm = vma->vm_mm;
  1449. int retval;
  1450. pte_t *pte;
  1451. spinlock_t *ptl;
  1452. retval = -EINVAL;
  1453. if (PageAnon(page))
  1454. goto out;
  1455. retval = -ENOMEM;
  1456. flush_dcache_page(page);
  1457. pte = get_locked_pte(mm, addr, &ptl);
  1458. if (!pte)
  1459. goto out;
  1460. retval = -EBUSY;
  1461. if (!pte_none(*pte))
  1462. goto out_unlock;
  1463. /* Ok, finally just insert the thing.. */
  1464. get_page(page);
  1465. inc_mm_counter_fast(mm, MM_FILEPAGES);
  1466. page_add_file_rmap(page);
  1467. set_pte_at(mm, addr, pte, mk_pte(page, prot));
  1468. retval = 0;
  1469. pte_unmap_unlock(pte, ptl);
  1470. return retval;
  1471. out_unlock:
  1472. pte_unmap_unlock(pte, ptl);
  1473. out:
  1474. return retval;
  1475. }
  1476. /**
  1477. * vm_insert_page - insert single page into user vma
  1478. * @vma: user vma to map to
  1479. * @addr: target user address of this page
  1480. * @page: source kernel page
  1481. *
  1482. * This allows drivers to insert individual pages they've allocated
  1483. * into a user vma.
  1484. *
  1485. * The page has to be a nice clean _individual_ kernel allocation.
  1486. * If you allocate a compound page, you need to have marked it as
  1487. * such (__GFP_COMP), or manually just split the page up yourself
  1488. * (see split_page()).
  1489. *
  1490. * NOTE! Traditionally this was done with "remap_pfn_range()" which
  1491. * took an arbitrary page protection parameter. This doesn't allow
  1492. * that. Your vma protection will have to be set up correctly, which
  1493. * means that if you want a shared writable mapping, you'd better
  1494. * ask for a shared writable mapping!
  1495. *
  1496. * The page does not need to be reserved.
  1497. */
  1498. int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
  1499. struct page *page)
  1500. {
  1501. if (addr < vma->vm_start || addr >= vma->vm_end)
  1502. return -EFAULT;
  1503. if (!page_count(page))
  1504. return -EINVAL;
  1505. vma->vm_flags |= VM_INSERTPAGE;
  1506. return insert_page(vma, addr, page, vma->vm_page_prot);
  1507. }
  1508. EXPORT_SYMBOL(vm_insert_page);
  1509. static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
  1510. unsigned long pfn, pgprot_t prot)
  1511. {
  1512. struct mm_struct *mm = vma->vm_mm;
  1513. int retval;
  1514. pte_t *pte, entry;
  1515. spinlock_t *ptl;
  1516. retval = -ENOMEM;
  1517. pte = get_locked_pte(mm, addr, &ptl);
  1518. if (!pte)
  1519. goto out;
  1520. retval = -EBUSY;
  1521. if (!pte_none(*pte))
  1522. goto out_unlock;
  1523. /* Ok, finally just insert the thing.. */
  1524. entry = pte_mkspecial(pfn_pte(pfn, prot));
  1525. set_pte_at(mm, addr, pte, entry);
  1526. update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
  1527. retval = 0;
  1528. out_unlock:
  1529. pte_unmap_unlock(pte, ptl);
  1530. out:
  1531. return retval;
  1532. }
  1533. /**
  1534. * vm_insert_pfn - insert single pfn into user vma
  1535. * @vma: user vma to map to
  1536. * @addr: target user address of this page
  1537. * @pfn: source kernel pfn
  1538. *
  1539. * Similar to vm_inert_page, this allows drivers to insert individual pages
  1540. * they've allocated into a user vma. Same comments apply.
  1541. *
  1542. * This function should only be called from a vm_ops->fault handler, and
  1543. * in that case the handler should return NULL.
  1544. *
  1545. * vma cannot be a COW mapping.
  1546. *
  1547. * As this is called only for pages that do not currently exist, we
  1548. * do not need to flush old virtual caches or the TLB.
  1549. */
  1550. int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
  1551. unsigned long pfn)
  1552. {
  1553. int ret;
  1554. pgprot_t pgprot = vma->vm_page_prot;
  1555. /*
  1556. * Technically, architectures with pte_special can avoid all these
  1557. * restrictions (same for remap_pfn_range). However we would like
  1558. * consistency in testing and feature parity among all, so we should
  1559. * try to keep these invariants in place for everybody.
  1560. */
  1561. BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
  1562. BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
  1563. (VM_PFNMAP|VM_MIXEDMAP));
  1564. BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
  1565. BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
  1566. if (addr < vma->vm_start || addr >= vma->vm_end)
  1567. return -EFAULT;
  1568. if (track_pfn_vma_new(vma, &pgprot, pfn, PAGE_SIZE))
  1569. return -EINVAL;
  1570. ret = insert_pfn(vma, addr, pfn, pgprot);
  1571. if (ret)
  1572. untrack_pfn_vma(vma, pfn, PAGE_SIZE);
  1573. return ret;
  1574. }
  1575. EXPORT_SYMBOL(vm_insert_pfn);
  1576. int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
  1577. unsigned long pfn)
  1578. {
  1579. BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
  1580. if (addr < vma->vm_start || addr >= vma->vm_end)
  1581. return -EFAULT;
  1582. /*
  1583. * If we don't have pte special, then we have to use the pfn_valid()
  1584. * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
  1585. * refcount the page if pfn_valid is true (hence insert_page rather
  1586. * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
  1587. * without pte special, it would there be refcounted as a normal page.
  1588. */
  1589. if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
  1590. struct page *page;
  1591. page = pfn_to_page(pfn);
  1592. return insert_page(vma, addr, page, vma->vm_page_prot);
  1593. }
  1594. return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
  1595. }
  1596. EXPORT_SYMBOL(vm_insert_mixed);
  1597. /*
  1598. * maps a range of physical memory into the requested pages. the old
  1599. * mappings are removed. any references to nonexistent pages results
  1600. * in null mappings (currently treated as "copy-on-access")
  1601. */
  1602. static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
  1603. unsigned long addr, unsigned long end,
  1604. unsigned long pfn, pgprot_t prot)
  1605. {
  1606. pte_t *pte;
  1607. spinlock_t *ptl;
  1608. pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
  1609. if (!pte)
  1610. return -ENOMEM;
  1611. arch_enter_lazy_mmu_mode();
  1612. do {
  1613. BUG_ON(!pte_none(*pte));
  1614. set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
  1615. pfn++;
  1616. } while (pte++, addr += PAGE_SIZE, addr != end);
  1617. arch_leave_lazy_mmu_mode();
  1618. pte_unmap_unlock(pte - 1, ptl);
  1619. return 0;
  1620. }
  1621. static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
  1622. unsigned long addr, unsigned long end,
  1623. unsigned long pfn, pgprot_t prot)
  1624. {
  1625. pmd_t *pmd;
  1626. unsigned long next;
  1627. pfn -= addr >> PAGE_SHIFT;
  1628. pmd = pmd_alloc(mm, pud, addr);
  1629. if (!pmd)
  1630. return -ENOMEM;
  1631. do {
  1632. next = pmd_addr_end(addr, end);
  1633. if (remap_pte_range(mm, pmd, addr, next,
  1634. pfn + (addr >> PAGE_SHIFT), prot))
  1635. return -ENOMEM;
  1636. } while (pmd++, addr = next, addr != end);
  1637. return 0;
  1638. }
  1639. static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
  1640. unsigned long addr, unsigned long end,
  1641. unsigned long pfn, pgprot_t prot)
  1642. {
  1643. pud_t *pud;
  1644. unsigned long next;
  1645. pfn -= addr >> PAGE_SHIFT;
  1646. pud = pud_alloc(mm, pgd, addr);
  1647. if (!pud)
  1648. return -ENOMEM;
  1649. do {
  1650. next = pud_addr_end(addr, end);
  1651. if (remap_pmd_range(mm, pud, addr, next,
  1652. pfn + (addr >> PAGE_SHIFT), prot))
  1653. return -ENOMEM;
  1654. } while (pud++, addr = next, addr != end);
  1655. return 0;
  1656. }
  1657. /**
  1658. * remap_pfn_range - remap kernel memory to userspace
  1659. * @vma: user vma to map to
  1660. * @addr: target user address to start at
  1661. * @pfn: physical address of kernel memory
  1662. * @size: size of map area
  1663. * @prot: page protection flags for this mapping
  1664. *
  1665. * Note: this is only safe if the mm semaphore is held when called.
  1666. */
  1667. int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
  1668. unsigned long pfn, unsigned long size, pgprot_t prot)
  1669. {
  1670. pgd_t *pgd;
  1671. unsigned long next;
  1672. unsigned long end = addr + PAGE_ALIGN(size);
  1673. struct mm_struct *mm = vma->vm_mm;
  1674. int err;
  1675. /*
  1676. * Physically remapped pages are special. Tell the
  1677. * rest of the world about it:
  1678. * VM_IO tells people not to look at these pages
  1679. * (accesses can have side effects).
  1680. * VM_RESERVED is specified all over the place, because
  1681. * in 2.4 it kept swapout's vma scan off this vma; but
  1682. * in 2.6 the LRU scan won't even find its pages, so this
  1683. * flag means no more than count its pages in reserved_vm,
  1684. * and omit it from core dump, even when VM_IO turned off.
  1685. * VM_PFNMAP tells the core MM that the base pages are just
  1686. * raw PFN mappings, and do not have a "struct page" associated
  1687. * with them.
  1688. *
  1689. * There's a horrible special case to handle copy-on-write
  1690. * behaviour that some programs depend on. We mark the "original"
  1691. * un-COW'ed pages by matching them up with "vma->vm_pgoff".
  1692. */
  1693. if (addr == vma->vm_start && end == vma->vm_end) {
  1694. vma->vm_pgoff = pfn;
  1695. vma->vm_flags |= VM_PFN_AT_MMAP;
  1696. } else if (is_cow_mapping(vma->vm_flags))
  1697. return -EINVAL;
  1698. vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP;
  1699. err = track_pfn_vma_new(vma, &prot, pfn, PAGE_ALIGN(size));
  1700. if (err) {
  1701. /*
  1702. * To indicate that track_pfn related cleanup is not
  1703. * needed from higher level routine calling unmap_vmas
  1704. */
  1705. vma->vm_flags &= ~(VM_IO | VM_RESERVED | VM_PFNMAP);
  1706. vma->vm_flags &= ~VM_PFN_AT_MMAP;
  1707. return -EINVAL;
  1708. }
  1709. BUG_ON(addr >= end);
  1710. pfn -= addr >> PAGE_SHIFT;
  1711. pgd = pgd_offset(mm, addr);
  1712. flush_cache_range(vma, addr, end);
  1713. do {
  1714. next = pgd_addr_end(addr, end);
  1715. err = remap_pud_range(mm, pgd, addr, next,
  1716. pfn + (addr >> PAGE_SHIFT), prot);
  1717. if (err)
  1718. break;
  1719. } while (pgd++, addr = next, addr != end);
  1720. if (err)
  1721. untrack_pfn_vma(vma, pfn, PAGE_ALIGN(size));
  1722. return err;
  1723. }
  1724. EXPORT_SYMBOL(remap_pfn_range);
  1725. static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
  1726. unsigned long addr, unsigned long end,
  1727. pte_fn_t fn, void *data)
  1728. {
  1729. pte_t *pte;
  1730. int err;
  1731. pgtable_t token;
  1732. spinlock_t *uninitialized_var(ptl);
  1733. pte = (mm == &init_mm) ?
  1734. pte_alloc_kernel(pmd, addr) :
  1735. pte_alloc_map_lock(mm, pmd, addr, &ptl);
  1736. if (!pte)
  1737. return -ENOMEM;
  1738. BUG_ON(pmd_huge(*pmd));
  1739. arch_enter_lazy_mmu_mode();
  1740. token = pmd_pgtable(*pmd);
  1741. do {
  1742. err = fn(pte++, token, addr, data);
  1743. if (err)
  1744. break;
  1745. } while (addr += PAGE_SIZE, addr != end);
  1746. arch_leave_lazy_mmu_mode();
  1747. if (mm != &init_mm)
  1748. pte_unmap_unlock(pte-1, ptl);
  1749. return err;
  1750. }
  1751. static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
  1752. unsigned long addr, unsigned long end,
  1753. pte_fn_t fn, void *data)
  1754. {
  1755. pmd_t *pmd;
  1756. unsigned long next;
  1757. int err;
  1758. BUG_ON(pud_huge(*pud));
  1759. pmd = pmd_alloc(mm, pud, addr);
  1760. if (!pmd)
  1761. return -ENOMEM;
  1762. do {
  1763. next = pmd_addr_end(addr, end);
  1764. err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
  1765. if (err)
  1766. break;
  1767. } while (pmd++, addr = next, addr != end);
  1768. return err;
  1769. }
  1770. static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
  1771. unsigned long addr, unsigned long end,
  1772. pte_fn_t fn, void *data)
  1773. {
  1774. pud_t *pud;
  1775. unsigned long next;
  1776. int err;
  1777. pud = pud_alloc(mm, pgd, addr);
  1778. if (!pud)
  1779. return -ENOMEM;
  1780. do {
  1781. next = pud_addr_end(addr, end);
  1782. err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
  1783. if (err)
  1784. break;
  1785. } while (pud++, addr = next, addr != end);
  1786. return err;
  1787. }
  1788. /*
  1789. * Scan a region of virtual memory, filling in page tables as necessary
  1790. * and calling a provided function on each leaf page table.
  1791. */
  1792. int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
  1793. unsigned long size, pte_fn_t fn, void *data)
  1794. {
  1795. pgd_t *pgd;
  1796. unsigned long next;
  1797. unsigned long end = addr + size;
  1798. int err;
  1799. BUG_ON(addr >= end);
  1800. pgd = pgd_offset(mm, addr);
  1801. do {
  1802. next = pgd_addr_end(addr, end);
  1803. err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
  1804. if (err)
  1805. break;
  1806. } while (pgd++, addr = next, addr != end);
  1807. return err;
  1808. }
  1809. EXPORT_SYMBOL_GPL(apply_to_page_range);
  1810. /*
  1811. * handle_pte_fault chooses page fault handler according to an entry
  1812. * which was read non-atomically. Before making any commitment, on
  1813. * those architectures or configurations (e.g. i386 with PAE) which
  1814. * might give a mix of unmatched parts, do_swap_page and do_file_page
  1815. * must check under lock before unmapping the pte and proceeding
  1816. * (but do_wp_page is only called after already making such a check;
  1817. * and do_anonymous_page and do_no_page can safely check later on).
  1818. */
  1819. static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
  1820. pte_t *page_table, pte_t orig_pte)
  1821. {
  1822. int same = 1;
  1823. #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
  1824. if (sizeof(pte_t) > sizeof(unsigned long)) {
  1825. spinlock_t *ptl = pte_lockptr(mm, pmd);
  1826. spin_lock(ptl);
  1827. same = pte_same(*page_table, orig_pte);
  1828. spin_unlock(ptl);
  1829. }
  1830. #endif
  1831. pte_unmap(page_table);
  1832. return same;
  1833. }
  1834. /*
  1835. * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
  1836. * servicing faults for write access. In the normal case, do always want
  1837. * pte_mkwrite. But get_user_pages can cause write faults for mappings
  1838. * that do not have writing enabled, when used by access_process_vm.
  1839. */
  1840. static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
  1841. {
  1842. if (likely(vma->vm_flags & VM_WRITE))
  1843. pte = pte_mkwrite(pte);
  1844. return pte;
  1845. }
  1846. static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
  1847. {
  1848. /*
  1849. * If the source page was a PFN mapping, we don't have
  1850. * a "struct page" for it. We do a best-effort copy by
  1851. * just copying from the original user address. If that
  1852. * fails, we just zero-fill it. Live with it.
  1853. */
  1854. if (unlikely(!src)) {
  1855. void *kaddr = kmap_atomic(dst, KM_USER0);
  1856. void __user *uaddr = (void __user *)(va & PAGE_MASK);
  1857. /*
  1858. * This really shouldn't fail, because the page is there
  1859. * in the page tables. But it might just be unreadable,
  1860. * in which case we just give up and fill the result with
  1861. * zeroes.
  1862. */
  1863. if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
  1864. memset(kaddr, 0, PAGE_SIZE);
  1865. kunmap_atomic(kaddr, KM_USER0);
  1866. flush_dcache_page(dst);
  1867. } else
  1868. copy_user_highpage(dst, src, va, vma);
  1869. }
  1870. /*
  1871. * This routine handles present pages, when users try to write
  1872. * to a shared page. It is done by copying the page to a new address
  1873. * and decrementing the shared-page counter for the old page.
  1874. *
  1875. * Note that this routine assumes that the protection checks have been
  1876. * done by the caller (the low-level page fault routine in most cases).
  1877. * Thus we can safely just mark it writable once we've done any necessary
  1878. * COW.
  1879. *
  1880. * We also mark the page dirty at this point even though the page will
  1881. * change only once the write actually happens. This avoids a few races,
  1882. * and potentially makes it more efficient.
  1883. *
  1884. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  1885. * but allow concurrent faults), with pte both mapped and locked.
  1886. * We return with mmap_sem still held, but pte unmapped and unlocked.
  1887. */
  1888. static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
  1889. unsigned long address, pte_t *page_table, pmd_t *pmd,
  1890. spinlock_t *ptl, pte_t orig_pte)
  1891. {
  1892. struct page *old_page, *new_page;
  1893. pte_t entry;
  1894. int reuse = 0, ret = 0;
  1895. int page_mkwrite = 0;
  1896. struct page *dirty_page = NULL;
  1897. old_page = vm_normal_page(vma, address, orig_pte);
  1898. if (!old_page) {
  1899. /*
  1900. * VM_MIXEDMAP !pfn_valid() case
  1901. *
  1902. * We should not cow pages in a shared writeable mapping.
  1903. * Just mark the pages writable as we can't do any dirty
  1904. * accounting on raw pfn maps.
  1905. */
  1906. if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
  1907. (VM_WRITE|VM_SHARED))
  1908. goto reuse;
  1909. goto gotten;
  1910. }
  1911. /*
  1912. * Take out anonymous pages first, anonymous shared vmas are
  1913. * not dirty accountable.
  1914. */
  1915. if (PageAnon(old_page) && !PageKsm(old_page)) {
  1916. if (!trylock_page(old_page)) {
  1917. page_cache_get(old_page);
  1918. pte_unmap_unlock(page_table, ptl);
  1919. lock_page(old_page);
  1920. page_table = pte_offset_map_lock(mm, pmd, address,
  1921. &ptl);
  1922. if (!pte_same(*page_table, orig_pte)) {
  1923. unlock_page(old_page);
  1924. page_cache_release(old_page);
  1925. goto unlock;
  1926. }
  1927. page_cache_release(old_page);
  1928. }
  1929. reuse = reuse_swap_page(old_page);
  1930. if (reuse)
  1931. /*
  1932. * The page is all ours. Move it to our anon_vma so
  1933. * the rmap code will not search our parent or siblings.
  1934. * Protected against the rmap code by the page lock.
  1935. */
  1936. page_move_anon_rmap(old_page, vma, address);
  1937. unlock_page(old_page);
  1938. } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
  1939. (VM_WRITE|VM_SHARED))) {
  1940. /*
  1941. * Only catch write-faults on shared writable pages,
  1942. * read-only shared pages can get COWed by
  1943. * get_user_pages(.write=1, .force=1).
  1944. */
  1945. if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
  1946. struct vm_fault vmf;
  1947. int tmp;
  1948. vmf.virtual_address = (void __user *)(address &
  1949. PAGE_MASK);
  1950. vmf.pgoff = old_page->index;
  1951. vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
  1952. vmf.page = old_page;
  1953. /*
  1954. * Notify the address space that the page is about to
  1955. * become writable so that it can prohibit this or wait
  1956. * for the page to get into an appropriate state.
  1957. *
  1958. * We do this without the lock held, so that it can
  1959. * sleep if it needs to.
  1960. */
  1961. page_cache_get(old_page);
  1962. pte_unmap_unlock(page_table, ptl);
  1963. tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
  1964. if (unlikely(tmp &
  1965. (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
  1966. ret = tmp;
  1967. goto unwritable_page;
  1968. }
  1969. if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
  1970. lock_page(old_page);
  1971. if (!old_page->mapping) {
  1972. ret = 0; /* retry the fault */
  1973. unlock_page(old_page);
  1974. goto unwritable_page;
  1975. }
  1976. } else
  1977. VM_BUG_ON(!PageLocked(old_page));
  1978. /*
  1979. * Since we dropped the lock we need to revalidate
  1980. * the PTE as someone else may have changed it. If
  1981. * they did, we just return, as we can count on the
  1982. * MMU to tell us if they didn't also make it writable.
  1983. */
  1984. page_table = pte_offset_map_lock(mm, pmd, address,
  1985. &ptl);
  1986. if (!pte_same(*page_table, orig_pte)) {
  1987. unlock_page(old_page);
  1988. page_cache_release(old_page);
  1989. goto unlock;
  1990. }
  1991. page_mkwrite = 1;
  1992. }
  1993. dirty_page = old_page;
  1994. get_page(dirty_page);
  1995. reuse = 1;
  1996. }
  1997. if (reuse) {
  1998. reuse:
  1999. flush_cache_page(vma, address, pte_pfn(orig_pte));
  2000. entry = pte_mkyoung(orig_pte);
  2001. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  2002. if (ptep_set_access_flags(vma, address, page_table, entry,1))
  2003. update_mmu_cache(vma, address, page_table);
  2004. ret |= VM_FAULT_WRITE;
  2005. goto unlock;
  2006. }
  2007. /*
  2008. * Ok, we need to copy. Oh, well..
  2009. */
  2010. page_cache_get(old_page);
  2011. gotten:
  2012. pte_unmap_unlock(page_table, ptl);
  2013. if (unlikely(anon_vma_prepare(vma)))
  2014. goto oom;
  2015. if (is_zero_pfn(pte_pfn(orig_pte))) {
  2016. new_page = alloc_zeroed_user_highpage_movable(vma, address);
  2017. if (!new_page)
  2018. goto oom;
  2019. } else {
  2020. new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
  2021. if (!new_page)
  2022. goto oom;
  2023. cow_user_page(new_page, old_page, address, vma);
  2024. }
  2025. __SetPageUptodate(new_page);
  2026. /*
  2027. * Don't let another task, with possibly unlocked vma,
  2028. * keep the mlocked page.
  2029. */
  2030. if ((vma->vm_flags & VM_LOCKED) && old_page) {
  2031. lock_page(old_page); /* for LRU manipulation */
  2032. clear_page_mlock(old_page);
  2033. unlock_page(old_page);
  2034. }
  2035. if (mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))
  2036. goto oom_free_new;
  2037. /*
  2038. * Re-check the pte - we dropped the lock
  2039. */
  2040. page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
  2041. if (likely(pte_same(*page_table, orig_pte))) {
  2042. if (old_page) {
  2043. if (!PageAnon(old_page)) {
  2044. dec_mm_counter_fast(mm, MM_FILEPAGES);
  2045. inc_mm_counter_fast(mm, MM_ANONPAGES);
  2046. }
  2047. } else
  2048. inc_mm_counter_fast(mm, MM_ANONPAGES);
  2049. flush_cache_page(vma, address, pte_pfn(orig_pte));
  2050. entry = mk_pte(new_page, vma->vm_page_prot);
  2051. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  2052. /*
  2053. * Clear the pte entry and flush it first, before updating the
  2054. * pte with the new entry. This will avoid a race condition
  2055. * seen in the presence of one thread doing SMC and another
  2056. * thread doing COW.
  2057. */
  2058. ptep_clear_flush(vma, address, page_table);
  2059. page_add_new_anon_rmap(new_page, vma, address);
  2060. /*
  2061. * We call the notify macro here because, when using secondary
  2062. * mmu page tables (such as kvm shadow page tables), we want the
  2063. * new page to be mapped directly into the secondary page table.
  2064. */
  2065. set_pte_at_notify(mm, address, page_table, entry);
  2066. update_mmu_cache(vma, address, page_table);
  2067. if (old_page) {
  2068. /*
  2069. * Only after switching the pte to the new page may
  2070. * we remove the mapcount here. Otherwise another
  2071. * process may come and find the rmap count decremented
  2072. * before the pte is switched to the new page, and
  2073. * "reuse" the old page writing into it while our pte
  2074. * here still points into it and can be read by other
  2075. * threads.
  2076. *
  2077. * The critical issue is to order this
  2078. * page_remove_rmap with the ptp_clear_flush above.
  2079. * Those stores are ordered by (if nothing else,)
  2080. * the barrier present in the atomic_add_negative
  2081. * in page_remove_rmap.
  2082. *
  2083. * Then the TLB flush in ptep_clear_flush ensures that
  2084. * no process can access the old page before the
  2085. * decremented mapcount is visible. And the old page
  2086. * cannot be reused until after the decremented
  2087. * mapcount is visible. So transitively, TLBs to
  2088. * old page will be flushed before it can be reused.
  2089. */
  2090. page_remove_rmap(old_page);
  2091. }
  2092. /* Free the old page.. */
  2093. new_page = old_page;
  2094. ret |= VM_FAULT_WRITE;
  2095. } else
  2096. mem_cgroup_uncharge_page(new_page);
  2097. if (new_page)
  2098. page_cache_release(new_page);
  2099. if (old_page)
  2100. page_cache_release(old_page);
  2101. unlock:
  2102. pte_unmap_unlock(page_table, ptl);
  2103. if (dirty_page) {
  2104. /*
  2105. * Yes, Virginia, this is actually required to prevent a race
  2106. * with clear_page_dirty_for_io() from clearing the page dirty
  2107. * bit after it clear all dirty ptes, but before a racing
  2108. * do_wp_page installs a dirty pte.
  2109. *
  2110. * do_no_page is protected similarly.
  2111. */
  2112. if (!page_mkwrite) {
  2113. wait_on_page_locked(dirty_page);
  2114. set_page_dirty_balance(dirty_page, page_mkwrite);
  2115. }
  2116. put_page(dirty_page);
  2117. if (page_mkwrite) {
  2118. struct address_space *mapping = dirty_page->mapping;
  2119. set_page_dirty(dirty_page);
  2120. unlock_page(dirty_page);
  2121. page_cache_release(dirty_page);
  2122. if (mapping) {
  2123. /*
  2124. * Some device drivers do not set page.mapping
  2125. * but still dirty their pages
  2126. */
  2127. balance_dirty_pages_ratelimited(mapping);
  2128. }
  2129. }
  2130. /* file_update_time outside page_lock */
  2131. if (vma->vm_file)
  2132. file_update_time(vma->vm_file);
  2133. }
  2134. return ret;
  2135. oom_free_new:
  2136. page_cache_release(new_page);
  2137. oom:
  2138. if (old_page) {
  2139. if (page_mkwrite) {
  2140. unlock_page(old_page);
  2141. page_cache_release(old_page);
  2142. }
  2143. page_cache_release(old_page);
  2144. }
  2145. return VM_FAULT_OOM;
  2146. unwritable_page:
  2147. page_cache_release(old_page);
  2148. return ret;
  2149. }
  2150. /*
  2151. * Helper functions for unmap_mapping_range().
  2152. *
  2153. * __ Notes on dropping i_mmap_lock to reduce latency while unmapping __
  2154. *
  2155. * We have to restart searching the prio_tree whenever we drop the lock,
  2156. * since the iterator is only valid while the lock is held, and anyway
  2157. * a later vma might be split and reinserted earlier while lock dropped.
  2158. *
  2159. * The list of nonlinear vmas could be handled more efficiently, using
  2160. * a placeholder, but handle it in the same way until a need is shown.
  2161. * It is important to search the prio_tree before nonlinear list: a vma
  2162. * may become nonlinear and be shifted from prio_tree to nonlinear list
  2163. * while the lock is dropped; but never shifted from list to prio_tree.
  2164. *
  2165. * In order to make forward progress despite restarting the search,
  2166. * vm_truncate_count is used to mark a vma as now dealt with, so we can
  2167. * quickly skip it next time around. Since the prio_tree search only
  2168. * shows us those vmas affected by unmapping the range in question, we
  2169. * can't efficiently keep all vmas in step with mapping->truncate_count:
  2170. * so instead reset them all whenever it wraps back to 0 (then go to 1).
  2171. * mapping->truncate_count and vma->vm_truncate_count are protected by
  2172. * i_mmap_lock.
  2173. *
  2174. * In order to make forward progress despite repeatedly restarting some
  2175. * large vma, note the restart_addr from unmap_vmas when it breaks out:
  2176. * and restart from that address when we reach that vma again. It might
  2177. * have been split or merged, shrunk or extended, but never shifted: so
  2178. * restart_addr remains valid so long as it remains in the vma's range.
  2179. * unmap_mapping_range forces truncate_count to leap over page-aligned
  2180. * values so we can save vma's restart_addr in its truncate_count field.
  2181. */
  2182. #define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK))
  2183. static void reset_vma_truncate_counts(struct address_space *mapping)
  2184. {
  2185. struct vm_area_struct *vma;
  2186. struct prio_tree_iter iter;
  2187. vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, 0, ULONG_MAX)
  2188. vma->vm_truncate_count = 0;
  2189. list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
  2190. vma->vm_truncate_count = 0;
  2191. }
  2192. static int unmap_mapping_range_vma(struct vm_area_struct *vma,
  2193. unsigned long start_addr, unsigned long end_addr,
  2194. struct zap_details *details)
  2195. {
  2196. unsigned long restart_addr;
  2197. int need_break;
  2198. /*
  2199. * files that support invalidating or truncating portions of the
  2200. * file from under mmaped areas must have their ->fault function
  2201. * return a locked page (and set VM_FAULT_LOCKED in the return).
  2202. * This provides synchronisation against concurrent unmapping here.
  2203. */
  2204. again:
  2205. restart_addr = vma->vm_truncate_count;
  2206. if (is_restart_addr(restart_addr) && start_addr < restart_addr) {
  2207. start_addr = restart_addr;
  2208. if (start_addr >= end_addr) {
  2209. /* Top of vma has been split off since last time */
  2210. vma->vm_truncate_count = details->truncate_count;
  2211. return 0;
  2212. }
  2213. }
  2214. restart_addr = zap_page_range(vma, start_addr,
  2215. end_addr - start_addr, details);
  2216. need_break = need_resched() || spin_needbreak(details->i_mmap_lock);
  2217. if (restart_addr >= end_addr) {
  2218. /* We have now completed this vma: mark it so */
  2219. vma->vm_truncate_count = details->truncate_count;
  2220. if (!need_break)
  2221. return 0;
  2222. } else {
  2223. /* Note restart_addr in vma's truncate_count field */
  2224. vma->vm_truncate_count = restart_addr;
  2225. if (!need_break)
  2226. goto again;
  2227. }
  2228. spin_unlock(details->i_mmap_lock);
  2229. cond_resched();
  2230. spin_lock(details->i_mmap_lock);
  2231. return -EINTR;
  2232. }
  2233. static inline void unmap_mapping_range_tree(struct prio_tree_root *root,
  2234. struct zap_details *details)
  2235. {
  2236. struct vm_area_struct *vma;
  2237. struct prio_tree_iter iter;
  2238. pgoff_t vba, vea, zba, zea;
  2239. restart:
  2240. vma_prio_tree_foreach(vma, &iter, root,
  2241. details->first_index, details->last_index) {
  2242. /* Skip quickly over those we have already dealt with */
  2243. if (vma->vm_truncate_count == details->truncate_count)
  2244. continue;
  2245. vba = vma->vm_pgoff;
  2246. vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
  2247. /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
  2248. zba = details->first_index;
  2249. if (zba < vba)
  2250. zba = vba;
  2251. zea = details->last_index;
  2252. if (zea > vea)
  2253. zea = vea;
  2254. if (unmap_mapping_range_vma(vma,
  2255. ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
  2256. ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
  2257. details) < 0)
  2258. goto restart;
  2259. }
  2260. }
  2261. static inline void unmap_mapping_range_list(struct list_head *head,
  2262. struct zap_details *details)
  2263. {
  2264. struct vm_area_struct *vma;
  2265. /*
  2266. * In nonlinear VMAs there is no correspondence between virtual address
  2267. * offset and file offset. So we must perform an exhaustive search
  2268. * across *all* the pages in each nonlinear VMA, not just the pages
  2269. * whose virtual address lies outside the file truncation point.
  2270. */
  2271. restart:
  2272. list_for_each_entry(vma, head, shared.vm_set.list) {
  2273. /* Skip quickly over those we have already dealt with */
  2274. if (vma->vm_truncate_count == details->truncate_count)
  2275. continue;
  2276. details->nonlinear_vma = vma;
  2277. if (unmap_mapping_range_vma(vma, vma->vm_start,
  2278. vma->vm_end, details) < 0)
  2279. goto restart;
  2280. }
  2281. }
  2282. /**
  2283. * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
  2284. * @mapping: the address space containing mmaps to be unmapped.
  2285. * @holebegin: byte in first page to unmap, relative to the start of
  2286. * the underlying file. This will be rounded down to a PAGE_SIZE
  2287. * boundary. Note that this is different from truncate_pagecache(), which
  2288. * must keep the partial page. In contrast, we must get rid of
  2289. * partial pages.
  2290. * @holelen: size of prospective hole in bytes. This will be rounded
  2291. * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
  2292. * end of the file.
  2293. * @even_cows: 1 when truncating a file, unmap even private COWed pages;
  2294. * but 0 when invalidating pagecache, don't throw away private data.
  2295. */
  2296. void unmap_mapping_range(struct address_space *mapping,
  2297. loff_t const holebegin, loff_t const holelen, int even_cows)
  2298. {
  2299. struct zap_details details;
  2300. pgoff_t hba = holebegin >> PAGE_SHIFT;
  2301. pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
  2302. /* Check for overflow. */
  2303. if (sizeof(holelen) > sizeof(hlen)) {
  2304. long long holeend =
  2305. (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
  2306. if (holeend & ~(long long)ULONG_MAX)
  2307. hlen = ULONG_MAX - hba + 1;
  2308. }
  2309. details.check_mapping = even_cows? NULL: mapping;
  2310. details.nonlinear_vma = NULL;
  2311. details.first_index = hba;
  2312. details.last_index = hba + hlen - 1;
  2313. if (details.last_index < details.first_index)
  2314. details.last_index = ULONG_MAX;
  2315. details.i_mmap_lock = &mapping->i_mmap_lock;
  2316. spin_lock(&mapping->i_mmap_lock);
  2317. /* Protect against endless unmapping loops */
  2318. mapping->truncate_count++;
  2319. if (unlikely(is_restart_addr(mapping->truncate_count))) {
  2320. if (mapping->truncate_count == 0)
  2321. reset_vma_truncate_counts(mapping);
  2322. mapping->truncate_count++;
  2323. }
  2324. details.truncate_count = mapping->truncate_count;
  2325. if (unlikely(!prio_tree_empty(&mapping->i_mmap)))
  2326. unmap_mapping_range_tree(&mapping->i_mmap, &details);
  2327. if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
  2328. unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
  2329. spin_unlock(&mapping->i_mmap_lock);
  2330. }
  2331. EXPORT_SYMBOL(unmap_mapping_range);
  2332. int vmtruncate_range(struct inode *inode, loff_t offset, loff_t end)
  2333. {
  2334. struct address_space *mapping = inode->i_mapping;
  2335. /*
  2336. * If the underlying filesystem is not going to provide
  2337. * a way to truncate a range of blocks (punch a hole) -
  2338. * we should return failure right now.
  2339. */
  2340. if (!inode->i_op->truncate_range)
  2341. return -ENOSYS;
  2342. mutex_lock(&inode->i_mutex);
  2343. down_write(&inode->i_alloc_sem);
  2344. unmap_mapping_range(mapping, offset, (end - offset), 1);
  2345. truncate_inode_pages_range(mapping, offset, end);
  2346. unmap_mapping_range(mapping, offset, (end - offset), 1);
  2347. inode->i_op->truncate_range(inode, offset, end);
  2348. up_write(&inode->i_alloc_sem);
  2349. mutex_unlock(&inode->i_mutex);
  2350. return 0;
  2351. }
  2352. /*
  2353. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  2354. * but allow concurrent faults), and pte mapped but not yet locked.
  2355. * We return with mmap_sem still held, but pte unmapped and unlocked.
  2356. */
  2357. static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
  2358. unsigned long address, pte_t *page_table, pmd_t *pmd,
  2359. unsigned int flags, pte_t orig_pte)
  2360. {
  2361. spinlock_t *ptl;
  2362. struct page *page, *swapcache = NULL;
  2363. swp_entry_t entry;
  2364. pte_t pte;
  2365. struct mem_cgroup *ptr = NULL;
  2366. int exclusive = 0;
  2367. int ret = 0;
  2368. if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
  2369. goto out;
  2370. entry = pte_to_swp_entry(orig_pte);
  2371. if (unlikely(non_swap_entry(entry))) {
  2372. if (is_migration_entry(entry)) {
  2373. migration_entry_wait(mm, pmd, address);
  2374. } else if (is_hwpoison_entry(entry)) {
  2375. ret = VM_FAULT_HWPOISON;
  2376. } else {
  2377. print_bad_pte(vma, address, orig_pte, NULL);
  2378. ret = VM_FAULT_SIGBUS;
  2379. }
  2380. goto out;
  2381. }
  2382. delayacct_set_flag(DELAYACCT_PF_SWAPIN);
  2383. page = lookup_swap_cache(entry);
  2384. if (!page) {
  2385. grab_swap_token(mm); /* Contend for token _before_ read-in */
  2386. page = swapin_readahead(entry,
  2387. GFP_HIGHUSER_MOVABLE, vma, address);
  2388. if (!page) {
  2389. /*
  2390. * Back out if somebody else faulted in this pte
  2391. * while we released the pte lock.
  2392. */
  2393. page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
  2394. if (likely(pte_same(*page_table, orig_pte)))
  2395. ret = VM_FAULT_OOM;
  2396. delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
  2397. goto unlock;
  2398. }
  2399. /* Had to read the page from swap area: Major fault */
  2400. ret = VM_FAULT_MAJOR;
  2401. count_vm_event(PGMAJFAULT);
  2402. } else if (PageHWPoison(page)) {
  2403. /*
  2404. * hwpoisoned dirty swapcache pages are kept for killing
  2405. * owner processes (which may be unknown at hwpoison time)
  2406. */
  2407. ret = VM_FAULT_HWPOISON;
  2408. delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
  2409. goto out_release;
  2410. }
  2411. lock_page(page);
  2412. delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
  2413. /*
  2414. * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
  2415. * release the swapcache from under us. The page pin, and pte_same
  2416. * test below, are not enough to exclude that. Even if it is still
  2417. * swapcache, we need to check that the page's swap has not changed.
  2418. */
  2419. if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val))
  2420. goto out_page;
  2421. if (ksm_might_need_to_copy(page, vma, address)) {
  2422. swapcache = page;
  2423. page = ksm_does_need_to_copy(page, vma, address);
  2424. if (unlikely(!page)) {
  2425. ret = VM_FAULT_OOM;
  2426. page = swapcache;
  2427. swapcache = NULL;
  2428. goto out_page;
  2429. }
  2430. }
  2431. if (mem_cgroup_try_charge_swapin(mm, page, GFP_KERNEL, &ptr)) {
  2432. ret = VM_FAULT_OOM;
  2433. goto out_page;
  2434. }
  2435. /*
  2436. * Back out if somebody else already faulted in this pte.
  2437. */
  2438. page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
  2439. if (unlikely(!pte_same(*page_table, orig_pte)))
  2440. goto out_nomap;
  2441. if (unlikely(!PageUptodate(page))) {
  2442. ret = VM_FAULT_SIGBUS;
  2443. goto out_nomap;
  2444. }
  2445. /*
  2446. * The page isn't present yet, go ahead with the fault.
  2447. *
  2448. * Be careful about the sequence of operations here.
  2449. * To get its accounting right, reuse_swap_page() must be called
  2450. * while the page is counted on swap but not yet in mapcount i.e.
  2451. * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
  2452. * must be called after the swap_free(), or it will never succeed.
  2453. * Because delete_from_swap_page() may be called by reuse_swap_page(),
  2454. * mem_cgroup_commit_charge_swapin() may not be able to find swp_entry
  2455. * in page->private. In this case, a record in swap_cgroup is silently
  2456. * discarded at swap_free().
  2457. */
  2458. inc_mm_counter_fast(mm, MM_ANONPAGES);
  2459. dec_mm_counter_fast(mm, MM_SWAPENTS);
  2460. pte = mk_pte(page, vma->vm_page_prot);
  2461. if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) {
  2462. pte = maybe_mkwrite(pte_mkdirty(pte), vma);
  2463. flags &= ~FAULT_FLAG_WRITE;
  2464. ret |= VM_FAULT_WRITE;
  2465. exclusive = 1;
  2466. }
  2467. flush_icache_page(vma, page);
  2468. set_pte_at(mm, address, page_table, pte);
  2469. do_page_add_anon_rmap(page, vma, address, exclusive);
  2470. /* It's better to call commit-charge after rmap is established */
  2471. mem_cgroup_commit_charge_swapin(page, ptr);
  2472. swap_free(entry);
  2473. if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
  2474. try_to_free_swap(page);
  2475. unlock_page(page);
  2476. if (swapcache) {
  2477. /*
  2478. * Hold the lock to avoid the swap entry to be reused
  2479. * until we take the PT lock for the pte_same() check
  2480. * (to avoid false positives from pte_same). For
  2481. * further safety release the lock after the swap_free
  2482. * so that the swap count won't change under a
  2483. * parallel locked swapcache.
  2484. */
  2485. unlock_page(swapcache);
  2486. page_cache_release(swapcache);
  2487. }
  2488. if (flags & FAULT_FLAG_WRITE) {
  2489. ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
  2490. if (ret & VM_FAULT_ERROR)
  2491. ret &= VM_FAULT_ERROR;
  2492. goto out;
  2493. }
  2494. /* No need to invalidate - it was non-present before */
  2495. update_mmu_cache(vma, address, page_table);
  2496. unlock:
  2497. pte_unmap_unlock(page_table, ptl);
  2498. out:
  2499. return ret;
  2500. out_nomap:
  2501. mem_cgroup_cancel_charge_swapin(ptr);
  2502. pte_unmap_unlock(page_table, ptl);
  2503. out_page:
  2504. unlock_page(page);
  2505. out_release:
  2506. page_cache_release(page);
  2507. if (swapcache) {
  2508. unlock_page(swapcache);
  2509. page_cache_release(swapcache);
  2510. }
  2511. return ret;
  2512. }
  2513. /*
  2514. * This is like a special single-page "expand_{down|up}wards()",
  2515. * except we must first make sure that 'address{-|+}PAGE_SIZE'
  2516. * doesn't hit another vma.
  2517. */
  2518. static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address)
  2519. {
  2520. address &= PAGE_MASK;
  2521. if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) {
  2522. struct vm_area_struct *prev = vma->vm_prev;
  2523. /*
  2524. * Is there a mapping abutting this one below?
  2525. *
  2526. * That's only ok if it's the same stack mapping
  2527. * that has gotten split..
  2528. */
  2529. if (prev && prev->vm_end == address)
  2530. return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM;
  2531. expand_stack(vma, address - PAGE_SIZE);
  2532. }
  2533. if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) {
  2534. struct vm_area_struct *next = vma->vm_next;
  2535. /* As VM_GROWSDOWN but s/below/above/ */
  2536. if (next && next->vm_start == address + PAGE_SIZE)
  2537. return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM;
  2538. expand_upwards(vma, address + PAGE_SIZE);
  2539. }
  2540. return 0;
  2541. }
  2542. /*
  2543. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  2544. * but allow concurrent faults), and pte mapped but not yet locked.
  2545. * We return with mmap_sem still held, but pte unmapped and unlocked.
  2546. */
  2547. static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
  2548. unsigned long address, pte_t *page_table, pmd_t *pmd,
  2549. unsigned int flags)
  2550. {
  2551. struct page *page;
  2552. spinlock_t *ptl;
  2553. pte_t entry;
  2554. pte_unmap(page_table);
  2555. /* Check if we need to add a guard page to the stack */
  2556. if (check_stack_guard_page(vma, address) < 0)
  2557. return VM_FAULT_SIGBUS;
  2558. /* Use the zero-page for reads */
  2559. if (!(flags & FAULT_FLAG_WRITE)) {
  2560. entry = pte_mkspecial(pfn_pte(my_zero_pfn(address),
  2561. vma->vm_page_prot));
  2562. page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
  2563. if (!pte_none(*page_table))
  2564. goto unlock;
  2565. goto setpte;
  2566. }
  2567. /* Allocate our own private page. */
  2568. if (unlikely(anon_vma_prepare(vma)))
  2569. goto oom;
  2570. page = alloc_zeroed_user_highpage_movable(vma, address);
  2571. if (!page)
  2572. goto oom;
  2573. __SetPageUptodate(page);
  2574. if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))
  2575. goto oom_free_page;
  2576. entry = mk_pte(page, vma->vm_page_prot);
  2577. if (vma->vm_flags & VM_WRITE)
  2578. entry = pte_mkwrite(pte_mkdirty(entry));
  2579. page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
  2580. if (!pte_none(*page_table))
  2581. goto release;
  2582. inc_mm_counter_fast(mm, MM_ANONPAGES);
  2583. page_add_new_anon_rmap(page, vma, address);
  2584. setpte:
  2585. set_pte_at(mm, address, page_table, entry);
  2586. /* No need to invalidate - it was non-present before */
  2587. update_mmu_cache(vma, address, page_table);
  2588. unlock:
  2589. pte_unmap_unlock(page_table, ptl);
  2590. return 0;
  2591. release:
  2592. mem_cgroup_uncharge_page(page);
  2593. page_cache_release(page);
  2594. goto unlock;
  2595. oom_free_page:
  2596. page_cache_release(page);
  2597. oom:
  2598. return VM_FAULT_OOM;
  2599. }
  2600. /*
  2601. * __do_fault() tries to create a new page mapping. It aggressively
  2602. * tries to share with existing pages, but makes a separate copy if
  2603. * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
  2604. * the next page fault.
  2605. *
  2606. * As this is called only for pages that do not currently exist, we
  2607. * do not need to flush old virtual caches or the TLB.
  2608. *
  2609. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  2610. * but allow concurrent faults), and pte neither mapped nor locked.
  2611. * We return with mmap_sem still held, but pte unmapped and unlocked.
  2612. */
  2613. static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
  2614. unsigned long address, pmd_t *pmd,
  2615. pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
  2616. {
  2617. pte_t *page_table;
  2618. spinlock_t *ptl;
  2619. struct page *page;
  2620. pte_t entry;
  2621. int anon = 0;
  2622. int charged = 0;
  2623. struct page *dirty_page = NULL;
  2624. struct vm_fault vmf;
  2625. int ret;
  2626. int page_mkwrite = 0;
  2627. vmf.virtual_address = (void __user *)(address & PAGE_MASK);
  2628. vmf.pgoff = pgoff;
  2629. vmf.flags = flags;
  2630. vmf.page = NULL;
  2631. ret = vma->vm_ops->fault(vma, &vmf);
  2632. if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
  2633. return ret;
  2634. if (unlikely(PageHWPoison(vmf.page))) {
  2635. if (ret & VM_FAULT_LOCKED)
  2636. unlock_page(vmf.page);
  2637. return VM_FAULT_HWPOISON;
  2638. }
  2639. /*
  2640. * For consistency in subsequent calls, make the faulted page always
  2641. * locked.
  2642. */
  2643. if (unlikely(!(ret & VM_FAULT_LOCKED)))
  2644. lock_page(vmf.page);
  2645. else
  2646. VM_BUG_ON(!PageLocked(vmf.page));
  2647. /*
  2648. * Should we do an early C-O-W break?
  2649. */
  2650. page = vmf.page;
  2651. if (flags & FAULT_FLAG_WRITE) {
  2652. if (!(vma->vm_flags & VM_SHARED)) {
  2653. anon = 1;
  2654. if (unlikely(anon_vma_prepare(vma))) {
  2655. ret = VM_FAULT_OOM;
  2656. goto out;
  2657. }
  2658. page = alloc_page_vma(GFP_HIGHUSER_MOVABLE,
  2659. vma, address);
  2660. if (!page) {
  2661. ret = VM_FAULT_OOM;
  2662. goto out;
  2663. }
  2664. if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL)) {
  2665. ret = VM_FAULT_OOM;
  2666. page_cache_release(page);
  2667. goto out;
  2668. }
  2669. charged = 1;
  2670. /*
  2671. * Don't let another task, with possibly unlocked vma,
  2672. * keep the mlocked page.
  2673. */
  2674. if (vma->vm_flags & VM_LOCKED)
  2675. clear_page_mlock(vmf.page);
  2676. copy_user_highpage(page, vmf.page, address, vma);
  2677. __SetPageUptodate(page);
  2678. } else {
  2679. /*
  2680. * If the page will be shareable, see if the backing
  2681. * address space wants to know that the page is about
  2682. * to become writable
  2683. */
  2684. if (vma->vm_ops->page_mkwrite) {
  2685. int tmp;
  2686. unlock_page(page);
  2687. vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
  2688. tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
  2689. if (unlikely(tmp &
  2690. (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
  2691. ret = tmp;
  2692. goto unwritable_page;
  2693. }
  2694. if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
  2695. lock_page(page);
  2696. if (!page->mapping) {
  2697. ret = 0; /* retry the fault */
  2698. unlock_page(page);
  2699. goto unwritable_page;
  2700. }
  2701. } else
  2702. VM_BUG_ON(!PageLocked(page));
  2703. page_mkwrite = 1;
  2704. }
  2705. }
  2706. }
  2707. page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
  2708. /*
  2709. * This silly early PAGE_DIRTY setting removes a race
  2710. * due to the bad i386 page protection. But it's valid
  2711. * for other architectures too.
  2712. *
  2713. * Note that if FAULT_FLAG_WRITE is set, we either now have
  2714. * an exclusive copy of the page, or this is a shared mapping,
  2715. * so we can make it writable and dirty to avoid having to
  2716. * handle that later.
  2717. */
  2718. /* Only go through if we didn't race with anybody else... */
  2719. if (likely(pte_same(*page_table, orig_pte))) {
  2720. flush_icache_page(vma, page);
  2721. entry = mk_pte(page, vma->vm_page_prot);
  2722. if (flags & FAULT_FLAG_WRITE)
  2723. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  2724. if (anon) {
  2725. inc_mm_counter_fast(mm, MM_ANONPAGES);
  2726. page_add_new_anon_rmap(page, vma, address);
  2727. } else {
  2728. inc_mm_counter_fast(mm, MM_FILEPAGES);
  2729. page_add_file_rmap(page);
  2730. if (flags & FAULT_FLAG_WRITE) {
  2731. dirty_page = page;
  2732. get_page(dirty_page);
  2733. }
  2734. }
  2735. set_pte_at(mm, address, page_table, entry);
  2736. /* no need to invalidate: a not-present page won't be cached */
  2737. update_mmu_cache(vma, address, page_table);
  2738. } else {
  2739. if (charged)
  2740. mem_cgroup_uncharge_page(page);
  2741. if (anon)
  2742. page_cache_release(page);
  2743. else
  2744. anon = 1; /* no anon but release faulted_page */
  2745. }
  2746. pte_unmap_unlock(page_table, ptl);
  2747. out:
  2748. if (dirty_page) {
  2749. struct address_space *mapping = page->mapping;
  2750. if (set_page_dirty(dirty_page))
  2751. page_mkwrite = 1;
  2752. unlock_page(dirty_page);
  2753. put_page(dirty_page);
  2754. if (page_mkwrite && mapping) {
  2755. /*
  2756. * Some device drivers do not set page.mapping but still
  2757. * dirty their pages
  2758. */
  2759. balance_dirty_pages_ratelimited(mapping);
  2760. }
  2761. /* file_update_time outside page_lock */
  2762. if (vma->vm_file)
  2763. file_update_time(vma->vm_file);
  2764. } else {
  2765. unlock_page(vmf.page);
  2766. if (anon)
  2767. page_cache_release(vmf.page);
  2768. }
  2769. return ret;
  2770. unwritable_page:
  2771. page_cache_release(page);
  2772. return ret;
  2773. }
  2774. static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
  2775. unsigned long address, pte_t *page_table, pmd_t *pmd,
  2776. unsigned int flags, pte_t orig_pte)
  2777. {
  2778. pgoff_t pgoff = (((address & PAGE_MASK)
  2779. - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
  2780. pte_unmap(page_table);
  2781. return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
  2782. }
  2783. /*
  2784. * Fault of a previously existing named mapping. Repopulate the pte
  2785. * from the encoded file_pte if possible. This enables swappable
  2786. * nonlinear vmas.
  2787. *
  2788. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  2789. * but allow concurrent faults), and pte mapped but not yet locked.
  2790. * We return with mmap_sem still held, but pte unmapped and unlocked.
  2791. */
  2792. static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
  2793. unsigned long address, pte_t *page_table, pmd_t *pmd,
  2794. unsigned int flags, pte_t orig_pte)
  2795. {
  2796. pgoff_t pgoff;
  2797. flags |= FAULT_FLAG_NONLINEAR;
  2798. if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
  2799. return 0;
  2800. if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) {
  2801. /*
  2802. * Page table corrupted: show pte and kill process.
  2803. */
  2804. print_bad_pte(vma, address, orig_pte, NULL);
  2805. return VM_FAULT_SIGBUS;
  2806. }
  2807. pgoff = pte_to_pgoff(orig_pte);
  2808. return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
  2809. }
  2810. /*
  2811. * These routines also need to handle stuff like marking pages dirty
  2812. * and/or accessed for architectures that don't do it in hardware (most
  2813. * RISC architectures). The early dirtying is also good on the i386.
  2814. *
  2815. * There is also a hook called "update_mmu_cache()" that architectures
  2816. * with external mmu caches can use to update those (ie the Sparc or
  2817. * PowerPC hashed page tables that act as extended TLBs).
  2818. *
  2819. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  2820. * but allow concurrent faults), and pte mapped but not yet locked.
  2821. * We return with mmap_sem still held, but pte unmapped and unlocked.
  2822. */
  2823. static inline int handle_pte_fault(struct mm_struct *mm,
  2824. struct vm_area_struct *vma, unsigned long address,
  2825. pte_t *pte, pmd_t *pmd, unsigned int flags)
  2826. {
  2827. pte_t entry;
  2828. spinlock_t *ptl;
  2829. entry = *pte;
  2830. if (!pte_present(entry)) {
  2831. if (pte_none(entry)) {
  2832. if (vma->vm_ops) {
  2833. if (likely(vma->vm_ops->fault))
  2834. return do_linear_fault(mm, vma, address,
  2835. pte, pmd, flags, entry);
  2836. }
  2837. return do_anonymous_page(mm, vma, address,
  2838. pte, pmd, flags);
  2839. }
  2840. if (pte_file(entry))
  2841. return do_nonlinear_fault(mm, vma, address,
  2842. pte, pmd, flags, entry);
  2843. return do_swap_page(mm, vma, address,
  2844. pte, pmd, flags, entry);
  2845. }
  2846. ptl = pte_lockptr(mm, pmd);
  2847. spin_lock(ptl);
  2848. if (unlikely(!pte_same(*pte, entry)))
  2849. goto unlock;
  2850. if (flags & FAULT_FLAG_WRITE) {
  2851. if (!pte_write(entry))
  2852. return do_wp_page(mm, vma, address,
  2853. pte, pmd, ptl, entry);
  2854. entry = pte_mkdirty(entry);
  2855. }
  2856. entry = pte_mkyoung(entry);
  2857. if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) {
  2858. update_mmu_cache(vma, address, pte);
  2859. } else {
  2860. /*
  2861. * This is needed only for protection faults but the arch code
  2862. * is not yet telling us if this is a protection fault or not.
  2863. * This still avoids useless tlb flushes for .text page faults
  2864. * with threads.
  2865. */
  2866. if (flags & FAULT_FLAG_WRITE)
  2867. flush_tlb_page(vma, address);
  2868. }
  2869. unlock:
  2870. pte_unmap_unlock(pte, ptl);
  2871. return 0;
  2872. }
  2873. /*
  2874. * By the time we get here, we already hold the mm semaphore
  2875. */
  2876. int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
  2877. unsigned long address, unsigned int flags)
  2878. {
  2879. pgd_t *pgd;
  2880. pud_t *pud;
  2881. pmd_t *pmd;
  2882. pte_t *pte;
  2883. __set_current_state(TASK_RUNNING);
  2884. count_vm_event(PGFAULT);
  2885. /* do counter updates before entering really critical section. */
  2886. check_sync_rss_stat(current);
  2887. if (unlikely(is_vm_hugetlb_page(vma)))
  2888. return hugetlb_fault(mm, vma, address, flags);
  2889. pgd = pgd_offset(mm, address);
  2890. pud = pud_alloc(mm, pgd, address);
  2891. if (!pud)
  2892. return VM_FAULT_OOM;
  2893. pmd = pmd_alloc(mm, pud, address);
  2894. if (!pmd)
  2895. return VM_FAULT_OOM;
  2896. pte = pte_alloc_map(mm, pmd, address);
  2897. if (!pte)
  2898. return VM_FAULT_OOM;
  2899. return handle_pte_fault(mm, vma, address, pte, pmd, flags);
  2900. }
  2901. #ifndef __PAGETABLE_PUD_FOLDED
  2902. /*
  2903. * Allocate page upper directory.
  2904. * We've already handled the fast-path in-line.
  2905. */
  2906. int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
  2907. {
  2908. pud_t *new = pud_alloc_one(mm, address);
  2909. if (!new)
  2910. return -ENOMEM;
  2911. smp_wmb(); /* See comment in __pte_alloc */
  2912. spin_lock(&mm->page_table_lock);
  2913. if (pgd_present(*pgd)) /* Another has populated it */
  2914. pud_free(mm, new);
  2915. else
  2916. pgd_populate(mm, pgd, new);
  2917. spin_unlock(&mm->page_table_lock);
  2918. return 0;
  2919. }
  2920. #endif /* __PAGETABLE_PUD_FOLDED */
  2921. #ifndef __PAGETABLE_PMD_FOLDED
  2922. /*
  2923. * Allocate page middle directory.
  2924. * We've already handled the fast-path in-line.
  2925. */
  2926. int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
  2927. {
  2928. pmd_t *new = pmd_alloc_one(mm, address);
  2929. if (!new)
  2930. return -ENOMEM;
  2931. smp_wmb(); /* See comment in __pte_alloc */
  2932. spin_lock(&mm->page_table_lock);
  2933. #ifndef __ARCH_HAS_4LEVEL_HACK
  2934. if (pud_present(*pud)) /* Another has populated it */
  2935. pmd_free(mm, new);
  2936. else
  2937. pud_populate(mm, pud, new);
  2938. #else
  2939. if (pgd_present(*pud)) /* Another has populated it */
  2940. pmd_free(mm, new);
  2941. else
  2942. pgd_populate(mm, pud, new);
  2943. #endif /* __ARCH_HAS_4LEVEL_HACK */
  2944. spin_unlock(&mm->page_table_lock);
  2945. return 0;
  2946. }
  2947. #endif /* __PAGETABLE_PMD_FOLDED */
  2948. int make_pages_present(unsigned long addr, unsigned long end)
  2949. {
  2950. int ret, len, write;
  2951. struct vm_area_struct * vma;
  2952. vma = find_vma(current->mm, addr);
  2953. if (!vma)
  2954. return -ENOMEM;
  2955. write = (vma->vm_flags & VM_WRITE) != 0;
  2956. BUG_ON(addr >= end);
  2957. BUG_ON(end > vma->vm_end);
  2958. len = DIV_ROUND_UP(end, PAGE_SIZE) - addr/PAGE_SIZE;
  2959. ret = get_user_pages(current, current->mm, addr,
  2960. len, write, 0, NULL, NULL);
  2961. if (ret < 0)
  2962. return ret;
  2963. return ret == len ? 0 : -EFAULT;
  2964. }
  2965. #if !defined(__HAVE_ARCH_GATE_AREA)
  2966. #if defined(AT_SYSINFO_EHDR)
  2967. static struct vm_area_struct gate_vma;
  2968. static int __init gate_vma_init(void)
  2969. {
  2970. gate_vma.vm_mm = NULL;
  2971. gate_vma.vm_start = FIXADDR_USER_START;
  2972. gate_vma.vm_end = FIXADDR_USER_END;
  2973. gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
  2974. gate_vma.vm_page_prot = __P101;
  2975. /*
  2976. * Make sure the vDSO gets into every core dump.
  2977. * Dumping its contents makes post-mortem fully interpretable later
  2978. * without matching up the same kernel and hardware config to see
  2979. * what PC values meant.
  2980. */
  2981. gate_vma.vm_flags |= VM_ALWAYSDUMP;
  2982. return 0;
  2983. }
  2984. __initcall(gate_vma_init);
  2985. #endif
  2986. struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
  2987. {
  2988. #ifdef AT_SYSINFO_EHDR
  2989. return &gate_vma;
  2990. #else
  2991. return NULL;
  2992. #endif
  2993. }
  2994. int in_gate_area_no_task(unsigned long addr)
  2995. {
  2996. #ifdef AT_SYSINFO_EHDR
  2997. if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
  2998. return 1;
  2999. #endif
  3000. return 0;
  3001. }
  3002. #endif /* __HAVE_ARCH_GATE_AREA */
  3003. static int follow_pte(struct mm_struct *mm, unsigned long address,
  3004. pte_t **ptepp, spinlock_t **ptlp)
  3005. {
  3006. pgd_t *pgd;
  3007. pud_t *pud;
  3008. pmd_t *pmd;
  3009. pte_t *ptep;
  3010. pgd = pgd_offset(mm, address);
  3011. if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
  3012. goto out;
  3013. pud = pud_offset(pgd, address);
  3014. if (pud_none(*pud) || unlikely(pud_bad(*pud)))
  3015. goto out;
  3016. pmd = pmd_offset(pud, address);
  3017. if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
  3018. goto out;
  3019. /* We cannot handle huge page PFN maps. Luckily they don't exist. */
  3020. if (pmd_huge(*pmd))
  3021. goto out;
  3022. ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
  3023. if (!ptep)
  3024. goto out;
  3025. if (!pte_present(*ptep))
  3026. goto unlock;
  3027. *ptepp = ptep;
  3028. return 0;
  3029. unlock:
  3030. pte_unmap_unlock(ptep, *ptlp);
  3031. out:
  3032. return -EINVAL;
  3033. }
  3034. /**
  3035. * follow_pfn - look up PFN at a user virtual address
  3036. * @vma: memory mapping
  3037. * @address: user virtual address
  3038. * @pfn: location to store found PFN
  3039. *
  3040. * Only IO mappings and raw PFN mappings are allowed.
  3041. *
  3042. * Returns zero and the pfn at @pfn on success, -ve otherwise.
  3043. */
  3044. int follow_pfn(struct vm_area_struct *vma, unsigned long address,
  3045. unsigned long *pfn)
  3046. {
  3047. int ret = -EINVAL;
  3048. spinlock_t *ptl;
  3049. pte_t *ptep;
  3050. if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
  3051. return ret;
  3052. ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
  3053. if (ret)
  3054. return ret;
  3055. *pfn = pte_pfn(*ptep);
  3056. pte_unmap_unlock(ptep, ptl);
  3057. return 0;
  3058. }
  3059. EXPORT_SYMBOL(follow_pfn);
  3060. #ifdef CONFIG_HAVE_IOREMAP_PROT
  3061. int follow_phys(struct vm_area_struct *vma,
  3062. unsigned long address, unsigned int flags,
  3063. unsigned long *prot, resource_size_t *phys)
  3064. {
  3065. int ret = -EINVAL;
  3066. pte_t *ptep, pte;
  3067. spinlock_t *ptl;
  3068. if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
  3069. goto out;
  3070. if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
  3071. goto out;
  3072. pte = *ptep;
  3073. if ((flags & FOLL_WRITE) && !pte_write(pte))
  3074. goto unlock;
  3075. *prot = pgprot_val(pte_pgprot(pte));
  3076. *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
  3077. ret = 0;
  3078. unlock:
  3079. pte_unmap_unlock(ptep, ptl);
  3080. out:
  3081. return ret;
  3082. }
  3083. int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
  3084. void *buf, int len, int write)
  3085. {
  3086. resource_size_t phys_addr;
  3087. unsigned long prot = 0;
  3088. void __iomem *maddr;
  3089. int offset = addr & (PAGE_SIZE-1);
  3090. if (follow_phys(vma, addr, write, &prot, &phys_addr))
  3091. return -EINVAL;
  3092. maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot);
  3093. if (write)
  3094. memcpy_toio(maddr + offset, buf, len);
  3095. else
  3096. memcpy_fromio(buf, maddr + offset, len);
  3097. iounmap(maddr);
  3098. return len;
  3099. }
  3100. #endif
  3101. /*
  3102. * Access another process' address space.
  3103. * Source/target buffer must be kernel space,
  3104. * Do not walk the page table directly, use get_user_pages
  3105. */
  3106. int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write)
  3107. {
  3108. struct mm_struct *mm;
  3109. struct vm_area_struct *vma;
  3110. void *old_buf = buf;
  3111. mm = get_task_mm(tsk);
  3112. if (!mm)
  3113. return 0;
  3114. down_read(&mm->mmap_sem);
  3115. /* ignore errors, just check how much was successfully transferred */
  3116. while (len) {
  3117. int bytes, ret, offset;
  3118. void *maddr;
  3119. struct page *page = NULL;
  3120. ret = get_user_pages(tsk, mm, addr, 1,
  3121. write, 1, &page, &vma);
  3122. if (ret <= 0) {
  3123. /*
  3124. * Check if this is a VM_IO | VM_PFNMAP VMA, which
  3125. * we can access using slightly different code.
  3126. */
  3127. #ifdef CONFIG_HAVE_IOREMAP_PROT
  3128. vma = find_vma(mm, addr);
  3129. if (!vma)
  3130. break;
  3131. if (vma->vm_ops && vma->vm_ops->access)
  3132. ret = vma->vm_ops->access(vma, addr, buf,
  3133. len, write);
  3134. if (ret <= 0)
  3135. #endif
  3136. break;
  3137. bytes = ret;
  3138. } else {
  3139. bytes = len;
  3140. offset = addr & (PAGE_SIZE-1);
  3141. if (bytes > PAGE_SIZE-offset)
  3142. bytes = PAGE_SIZE-offset;
  3143. maddr = kmap(page);
  3144. if (write) {
  3145. copy_to_user_page(vma, page, addr,
  3146. maddr + offset, buf, bytes);
  3147. set_page_dirty_lock(page);
  3148. } else {
  3149. copy_from_user_page(vma, page, addr,
  3150. buf, maddr + offset, bytes);
  3151. }
  3152. kunmap(page);
  3153. page_cache_release(page);
  3154. }
  3155. len -= bytes;
  3156. buf += bytes;
  3157. addr += bytes;
  3158. }
  3159. up_read(&mm->mmap_sem);
  3160. mmput(mm);
  3161. return buf - old_buf;
  3162. }
  3163. /*
  3164. * Print the name of a VMA.
  3165. */
  3166. void print_vma_addr(char *prefix, unsigned long ip)
  3167. {
  3168. struct mm_struct *mm = current->mm;
  3169. struct vm_area_struct *vma;
  3170. /*
  3171. * Do not print if we are in atomic
  3172. * contexts (in exception stacks, etc.):
  3173. */
  3174. if (preempt_count())
  3175. return;
  3176. down_read(&mm->mmap_sem);
  3177. vma = find_vma(mm, ip);
  3178. if (vma && vma->vm_file) {
  3179. struct file *f = vma->vm_file;
  3180. char *buf = (char *)__get_free_page(GFP_KERNEL);
  3181. if (buf) {
  3182. char *p, *s;
  3183. p = d_path(&f->f_path, buf, PAGE_SIZE);
  3184. if (IS_ERR(p))
  3185. p = "?";
  3186. s = strrchr(p, '/');
  3187. if (s)
  3188. p = s+1;
  3189. printk("%s%s[%lx+%lx]", prefix, p,
  3190. vma->vm_start,
  3191. vma->vm_end - vma->vm_start);
  3192. free_page((unsigned long)buf);
  3193. }
  3194. }
  3195. up_read(&current->mm->mmap_sem);
  3196. }
  3197. #ifdef CONFIG_PROVE_LOCKING
  3198. void might_fault(void)
  3199. {
  3200. /*
  3201. * Some code (nfs/sunrpc) uses socket ops on kernel memory while
  3202. * holding the mmap_sem, this is safe because kernel memory doesn't
  3203. * get paged out, therefore we'll never actually fault, and the
  3204. * below annotations will generate false positives.
  3205. */
  3206. if (segment_eq(get_fs(), KERNEL_DS))
  3207. return;
  3208. might_sleep();
  3209. /*
  3210. * it would be nicer only to annotate paths which are not under
  3211. * pagefault_disable, however that requires a larger audit and
  3212. * providing helpers like get_user_atomic.
  3213. */
  3214. if (!in_atomic() && current->mm)
  3215. might_lock_read(&current->mm->mmap_sem);
  3216. }
  3217. EXPORT_SYMBOL(might_fault);
  3218. #endif