fault.c 27 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142
  1. /*
  2. * Copyright (C) 1995 Linus Torvalds
  3. * Copyright (C) 2001, 2002 Andi Kleen, SuSE Labs.
  4. * Copyright (C) 2008-2009, Red Hat Inc., Ingo Molnar
  5. */
  6. #include <linux/magic.h> /* STACK_END_MAGIC */
  7. #include <linux/sched.h> /* test_thread_flag(), ... */
  8. #include <linux/kdebug.h> /* oops_begin/end, ... */
  9. #include <linux/module.h> /* search_exception_table */
  10. #include <linux/bootmem.h> /* max_low_pfn */
  11. #include <linux/kprobes.h> /* __kprobes, ... */
  12. #include <linux/mmiotrace.h> /* kmmio_handler, ... */
  13. #include <linux/perf_event.h> /* perf_sw_event */
  14. #include <asm/traps.h> /* dotraplinkage, ... */
  15. #include <asm/pgalloc.h> /* pgd_*(), ... */
  16. #include <asm/kmemcheck.h> /* kmemcheck_*(), ... */
  17. /*
  18. * Page fault error code bits:
  19. *
  20. * bit 0 == 0: no page found 1: protection fault
  21. * bit 1 == 0: read access 1: write access
  22. * bit 2 == 0: kernel-mode access 1: user-mode access
  23. * bit 3 == 1: use of reserved bit detected
  24. * bit 4 == 1: fault was an instruction fetch
  25. */
  26. enum x86_pf_error_code {
  27. PF_PROT = 1 << 0,
  28. PF_WRITE = 1 << 1,
  29. PF_USER = 1 << 2,
  30. PF_RSVD = 1 << 3,
  31. PF_INSTR = 1 << 4,
  32. };
  33. /*
  34. * Returns 0 if mmiotrace is disabled, or if the fault is not
  35. * handled by mmiotrace:
  36. */
  37. static inline int __kprobes
  38. kmmio_fault(struct pt_regs *regs, unsigned long addr)
  39. {
  40. if (unlikely(is_kmmio_active()))
  41. if (kmmio_handler(regs, addr) == 1)
  42. return -1;
  43. return 0;
  44. }
  45. static inline int __kprobes notify_page_fault(struct pt_regs *regs)
  46. {
  47. int ret = 0;
  48. /* kprobe_running() needs smp_processor_id() */
  49. if (kprobes_built_in() && !user_mode_vm(regs)) {
  50. preempt_disable();
  51. if (kprobe_running() && kprobe_fault_handler(regs, 14))
  52. ret = 1;
  53. preempt_enable();
  54. }
  55. return ret;
  56. }
  57. /*
  58. * Prefetch quirks:
  59. *
  60. * 32-bit mode:
  61. *
  62. * Sometimes AMD Athlon/Opteron CPUs report invalid exceptions on prefetch.
  63. * Check that here and ignore it.
  64. *
  65. * 64-bit mode:
  66. *
  67. * Sometimes the CPU reports invalid exceptions on prefetch.
  68. * Check that here and ignore it.
  69. *
  70. * Opcode checker based on code by Richard Brunner.
  71. */
  72. static inline int
  73. check_prefetch_opcode(struct pt_regs *regs, unsigned char *instr,
  74. unsigned char opcode, int *prefetch)
  75. {
  76. unsigned char instr_hi = opcode & 0xf0;
  77. unsigned char instr_lo = opcode & 0x0f;
  78. switch (instr_hi) {
  79. case 0x20:
  80. case 0x30:
  81. /*
  82. * Values 0x26,0x2E,0x36,0x3E are valid x86 prefixes.
  83. * In X86_64 long mode, the CPU will signal invalid
  84. * opcode if some of these prefixes are present so
  85. * X86_64 will never get here anyway
  86. */
  87. return ((instr_lo & 7) == 0x6);
  88. #ifdef CONFIG_X86_64
  89. case 0x40:
  90. /*
  91. * In AMD64 long mode 0x40..0x4F are valid REX prefixes
  92. * Need to figure out under what instruction mode the
  93. * instruction was issued. Could check the LDT for lm,
  94. * but for now it's good enough to assume that long
  95. * mode only uses well known segments or kernel.
  96. */
  97. return (!user_mode(regs)) || (regs->cs == __USER_CS);
  98. #endif
  99. case 0x60:
  100. /* 0x64 thru 0x67 are valid prefixes in all modes. */
  101. return (instr_lo & 0xC) == 0x4;
  102. case 0xF0:
  103. /* 0xF0, 0xF2, 0xF3 are valid prefixes in all modes. */
  104. return !instr_lo || (instr_lo>>1) == 1;
  105. case 0x00:
  106. /* Prefetch instruction is 0x0F0D or 0x0F18 */
  107. if (probe_kernel_address(instr, opcode))
  108. return 0;
  109. *prefetch = (instr_lo == 0xF) &&
  110. (opcode == 0x0D || opcode == 0x18);
  111. return 0;
  112. default:
  113. return 0;
  114. }
  115. }
  116. static int
  117. is_prefetch(struct pt_regs *regs, unsigned long error_code, unsigned long addr)
  118. {
  119. unsigned char *max_instr;
  120. unsigned char *instr;
  121. int prefetch = 0;
  122. /*
  123. * If it was a exec (instruction fetch) fault on NX page, then
  124. * do not ignore the fault:
  125. */
  126. if (error_code & PF_INSTR)
  127. return 0;
  128. instr = (void *)convert_ip_to_linear(current, regs);
  129. max_instr = instr + 15;
  130. if (user_mode(regs) && instr >= (unsigned char *)TASK_SIZE)
  131. return 0;
  132. while (instr < max_instr) {
  133. unsigned char opcode;
  134. if (probe_kernel_address(instr, opcode))
  135. break;
  136. instr++;
  137. if (!check_prefetch_opcode(regs, instr, opcode, &prefetch))
  138. break;
  139. }
  140. return prefetch;
  141. }
  142. static void
  143. force_sig_info_fault(int si_signo, int si_code, unsigned long address,
  144. struct task_struct *tsk)
  145. {
  146. siginfo_t info;
  147. info.si_signo = si_signo;
  148. info.si_errno = 0;
  149. info.si_code = si_code;
  150. info.si_addr = (void __user *)address;
  151. info.si_addr_lsb = si_code == BUS_MCEERR_AR ? PAGE_SHIFT : 0;
  152. force_sig_info(si_signo, &info, tsk);
  153. }
  154. DEFINE_SPINLOCK(pgd_lock);
  155. LIST_HEAD(pgd_list);
  156. #ifdef CONFIG_X86_32
  157. static inline pmd_t *vmalloc_sync_one(pgd_t *pgd, unsigned long address)
  158. {
  159. unsigned index = pgd_index(address);
  160. pgd_t *pgd_k;
  161. pud_t *pud, *pud_k;
  162. pmd_t *pmd, *pmd_k;
  163. pgd += index;
  164. pgd_k = init_mm.pgd + index;
  165. if (!pgd_present(*pgd_k))
  166. return NULL;
  167. /*
  168. * set_pgd(pgd, *pgd_k); here would be useless on PAE
  169. * and redundant with the set_pmd() on non-PAE. As would
  170. * set_pud.
  171. */
  172. pud = pud_offset(pgd, address);
  173. pud_k = pud_offset(pgd_k, address);
  174. if (!pud_present(*pud_k))
  175. return NULL;
  176. pmd = pmd_offset(pud, address);
  177. pmd_k = pmd_offset(pud_k, address);
  178. if (!pmd_present(*pmd_k))
  179. return NULL;
  180. if (!pmd_present(*pmd))
  181. set_pmd(pmd, *pmd_k);
  182. else
  183. BUG_ON(pmd_page(*pmd) != pmd_page(*pmd_k));
  184. return pmd_k;
  185. }
  186. void vmalloc_sync_all(void)
  187. {
  188. unsigned long address;
  189. if (SHARED_KERNEL_PMD)
  190. return;
  191. for (address = VMALLOC_START & PMD_MASK;
  192. address >= TASK_SIZE && address < FIXADDR_TOP;
  193. address += PMD_SIZE) {
  194. unsigned long flags;
  195. struct page *page;
  196. spin_lock_irqsave(&pgd_lock, flags);
  197. list_for_each_entry(page, &pgd_list, lru) {
  198. if (!vmalloc_sync_one(page_address(page), address))
  199. break;
  200. }
  201. spin_unlock_irqrestore(&pgd_lock, flags);
  202. }
  203. }
  204. /*
  205. * 32-bit:
  206. *
  207. * Handle a fault on the vmalloc or module mapping area
  208. */
  209. static noinline __kprobes int vmalloc_fault(unsigned long address)
  210. {
  211. unsigned long pgd_paddr;
  212. pmd_t *pmd_k;
  213. pte_t *pte_k;
  214. /* Make sure we are in vmalloc area: */
  215. if (!(address >= VMALLOC_START && address < VMALLOC_END))
  216. return -1;
  217. /*
  218. * Synchronize this task's top level page-table
  219. * with the 'reference' page table.
  220. *
  221. * Do _not_ use "current" here. We might be inside
  222. * an interrupt in the middle of a task switch..
  223. */
  224. pgd_paddr = read_cr3();
  225. pmd_k = vmalloc_sync_one(__va(pgd_paddr), address);
  226. if (!pmd_k)
  227. return -1;
  228. pte_k = pte_offset_kernel(pmd_k, address);
  229. if (!pte_present(*pte_k))
  230. return -1;
  231. return 0;
  232. }
  233. /*
  234. * Did it hit the DOS screen memory VA from vm86 mode?
  235. */
  236. static inline void
  237. check_v8086_mode(struct pt_regs *regs, unsigned long address,
  238. struct task_struct *tsk)
  239. {
  240. unsigned long bit;
  241. if (!v8086_mode(regs))
  242. return;
  243. bit = (address - 0xA0000) >> PAGE_SHIFT;
  244. if (bit < 32)
  245. tsk->thread.screen_bitmap |= 1 << bit;
  246. }
  247. static bool low_pfn(unsigned long pfn)
  248. {
  249. return pfn < max_low_pfn;
  250. }
  251. static void dump_pagetable(unsigned long address)
  252. {
  253. pgd_t *base = __va(read_cr3());
  254. pgd_t *pgd = &base[pgd_index(address)];
  255. pmd_t *pmd;
  256. pte_t *pte;
  257. #ifdef CONFIG_X86_PAE
  258. printk("*pdpt = %016Lx ", pgd_val(*pgd));
  259. if (!low_pfn(pgd_val(*pgd) >> PAGE_SHIFT) || !pgd_present(*pgd))
  260. goto out;
  261. #endif
  262. pmd = pmd_offset(pud_offset(pgd, address), address);
  263. printk(KERN_CONT "*pde = %0*Lx ", sizeof(*pmd) * 2, (u64)pmd_val(*pmd));
  264. /*
  265. * We must not directly access the pte in the highpte
  266. * case if the page table is located in highmem.
  267. * And let's rather not kmap-atomic the pte, just in case
  268. * it's allocated already:
  269. */
  270. if (!low_pfn(pmd_pfn(*pmd)) || !pmd_present(*pmd) || pmd_large(*pmd))
  271. goto out;
  272. pte = pte_offset_kernel(pmd, address);
  273. printk("*pte = %0*Lx ", sizeof(*pte) * 2, (u64)pte_val(*pte));
  274. out:
  275. printk("\n");
  276. }
  277. #else /* CONFIG_X86_64: */
  278. void vmalloc_sync_all(void)
  279. {
  280. unsigned long address;
  281. for (address = VMALLOC_START & PGDIR_MASK; address <= VMALLOC_END;
  282. address += PGDIR_SIZE) {
  283. const pgd_t *pgd_ref = pgd_offset_k(address);
  284. unsigned long flags;
  285. struct page *page;
  286. if (pgd_none(*pgd_ref))
  287. continue;
  288. spin_lock_irqsave(&pgd_lock, flags);
  289. list_for_each_entry(page, &pgd_list, lru) {
  290. pgd_t *pgd;
  291. pgd = (pgd_t *)page_address(page) + pgd_index(address);
  292. if (pgd_none(*pgd))
  293. set_pgd(pgd, *pgd_ref);
  294. else
  295. BUG_ON(pgd_page_vaddr(*pgd) != pgd_page_vaddr(*pgd_ref));
  296. }
  297. spin_unlock_irqrestore(&pgd_lock, flags);
  298. }
  299. }
  300. /*
  301. * 64-bit:
  302. *
  303. * Handle a fault on the vmalloc area
  304. *
  305. * This assumes no large pages in there.
  306. */
  307. static noinline __kprobes int vmalloc_fault(unsigned long address)
  308. {
  309. pgd_t *pgd, *pgd_ref;
  310. pud_t *pud, *pud_ref;
  311. pmd_t *pmd, *pmd_ref;
  312. pte_t *pte, *pte_ref;
  313. /* Make sure we are in vmalloc area: */
  314. if (!(address >= VMALLOC_START && address < VMALLOC_END))
  315. return -1;
  316. /*
  317. * Copy kernel mappings over when needed. This can also
  318. * happen within a race in page table update. In the later
  319. * case just flush:
  320. */
  321. pgd = pgd_offset(current->active_mm, address);
  322. pgd_ref = pgd_offset_k(address);
  323. if (pgd_none(*pgd_ref))
  324. return -1;
  325. if (pgd_none(*pgd))
  326. set_pgd(pgd, *pgd_ref);
  327. else
  328. BUG_ON(pgd_page_vaddr(*pgd) != pgd_page_vaddr(*pgd_ref));
  329. /*
  330. * Below here mismatches are bugs because these lower tables
  331. * are shared:
  332. */
  333. pud = pud_offset(pgd, address);
  334. pud_ref = pud_offset(pgd_ref, address);
  335. if (pud_none(*pud_ref))
  336. return -1;
  337. if (pud_none(*pud) || pud_page_vaddr(*pud) != pud_page_vaddr(*pud_ref))
  338. BUG();
  339. pmd = pmd_offset(pud, address);
  340. pmd_ref = pmd_offset(pud_ref, address);
  341. if (pmd_none(*pmd_ref))
  342. return -1;
  343. if (pmd_none(*pmd) || pmd_page(*pmd) != pmd_page(*pmd_ref))
  344. BUG();
  345. pte_ref = pte_offset_kernel(pmd_ref, address);
  346. if (!pte_present(*pte_ref))
  347. return -1;
  348. pte = pte_offset_kernel(pmd, address);
  349. /*
  350. * Don't use pte_page here, because the mappings can point
  351. * outside mem_map, and the NUMA hash lookup cannot handle
  352. * that:
  353. */
  354. if (!pte_present(*pte) || pte_pfn(*pte) != pte_pfn(*pte_ref))
  355. BUG();
  356. return 0;
  357. }
  358. static const char errata93_warning[] =
  359. KERN_ERR
  360. "******* Your BIOS seems to not contain a fix for K8 errata #93\n"
  361. "******* Working around it, but it may cause SEGVs or burn power.\n"
  362. "******* Please consider a BIOS update.\n"
  363. "******* Disabling USB legacy in the BIOS may also help.\n";
  364. /*
  365. * No vm86 mode in 64-bit mode:
  366. */
  367. static inline void
  368. check_v8086_mode(struct pt_regs *regs, unsigned long address,
  369. struct task_struct *tsk)
  370. {
  371. }
  372. static int bad_address(void *p)
  373. {
  374. unsigned long dummy;
  375. return probe_kernel_address((unsigned long *)p, dummy);
  376. }
  377. static void dump_pagetable(unsigned long address)
  378. {
  379. pgd_t *base = __va(read_cr3() & PHYSICAL_PAGE_MASK);
  380. pgd_t *pgd = base + pgd_index(address);
  381. pud_t *pud;
  382. pmd_t *pmd;
  383. pte_t *pte;
  384. if (bad_address(pgd))
  385. goto bad;
  386. printk("PGD %lx ", pgd_val(*pgd));
  387. if (!pgd_present(*pgd))
  388. goto out;
  389. pud = pud_offset(pgd, address);
  390. if (bad_address(pud))
  391. goto bad;
  392. printk("PUD %lx ", pud_val(*pud));
  393. if (!pud_present(*pud) || pud_large(*pud))
  394. goto out;
  395. pmd = pmd_offset(pud, address);
  396. if (bad_address(pmd))
  397. goto bad;
  398. printk("PMD %lx ", pmd_val(*pmd));
  399. if (!pmd_present(*pmd) || pmd_large(*pmd))
  400. goto out;
  401. pte = pte_offset_kernel(pmd, address);
  402. if (bad_address(pte))
  403. goto bad;
  404. printk("PTE %lx", pte_val(*pte));
  405. out:
  406. printk("\n");
  407. return;
  408. bad:
  409. printk("BAD\n");
  410. }
  411. #endif /* CONFIG_X86_64 */
  412. /*
  413. * Workaround for K8 erratum #93 & buggy BIOS.
  414. *
  415. * BIOS SMM functions are required to use a specific workaround
  416. * to avoid corruption of the 64bit RIP register on C stepping K8.
  417. *
  418. * A lot of BIOS that didn't get tested properly miss this.
  419. *
  420. * The OS sees this as a page fault with the upper 32bits of RIP cleared.
  421. * Try to work around it here.
  422. *
  423. * Note we only handle faults in kernel here.
  424. * Does nothing on 32-bit.
  425. */
  426. static int is_errata93(struct pt_regs *regs, unsigned long address)
  427. {
  428. #ifdef CONFIG_X86_64
  429. if (address != regs->ip)
  430. return 0;
  431. if ((address >> 32) != 0)
  432. return 0;
  433. address |= 0xffffffffUL << 32;
  434. if ((address >= (u64)_stext && address <= (u64)_etext) ||
  435. (address >= MODULES_VADDR && address <= MODULES_END)) {
  436. printk_once(errata93_warning);
  437. regs->ip = address;
  438. return 1;
  439. }
  440. #endif
  441. return 0;
  442. }
  443. /*
  444. * Work around K8 erratum #100 K8 in compat mode occasionally jumps
  445. * to illegal addresses >4GB.
  446. *
  447. * We catch this in the page fault handler because these addresses
  448. * are not reachable. Just detect this case and return. Any code
  449. * segment in LDT is compatibility mode.
  450. */
  451. static int is_errata100(struct pt_regs *regs, unsigned long address)
  452. {
  453. #ifdef CONFIG_X86_64
  454. if ((regs->cs == __USER32_CS || (regs->cs & (1<<2))) && (address >> 32))
  455. return 1;
  456. #endif
  457. return 0;
  458. }
  459. static int is_f00f_bug(struct pt_regs *regs, unsigned long address)
  460. {
  461. #ifdef CONFIG_X86_F00F_BUG
  462. unsigned long nr;
  463. /*
  464. * Pentium F0 0F C7 C8 bug workaround:
  465. */
  466. if (boot_cpu_data.f00f_bug) {
  467. nr = (address - idt_descr.address) >> 3;
  468. if (nr == 6) {
  469. do_invalid_op(regs, 0);
  470. return 1;
  471. }
  472. }
  473. #endif
  474. return 0;
  475. }
  476. static const char nx_warning[] = KERN_CRIT
  477. "kernel tried to execute NX-protected page - exploit attempt? (uid: %d)\n";
  478. static void
  479. show_fault_oops(struct pt_regs *regs, unsigned long error_code,
  480. unsigned long address)
  481. {
  482. if (!oops_may_print())
  483. return;
  484. if (error_code & PF_INSTR) {
  485. unsigned int level;
  486. pte_t *pte = lookup_address(address, &level);
  487. if (pte && pte_present(*pte) && !pte_exec(*pte))
  488. printk(nx_warning, current_uid());
  489. }
  490. printk(KERN_ALERT "BUG: unable to handle kernel ");
  491. if (address < PAGE_SIZE)
  492. printk(KERN_CONT "NULL pointer dereference");
  493. else
  494. printk(KERN_CONT "paging request");
  495. printk(KERN_CONT " at %p\n", (void *) address);
  496. printk(KERN_ALERT "IP:");
  497. printk_address(regs->ip, 1);
  498. dump_pagetable(address);
  499. }
  500. static noinline void
  501. pgtable_bad(struct pt_regs *regs, unsigned long error_code,
  502. unsigned long address)
  503. {
  504. struct task_struct *tsk;
  505. unsigned long flags;
  506. int sig;
  507. flags = oops_begin();
  508. tsk = current;
  509. sig = SIGKILL;
  510. printk(KERN_ALERT "%s: Corrupted page table at address %lx\n",
  511. tsk->comm, address);
  512. dump_pagetable(address);
  513. tsk->thread.cr2 = address;
  514. tsk->thread.trap_no = 14;
  515. tsk->thread.error_code = error_code;
  516. if (__die("Bad pagetable", regs, error_code))
  517. sig = 0;
  518. oops_end(flags, regs, sig);
  519. }
  520. static noinline void
  521. no_context(struct pt_regs *regs, unsigned long error_code,
  522. unsigned long address)
  523. {
  524. struct task_struct *tsk = current;
  525. unsigned long *stackend;
  526. unsigned long flags;
  527. int sig;
  528. /* Are we prepared to handle this kernel fault? */
  529. if (fixup_exception(regs))
  530. return;
  531. /*
  532. * 32-bit:
  533. *
  534. * Valid to do another page fault here, because if this fault
  535. * had been triggered by is_prefetch fixup_exception would have
  536. * handled it.
  537. *
  538. * 64-bit:
  539. *
  540. * Hall of shame of CPU/BIOS bugs.
  541. */
  542. if (is_prefetch(regs, error_code, address))
  543. return;
  544. if (is_errata93(regs, address))
  545. return;
  546. /*
  547. * Oops. The kernel tried to access some bad page. We'll have to
  548. * terminate things with extreme prejudice:
  549. */
  550. flags = oops_begin();
  551. show_fault_oops(regs, error_code, address);
  552. stackend = end_of_stack(tsk);
  553. if (tsk != &init_task && *stackend != STACK_END_MAGIC)
  554. printk(KERN_ALERT "Thread overran stack, or stack corrupted\n");
  555. tsk->thread.cr2 = address;
  556. tsk->thread.trap_no = 14;
  557. tsk->thread.error_code = error_code;
  558. sig = SIGKILL;
  559. if (__die("Oops", regs, error_code))
  560. sig = 0;
  561. /* Executive summary in case the body of the oops scrolled away */
  562. printk(KERN_EMERG "CR2: %016lx\n", address);
  563. oops_end(flags, regs, sig);
  564. }
  565. /*
  566. * Print out info about fatal segfaults, if the show_unhandled_signals
  567. * sysctl is set:
  568. */
  569. static inline void
  570. show_signal_msg(struct pt_regs *regs, unsigned long error_code,
  571. unsigned long address, struct task_struct *tsk)
  572. {
  573. if (!unhandled_signal(tsk, SIGSEGV))
  574. return;
  575. if (!printk_ratelimit())
  576. return;
  577. printk("%s%s[%d]: segfault at %lx ip %p sp %p error %lx",
  578. task_pid_nr(tsk) > 1 ? KERN_INFO : KERN_EMERG,
  579. tsk->comm, task_pid_nr(tsk), address,
  580. (void *)regs->ip, (void *)regs->sp, error_code);
  581. print_vma_addr(KERN_CONT " in ", regs->ip);
  582. printk(KERN_CONT "\n");
  583. }
  584. static void
  585. __bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
  586. unsigned long address, int si_code)
  587. {
  588. struct task_struct *tsk = current;
  589. /* User mode accesses just cause a SIGSEGV */
  590. if (error_code & PF_USER) {
  591. /*
  592. * It's possible to have interrupts off here:
  593. */
  594. local_irq_enable();
  595. /*
  596. * Valid to do another page fault here because this one came
  597. * from user space:
  598. */
  599. if (is_prefetch(regs, error_code, address))
  600. return;
  601. if (is_errata100(regs, address))
  602. return;
  603. if (unlikely(show_unhandled_signals))
  604. show_signal_msg(regs, error_code, address, tsk);
  605. /* Kernel addresses are always protection faults: */
  606. tsk->thread.cr2 = address;
  607. tsk->thread.error_code = error_code | (address >= TASK_SIZE);
  608. tsk->thread.trap_no = 14;
  609. force_sig_info_fault(SIGSEGV, si_code, address, tsk);
  610. return;
  611. }
  612. if (is_f00f_bug(regs, address))
  613. return;
  614. no_context(regs, error_code, address);
  615. }
  616. static noinline void
  617. bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
  618. unsigned long address)
  619. {
  620. __bad_area_nosemaphore(regs, error_code, address, SEGV_MAPERR);
  621. }
  622. static void
  623. __bad_area(struct pt_regs *regs, unsigned long error_code,
  624. unsigned long address, int si_code)
  625. {
  626. struct mm_struct *mm = current->mm;
  627. /*
  628. * Something tried to access memory that isn't in our memory map..
  629. * Fix it, but check if it's kernel or user first..
  630. */
  631. up_read(&mm->mmap_sem);
  632. __bad_area_nosemaphore(regs, error_code, address, si_code);
  633. }
  634. static noinline void
  635. bad_area(struct pt_regs *regs, unsigned long error_code, unsigned long address)
  636. {
  637. __bad_area(regs, error_code, address, SEGV_MAPERR);
  638. }
  639. static noinline void
  640. bad_area_access_error(struct pt_regs *regs, unsigned long error_code,
  641. unsigned long address)
  642. {
  643. __bad_area(regs, error_code, address, SEGV_ACCERR);
  644. }
  645. /* TODO: fixup for "mm-invoke-oom-killer-from-page-fault.patch" */
  646. static void
  647. out_of_memory(struct pt_regs *regs, unsigned long error_code,
  648. unsigned long address)
  649. {
  650. /*
  651. * We ran out of memory, call the OOM killer, and return the userspace
  652. * (which will retry the fault, or kill us if we got oom-killed):
  653. */
  654. up_read(&current->mm->mmap_sem);
  655. pagefault_out_of_memory();
  656. }
  657. static void
  658. do_sigbus(struct pt_regs *regs, unsigned long error_code, unsigned long address,
  659. unsigned int fault)
  660. {
  661. struct task_struct *tsk = current;
  662. struct mm_struct *mm = tsk->mm;
  663. int code = BUS_ADRERR;
  664. up_read(&mm->mmap_sem);
  665. /* Kernel mode? Handle exceptions or die: */
  666. if (!(error_code & PF_USER)) {
  667. no_context(regs, error_code, address);
  668. return;
  669. }
  670. /* User-space => ok to do another page fault: */
  671. if (is_prefetch(regs, error_code, address))
  672. return;
  673. tsk->thread.cr2 = address;
  674. tsk->thread.error_code = error_code;
  675. tsk->thread.trap_no = 14;
  676. #ifdef CONFIG_MEMORY_FAILURE
  677. if (fault & VM_FAULT_HWPOISON) {
  678. printk(KERN_ERR
  679. "MCE: Killing %s:%d due to hardware memory corruption fault at %lx\n",
  680. tsk->comm, tsk->pid, address);
  681. code = BUS_MCEERR_AR;
  682. }
  683. #endif
  684. force_sig_info_fault(SIGBUS, code, address, tsk);
  685. }
  686. static noinline void
  687. mm_fault_error(struct pt_regs *regs, unsigned long error_code,
  688. unsigned long address, unsigned int fault)
  689. {
  690. if (fault & VM_FAULT_OOM) {
  691. out_of_memory(regs, error_code, address);
  692. } else {
  693. if (fault & (VM_FAULT_SIGBUS|VM_FAULT_HWPOISON))
  694. do_sigbus(regs, error_code, address, fault);
  695. else
  696. BUG();
  697. }
  698. }
  699. static int spurious_fault_check(unsigned long error_code, pte_t *pte)
  700. {
  701. if ((error_code & PF_WRITE) && !pte_write(*pte))
  702. return 0;
  703. if ((error_code & PF_INSTR) && !pte_exec(*pte))
  704. return 0;
  705. return 1;
  706. }
  707. /*
  708. * Handle a spurious fault caused by a stale TLB entry.
  709. *
  710. * This allows us to lazily refresh the TLB when increasing the
  711. * permissions of a kernel page (RO -> RW or NX -> X). Doing it
  712. * eagerly is very expensive since that implies doing a full
  713. * cross-processor TLB flush, even if no stale TLB entries exist
  714. * on other processors.
  715. *
  716. * There are no security implications to leaving a stale TLB when
  717. * increasing the permissions on a page.
  718. */
  719. static noinline __kprobes int
  720. spurious_fault(unsigned long error_code, unsigned long address)
  721. {
  722. pgd_t *pgd;
  723. pud_t *pud;
  724. pmd_t *pmd;
  725. pte_t *pte;
  726. int ret;
  727. /* Reserved-bit violation or user access to kernel space? */
  728. if (error_code & (PF_USER | PF_RSVD))
  729. return 0;
  730. pgd = init_mm.pgd + pgd_index(address);
  731. if (!pgd_present(*pgd))
  732. return 0;
  733. pud = pud_offset(pgd, address);
  734. if (!pud_present(*pud))
  735. return 0;
  736. if (pud_large(*pud))
  737. return spurious_fault_check(error_code, (pte_t *) pud);
  738. pmd = pmd_offset(pud, address);
  739. if (!pmd_present(*pmd))
  740. return 0;
  741. if (pmd_large(*pmd))
  742. return spurious_fault_check(error_code, (pte_t *) pmd);
  743. pte = pte_offset_kernel(pmd, address);
  744. if (!pte_present(*pte))
  745. return 0;
  746. ret = spurious_fault_check(error_code, pte);
  747. if (!ret)
  748. return 0;
  749. /*
  750. * Make sure we have permissions in PMD.
  751. * If not, then there's a bug in the page tables:
  752. */
  753. ret = spurious_fault_check(error_code, (pte_t *) pmd);
  754. WARN_ONCE(!ret, "PMD has incorrect permission bits\n");
  755. return ret;
  756. }
  757. int show_unhandled_signals = 1;
  758. static inline int
  759. access_error(unsigned long error_code, int write, struct vm_area_struct *vma)
  760. {
  761. if (write) {
  762. /* write, present and write, not present: */
  763. if (unlikely(!(vma->vm_flags & VM_WRITE)))
  764. return 1;
  765. return 0;
  766. }
  767. /* read, present: */
  768. if (unlikely(error_code & PF_PROT))
  769. return 1;
  770. /* read, not present: */
  771. if (unlikely(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE))))
  772. return 1;
  773. return 0;
  774. }
  775. static int fault_in_kernel_space(unsigned long address)
  776. {
  777. return address >= TASK_SIZE_MAX;
  778. }
  779. /*
  780. * This routine handles page faults. It determines the address,
  781. * and the problem, and then passes it off to one of the appropriate
  782. * routines.
  783. */
  784. dotraplinkage void __kprobes
  785. do_page_fault(struct pt_regs *regs, unsigned long error_code)
  786. {
  787. struct vm_area_struct *vma;
  788. struct task_struct *tsk;
  789. unsigned long address;
  790. struct mm_struct *mm;
  791. int write;
  792. int fault;
  793. tsk = current;
  794. mm = tsk->mm;
  795. /* Get the faulting address: */
  796. address = read_cr2();
  797. /*
  798. * Detect and handle instructions that would cause a page fault for
  799. * both a tracked kernel page and a userspace page.
  800. */
  801. if (kmemcheck_active(regs))
  802. kmemcheck_hide(regs);
  803. prefetchw(&mm->mmap_sem);
  804. if (unlikely(kmmio_fault(regs, address)))
  805. return;
  806. /*
  807. * We fault-in kernel-space virtual memory on-demand. The
  808. * 'reference' page table is init_mm.pgd.
  809. *
  810. * NOTE! We MUST NOT take any locks for this case. We may
  811. * be in an interrupt or a critical region, and should
  812. * only copy the information from the master page table,
  813. * nothing more.
  814. *
  815. * This verifies that the fault happens in kernel space
  816. * (error_code & 4) == 0, and that the fault was not a
  817. * protection error (error_code & 9) == 0.
  818. */
  819. if (unlikely(fault_in_kernel_space(address))) {
  820. if (!(error_code & (PF_RSVD | PF_USER | PF_PROT))) {
  821. if (vmalloc_fault(address) >= 0)
  822. return;
  823. if (kmemcheck_fault(regs, address, error_code))
  824. return;
  825. }
  826. /* Can handle a stale RO->RW TLB: */
  827. if (spurious_fault(error_code, address))
  828. return;
  829. /* kprobes don't want to hook the spurious faults: */
  830. if (notify_page_fault(regs))
  831. return;
  832. /*
  833. * Don't take the mm semaphore here. If we fixup a prefetch
  834. * fault we could otherwise deadlock:
  835. */
  836. bad_area_nosemaphore(regs, error_code, address);
  837. return;
  838. }
  839. /* kprobes don't want to hook the spurious faults: */
  840. if (unlikely(notify_page_fault(regs)))
  841. return;
  842. /*
  843. * It's safe to allow irq's after cr2 has been saved and the
  844. * vmalloc fault has been handled.
  845. *
  846. * User-mode registers count as a user access even for any
  847. * potential system fault or CPU buglet:
  848. */
  849. if (user_mode_vm(regs)) {
  850. local_irq_enable();
  851. error_code |= PF_USER;
  852. } else {
  853. if (regs->flags & X86_EFLAGS_IF)
  854. local_irq_enable();
  855. }
  856. if (unlikely(error_code & PF_RSVD))
  857. pgtable_bad(regs, error_code, address);
  858. perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, 0, regs, address);
  859. /*
  860. * If we're in an interrupt, have no user context or are running
  861. * in an atomic region then we must not take the fault:
  862. */
  863. if (unlikely(in_atomic() || !mm)) {
  864. bad_area_nosemaphore(regs, error_code, address);
  865. return;
  866. }
  867. /*
  868. * When running in the kernel we expect faults to occur only to
  869. * addresses in user space. All other faults represent errors in
  870. * the kernel and should generate an OOPS. Unfortunately, in the
  871. * case of an erroneous fault occurring in a code path which already
  872. * holds mmap_sem we will deadlock attempting to validate the fault
  873. * against the address space. Luckily the kernel only validly
  874. * references user space from well defined areas of code, which are
  875. * listed in the exceptions table.
  876. *
  877. * As the vast majority of faults will be valid we will only perform
  878. * the source reference check when there is a possibility of a
  879. * deadlock. Attempt to lock the address space, if we cannot we then
  880. * validate the source. If this is invalid we can skip the address
  881. * space check, thus avoiding the deadlock:
  882. */
  883. if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
  884. if ((error_code & PF_USER) == 0 &&
  885. !search_exception_tables(regs->ip)) {
  886. bad_area_nosemaphore(regs, error_code, address);
  887. return;
  888. }
  889. down_read(&mm->mmap_sem);
  890. } else {
  891. /*
  892. * The above down_read_trylock() might have succeeded in
  893. * which case we'll have missed the might_sleep() from
  894. * down_read():
  895. */
  896. might_sleep();
  897. }
  898. vma = find_vma(mm, address);
  899. if (unlikely(!vma)) {
  900. bad_area(regs, error_code, address);
  901. return;
  902. }
  903. if (likely(vma->vm_start <= address))
  904. goto good_area;
  905. if (unlikely(!(vma->vm_flags & VM_GROWSDOWN))) {
  906. bad_area(regs, error_code, address);
  907. return;
  908. }
  909. if (error_code & PF_USER) {
  910. /*
  911. * Accessing the stack below %sp is always a bug.
  912. * The large cushion allows instructions like enter
  913. * and pusha to work. ("enter $65535, $31" pushes
  914. * 32 pointers and then decrements %sp by 65535.)
  915. */
  916. if (unlikely(address + 65536 + 32 * sizeof(unsigned long) < regs->sp)) {
  917. bad_area(regs, error_code, address);
  918. return;
  919. }
  920. }
  921. if (unlikely(expand_stack(vma, address))) {
  922. bad_area(regs, error_code, address);
  923. return;
  924. }
  925. /*
  926. * Ok, we have a good vm_area for this memory access, so
  927. * we can handle it..
  928. */
  929. good_area:
  930. write = error_code & PF_WRITE;
  931. if (unlikely(access_error(error_code, write, vma))) {
  932. bad_area_access_error(regs, error_code, address);
  933. return;
  934. }
  935. /*
  936. * If for any reason at all we couldn't handle the fault,
  937. * make sure we exit gracefully rather than endlessly redo
  938. * the fault:
  939. */
  940. fault = handle_mm_fault(mm, vma, address, write ? FAULT_FLAG_WRITE : 0);
  941. if (unlikely(fault & VM_FAULT_ERROR)) {
  942. mm_fault_error(regs, error_code, address, fault);
  943. return;
  944. }
  945. if (fault & VM_FAULT_MAJOR) {
  946. tsk->maj_flt++;
  947. perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, 0,
  948. regs, address);
  949. } else {
  950. tsk->min_flt++;
  951. perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, 0,
  952. regs, address);
  953. }
  954. check_v8086_mode(regs, address, tsk);
  955. up_read(&mm->mmap_sem);
  956. }