i8259.c 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598
  1. /*
  2. * 8259 interrupt controller emulation
  3. *
  4. * Copyright (c) 2003-2004 Fabrice Bellard
  5. * Copyright (c) 2007 Intel Corporation
  6. * Copyright 2009 Red Hat, Inc. and/or its affilates.
  7. *
  8. * Permission is hereby granted, free of charge, to any person obtaining a copy
  9. * of this software and associated documentation files (the "Software"), to deal
  10. * in the Software without restriction, including without limitation the rights
  11. * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  12. * copies of the Software, and to permit persons to whom the Software is
  13. * furnished to do so, subject to the following conditions:
  14. *
  15. * The above copyright notice and this permission notice shall be included in
  16. * all copies or substantial portions of the Software.
  17. *
  18. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  19. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  20. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  21. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  22. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  23. * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
  24. * THE SOFTWARE.
  25. * Authors:
  26. * Yaozu (Eddie) Dong <Eddie.dong@intel.com>
  27. * Port from Qemu.
  28. */
  29. #include <linux/mm.h>
  30. #include <linux/slab.h>
  31. #include <linux/bitops.h>
  32. #include "irq.h"
  33. #include <linux/kvm_host.h>
  34. #include "trace.h"
  35. static void pic_irq_request(struct kvm *kvm, int level);
  36. static void pic_lock(struct kvm_pic *s)
  37. __acquires(&s->lock)
  38. {
  39. raw_spin_lock(&s->lock);
  40. }
  41. static void pic_unlock(struct kvm_pic *s)
  42. __releases(&s->lock)
  43. {
  44. bool wakeup = s->wakeup_needed;
  45. struct kvm_vcpu *vcpu, *found = NULL;
  46. int i;
  47. s->wakeup_needed = false;
  48. raw_spin_unlock(&s->lock);
  49. if (wakeup) {
  50. kvm_for_each_vcpu(i, vcpu, s->kvm) {
  51. if (kvm_apic_accept_pic_intr(vcpu)) {
  52. found = vcpu;
  53. break;
  54. }
  55. }
  56. if (!found)
  57. found = s->kvm->bsp_vcpu;
  58. if (!found)
  59. return;
  60. kvm_vcpu_kick(found);
  61. }
  62. }
  63. static void pic_clear_isr(struct kvm_kpic_state *s, int irq)
  64. {
  65. s->isr &= ~(1 << irq);
  66. s->isr_ack |= (1 << irq);
  67. if (s != &s->pics_state->pics[0])
  68. irq += 8;
  69. /*
  70. * We are dropping lock while calling ack notifiers since ack
  71. * notifier callbacks for assigned devices call into PIC recursively.
  72. * Other interrupt may be delivered to PIC while lock is dropped but
  73. * it should be safe since PIC state is already updated at this stage.
  74. */
  75. pic_unlock(s->pics_state);
  76. kvm_notify_acked_irq(s->pics_state->kvm, SELECT_PIC(irq), irq);
  77. pic_lock(s->pics_state);
  78. }
  79. void kvm_pic_clear_isr_ack(struct kvm *kvm)
  80. {
  81. struct kvm_pic *s = pic_irqchip(kvm);
  82. pic_lock(s);
  83. s->pics[0].isr_ack = 0xff;
  84. s->pics[1].isr_ack = 0xff;
  85. pic_unlock(s);
  86. }
  87. /*
  88. * set irq level. If an edge is detected, then the IRR is set to 1
  89. */
  90. static inline int pic_set_irq1(struct kvm_kpic_state *s, int irq, int level)
  91. {
  92. int mask, ret = 1;
  93. mask = 1 << irq;
  94. if (s->elcr & mask) /* level triggered */
  95. if (level) {
  96. ret = !(s->irr & mask);
  97. s->irr |= mask;
  98. s->last_irr |= mask;
  99. } else {
  100. s->irr &= ~mask;
  101. s->last_irr &= ~mask;
  102. }
  103. else /* edge triggered */
  104. if (level) {
  105. if ((s->last_irr & mask) == 0) {
  106. ret = !(s->irr & mask);
  107. s->irr |= mask;
  108. }
  109. s->last_irr |= mask;
  110. } else
  111. s->last_irr &= ~mask;
  112. return (s->imr & mask) ? -1 : ret;
  113. }
  114. /*
  115. * return the highest priority found in mask (highest = smallest
  116. * number). Return 8 if no irq
  117. */
  118. static inline int get_priority(struct kvm_kpic_state *s, int mask)
  119. {
  120. int priority;
  121. if (mask == 0)
  122. return 8;
  123. priority = 0;
  124. while ((mask & (1 << ((priority + s->priority_add) & 7))) == 0)
  125. priority++;
  126. return priority;
  127. }
  128. /*
  129. * return the pic wanted interrupt. return -1 if none
  130. */
  131. static int pic_get_irq(struct kvm_kpic_state *s)
  132. {
  133. int mask, cur_priority, priority;
  134. mask = s->irr & ~s->imr;
  135. priority = get_priority(s, mask);
  136. if (priority == 8)
  137. return -1;
  138. /*
  139. * compute current priority. If special fully nested mode on the
  140. * master, the IRQ coming from the slave is not taken into account
  141. * for the priority computation.
  142. */
  143. mask = s->isr;
  144. if (s->special_fully_nested_mode && s == &s->pics_state->pics[0])
  145. mask &= ~(1 << 2);
  146. cur_priority = get_priority(s, mask);
  147. if (priority < cur_priority)
  148. /*
  149. * higher priority found: an irq should be generated
  150. */
  151. return (priority + s->priority_add) & 7;
  152. else
  153. return -1;
  154. }
  155. /*
  156. * raise irq to CPU if necessary. must be called every time the active
  157. * irq may change
  158. */
  159. static void pic_update_irq(struct kvm_pic *s)
  160. {
  161. int irq2, irq;
  162. irq2 = pic_get_irq(&s->pics[1]);
  163. if (irq2 >= 0) {
  164. /*
  165. * if irq request by slave pic, signal master PIC
  166. */
  167. pic_set_irq1(&s->pics[0], 2, 1);
  168. pic_set_irq1(&s->pics[0], 2, 0);
  169. }
  170. irq = pic_get_irq(&s->pics[0]);
  171. pic_irq_request(s->kvm, irq >= 0);
  172. }
  173. void kvm_pic_update_irq(struct kvm_pic *s)
  174. {
  175. pic_lock(s);
  176. pic_update_irq(s);
  177. pic_unlock(s);
  178. }
  179. int kvm_pic_set_irq(void *opaque, int irq, int level)
  180. {
  181. struct kvm_pic *s = opaque;
  182. int ret = -1;
  183. pic_lock(s);
  184. if (irq >= 0 && irq < PIC_NUM_PINS) {
  185. ret = pic_set_irq1(&s->pics[irq >> 3], irq & 7, level);
  186. pic_update_irq(s);
  187. trace_kvm_pic_set_irq(irq >> 3, irq & 7, s->pics[irq >> 3].elcr,
  188. s->pics[irq >> 3].imr, ret == 0);
  189. }
  190. pic_unlock(s);
  191. return ret;
  192. }
  193. /*
  194. * acknowledge interrupt 'irq'
  195. */
  196. static inline void pic_intack(struct kvm_kpic_state *s, int irq)
  197. {
  198. s->isr |= 1 << irq;
  199. /*
  200. * We don't clear a level sensitive interrupt here
  201. */
  202. if (!(s->elcr & (1 << irq)))
  203. s->irr &= ~(1 << irq);
  204. if (s->auto_eoi) {
  205. if (s->rotate_on_auto_eoi)
  206. s->priority_add = (irq + 1) & 7;
  207. pic_clear_isr(s, irq);
  208. }
  209. }
  210. int kvm_pic_read_irq(struct kvm *kvm)
  211. {
  212. int irq, irq2, intno;
  213. struct kvm_pic *s = pic_irqchip(kvm);
  214. pic_lock(s);
  215. irq = pic_get_irq(&s->pics[0]);
  216. if (irq >= 0) {
  217. pic_intack(&s->pics[0], irq);
  218. if (irq == 2) {
  219. irq2 = pic_get_irq(&s->pics[1]);
  220. if (irq2 >= 0)
  221. pic_intack(&s->pics[1], irq2);
  222. else
  223. /*
  224. * spurious IRQ on slave controller
  225. */
  226. irq2 = 7;
  227. intno = s->pics[1].irq_base + irq2;
  228. irq = irq2 + 8;
  229. } else
  230. intno = s->pics[0].irq_base + irq;
  231. } else {
  232. /*
  233. * spurious IRQ on host controller
  234. */
  235. irq = 7;
  236. intno = s->pics[0].irq_base + irq;
  237. }
  238. pic_update_irq(s);
  239. pic_unlock(s);
  240. return intno;
  241. }
  242. void kvm_pic_reset(struct kvm_kpic_state *s)
  243. {
  244. int irq;
  245. struct kvm_vcpu *vcpu0 = s->pics_state->kvm->bsp_vcpu;
  246. u8 irr = s->irr, isr = s->imr;
  247. s->last_irr = 0;
  248. s->irr = 0;
  249. s->imr = 0;
  250. s->isr = 0;
  251. s->isr_ack = 0xff;
  252. s->priority_add = 0;
  253. s->irq_base = 0;
  254. s->read_reg_select = 0;
  255. s->poll = 0;
  256. s->special_mask = 0;
  257. s->init_state = 0;
  258. s->auto_eoi = 0;
  259. s->rotate_on_auto_eoi = 0;
  260. s->special_fully_nested_mode = 0;
  261. s->init4 = 0;
  262. for (irq = 0; irq < PIC_NUM_PINS/2; irq++) {
  263. if (vcpu0 && kvm_apic_accept_pic_intr(vcpu0))
  264. if (irr & (1 << irq) || isr & (1 << irq)) {
  265. pic_clear_isr(s, irq);
  266. }
  267. }
  268. }
  269. static void pic_ioport_write(void *opaque, u32 addr, u32 val)
  270. {
  271. struct kvm_kpic_state *s = opaque;
  272. int priority, cmd, irq;
  273. addr &= 1;
  274. if (addr == 0) {
  275. if (val & 0x10) {
  276. kvm_pic_reset(s); /* init */
  277. /*
  278. * deassert a pending interrupt
  279. */
  280. pic_irq_request(s->pics_state->kvm, 0);
  281. s->init_state = 1;
  282. s->init4 = val & 1;
  283. if (val & 0x02)
  284. printk(KERN_ERR "single mode not supported");
  285. if (val & 0x08)
  286. printk(KERN_ERR
  287. "level sensitive irq not supported");
  288. } else if (val & 0x08) {
  289. if (val & 0x04)
  290. s->poll = 1;
  291. if (val & 0x02)
  292. s->read_reg_select = val & 1;
  293. if (val & 0x40)
  294. s->special_mask = (val >> 5) & 1;
  295. } else {
  296. cmd = val >> 5;
  297. switch (cmd) {
  298. case 0:
  299. case 4:
  300. s->rotate_on_auto_eoi = cmd >> 2;
  301. break;
  302. case 1: /* end of interrupt */
  303. case 5:
  304. priority = get_priority(s, s->isr);
  305. if (priority != 8) {
  306. irq = (priority + s->priority_add) & 7;
  307. if (cmd == 5)
  308. s->priority_add = (irq + 1) & 7;
  309. pic_clear_isr(s, irq);
  310. pic_update_irq(s->pics_state);
  311. }
  312. break;
  313. case 3:
  314. irq = val & 7;
  315. pic_clear_isr(s, irq);
  316. pic_update_irq(s->pics_state);
  317. break;
  318. case 6:
  319. s->priority_add = (val + 1) & 7;
  320. pic_update_irq(s->pics_state);
  321. break;
  322. case 7:
  323. irq = val & 7;
  324. s->priority_add = (irq + 1) & 7;
  325. pic_clear_isr(s, irq);
  326. pic_update_irq(s->pics_state);
  327. break;
  328. default:
  329. break; /* no operation */
  330. }
  331. }
  332. } else
  333. switch (s->init_state) {
  334. case 0: { /* normal mode */
  335. u8 imr_diff = s->imr ^ val,
  336. off = (s == &s->pics_state->pics[0]) ? 0 : 8;
  337. s->imr = val;
  338. for (irq = 0; irq < PIC_NUM_PINS/2; irq++)
  339. if (imr_diff & (1 << irq))
  340. kvm_fire_mask_notifiers(
  341. s->pics_state->kvm,
  342. SELECT_PIC(irq + off),
  343. irq + off,
  344. !!(s->imr & (1 << irq)));
  345. pic_update_irq(s->pics_state);
  346. break;
  347. }
  348. case 1:
  349. s->irq_base = val & 0xf8;
  350. s->init_state = 2;
  351. break;
  352. case 2:
  353. if (s->init4)
  354. s->init_state = 3;
  355. else
  356. s->init_state = 0;
  357. break;
  358. case 3:
  359. s->special_fully_nested_mode = (val >> 4) & 1;
  360. s->auto_eoi = (val >> 1) & 1;
  361. s->init_state = 0;
  362. break;
  363. }
  364. }
  365. static u32 pic_poll_read(struct kvm_kpic_state *s, u32 addr1)
  366. {
  367. int ret;
  368. ret = pic_get_irq(s);
  369. if (ret >= 0) {
  370. if (addr1 >> 7) {
  371. s->pics_state->pics[0].isr &= ~(1 << 2);
  372. s->pics_state->pics[0].irr &= ~(1 << 2);
  373. }
  374. s->irr &= ~(1 << ret);
  375. pic_clear_isr(s, ret);
  376. if (addr1 >> 7 || ret != 2)
  377. pic_update_irq(s->pics_state);
  378. } else {
  379. ret = 0x07;
  380. pic_update_irq(s->pics_state);
  381. }
  382. return ret;
  383. }
  384. static u32 pic_ioport_read(void *opaque, u32 addr1)
  385. {
  386. struct kvm_kpic_state *s = opaque;
  387. unsigned int addr;
  388. int ret;
  389. addr = addr1;
  390. addr &= 1;
  391. if (s->poll) {
  392. ret = pic_poll_read(s, addr1);
  393. s->poll = 0;
  394. } else
  395. if (addr == 0)
  396. if (s->read_reg_select)
  397. ret = s->isr;
  398. else
  399. ret = s->irr;
  400. else
  401. ret = s->imr;
  402. return ret;
  403. }
  404. static void elcr_ioport_write(void *opaque, u32 addr, u32 val)
  405. {
  406. struct kvm_kpic_state *s = opaque;
  407. s->elcr = val & s->elcr_mask;
  408. }
  409. static u32 elcr_ioport_read(void *opaque, u32 addr1)
  410. {
  411. struct kvm_kpic_state *s = opaque;
  412. return s->elcr;
  413. }
  414. static int picdev_in_range(gpa_t addr)
  415. {
  416. switch (addr) {
  417. case 0x20:
  418. case 0x21:
  419. case 0xa0:
  420. case 0xa1:
  421. case 0x4d0:
  422. case 0x4d1:
  423. return 1;
  424. default:
  425. return 0;
  426. }
  427. }
  428. static inline struct kvm_pic *to_pic(struct kvm_io_device *dev)
  429. {
  430. return container_of(dev, struct kvm_pic, dev);
  431. }
  432. static int picdev_write(struct kvm_io_device *this,
  433. gpa_t addr, int len, const void *val)
  434. {
  435. struct kvm_pic *s = to_pic(this);
  436. unsigned char data = *(unsigned char *)val;
  437. if (!picdev_in_range(addr))
  438. return -EOPNOTSUPP;
  439. if (len != 1) {
  440. if (printk_ratelimit())
  441. printk(KERN_ERR "PIC: non byte write\n");
  442. return 0;
  443. }
  444. pic_lock(s);
  445. switch (addr) {
  446. case 0x20:
  447. case 0x21:
  448. case 0xa0:
  449. case 0xa1:
  450. pic_ioport_write(&s->pics[addr >> 7], addr, data);
  451. break;
  452. case 0x4d0:
  453. case 0x4d1:
  454. elcr_ioport_write(&s->pics[addr & 1], addr, data);
  455. break;
  456. }
  457. pic_unlock(s);
  458. return 0;
  459. }
  460. static int picdev_read(struct kvm_io_device *this,
  461. gpa_t addr, int len, void *val)
  462. {
  463. struct kvm_pic *s = to_pic(this);
  464. unsigned char data = 0;
  465. if (!picdev_in_range(addr))
  466. return -EOPNOTSUPP;
  467. if (len != 1) {
  468. if (printk_ratelimit())
  469. printk(KERN_ERR "PIC: non byte read\n");
  470. return 0;
  471. }
  472. pic_lock(s);
  473. switch (addr) {
  474. case 0x20:
  475. case 0x21:
  476. case 0xa0:
  477. case 0xa1:
  478. data = pic_ioport_read(&s->pics[addr >> 7], addr);
  479. break;
  480. case 0x4d0:
  481. case 0x4d1:
  482. data = elcr_ioport_read(&s->pics[addr & 1], addr);
  483. break;
  484. }
  485. *(unsigned char *)val = data;
  486. pic_unlock(s);
  487. return 0;
  488. }
  489. /*
  490. * callback when PIC0 irq status changed
  491. */
  492. static void pic_irq_request(struct kvm *kvm, int level)
  493. {
  494. struct kvm_vcpu *vcpu = kvm->bsp_vcpu;
  495. struct kvm_pic *s = pic_irqchip(kvm);
  496. int irq = pic_get_irq(&s->pics[0]);
  497. s->output = level;
  498. if (vcpu && level && (s->pics[0].isr_ack & (1 << irq))) {
  499. s->pics[0].isr_ack &= ~(1 << irq);
  500. s->wakeup_needed = true;
  501. }
  502. }
  503. static const struct kvm_io_device_ops picdev_ops = {
  504. .read = picdev_read,
  505. .write = picdev_write,
  506. };
  507. struct kvm_pic *kvm_create_pic(struct kvm *kvm)
  508. {
  509. struct kvm_pic *s;
  510. int ret;
  511. s = kzalloc(sizeof(struct kvm_pic), GFP_KERNEL);
  512. if (!s)
  513. return NULL;
  514. raw_spin_lock_init(&s->lock);
  515. s->kvm = kvm;
  516. s->pics[0].elcr_mask = 0xf8;
  517. s->pics[1].elcr_mask = 0xde;
  518. s->pics[0].pics_state = s;
  519. s->pics[1].pics_state = s;
  520. /*
  521. * Initialize PIO device
  522. */
  523. kvm_iodevice_init(&s->dev, &picdev_ops);
  524. mutex_lock(&kvm->slots_lock);
  525. ret = kvm_io_bus_register_dev(kvm, KVM_PIO_BUS, &s->dev);
  526. mutex_unlock(&kvm->slots_lock);
  527. if (ret < 0) {
  528. kfree(s);
  529. return NULL;
  530. }
  531. return s;
  532. }
  533. void kvm_destroy_pic(struct kvm *kvm)
  534. {
  535. struct kvm_pic *vpic = kvm->arch.vpic;
  536. if (vpic) {
  537. kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS, &vpic->dev);
  538. kvm->arch.vpic = NULL;
  539. kfree(vpic);
  540. }
  541. }