process.c 19 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682
  1. /*
  2. * Copyright 2010 Tilera Corporation. All Rights Reserved.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public License
  6. * as published by the Free Software Foundation, version 2.
  7. *
  8. * This program is distributed in the hope that it will be useful, but
  9. * WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
  11. * NON INFRINGEMENT. See the GNU General Public License for
  12. * more details.
  13. */
  14. #include <linux/sched.h>
  15. #include <linux/preempt.h>
  16. #include <linux/module.h>
  17. #include <linux/fs.h>
  18. #include <linux/kprobes.h>
  19. #include <linux/elfcore.h>
  20. #include <linux/tick.h>
  21. #include <linux/init.h>
  22. #include <linux/mm.h>
  23. #include <linux/compat.h>
  24. #include <linux/hardirq.h>
  25. #include <linux/syscalls.h>
  26. #include <linux/kernel.h>
  27. #include <asm/system.h>
  28. #include <asm/stack.h>
  29. #include <asm/homecache.h>
  30. #include <asm/syscalls.h>
  31. #ifdef CONFIG_HARDWALL
  32. #include <asm/hardwall.h>
  33. #endif
  34. #include <arch/chip.h>
  35. #include <arch/abi.h>
  36. /*
  37. * Use the (x86) "idle=poll" option to prefer low latency when leaving the
  38. * idle loop over low power while in the idle loop, e.g. if we have
  39. * one thread per core and we want to get threads out of futex waits fast.
  40. */
  41. static int no_idle_nap;
  42. static int __init idle_setup(char *str)
  43. {
  44. if (!str)
  45. return -EINVAL;
  46. if (!strcmp(str, "poll")) {
  47. pr_info("using polling idle threads.\n");
  48. no_idle_nap = 1;
  49. } else if (!strcmp(str, "halt"))
  50. no_idle_nap = 0;
  51. else
  52. return -1;
  53. return 0;
  54. }
  55. early_param("idle", idle_setup);
  56. /*
  57. * The idle thread. There's no useful work to be
  58. * done, so just try to conserve power and have a
  59. * low exit latency (ie sit in a loop waiting for
  60. * somebody to say that they'd like to reschedule)
  61. */
  62. void cpu_idle(void)
  63. {
  64. int cpu = smp_processor_id();
  65. current_thread_info()->status |= TS_POLLING;
  66. if (no_idle_nap) {
  67. while (1) {
  68. while (!need_resched())
  69. cpu_relax();
  70. schedule();
  71. }
  72. }
  73. /* endless idle loop with no priority at all */
  74. while (1) {
  75. tick_nohz_stop_sched_tick(1);
  76. while (!need_resched()) {
  77. if (cpu_is_offline(cpu))
  78. BUG(); /* no HOTPLUG_CPU */
  79. local_irq_disable();
  80. __get_cpu_var(irq_stat).idle_timestamp = jiffies;
  81. current_thread_info()->status &= ~TS_POLLING;
  82. /*
  83. * TS_POLLING-cleared state must be visible before we
  84. * test NEED_RESCHED:
  85. */
  86. smp_mb();
  87. if (!need_resched())
  88. _cpu_idle();
  89. else
  90. local_irq_enable();
  91. current_thread_info()->status |= TS_POLLING;
  92. }
  93. tick_nohz_restart_sched_tick();
  94. preempt_enable_no_resched();
  95. schedule();
  96. preempt_disable();
  97. }
  98. }
  99. struct thread_info *alloc_thread_info(struct task_struct *task)
  100. {
  101. struct page *page;
  102. gfp_t flags = GFP_KERNEL;
  103. #ifdef CONFIG_DEBUG_STACK_USAGE
  104. flags |= __GFP_ZERO;
  105. #endif
  106. page = alloc_pages(flags, THREAD_SIZE_ORDER);
  107. if (!page)
  108. return NULL;
  109. return (struct thread_info *)page_address(page);
  110. }
  111. /*
  112. * Free a thread_info node, and all of its derivative
  113. * data structures.
  114. */
  115. void free_thread_info(struct thread_info *info)
  116. {
  117. struct single_step_state *step_state = info->step_state;
  118. #ifdef CONFIG_HARDWALL
  119. /*
  120. * We free a thread_info from the context of the task that has
  121. * been scheduled next, so the original task is already dead.
  122. * Calling deactivate here just frees up the data structures.
  123. * If the task we're freeing held the last reference to a
  124. * hardwall fd, it would have been released prior to this point
  125. * anyway via exit_files(), and "hardwall" would be NULL by now.
  126. */
  127. if (info->task->thread.hardwall)
  128. hardwall_deactivate(info->task);
  129. #endif
  130. if (step_state) {
  131. /*
  132. * FIXME: we don't munmap step_state->buffer
  133. * because the mm_struct for this process (info->task->mm)
  134. * has already been zeroed in exit_mm(). Keeping a
  135. * reference to it here seems like a bad move, so this
  136. * means we can't munmap() the buffer, and therefore if we
  137. * ptrace multiple threads in a process, we will slowly
  138. * leak user memory. (Note that as soon as the last
  139. * thread in a process dies, we will reclaim all user
  140. * memory including single-step buffers in the usual way.)
  141. * We should either assign a kernel VA to this buffer
  142. * somehow, or we should associate the buffer(s) with the
  143. * mm itself so we can clean them up that way.
  144. */
  145. kfree(step_state);
  146. }
  147. free_page((unsigned long)info);
  148. }
  149. static void save_arch_state(struct thread_struct *t);
  150. int copy_thread(unsigned long clone_flags, unsigned long sp,
  151. unsigned long stack_size,
  152. struct task_struct *p, struct pt_regs *regs)
  153. {
  154. struct pt_regs *childregs;
  155. unsigned long ksp;
  156. /*
  157. * When creating a new kernel thread we pass sp as zero.
  158. * Assign it to a reasonable value now that we have the stack.
  159. */
  160. if (sp == 0 && regs->ex1 == PL_ICS_EX1(KERNEL_PL, 0))
  161. sp = KSTK_TOP(p);
  162. /*
  163. * Do not clone step state from the parent; each thread
  164. * must make its own lazily.
  165. */
  166. task_thread_info(p)->step_state = NULL;
  167. /*
  168. * Start new thread in ret_from_fork so it schedules properly
  169. * and then return from interrupt like the parent.
  170. */
  171. p->thread.pc = (unsigned long) ret_from_fork;
  172. /* Save user stack top pointer so we can ID the stack vm area later. */
  173. p->thread.usp0 = sp;
  174. /* Record the pid of the process that created this one. */
  175. p->thread.creator_pid = current->pid;
  176. /*
  177. * Copy the registers onto the kernel stack so the
  178. * return-from-interrupt code will reload it into registers.
  179. */
  180. childregs = task_pt_regs(p);
  181. *childregs = *regs;
  182. childregs->regs[0] = 0; /* return value is zero */
  183. childregs->sp = sp; /* override with new user stack pointer */
  184. /*
  185. * Copy the callee-saved registers from the passed pt_regs struct
  186. * into the context-switch callee-saved registers area.
  187. * We have to restore the callee-saved registers since we may
  188. * be cloning a userspace task with userspace register state,
  189. * and we won't be unwinding the same kernel frames to restore them.
  190. * Zero out the C ABI save area to mark the top of the stack.
  191. */
  192. ksp = (unsigned long) childregs;
  193. ksp -= C_ABI_SAVE_AREA_SIZE; /* interrupt-entry save area */
  194. ((long *)ksp)[0] = ((long *)ksp)[1] = 0;
  195. ksp -= CALLEE_SAVED_REGS_COUNT * sizeof(unsigned long);
  196. memcpy((void *)ksp, &regs->regs[CALLEE_SAVED_FIRST_REG],
  197. CALLEE_SAVED_REGS_COUNT * sizeof(unsigned long));
  198. ksp -= C_ABI_SAVE_AREA_SIZE; /* __switch_to() save area */
  199. ((long *)ksp)[0] = ((long *)ksp)[1] = 0;
  200. p->thread.ksp = ksp;
  201. #if CHIP_HAS_TILE_DMA()
  202. /*
  203. * No DMA in the new thread. We model this on the fact that
  204. * fork() clears the pending signals, alarms, and aio for the child.
  205. */
  206. memset(&p->thread.tile_dma_state, 0, sizeof(struct tile_dma_state));
  207. memset(&p->thread.dma_async_tlb, 0, sizeof(struct async_tlb));
  208. #endif
  209. #if CHIP_HAS_SN_PROC()
  210. /* Likewise, the new thread is not running static processor code. */
  211. p->thread.sn_proc_running = 0;
  212. memset(&p->thread.sn_async_tlb, 0, sizeof(struct async_tlb));
  213. #endif
  214. #if CHIP_HAS_PROC_STATUS_SPR()
  215. /* New thread has its miscellaneous processor state bits clear. */
  216. p->thread.proc_status = 0;
  217. #endif
  218. #ifdef CONFIG_HARDWALL
  219. /* New thread does not own any networks. */
  220. p->thread.hardwall = NULL;
  221. #endif
  222. /*
  223. * Start the new thread with the current architecture state
  224. * (user interrupt masks, etc.).
  225. */
  226. save_arch_state(&p->thread);
  227. return 0;
  228. }
  229. /*
  230. * Return "current" if it looks plausible, or else a pointer to a dummy.
  231. * This can be helpful if we are just trying to emit a clean panic.
  232. */
  233. struct task_struct *validate_current(void)
  234. {
  235. static struct task_struct corrupt = { .comm = "<corrupt>" };
  236. struct task_struct *tsk = current;
  237. if (unlikely((unsigned long)tsk < PAGE_OFFSET ||
  238. (void *)tsk > high_memory ||
  239. ((unsigned long)tsk & (__alignof__(*tsk) - 1)) != 0)) {
  240. pr_err("Corrupt 'current' %p (sp %#lx)\n", tsk, stack_pointer);
  241. tsk = &corrupt;
  242. }
  243. return tsk;
  244. }
  245. /* Take and return the pointer to the previous task, for schedule_tail(). */
  246. struct task_struct *sim_notify_fork(struct task_struct *prev)
  247. {
  248. struct task_struct *tsk = current;
  249. __insn_mtspr(SPR_SIM_CONTROL, SIM_CONTROL_OS_FORK_PARENT |
  250. (tsk->thread.creator_pid << _SIM_CONTROL_OPERATOR_BITS));
  251. __insn_mtspr(SPR_SIM_CONTROL, SIM_CONTROL_OS_FORK |
  252. (tsk->pid << _SIM_CONTROL_OPERATOR_BITS));
  253. return prev;
  254. }
  255. int dump_task_regs(struct task_struct *tsk, elf_gregset_t *regs)
  256. {
  257. struct pt_regs *ptregs = task_pt_regs(tsk);
  258. elf_core_copy_regs(regs, ptregs);
  259. return 1;
  260. }
  261. #if CHIP_HAS_TILE_DMA()
  262. /* Allow user processes to access the DMA SPRs */
  263. void grant_dma_mpls(void)
  264. {
  265. __insn_mtspr(SPR_MPL_DMA_CPL_SET_0, 1);
  266. __insn_mtspr(SPR_MPL_DMA_NOTIFY_SET_0, 1);
  267. }
  268. /* Forbid user processes from accessing the DMA SPRs */
  269. void restrict_dma_mpls(void)
  270. {
  271. __insn_mtspr(SPR_MPL_DMA_CPL_SET_1, 1);
  272. __insn_mtspr(SPR_MPL_DMA_NOTIFY_SET_1, 1);
  273. }
  274. /* Pause the DMA engine, then save off its state registers. */
  275. static void save_tile_dma_state(struct tile_dma_state *dma)
  276. {
  277. unsigned long state = __insn_mfspr(SPR_DMA_USER_STATUS);
  278. unsigned long post_suspend_state;
  279. /* If we're running, suspend the engine. */
  280. if ((state & DMA_STATUS_MASK) == SPR_DMA_STATUS__RUNNING_MASK)
  281. __insn_mtspr(SPR_DMA_CTR, SPR_DMA_CTR__SUSPEND_MASK);
  282. /*
  283. * Wait for the engine to idle, then save regs. Note that we
  284. * want to record the "running" bit from before suspension,
  285. * and the "done" bit from after, so that we can properly
  286. * distinguish a case where the user suspended the engine from
  287. * the case where the kernel suspended as part of the context
  288. * swap.
  289. */
  290. do {
  291. post_suspend_state = __insn_mfspr(SPR_DMA_USER_STATUS);
  292. } while (post_suspend_state & SPR_DMA_STATUS__BUSY_MASK);
  293. dma->src = __insn_mfspr(SPR_DMA_SRC_ADDR);
  294. dma->src_chunk = __insn_mfspr(SPR_DMA_SRC_CHUNK_ADDR);
  295. dma->dest = __insn_mfspr(SPR_DMA_DST_ADDR);
  296. dma->dest_chunk = __insn_mfspr(SPR_DMA_DST_CHUNK_ADDR);
  297. dma->strides = __insn_mfspr(SPR_DMA_STRIDE);
  298. dma->chunk_size = __insn_mfspr(SPR_DMA_CHUNK_SIZE);
  299. dma->byte = __insn_mfspr(SPR_DMA_BYTE);
  300. dma->status = (state & SPR_DMA_STATUS__RUNNING_MASK) |
  301. (post_suspend_state & SPR_DMA_STATUS__DONE_MASK);
  302. }
  303. /* Restart a DMA that was running before we were context-switched out. */
  304. static void restore_tile_dma_state(struct thread_struct *t)
  305. {
  306. const struct tile_dma_state *dma = &t->tile_dma_state;
  307. /*
  308. * The only way to restore the done bit is to run a zero
  309. * length transaction.
  310. */
  311. if ((dma->status & SPR_DMA_STATUS__DONE_MASK) &&
  312. !(__insn_mfspr(SPR_DMA_USER_STATUS) & SPR_DMA_STATUS__DONE_MASK)) {
  313. __insn_mtspr(SPR_DMA_BYTE, 0);
  314. __insn_mtspr(SPR_DMA_CTR, SPR_DMA_CTR__REQUEST_MASK);
  315. while (__insn_mfspr(SPR_DMA_USER_STATUS) &
  316. SPR_DMA_STATUS__BUSY_MASK)
  317. ;
  318. }
  319. __insn_mtspr(SPR_DMA_SRC_ADDR, dma->src);
  320. __insn_mtspr(SPR_DMA_SRC_CHUNK_ADDR, dma->src_chunk);
  321. __insn_mtspr(SPR_DMA_DST_ADDR, dma->dest);
  322. __insn_mtspr(SPR_DMA_DST_CHUNK_ADDR, dma->dest_chunk);
  323. __insn_mtspr(SPR_DMA_STRIDE, dma->strides);
  324. __insn_mtspr(SPR_DMA_CHUNK_SIZE, dma->chunk_size);
  325. __insn_mtspr(SPR_DMA_BYTE, dma->byte);
  326. /*
  327. * Restart the engine if we were running and not done.
  328. * Clear a pending async DMA fault that we were waiting on return
  329. * to user space to execute, since we expect the DMA engine
  330. * to regenerate those faults for us now. Note that we don't
  331. * try to clear the TIF_ASYNC_TLB flag, since it's relatively
  332. * harmless if set, and it covers both DMA and the SN processor.
  333. */
  334. if ((dma->status & DMA_STATUS_MASK) == SPR_DMA_STATUS__RUNNING_MASK) {
  335. t->dma_async_tlb.fault_num = 0;
  336. __insn_mtspr(SPR_DMA_CTR, SPR_DMA_CTR__REQUEST_MASK);
  337. }
  338. }
  339. #endif
  340. static void save_arch_state(struct thread_struct *t)
  341. {
  342. #if CHIP_HAS_SPLIT_INTR_MASK()
  343. t->interrupt_mask = __insn_mfspr(SPR_INTERRUPT_MASK_0_0) |
  344. ((u64)__insn_mfspr(SPR_INTERRUPT_MASK_0_1) << 32);
  345. #else
  346. t->interrupt_mask = __insn_mfspr(SPR_INTERRUPT_MASK_0);
  347. #endif
  348. t->ex_context[0] = __insn_mfspr(SPR_EX_CONTEXT_0_0);
  349. t->ex_context[1] = __insn_mfspr(SPR_EX_CONTEXT_0_1);
  350. t->system_save[0] = __insn_mfspr(SPR_SYSTEM_SAVE_0_0);
  351. t->system_save[1] = __insn_mfspr(SPR_SYSTEM_SAVE_0_1);
  352. t->system_save[2] = __insn_mfspr(SPR_SYSTEM_SAVE_0_2);
  353. t->system_save[3] = __insn_mfspr(SPR_SYSTEM_SAVE_0_3);
  354. t->intctrl_0 = __insn_mfspr(SPR_INTCTRL_0_STATUS);
  355. #if CHIP_HAS_PROC_STATUS_SPR()
  356. t->proc_status = __insn_mfspr(SPR_PROC_STATUS);
  357. #endif
  358. #if !CHIP_HAS_FIXED_INTVEC_BASE()
  359. t->interrupt_vector_base = __insn_mfspr(SPR_INTERRUPT_VECTOR_BASE_0);
  360. #endif
  361. #if CHIP_HAS_TILE_RTF_HWM()
  362. t->tile_rtf_hwm = __insn_mfspr(SPR_TILE_RTF_HWM);
  363. #endif
  364. #if CHIP_HAS_DSTREAM_PF()
  365. t->dstream_pf = __insn_mfspr(SPR_DSTREAM_PF);
  366. #endif
  367. }
  368. static void restore_arch_state(const struct thread_struct *t)
  369. {
  370. #if CHIP_HAS_SPLIT_INTR_MASK()
  371. __insn_mtspr(SPR_INTERRUPT_MASK_0_0, (u32) t->interrupt_mask);
  372. __insn_mtspr(SPR_INTERRUPT_MASK_0_1, t->interrupt_mask >> 32);
  373. #else
  374. __insn_mtspr(SPR_INTERRUPT_MASK_0, t->interrupt_mask);
  375. #endif
  376. __insn_mtspr(SPR_EX_CONTEXT_0_0, t->ex_context[0]);
  377. __insn_mtspr(SPR_EX_CONTEXT_0_1, t->ex_context[1]);
  378. __insn_mtspr(SPR_SYSTEM_SAVE_0_0, t->system_save[0]);
  379. __insn_mtspr(SPR_SYSTEM_SAVE_0_1, t->system_save[1]);
  380. __insn_mtspr(SPR_SYSTEM_SAVE_0_2, t->system_save[2]);
  381. __insn_mtspr(SPR_SYSTEM_SAVE_0_3, t->system_save[3]);
  382. __insn_mtspr(SPR_INTCTRL_0_STATUS, t->intctrl_0);
  383. #if CHIP_HAS_PROC_STATUS_SPR()
  384. __insn_mtspr(SPR_PROC_STATUS, t->proc_status);
  385. #endif
  386. #if !CHIP_HAS_FIXED_INTVEC_BASE()
  387. __insn_mtspr(SPR_INTERRUPT_VECTOR_BASE_0, t->interrupt_vector_base);
  388. #endif
  389. #if CHIP_HAS_TILE_RTF_HWM()
  390. __insn_mtspr(SPR_TILE_RTF_HWM, t->tile_rtf_hwm);
  391. #endif
  392. #if CHIP_HAS_DSTREAM_PF()
  393. __insn_mtspr(SPR_DSTREAM_PF, t->dstream_pf);
  394. #endif
  395. }
  396. void _prepare_arch_switch(struct task_struct *next)
  397. {
  398. #if CHIP_HAS_SN_PROC()
  399. int snctl;
  400. #endif
  401. #if CHIP_HAS_TILE_DMA()
  402. struct tile_dma_state *dma = &current->thread.tile_dma_state;
  403. if (dma->enabled)
  404. save_tile_dma_state(dma);
  405. #endif
  406. #if CHIP_HAS_SN_PROC()
  407. /*
  408. * Suspend the static network processor if it was running.
  409. * We do not suspend the fabric itself, just like we don't
  410. * try to suspend the UDN.
  411. */
  412. snctl = __insn_mfspr(SPR_SNCTL);
  413. current->thread.sn_proc_running =
  414. (snctl & SPR_SNCTL__FRZPROC_MASK) == 0;
  415. if (current->thread.sn_proc_running)
  416. __insn_mtspr(SPR_SNCTL, snctl | SPR_SNCTL__FRZPROC_MASK);
  417. #endif
  418. }
  419. struct task_struct *__sched _switch_to(struct task_struct *prev,
  420. struct task_struct *next)
  421. {
  422. /* DMA state is already saved; save off other arch state. */
  423. save_arch_state(&prev->thread);
  424. #if CHIP_HAS_TILE_DMA()
  425. /*
  426. * Restore DMA in new task if desired.
  427. * Note that it is only safe to restart here since interrupts
  428. * are disabled, so we can't take any DMATLB miss or access
  429. * interrupts before we have finished switching stacks.
  430. */
  431. if (next->thread.tile_dma_state.enabled) {
  432. restore_tile_dma_state(&next->thread);
  433. grant_dma_mpls();
  434. } else {
  435. restrict_dma_mpls();
  436. }
  437. #endif
  438. /* Restore other arch state. */
  439. restore_arch_state(&next->thread);
  440. #if CHIP_HAS_SN_PROC()
  441. /*
  442. * Restart static network processor in the new process
  443. * if it was running before.
  444. */
  445. if (next->thread.sn_proc_running) {
  446. int snctl = __insn_mfspr(SPR_SNCTL);
  447. __insn_mtspr(SPR_SNCTL, snctl & ~SPR_SNCTL__FRZPROC_MASK);
  448. }
  449. #endif
  450. #ifdef CONFIG_HARDWALL
  451. /* Enable or disable access to the network registers appropriately. */
  452. if (prev->thread.hardwall != NULL) {
  453. if (next->thread.hardwall == NULL)
  454. restrict_network_mpls();
  455. } else if (next->thread.hardwall != NULL) {
  456. grant_network_mpls();
  457. }
  458. #endif
  459. /*
  460. * Switch kernel SP, PC, and callee-saved registers.
  461. * In the context of the new task, return the old task pointer
  462. * (i.e. the task that actually called __switch_to).
  463. * Pass the value to use for SYSTEM_SAVE_1_0 when we reset our sp.
  464. */
  465. return __switch_to(prev, next, next_current_ksp0(next));
  466. }
  467. long _sys_fork(struct pt_regs *regs)
  468. {
  469. return do_fork(SIGCHLD, regs->sp, regs, 0, NULL, NULL);
  470. }
  471. long _sys_clone(unsigned long clone_flags, unsigned long newsp,
  472. void __user *parent_tidptr, void __user *child_tidptr,
  473. struct pt_regs *regs)
  474. {
  475. if (!newsp)
  476. newsp = regs->sp;
  477. return do_fork(clone_flags, newsp, regs, 0,
  478. parent_tidptr, child_tidptr);
  479. }
  480. long _sys_vfork(struct pt_regs *regs)
  481. {
  482. return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, regs->sp,
  483. regs, 0, NULL, NULL);
  484. }
  485. /*
  486. * sys_execve() executes a new program.
  487. */
  488. long _sys_execve(const char __user *path,
  489. const char __user *const __user *argv,
  490. const char __user *const __user *envp, struct pt_regs *regs)
  491. {
  492. long error;
  493. char *filename;
  494. filename = getname(path);
  495. error = PTR_ERR(filename);
  496. if (IS_ERR(filename))
  497. goto out;
  498. error = do_execve(filename, argv, envp, regs);
  499. putname(filename);
  500. out:
  501. return error;
  502. }
  503. #ifdef CONFIG_COMPAT
  504. long _compat_sys_execve(const char __user *path,
  505. const compat_uptr_t __user *argv,
  506. const compat_uptr_t __user *envp, struct pt_regs *regs)
  507. {
  508. long error;
  509. char *filename;
  510. filename = getname(path);
  511. error = PTR_ERR(filename);
  512. if (IS_ERR(filename))
  513. goto out;
  514. error = compat_do_execve(filename, argv, envp, regs);
  515. putname(filename);
  516. out:
  517. return error;
  518. }
  519. #endif
  520. unsigned long get_wchan(struct task_struct *p)
  521. {
  522. struct KBacktraceIterator kbt;
  523. if (!p || p == current || p->state == TASK_RUNNING)
  524. return 0;
  525. for (KBacktraceIterator_init(&kbt, p, NULL);
  526. !KBacktraceIterator_end(&kbt);
  527. KBacktraceIterator_next(&kbt)) {
  528. if (!in_sched_functions(kbt.it.pc))
  529. return kbt.it.pc;
  530. }
  531. return 0;
  532. }
  533. /*
  534. * We pass in lr as zero (cleared in kernel_thread) and the caller
  535. * part of the backtrace ABI on the stack also zeroed (in copy_thread)
  536. * so that backtraces will stop with this function.
  537. * Note that we don't use r0, since copy_thread() clears it.
  538. */
  539. static void start_kernel_thread(int dummy, int (*fn)(int), int arg)
  540. {
  541. do_exit(fn(arg));
  542. }
  543. /*
  544. * Create a kernel thread
  545. */
  546. int kernel_thread(int (*fn)(void *), void * arg, unsigned long flags)
  547. {
  548. struct pt_regs regs;
  549. memset(&regs, 0, sizeof(regs));
  550. regs.ex1 = PL_ICS_EX1(KERNEL_PL, 0); /* run at kernel PL, no ICS */
  551. regs.pc = (long) start_kernel_thread;
  552. regs.flags = PT_FLAGS_CALLER_SAVES; /* need to restore r1 and r2 */
  553. regs.regs[1] = (long) fn; /* function pointer */
  554. regs.regs[2] = (long) arg; /* parameter register */
  555. /* Ok, create the new process.. */
  556. return do_fork(flags | CLONE_VM | CLONE_UNTRACED, 0, &regs,
  557. 0, NULL, NULL);
  558. }
  559. EXPORT_SYMBOL(kernel_thread);
  560. /* Flush thread state. */
  561. void flush_thread(void)
  562. {
  563. /* Nothing */
  564. }
  565. /*
  566. * Free current thread data structures etc..
  567. */
  568. void exit_thread(void)
  569. {
  570. /* Nothing */
  571. }
  572. void show_regs(struct pt_regs *regs)
  573. {
  574. struct task_struct *tsk = validate_current();
  575. int i;
  576. pr_err("\n");
  577. pr_err(" Pid: %d, comm: %20s, CPU: %d\n",
  578. tsk->pid, tsk->comm, smp_processor_id());
  579. #ifdef __tilegx__
  580. for (i = 0; i < 51; i += 3)
  581. pr_err(" r%-2d: "REGFMT" r%-2d: "REGFMT" r%-2d: "REGFMT"\n",
  582. i, regs->regs[i], i+1, regs->regs[i+1],
  583. i+2, regs->regs[i+2]);
  584. pr_err(" r51: "REGFMT" r52: "REGFMT" tp : "REGFMT"\n",
  585. regs->regs[51], regs->regs[52], regs->tp);
  586. pr_err(" sp : "REGFMT" lr : "REGFMT"\n", regs->sp, regs->lr);
  587. #else
  588. for (i = 0; i < 52; i += 4)
  589. pr_err(" r%-2d: "REGFMT" r%-2d: "REGFMT
  590. " r%-2d: "REGFMT" r%-2d: "REGFMT"\n",
  591. i, regs->regs[i], i+1, regs->regs[i+1],
  592. i+2, regs->regs[i+2], i+3, regs->regs[i+3]);
  593. pr_err(" r52: "REGFMT" tp : "REGFMT" sp : "REGFMT" lr : "REGFMT"\n",
  594. regs->regs[52], regs->tp, regs->sp, regs->lr);
  595. #endif
  596. pr_err(" pc : "REGFMT" ex1: %ld faultnum: %ld\n",
  597. regs->pc, regs->ex1, regs->faultnum);
  598. dump_stack_regs(regs);
  599. }