mmu.c 29 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088
  1. /*
  2. * linux/arch/arm/mm/mmu.c
  3. *
  4. * Copyright (C) 1995-2005 Russell King
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License version 2 as
  8. * published by the Free Software Foundation.
  9. */
  10. #include <linux/module.h>
  11. #include <linux/kernel.h>
  12. #include <linux/errno.h>
  13. #include <linux/init.h>
  14. #include <linux/mman.h>
  15. #include <linux/nodemask.h>
  16. #include <linux/memblock.h>
  17. #include <linux/sort.h>
  18. #include <linux/fs.h>
  19. #include <asm/cputype.h>
  20. #include <asm/sections.h>
  21. #include <asm/cachetype.h>
  22. #include <asm/setup.h>
  23. #include <asm/sizes.h>
  24. #include <asm/smp_plat.h>
  25. #include <asm/tlb.h>
  26. #include <asm/highmem.h>
  27. #include <asm/mach/arch.h>
  28. #include <asm/mach/map.h>
  29. #include "mm.h"
  30. DEFINE_PER_CPU(struct mmu_gather, mmu_gathers);
  31. /*
  32. * empty_zero_page is a special page that is used for
  33. * zero-initialized data and COW.
  34. */
  35. struct page *empty_zero_page;
  36. EXPORT_SYMBOL(empty_zero_page);
  37. /*
  38. * The pmd table for the upper-most set of pages.
  39. */
  40. pmd_t *top_pmd;
  41. #define CPOLICY_UNCACHED 0
  42. #define CPOLICY_BUFFERED 1
  43. #define CPOLICY_WRITETHROUGH 2
  44. #define CPOLICY_WRITEBACK 3
  45. #define CPOLICY_WRITEALLOC 4
  46. static unsigned int cachepolicy __initdata = CPOLICY_WRITEBACK;
  47. static unsigned int ecc_mask __initdata = 0;
  48. pgprot_t pgprot_user;
  49. pgprot_t pgprot_kernel;
  50. EXPORT_SYMBOL(pgprot_user);
  51. EXPORT_SYMBOL(pgprot_kernel);
  52. struct cachepolicy {
  53. const char policy[16];
  54. unsigned int cr_mask;
  55. unsigned int pmd;
  56. unsigned int pte;
  57. };
  58. static struct cachepolicy cache_policies[] __initdata = {
  59. {
  60. .policy = "uncached",
  61. .cr_mask = CR_W|CR_C,
  62. .pmd = PMD_SECT_UNCACHED,
  63. .pte = L_PTE_MT_UNCACHED,
  64. }, {
  65. .policy = "buffered",
  66. .cr_mask = CR_C,
  67. .pmd = PMD_SECT_BUFFERED,
  68. .pte = L_PTE_MT_BUFFERABLE,
  69. }, {
  70. .policy = "writethrough",
  71. .cr_mask = 0,
  72. .pmd = PMD_SECT_WT,
  73. .pte = L_PTE_MT_WRITETHROUGH,
  74. }, {
  75. .policy = "writeback",
  76. .cr_mask = 0,
  77. .pmd = PMD_SECT_WB,
  78. .pte = L_PTE_MT_WRITEBACK,
  79. }, {
  80. .policy = "writealloc",
  81. .cr_mask = 0,
  82. .pmd = PMD_SECT_WBWA,
  83. .pte = L_PTE_MT_WRITEALLOC,
  84. }
  85. };
  86. /*
  87. * These are useful for identifying cache coherency
  88. * problems by allowing the cache or the cache and
  89. * writebuffer to be turned off. (Note: the write
  90. * buffer should not be on and the cache off).
  91. */
  92. static int __init early_cachepolicy(char *p)
  93. {
  94. int i;
  95. for (i = 0; i < ARRAY_SIZE(cache_policies); i++) {
  96. int len = strlen(cache_policies[i].policy);
  97. if (memcmp(p, cache_policies[i].policy, len) == 0) {
  98. cachepolicy = i;
  99. cr_alignment &= ~cache_policies[i].cr_mask;
  100. cr_no_alignment &= ~cache_policies[i].cr_mask;
  101. break;
  102. }
  103. }
  104. if (i == ARRAY_SIZE(cache_policies))
  105. printk(KERN_ERR "ERROR: unknown or unsupported cache policy\n");
  106. /*
  107. * This restriction is partly to do with the way we boot; it is
  108. * unpredictable to have memory mapped using two different sets of
  109. * memory attributes (shared, type, and cache attribs). We can not
  110. * change these attributes once the initial assembly has setup the
  111. * page tables.
  112. */
  113. if (cpu_architecture() >= CPU_ARCH_ARMv6) {
  114. printk(KERN_WARNING "Only cachepolicy=writeback supported on ARMv6 and later\n");
  115. cachepolicy = CPOLICY_WRITEBACK;
  116. }
  117. flush_cache_all();
  118. set_cr(cr_alignment);
  119. return 0;
  120. }
  121. early_param("cachepolicy", early_cachepolicy);
  122. static int __init early_nocache(char *__unused)
  123. {
  124. char *p = "buffered";
  125. printk(KERN_WARNING "nocache is deprecated; use cachepolicy=%s\n", p);
  126. early_cachepolicy(p);
  127. return 0;
  128. }
  129. early_param("nocache", early_nocache);
  130. static int __init early_nowrite(char *__unused)
  131. {
  132. char *p = "uncached";
  133. printk(KERN_WARNING "nowb is deprecated; use cachepolicy=%s\n", p);
  134. early_cachepolicy(p);
  135. return 0;
  136. }
  137. early_param("nowb", early_nowrite);
  138. static int __init early_ecc(char *p)
  139. {
  140. if (memcmp(p, "on", 2) == 0)
  141. ecc_mask = PMD_PROTECTION;
  142. else if (memcmp(p, "off", 3) == 0)
  143. ecc_mask = 0;
  144. return 0;
  145. }
  146. early_param("ecc", early_ecc);
  147. static int __init noalign_setup(char *__unused)
  148. {
  149. cr_alignment &= ~CR_A;
  150. cr_no_alignment &= ~CR_A;
  151. set_cr(cr_alignment);
  152. return 1;
  153. }
  154. __setup("noalign", noalign_setup);
  155. #ifndef CONFIG_SMP
  156. void adjust_cr(unsigned long mask, unsigned long set)
  157. {
  158. unsigned long flags;
  159. mask &= ~CR_A;
  160. set &= mask;
  161. local_irq_save(flags);
  162. cr_no_alignment = (cr_no_alignment & ~mask) | set;
  163. cr_alignment = (cr_alignment & ~mask) | set;
  164. set_cr((get_cr() & ~mask) | set);
  165. local_irq_restore(flags);
  166. }
  167. #endif
  168. #define PROT_PTE_DEVICE L_PTE_PRESENT|L_PTE_YOUNG|L_PTE_DIRTY|L_PTE_WRITE
  169. #define PROT_SECT_DEVICE PMD_TYPE_SECT|PMD_SECT_AP_WRITE
  170. static struct mem_type mem_types[] = {
  171. [MT_DEVICE] = { /* Strongly ordered / ARMv6 shared device */
  172. .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_SHARED |
  173. L_PTE_SHARED,
  174. .prot_l1 = PMD_TYPE_TABLE,
  175. .prot_sect = PROT_SECT_DEVICE | PMD_SECT_S,
  176. .domain = DOMAIN_IO,
  177. },
  178. [MT_DEVICE_NONSHARED] = { /* ARMv6 non-shared device */
  179. .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_NONSHARED,
  180. .prot_l1 = PMD_TYPE_TABLE,
  181. .prot_sect = PROT_SECT_DEVICE,
  182. .domain = DOMAIN_IO,
  183. },
  184. [MT_DEVICE_CACHED] = { /* ioremap_cached */
  185. .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_CACHED,
  186. .prot_l1 = PMD_TYPE_TABLE,
  187. .prot_sect = PROT_SECT_DEVICE | PMD_SECT_WB,
  188. .domain = DOMAIN_IO,
  189. },
  190. [MT_DEVICE_WC] = { /* ioremap_wc */
  191. .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_WC,
  192. .prot_l1 = PMD_TYPE_TABLE,
  193. .prot_sect = PROT_SECT_DEVICE,
  194. .domain = DOMAIN_IO,
  195. },
  196. [MT_UNCACHED] = {
  197. .prot_pte = PROT_PTE_DEVICE,
  198. .prot_l1 = PMD_TYPE_TABLE,
  199. .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
  200. .domain = DOMAIN_IO,
  201. },
  202. [MT_CACHECLEAN] = {
  203. .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
  204. .domain = DOMAIN_KERNEL,
  205. },
  206. [MT_MINICLEAN] = {
  207. .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN | PMD_SECT_MINICACHE,
  208. .domain = DOMAIN_KERNEL,
  209. },
  210. [MT_LOW_VECTORS] = {
  211. .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
  212. L_PTE_EXEC,
  213. .prot_l1 = PMD_TYPE_TABLE,
  214. .domain = DOMAIN_USER,
  215. },
  216. [MT_HIGH_VECTORS] = {
  217. .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
  218. L_PTE_USER | L_PTE_EXEC,
  219. .prot_l1 = PMD_TYPE_TABLE,
  220. .domain = DOMAIN_USER,
  221. },
  222. [MT_MEMORY] = {
  223. .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
  224. L_PTE_USER | L_PTE_EXEC,
  225. .prot_l1 = PMD_TYPE_TABLE,
  226. .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
  227. .domain = DOMAIN_KERNEL,
  228. },
  229. [MT_ROM] = {
  230. .prot_sect = PMD_TYPE_SECT,
  231. .domain = DOMAIN_KERNEL,
  232. },
  233. [MT_MEMORY_NONCACHED] = {
  234. .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
  235. L_PTE_USER | L_PTE_EXEC | L_PTE_MT_BUFFERABLE,
  236. .prot_l1 = PMD_TYPE_TABLE,
  237. .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
  238. .domain = DOMAIN_KERNEL,
  239. },
  240. [MT_MEMORY_DTCM] = {
  241. .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG |
  242. L_PTE_DIRTY | L_PTE_WRITE,
  243. .prot_l1 = PMD_TYPE_TABLE,
  244. .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
  245. .domain = DOMAIN_KERNEL,
  246. },
  247. [MT_MEMORY_ITCM] = {
  248. .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
  249. L_PTE_USER | L_PTE_EXEC,
  250. .prot_l1 = PMD_TYPE_TABLE,
  251. .domain = DOMAIN_IO,
  252. },
  253. };
  254. const struct mem_type *get_mem_type(unsigned int type)
  255. {
  256. return type < ARRAY_SIZE(mem_types) ? &mem_types[type] : NULL;
  257. }
  258. EXPORT_SYMBOL(get_mem_type);
  259. /*
  260. * Adjust the PMD section entries according to the CPU in use.
  261. */
  262. static void __init build_mem_type_table(void)
  263. {
  264. struct cachepolicy *cp;
  265. unsigned int cr = get_cr();
  266. unsigned int user_pgprot, kern_pgprot, vecs_pgprot;
  267. int cpu_arch = cpu_architecture();
  268. int i;
  269. if (cpu_arch < CPU_ARCH_ARMv6) {
  270. #if defined(CONFIG_CPU_DCACHE_DISABLE)
  271. if (cachepolicy > CPOLICY_BUFFERED)
  272. cachepolicy = CPOLICY_BUFFERED;
  273. #elif defined(CONFIG_CPU_DCACHE_WRITETHROUGH)
  274. if (cachepolicy > CPOLICY_WRITETHROUGH)
  275. cachepolicy = CPOLICY_WRITETHROUGH;
  276. #endif
  277. }
  278. if (cpu_arch < CPU_ARCH_ARMv5) {
  279. if (cachepolicy >= CPOLICY_WRITEALLOC)
  280. cachepolicy = CPOLICY_WRITEBACK;
  281. ecc_mask = 0;
  282. }
  283. #ifdef CONFIG_SMP
  284. cachepolicy = CPOLICY_WRITEALLOC;
  285. #endif
  286. /*
  287. * Strip out features not present on earlier architectures.
  288. * Pre-ARMv5 CPUs don't have TEX bits. Pre-ARMv6 CPUs or those
  289. * without extended page tables don't have the 'Shared' bit.
  290. */
  291. if (cpu_arch < CPU_ARCH_ARMv5)
  292. for (i = 0; i < ARRAY_SIZE(mem_types); i++)
  293. mem_types[i].prot_sect &= ~PMD_SECT_TEX(7);
  294. if ((cpu_arch < CPU_ARCH_ARMv6 || !(cr & CR_XP)) && !cpu_is_xsc3())
  295. for (i = 0; i < ARRAY_SIZE(mem_types); i++)
  296. mem_types[i].prot_sect &= ~PMD_SECT_S;
  297. /*
  298. * ARMv5 and lower, bit 4 must be set for page tables (was: cache
  299. * "update-able on write" bit on ARM610). However, Xscale and
  300. * Xscale3 require this bit to be cleared.
  301. */
  302. if (cpu_is_xscale() || cpu_is_xsc3()) {
  303. for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
  304. mem_types[i].prot_sect &= ~PMD_BIT4;
  305. mem_types[i].prot_l1 &= ~PMD_BIT4;
  306. }
  307. } else if (cpu_arch < CPU_ARCH_ARMv6) {
  308. for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
  309. if (mem_types[i].prot_l1)
  310. mem_types[i].prot_l1 |= PMD_BIT4;
  311. if (mem_types[i].prot_sect)
  312. mem_types[i].prot_sect |= PMD_BIT4;
  313. }
  314. }
  315. /*
  316. * Mark the device areas according to the CPU/architecture.
  317. */
  318. if (cpu_is_xsc3() || (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP))) {
  319. if (!cpu_is_xsc3()) {
  320. /*
  321. * Mark device regions on ARMv6+ as execute-never
  322. * to prevent speculative instruction fetches.
  323. */
  324. mem_types[MT_DEVICE].prot_sect |= PMD_SECT_XN;
  325. mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_XN;
  326. mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_XN;
  327. mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_XN;
  328. }
  329. if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
  330. /*
  331. * For ARMv7 with TEX remapping,
  332. * - shared device is SXCB=1100
  333. * - nonshared device is SXCB=0100
  334. * - write combine device mem is SXCB=0001
  335. * (Uncached Normal memory)
  336. */
  337. mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1);
  338. mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(1);
  339. mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
  340. } else if (cpu_is_xsc3()) {
  341. /*
  342. * For Xscale3,
  343. * - shared device is TEXCB=00101
  344. * - nonshared device is TEXCB=01000
  345. * - write combine device mem is TEXCB=00100
  346. * (Inner/Outer Uncacheable in xsc3 parlance)
  347. */
  348. mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1) | PMD_SECT_BUFFERED;
  349. mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
  350. mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
  351. } else {
  352. /*
  353. * For ARMv6 and ARMv7 without TEX remapping,
  354. * - shared device is TEXCB=00001
  355. * - nonshared device is TEXCB=01000
  356. * - write combine device mem is TEXCB=00100
  357. * (Uncached Normal in ARMv6 parlance).
  358. */
  359. mem_types[MT_DEVICE].prot_sect |= PMD_SECT_BUFFERED;
  360. mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
  361. mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
  362. }
  363. } else {
  364. /*
  365. * On others, write combining is "Uncached/Buffered"
  366. */
  367. mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
  368. }
  369. /*
  370. * Now deal with the memory-type mappings
  371. */
  372. cp = &cache_policies[cachepolicy];
  373. vecs_pgprot = kern_pgprot = user_pgprot = cp->pte;
  374. #ifndef CONFIG_SMP
  375. /*
  376. * Only use write-through for non-SMP systems
  377. */
  378. if (cpu_arch >= CPU_ARCH_ARMv5 && cachepolicy > CPOLICY_WRITETHROUGH)
  379. vecs_pgprot = cache_policies[CPOLICY_WRITETHROUGH].pte;
  380. #endif
  381. /*
  382. * Enable CPU-specific coherency if supported.
  383. * (Only available on XSC3 at the moment.)
  384. */
  385. if (arch_is_coherent() && cpu_is_xsc3()) {
  386. mem_types[MT_MEMORY].prot_sect |= PMD_SECT_S;
  387. mem_types[MT_MEMORY].prot_pte |= L_PTE_SHARED;
  388. mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_S;
  389. mem_types[MT_MEMORY_NONCACHED].prot_pte |= L_PTE_SHARED;
  390. }
  391. /*
  392. * ARMv6 and above have extended page tables.
  393. */
  394. if (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP)) {
  395. /*
  396. * Mark cache clean areas and XIP ROM read only
  397. * from SVC mode and no access from userspace.
  398. */
  399. mem_types[MT_ROM].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
  400. mem_types[MT_MINICLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
  401. mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
  402. #ifdef CONFIG_SMP
  403. /*
  404. * Mark memory with the "shared" attribute for SMP systems
  405. */
  406. user_pgprot |= L_PTE_SHARED;
  407. kern_pgprot |= L_PTE_SHARED;
  408. vecs_pgprot |= L_PTE_SHARED;
  409. mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_S;
  410. mem_types[MT_DEVICE_WC].prot_pte |= L_PTE_SHARED;
  411. mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_S;
  412. mem_types[MT_DEVICE_CACHED].prot_pte |= L_PTE_SHARED;
  413. mem_types[MT_MEMORY].prot_sect |= PMD_SECT_S;
  414. mem_types[MT_MEMORY].prot_pte |= L_PTE_SHARED;
  415. mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_S;
  416. mem_types[MT_MEMORY_NONCACHED].prot_pte |= L_PTE_SHARED;
  417. #endif
  418. }
  419. /*
  420. * Non-cacheable Normal - intended for memory areas that must
  421. * not cause dirty cache line writebacks when used
  422. */
  423. if (cpu_arch >= CPU_ARCH_ARMv6) {
  424. if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
  425. /* Non-cacheable Normal is XCB = 001 */
  426. mem_types[MT_MEMORY_NONCACHED].prot_sect |=
  427. PMD_SECT_BUFFERED;
  428. } else {
  429. /* For both ARMv6 and non-TEX-remapping ARMv7 */
  430. mem_types[MT_MEMORY_NONCACHED].prot_sect |=
  431. PMD_SECT_TEX(1);
  432. }
  433. } else {
  434. mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_BUFFERABLE;
  435. }
  436. for (i = 0; i < 16; i++) {
  437. unsigned long v = pgprot_val(protection_map[i]);
  438. protection_map[i] = __pgprot(v | user_pgprot);
  439. }
  440. mem_types[MT_LOW_VECTORS].prot_pte |= vecs_pgprot;
  441. mem_types[MT_HIGH_VECTORS].prot_pte |= vecs_pgprot;
  442. pgprot_user = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | user_pgprot);
  443. pgprot_kernel = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG |
  444. L_PTE_DIRTY | L_PTE_WRITE | kern_pgprot);
  445. mem_types[MT_LOW_VECTORS].prot_l1 |= ecc_mask;
  446. mem_types[MT_HIGH_VECTORS].prot_l1 |= ecc_mask;
  447. mem_types[MT_MEMORY].prot_sect |= ecc_mask | cp->pmd;
  448. mem_types[MT_MEMORY].prot_pte |= kern_pgprot;
  449. mem_types[MT_MEMORY_NONCACHED].prot_sect |= ecc_mask;
  450. mem_types[MT_ROM].prot_sect |= cp->pmd;
  451. switch (cp->pmd) {
  452. case PMD_SECT_WT:
  453. mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WT;
  454. break;
  455. case PMD_SECT_WB:
  456. case PMD_SECT_WBWA:
  457. mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WB;
  458. break;
  459. }
  460. printk("Memory policy: ECC %sabled, Data cache %s\n",
  461. ecc_mask ? "en" : "dis", cp->policy);
  462. for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
  463. struct mem_type *t = &mem_types[i];
  464. if (t->prot_l1)
  465. t->prot_l1 |= PMD_DOMAIN(t->domain);
  466. if (t->prot_sect)
  467. t->prot_sect |= PMD_DOMAIN(t->domain);
  468. }
  469. }
  470. #ifdef CONFIG_ARM_DMA_MEM_BUFFERABLE
  471. pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
  472. unsigned long size, pgprot_t vma_prot)
  473. {
  474. if (!pfn_valid(pfn))
  475. return pgprot_noncached(vma_prot);
  476. else if (file->f_flags & O_SYNC)
  477. return pgprot_writecombine(vma_prot);
  478. return vma_prot;
  479. }
  480. EXPORT_SYMBOL(phys_mem_access_prot);
  481. #endif
  482. #define vectors_base() (vectors_high() ? 0xffff0000 : 0)
  483. static void __init *early_alloc(unsigned long sz)
  484. {
  485. void *ptr = __va(memblock_alloc(sz, sz));
  486. memset(ptr, 0, sz);
  487. return ptr;
  488. }
  489. static pte_t * __init early_pte_alloc(pmd_t *pmd, unsigned long addr, unsigned long prot)
  490. {
  491. if (pmd_none(*pmd)) {
  492. pte_t *pte = early_alloc(2 * PTRS_PER_PTE * sizeof(pte_t));
  493. __pmd_populate(pmd, __pa(pte) | prot);
  494. }
  495. BUG_ON(pmd_bad(*pmd));
  496. return pte_offset_kernel(pmd, addr);
  497. }
  498. static void __init alloc_init_pte(pmd_t *pmd, unsigned long addr,
  499. unsigned long end, unsigned long pfn,
  500. const struct mem_type *type)
  501. {
  502. pte_t *pte = early_pte_alloc(pmd, addr, type->prot_l1);
  503. do {
  504. set_pte_ext(pte, pfn_pte(pfn, __pgprot(type->prot_pte)), 0);
  505. pfn++;
  506. } while (pte++, addr += PAGE_SIZE, addr != end);
  507. }
  508. static void __init alloc_init_section(pgd_t *pgd, unsigned long addr,
  509. unsigned long end, unsigned long phys,
  510. const struct mem_type *type)
  511. {
  512. pmd_t *pmd = pmd_offset(pgd, addr);
  513. /*
  514. * Try a section mapping - end, addr and phys must all be aligned
  515. * to a section boundary. Note that PMDs refer to the individual
  516. * L1 entries, whereas PGDs refer to a group of L1 entries making
  517. * up one logical pointer to an L2 table.
  518. */
  519. if (((addr | end | phys) & ~SECTION_MASK) == 0) {
  520. pmd_t *p = pmd;
  521. if (addr & SECTION_SIZE)
  522. pmd++;
  523. do {
  524. *pmd = __pmd(phys | type->prot_sect);
  525. phys += SECTION_SIZE;
  526. } while (pmd++, addr += SECTION_SIZE, addr != end);
  527. flush_pmd_entry(p);
  528. } else {
  529. /*
  530. * No need to loop; pte's aren't interested in the
  531. * individual L1 entries.
  532. */
  533. alloc_init_pte(pmd, addr, end, __phys_to_pfn(phys), type);
  534. }
  535. }
  536. static void __init create_36bit_mapping(struct map_desc *md,
  537. const struct mem_type *type)
  538. {
  539. unsigned long phys, addr, length, end;
  540. pgd_t *pgd;
  541. addr = md->virtual;
  542. phys = (unsigned long)__pfn_to_phys(md->pfn);
  543. length = PAGE_ALIGN(md->length);
  544. if (!(cpu_architecture() >= CPU_ARCH_ARMv6 || cpu_is_xsc3())) {
  545. printk(KERN_ERR "MM: CPU does not support supersection "
  546. "mapping for 0x%08llx at 0x%08lx\n",
  547. __pfn_to_phys((u64)md->pfn), addr);
  548. return;
  549. }
  550. /* N.B. ARMv6 supersections are only defined to work with domain 0.
  551. * Since domain assignments can in fact be arbitrary, the
  552. * 'domain == 0' check below is required to insure that ARMv6
  553. * supersections are only allocated for domain 0 regardless
  554. * of the actual domain assignments in use.
  555. */
  556. if (type->domain) {
  557. printk(KERN_ERR "MM: invalid domain in supersection "
  558. "mapping for 0x%08llx at 0x%08lx\n",
  559. __pfn_to_phys((u64)md->pfn), addr);
  560. return;
  561. }
  562. if ((addr | length | __pfn_to_phys(md->pfn)) & ~SUPERSECTION_MASK) {
  563. printk(KERN_ERR "MM: cannot create mapping for "
  564. "0x%08llx at 0x%08lx invalid alignment\n",
  565. __pfn_to_phys((u64)md->pfn), addr);
  566. return;
  567. }
  568. /*
  569. * Shift bits [35:32] of address into bits [23:20] of PMD
  570. * (See ARMv6 spec).
  571. */
  572. phys |= (((md->pfn >> (32 - PAGE_SHIFT)) & 0xF) << 20);
  573. pgd = pgd_offset_k(addr);
  574. end = addr + length;
  575. do {
  576. pmd_t *pmd = pmd_offset(pgd, addr);
  577. int i;
  578. for (i = 0; i < 16; i++)
  579. *pmd++ = __pmd(phys | type->prot_sect | PMD_SECT_SUPER);
  580. addr += SUPERSECTION_SIZE;
  581. phys += SUPERSECTION_SIZE;
  582. pgd += SUPERSECTION_SIZE >> PGDIR_SHIFT;
  583. } while (addr != end);
  584. }
  585. /*
  586. * Create the page directory entries and any necessary
  587. * page tables for the mapping specified by `md'. We
  588. * are able to cope here with varying sizes and address
  589. * offsets, and we take full advantage of sections and
  590. * supersections.
  591. */
  592. static void __init create_mapping(struct map_desc *md)
  593. {
  594. unsigned long phys, addr, length, end;
  595. const struct mem_type *type;
  596. pgd_t *pgd;
  597. if (md->virtual != vectors_base() && md->virtual < TASK_SIZE) {
  598. printk(KERN_WARNING "BUG: not creating mapping for "
  599. "0x%08llx at 0x%08lx in user region\n",
  600. __pfn_to_phys((u64)md->pfn), md->virtual);
  601. return;
  602. }
  603. if ((md->type == MT_DEVICE || md->type == MT_ROM) &&
  604. md->virtual >= PAGE_OFFSET && md->virtual < VMALLOC_END) {
  605. printk(KERN_WARNING "BUG: mapping for 0x%08llx at 0x%08lx "
  606. "overlaps vmalloc space\n",
  607. __pfn_to_phys((u64)md->pfn), md->virtual);
  608. }
  609. type = &mem_types[md->type];
  610. /*
  611. * Catch 36-bit addresses
  612. */
  613. if (md->pfn >= 0x100000) {
  614. create_36bit_mapping(md, type);
  615. return;
  616. }
  617. addr = md->virtual & PAGE_MASK;
  618. phys = (unsigned long)__pfn_to_phys(md->pfn);
  619. length = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
  620. if (type->prot_l1 == 0 && ((addr | phys | length) & ~SECTION_MASK)) {
  621. printk(KERN_WARNING "BUG: map for 0x%08lx at 0x%08lx can not "
  622. "be mapped using pages, ignoring.\n",
  623. __pfn_to_phys(md->pfn), addr);
  624. return;
  625. }
  626. pgd = pgd_offset_k(addr);
  627. end = addr + length;
  628. do {
  629. unsigned long next = pgd_addr_end(addr, end);
  630. alloc_init_section(pgd, addr, next, phys, type);
  631. phys += next - addr;
  632. addr = next;
  633. } while (pgd++, addr != end);
  634. }
  635. /*
  636. * Create the architecture specific mappings
  637. */
  638. void __init iotable_init(struct map_desc *io_desc, int nr)
  639. {
  640. int i;
  641. for (i = 0; i < nr; i++)
  642. create_mapping(io_desc + i);
  643. }
  644. static void * __initdata vmalloc_min = (void *)(VMALLOC_END - SZ_128M);
  645. /*
  646. * vmalloc=size forces the vmalloc area to be exactly 'size'
  647. * bytes. This can be used to increase (or decrease) the vmalloc
  648. * area - the default is 128m.
  649. */
  650. static int __init early_vmalloc(char *arg)
  651. {
  652. unsigned long vmalloc_reserve = memparse(arg, NULL);
  653. if (vmalloc_reserve < SZ_16M) {
  654. vmalloc_reserve = SZ_16M;
  655. printk(KERN_WARNING
  656. "vmalloc area too small, limiting to %luMB\n",
  657. vmalloc_reserve >> 20);
  658. }
  659. if (vmalloc_reserve > VMALLOC_END - (PAGE_OFFSET + SZ_32M)) {
  660. vmalloc_reserve = VMALLOC_END - (PAGE_OFFSET + SZ_32M);
  661. printk(KERN_WARNING
  662. "vmalloc area is too big, limiting to %luMB\n",
  663. vmalloc_reserve >> 20);
  664. }
  665. vmalloc_min = (void *)(VMALLOC_END - vmalloc_reserve);
  666. return 0;
  667. }
  668. early_param("vmalloc", early_vmalloc);
  669. phys_addr_t lowmem_end_addr;
  670. static void __init sanity_check_meminfo(void)
  671. {
  672. int i, j, highmem = 0;
  673. lowmem_end_addr = __pa(vmalloc_min - 1) + 1;
  674. for (i = 0, j = 0; i < meminfo.nr_banks; i++) {
  675. struct membank *bank = &meminfo.bank[j];
  676. *bank = meminfo.bank[i];
  677. #ifdef CONFIG_HIGHMEM
  678. if (__va(bank->start) > vmalloc_min ||
  679. __va(bank->start) < (void *)PAGE_OFFSET)
  680. highmem = 1;
  681. bank->highmem = highmem;
  682. /*
  683. * Split those memory banks which are partially overlapping
  684. * the vmalloc area greatly simplifying things later.
  685. */
  686. if (__va(bank->start) < vmalloc_min &&
  687. bank->size > vmalloc_min - __va(bank->start)) {
  688. if (meminfo.nr_banks >= NR_BANKS) {
  689. printk(KERN_CRIT "NR_BANKS too low, "
  690. "ignoring high memory\n");
  691. } else {
  692. memmove(bank + 1, bank,
  693. (meminfo.nr_banks - i) * sizeof(*bank));
  694. meminfo.nr_banks++;
  695. i++;
  696. bank[1].size -= vmalloc_min - __va(bank->start);
  697. bank[1].start = __pa(vmalloc_min - 1) + 1;
  698. bank[1].highmem = highmem = 1;
  699. j++;
  700. }
  701. bank->size = vmalloc_min - __va(bank->start);
  702. }
  703. #else
  704. bank->highmem = highmem;
  705. /*
  706. * Check whether this memory bank would entirely overlap
  707. * the vmalloc area.
  708. */
  709. if (__va(bank->start) >= vmalloc_min ||
  710. __va(bank->start) < (void *)PAGE_OFFSET) {
  711. printk(KERN_NOTICE "Ignoring RAM at %.8lx-%.8lx "
  712. "(vmalloc region overlap).\n",
  713. bank->start, bank->start + bank->size - 1);
  714. continue;
  715. }
  716. /*
  717. * Check whether this memory bank would partially overlap
  718. * the vmalloc area.
  719. */
  720. if (__va(bank->start + bank->size) > vmalloc_min ||
  721. __va(bank->start + bank->size) < __va(bank->start)) {
  722. unsigned long newsize = vmalloc_min - __va(bank->start);
  723. printk(KERN_NOTICE "Truncating RAM at %.8lx-%.8lx "
  724. "to -%.8lx (vmalloc region overlap).\n",
  725. bank->start, bank->start + bank->size - 1,
  726. bank->start + newsize - 1);
  727. bank->size = newsize;
  728. }
  729. #endif
  730. j++;
  731. }
  732. #ifdef CONFIG_HIGHMEM
  733. if (highmem) {
  734. const char *reason = NULL;
  735. if (cache_is_vipt_aliasing()) {
  736. /*
  737. * Interactions between kmap and other mappings
  738. * make highmem support with aliasing VIPT caches
  739. * rather difficult.
  740. */
  741. reason = "with VIPT aliasing cache";
  742. #ifdef CONFIG_SMP
  743. } else if (tlb_ops_need_broadcast()) {
  744. /*
  745. * kmap_high needs to occasionally flush TLB entries,
  746. * however, if the TLB entries need to be broadcast
  747. * we may deadlock:
  748. * kmap_high(irqs off)->flush_all_zero_pkmaps->
  749. * flush_tlb_kernel_range->smp_call_function_many
  750. * (must not be called with irqs off)
  751. */
  752. reason = "without hardware TLB ops broadcasting";
  753. #endif
  754. }
  755. if (reason) {
  756. printk(KERN_CRIT "HIGHMEM is not supported %s, ignoring high memory\n",
  757. reason);
  758. while (j > 0 && meminfo.bank[j - 1].highmem)
  759. j--;
  760. }
  761. }
  762. #endif
  763. meminfo.nr_banks = j;
  764. }
  765. static inline void prepare_page_table(void)
  766. {
  767. unsigned long addr;
  768. /*
  769. * Clear out all the mappings below the kernel image.
  770. */
  771. for (addr = 0; addr < MODULES_VADDR; addr += PGDIR_SIZE)
  772. pmd_clear(pmd_off_k(addr));
  773. #ifdef CONFIG_XIP_KERNEL
  774. /* The XIP kernel is mapped in the module area -- skip over it */
  775. addr = ((unsigned long)_etext + PGDIR_SIZE - 1) & PGDIR_MASK;
  776. #endif
  777. for ( ; addr < PAGE_OFFSET; addr += PGDIR_SIZE)
  778. pmd_clear(pmd_off_k(addr));
  779. /*
  780. * Clear out all the kernel space mappings, except for the first
  781. * memory bank, up to the end of the vmalloc region.
  782. */
  783. for (addr = __phys_to_virt(bank_phys_end(&meminfo.bank[0]));
  784. addr < VMALLOC_END; addr += PGDIR_SIZE)
  785. pmd_clear(pmd_off_k(addr));
  786. }
  787. /*
  788. * Reserve the special regions of memory
  789. */
  790. void __init arm_mm_memblock_reserve(void)
  791. {
  792. /*
  793. * Reserve the page tables. These are already in use,
  794. * and can only be in node 0.
  795. */
  796. memblock_reserve(__pa(swapper_pg_dir), PTRS_PER_PGD * sizeof(pgd_t));
  797. #ifdef CONFIG_SA1111
  798. /*
  799. * Because of the SA1111 DMA bug, we want to preserve our
  800. * precious DMA-able memory...
  801. */
  802. memblock_reserve(PHYS_OFFSET, __pa(swapper_pg_dir) - PHYS_OFFSET);
  803. #endif
  804. }
  805. /*
  806. * Set up device the mappings. Since we clear out the page tables for all
  807. * mappings above VMALLOC_END, we will remove any debug device mappings.
  808. * This means you have to be careful how you debug this function, or any
  809. * called function. This means you can't use any function or debugging
  810. * method which may touch any device, otherwise the kernel _will_ crash.
  811. */
  812. static void __init devicemaps_init(struct machine_desc *mdesc)
  813. {
  814. struct map_desc map;
  815. unsigned long addr;
  816. void *vectors;
  817. /*
  818. * Allocate the vector page early.
  819. */
  820. vectors = early_alloc(PAGE_SIZE);
  821. for (addr = VMALLOC_END; addr; addr += PGDIR_SIZE)
  822. pmd_clear(pmd_off_k(addr));
  823. /*
  824. * Map the kernel if it is XIP.
  825. * It is always first in the modulearea.
  826. */
  827. #ifdef CONFIG_XIP_KERNEL
  828. map.pfn = __phys_to_pfn(CONFIG_XIP_PHYS_ADDR & SECTION_MASK);
  829. map.virtual = MODULES_VADDR;
  830. map.length = ((unsigned long)_etext - map.virtual + ~SECTION_MASK) & SECTION_MASK;
  831. map.type = MT_ROM;
  832. create_mapping(&map);
  833. #endif
  834. /*
  835. * Map the cache flushing regions.
  836. */
  837. #ifdef FLUSH_BASE
  838. map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS);
  839. map.virtual = FLUSH_BASE;
  840. map.length = SZ_1M;
  841. map.type = MT_CACHECLEAN;
  842. create_mapping(&map);
  843. #endif
  844. #ifdef FLUSH_BASE_MINICACHE
  845. map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS + SZ_1M);
  846. map.virtual = FLUSH_BASE_MINICACHE;
  847. map.length = SZ_1M;
  848. map.type = MT_MINICLEAN;
  849. create_mapping(&map);
  850. #endif
  851. /*
  852. * Create a mapping for the machine vectors at the high-vectors
  853. * location (0xffff0000). If we aren't using high-vectors, also
  854. * create a mapping at the low-vectors virtual address.
  855. */
  856. map.pfn = __phys_to_pfn(virt_to_phys(vectors));
  857. map.virtual = 0xffff0000;
  858. map.length = PAGE_SIZE;
  859. map.type = MT_HIGH_VECTORS;
  860. create_mapping(&map);
  861. if (!vectors_high()) {
  862. map.virtual = 0;
  863. map.type = MT_LOW_VECTORS;
  864. create_mapping(&map);
  865. }
  866. /*
  867. * Ask the machine support to map in the statically mapped devices.
  868. */
  869. if (mdesc->map_io)
  870. mdesc->map_io();
  871. /*
  872. * Finally flush the caches and tlb to ensure that we're in a
  873. * consistent state wrt the writebuffer. This also ensures that
  874. * any write-allocated cache lines in the vector page are written
  875. * back. After this point, we can start to touch devices again.
  876. */
  877. local_flush_tlb_all();
  878. flush_cache_all();
  879. }
  880. static void __init kmap_init(void)
  881. {
  882. #ifdef CONFIG_HIGHMEM
  883. pkmap_page_table = early_pte_alloc(pmd_off_k(PKMAP_BASE),
  884. PKMAP_BASE, _PAGE_KERNEL_TABLE);
  885. #endif
  886. }
  887. static inline void map_memory_bank(struct membank *bank)
  888. {
  889. struct map_desc map;
  890. map.pfn = bank_pfn_start(bank);
  891. map.virtual = __phys_to_virt(bank_phys_start(bank));
  892. map.length = bank_phys_size(bank);
  893. map.type = MT_MEMORY;
  894. create_mapping(&map);
  895. }
  896. static void __init map_lowmem(void)
  897. {
  898. struct meminfo *mi = &meminfo;
  899. int i;
  900. /* Map all the lowmem memory banks. */
  901. for (i = 0; i < mi->nr_banks; i++) {
  902. struct membank *bank = &mi->bank[i];
  903. if (!bank->highmem)
  904. map_memory_bank(bank);
  905. }
  906. }
  907. static int __init meminfo_cmp(const void *_a, const void *_b)
  908. {
  909. const struct membank *a = _a, *b = _b;
  910. long cmp = bank_pfn_start(a) - bank_pfn_start(b);
  911. return cmp < 0 ? -1 : cmp > 0 ? 1 : 0;
  912. }
  913. /*
  914. * paging_init() sets up the page tables, initialises the zone memory
  915. * maps, and sets up the zero page, bad page and bad page tables.
  916. */
  917. void __init paging_init(struct machine_desc *mdesc)
  918. {
  919. void *zero_page;
  920. sort(&meminfo.bank, meminfo.nr_banks, sizeof(meminfo.bank[0]), meminfo_cmp, NULL);
  921. build_mem_type_table();
  922. sanity_check_meminfo();
  923. prepare_page_table();
  924. map_lowmem();
  925. devicemaps_init(mdesc);
  926. kmap_init();
  927. top_pmd = pmd_off_k(0xffff0000);
  928. /* allocate the zero page. */
  929. zero_page = early_alloc(PAGE_SIZE);
  930. bootmem_init();
  931. empty_zero_page = virt_to_page(zero_page);
  932. __flush_dcache_page(NULL, empty_zero_page);
  933. }
  934. /*
  935. * In order to soft-boot, we need to insert a 1:1 mapping in place of
  936. * the user-mode pages. This will then ensure that we have predictable
  937. * results when turning the mmu off
  938. */
  939. void setup_mm_for_reboot(char mode)
  940. {
  941. unsigned long base_pmdval;
  942. pgd_t *pgd;
  943. int i;
  944. /*
  945. * We need to access to user-mode page tables here. For kernel threads
  946. * we don't have any user-mode mappings so we use the context that we
  947. * "borrowed".
  948. */
  949. pgd = current->active_mm->pgd;
  950. base_pmdval = PMD_SECT_AP_WRITE | PMD_SECT_AP_READ | PMD_TYPE_SECT;
  951. if (cpu_architecture() <= CPU_ARCH_ARMv5TEJ && !cpu_is_xscale())
  952. base_pmdval |= PMD_BIT4;
  953. for (i = 0; i < FIRST_USER_PGD_NR + USER_PTRS_PER_PGD; i++, pgd++) {
  954. unsigned long pmdval = (i << PGDIR_SHIFT) | base_pmdval;
  955. pmd_t *pmd;
  956. pmd = pmd_off(pgd, i << PGDIR_SHIFT);
  957. pmd[0] = __pmd(pmdval);
  958. pmd[1] = __pmd(pmdval + (1 << (PGDIR_SHIFT - 1)));
  959. flush_pmd_entry(pmd);
  960. }
  961. local_flush_tlb_all();
  962. }