nv04_instmem.c 4.3 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188
  1. #include "drmP.h"
  2. #include "drm.h"
  3. #include "nouveau_drv.h"
  4. #include "nouveau_ramht.h"
  5. /* returns the size of fifo context */
  6. static int
  7. nouveau_fifo_ctx_size(struct drm_device *dev)
  8. {
  9. struct drm_nouveau_private *dev_priv = dev->dev_private;
  10. if (dev_priv->chipset >= 0x40)
  11. return 128;
  12. else
  13. if (dev_priv->chipset >= 0x17)
  14. return 64;
  15. return 32;
  16. }
  17. int nv04_instmem_init(struct drm_device *dev)
  18. {
  19. struct drm_nouveau_private *dev_priv = dev->dev_private;
  20. struct nouveau_gpuobj *ramht = NULL;
  21. u32 offset, length;
  22. int ret;
  23. /* RAMIN always available */
  24. dev_priv->ramin_available = true;
  25. /* Reserve space at end of VRAM for PRAMIN */
  26. if (dev_priv->card_type >= NV_40) {
  27. u32 vs = hweight8((nv_rd32(dev, 0x001540) & 0x0000ff00) >> 8);
  28. u32 rsvd;
  29. /* estimate grctx size, the magics come from nv40_grctx.c */
  30. if (dev_priv->chipset == 0x40) rsvd = 0x6aa0 * vs;
  31. else if (dev_priv->chipset < 0x43) rsvd = 0x4f00 * vs;
  32. else if (nv44_graph_class(dev)) rsvd = 0x4980 * vs;
  33. else rsvd = 0x4a40 * vs;
  34. rsvd += 16 * 1024;
  35. rsvd *= dev_priv->engine.fifo.channels;
  36. rsvd += 512 * 1024; /* pci(e)gart table */
  37. rsvd += 512 * 1024; /* object storage */
  38. dev_priv->ramin_rsvd_vram = round_up(rsvd, 4096);
  39. } else {
  40. dev_priv->ramin_rsvd_vram = 512 * 1024;
  41. }
  42. /* Setup shared RAMHT */
  43. ret = nouveau_gpuobj_new_fake(dev, 0x10000, ~0, 4096,
  44. NVOBJ_FLAG_ZERO_ALLOC, &ramht);
  45. if (ret)
  46. return ret;
  47. ret = nouveau_ramht_new(dev, ramht, &dev_priv->ramht);
  48. nouveau_gpuobj_ref(NULL, &ramht);
  49. if (ret)
  50. return ret;
  51. /* And RAMRO */
  52. ret = nouveau_gpuobj_new_fake(dev, 0x11200, ~0, 512,
  53. NVOBJ_FLAG_ZERO_ALLOC, &dev_priv->ramro);
  54. if (ret)
  55. return ret;
  56. /* And RAMFC */
  57. length = dev_priv->engine.fifo.channels * nouveau_fifo_ctx_size(dev);
  58. switch (dev_priv->card_type) {
  59. case NV_40:
  60. offset = 0x20000;
  61. break;
  62. default:
  63. offset = 0x11400;
  64. break;
  65. }
  66. ret = nouveau_gpuobj_new_fake(dev, offset, ~0, length,
  67. NVOBJ_FLAG_ZERO_ALLOC, &dev_priv->ramfc);
  68. if (ret)
  69. return ret;
  70. /* Only allow space after RAMFC to be used for object allocation */
  71. offset += length;
  72. /* It appears RAMRO (or something?) is controlled by 0x2220/0x2230
  73. * on certain NV4x chipsets as well as RAMFC. When 0x2230 == 0
  74. * ("new style" control) the upper 16-bits of 0x2220 points at this
  75. * other mysterious table that's clobbering important things.
  76. *
  77. * We're now pointing this at RAMIN+0x30000 to avoid RAMFC getting
  78. * smashed to pieces on us, so reserve 0x30000-0x40000 too..
  79. */
  80. if (dev_priv->card_type >= NV_40) {
  81. if (offset < 0x40000)
  82. offset = 0x40000;
  83. }
  84. ret = drm_mm_init(&dev_priv->ramin_heap, offset,
  85. dev_priv->ramin_rsvd_vram - offset);
  86. if (ret) {
  87. NV_ERROR(dev, "Failed to init RAMIN heap: %d\n", ret);
  88. return ret;
  89. }
  90. return 0;
  91. }
  92. void
  93. nv04_instmem_takedown(struct drm_device *dev)
  94. {
  95. struct drm_nouveau_private *dev_priv = dev->dev_private;
  96. nouveau_ramht_ref(NULL, &dev_priv->ramht, NULL);
  97. nouveau_gpuobj_ref(NULL, &dev_priv->ramro);
  98. nouveau_gpuobj_ref(NULL, &dev_priv->ramfc);
  99. if (drm_mm_initialized(&dev_priv->ramin_heap))
  100. drm_mm_takedown(&dev_priv->ramin_heap);
  101. }
  102. int
  103. nv04_instmem_suspend(struct drm_device *dev)
  104. {
  105. return 0;
  106. }
  107. void
  108. nv04_instmem_resume(struct drm_device *dev)
  109. {
  110. }
  111. int
  112. nv04_instmem_get(struct nouveau_gpuobj *gpuobj, struct nouveau_channel *chan,
  113. u32 size, u32 align)
  114. {
  115. struct drm_nouveau_private *dev_priv = gpuobj->dev->dev_private;
  116. struct drm_mm_node *ramin = NULL;
  117. do {
  118. if (drm_mm_pre_get(&dev_priv->ramin_heap))
  119. return -ENOMEM;
  120. spin_lock(&dev_priv->ramin_lock);
  121. ramin = drm_mm_search_free(&dev_priv->ramin_heap, size, align, 0);
  122. if (ramin == NULL) {
  123. spin_unlock(&dev_priv->ramin_lock);
  124. return -ENOMEM;
  125. }
  126. ramin = drm_mm_get_block_atomic(ramin, size, align);
  127. spin_unlock(&dev_priv->ramin_lock);
  128. } while (ramin == NULL);
  129. gpuobj->node = ramin;
  130. gpuobj->vinst = ramin->start;
  131. return 0;
  132. }
  133. void
  134. nv04_instmem_put(struct nouveau_gpuobj *gpuobj)
  135. {
  136. struct drm_nouveau_private *dev_priv = gpuobj->dev->dev_private;
  137. spin_lock(&dev_priv->ramin_lock);
  138. drm_mm_put_block(gpuobj->node);
  139. gpuobj->node = NULL;
  140. spin_unlock(&dev_priv->ramin_lock);
  141. }
  142. int
  143. nv04_instmem_map(struct nouveau_gpuobj *gpuobj)
  144. {
  145. gpuobj->pinst = gpuobj->vinst;
  146. return 0;
  147. }
  148. void
  149. nv04_instmem_unmap(struct nouveau_gpuobj *gpuobj)
  150. {
  151. }
  152. void
  153. nv04_instmem_flush(struct drm_device *dev)
  154. {
  155. }