mmu-hash64.h 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403
  1. #ifndef _ASM_POWERPC_MMU_HASH64_H_
  2. #define _ASM_POWERPC_MMU_HASH64_H_
  3. /*
  4. * PowerPC64 memory management structures
  5. *
  6. * Dave Engebretsen & Mike Corrigan <{engebret|mikejc}@us.ibm.com>
  7. * PPC64 rework.
  8. *
  9. * This program is free software; you can redistribute it and/or
  10. * modify it under the terms of the GNU General Public License
  11. * as published by the Free Software Foundation; either version
  12. * 2 of the License, or (at your option) any later version.
  13. */
  14. #include <asm/asm-compat.h>
  15. #include <asm/page.h>
  16. /*
  17. * Segment table
  18. */
  19. #define STE_ESID_V 0x80
  20. #define STE_ESID_KS 0x20
  21. #define STE_ESID_KP 0x10
  22. #define STE_ESID_N 0x08
  23. #define STE_VSID_SHIFT 12
  24. /* Location of cpu0's segment table */
  25. #define STAB0_PAGE 0x6
  26. #define STAB0_OFFSET (STAB0_PAGE << 12)
  27. #define STAB0_PHYS_ADDR (STAB0_OFFSET + PHYSICAL_START)
  28. #ifndef __ASSEMBLY__
  29. extern char initial_stab[];
  30. #endif /* ! __ASSEMBLY */
  31. /*
  32. * SLB
  33. */
  34. #define SLB_NUM_BOLTED 3
  35. #define SLB_CACHE_ENTRIES 8
  36. /* Bits in the SLB ESID word */
  37. #define SLB_ESID_V ASM_CONST(0x0000000008000000) /* valid */
  38. /* Bits in the SLB VSID word */
  39. #define SLB_VSID_SHIFT 12
  40. #define SLB_VSID_B ASM_CONST(0xc000000000000000)
  41. #define SLB_VSID_B_256M ASM_CONST(0x0000000000000000)
  42. #define SLB_VSID_B_1T ASM_CONST(0x4000000000000000)
  43. #define SLB_VSID_KS ASM_CONST(0x0000000000000800)
  44. #define SLB_VSID_KP ASM_CONST(0x0000000000000400)
  45. #define SLB_VSID_N ASM_CONST(0x0000000000000200) /* no-execute */
  46. #define SLB_VSID_L ASM_CONST(0x0000000000000100)
  47. #define SLB_VSID_C ASM_CONST(0x0000000000000080) /* class */
  48. #define SLB_VSID_LP ASM_CONST(0x0000000000000030)
  49. #define SLB_VSID_LP_00 ASM_CONST(0x0000000000000000)
  50. #define SLB_VSID_LP_01 ASM_CONST(0x0000000000000010)
  51. #define SLB_VSID_LP_10 ASM_CONST(0x0000000000000020)
  52. #define SLB_VSID_LP_11 ASM_CONST(0x0000000000000030)
  53. #define SLB_VSID_LLP (SLB_VSID_L|SLB_VSID_LP)
  54. #define SLB_VSID_KERNEL (SLB_VSID_KP)
  55. #define SLB_VSID_USER (SLB_VSID_KP|SLB_VSID_KS|SLB_VSID_C)
  56. #define SLBIE_C (0x08000000)
  57. /*
  58. * Hash table
  59. */
  60. #define HPTES_PER_GROUP 8
  61. #define HPTE_V_AVPN_SHIFT 7
  62. #define HPTE_V_AVPN ASM_CONST(0xffffffffffffff80)
  63. #define HPTE_V_AVPN_VAL(x) (((x) & HPTE_V_AVPN) >> HPTE_V_AVPN_SHIFT)
  64. #define HPTE_V_COMPARE(x,y) (!(((x) ^ (y)) & HPTE_V_AVPN))
  65. #define HPTE_V_BOLTED ASM_CONST(0x0000000000000010)
  66. #define HPTE_V_LOCK ASM_CONST(0x0000000000000008)
  67. #define HPTE_V_LARGE ASM_CONST(0x0000000000000004)
  68. #define HPTE_V_SECONDARY ASM_CONST(0x0000000000000002)
  69. #define HPTE_V_VALID ASM_CONST(0x0000000000000001)
  70. #define HPTE_R_PP0 ASM_CONST(0x8000000000000000)
  71. #define HPTE_R_TS ASM_CONST(0x4000000000000000)
  72. #define HPTE_R_RPN_SHIFT 12
  73. #define HPTE_R_RPN ASM_CONST(0x3ffffffffffff000)
  74. #define HPTE_R_FLAGS ASM_CONST(0x00000000000003ff)
  75. #define HPTE_R_PP ASM_CONST(0x0000000000000003)
  76. #define HPTE_R_N ASM_CONST(0x0000000000000004)
  77. #define HPTE_R_C ASM_CONST(0x0000000000000080)
  78. #define HPTE_R_R ASM_CONST(0x0000000000000100)
  79. /* Values for PP (assumes Ks=0, Kp=1) */
  80. /* pp0 will always be 0 for linux */
  81. #define PP_RWXX 0 /* Supervisor read/write, User none */
  82. #define PP_RWRX 1 /* Supervisor read/write, User read */
  83. #define PP_RWRW 2 /* Supervisor read/write, User read/write */
  84. #define PP_RXRX 3 /* Supervisor read, User read */
  85. #ifndef __ASSEMBLY__
  86. typedef struct {
  87. unsigned long v;
  88. unsigned long r;
  89. } hpte_t;
  90. extern hpte_t *htab_address;
  91. extern unsigned long htab_size_bytes;
  92. extern unsigned long htab_hash_mask;
  93. /*
  94. * Page size definition
  95. *
  96. * shift : is the "PAGE_SHIFT" value for that page size
  97. * sllp : is a bit mask with the value of SLB L || LP to be or'ed
  98. * directly to a slbmte "vsid" value
  99. * penc : is the HPTE encoding mask for the "LP" field:
  100. *
  101. */
  102. struct mmu_psize_def
  103. {
  104. unsigned int shift; /* number of bits */
  105. unsigned int penc; /* HPTE encoding */
  106. unsigned int tlbiel; /* tlbiel supported for that page size */
  107. unsigned long avpnm; /* bits to mask out in AVPN in the HPTE */
  108. unsigned long sllp; /* SLB L||LP (exact mask to use in slbmte) */
  109. };
  110. #endif /* __ASSEMBLY__ */
  111. /*
  112. * The kernel use the constants below to index in the page sizes array.
  113. * The use of fixed constants for this purpose is better for performances
  114. * of the low level hash refill handlers.
  115. *
  116. * A non supported page size has a "shift" field set to 0
  117. *
  118. * Any new page size being implemented can get a new entry in here. Whether
  119. * the kernel will use it or not is a different matter though. The actual page
  120. * size used by hugetlbfs is not defined here and may be made variable
  121. */
  122. #define MMU_PAGE_4K 0 /* 4K */
  123. #define MMU_PAGE_64K 1 /* 64K */
  124. #define MMU_PAGE_64K_AP 2 /* 64K Admixed (in a 4K segment) */
  125. #define MMU_PAGE_1M 3 /* 1M */
  126. #define MMU_PAGE_16M 4 /* 16M */
  127. #define MMU_PAGE_16G 5 /* 16G */
  128. #define MMU_PAGE_COUNT 6
  129. #ifndef __ASSEMBLY__
  130. /*
  131. * The current system page sizes
  132. */
  133. extern struct mmu_psize_def mmu_psize_defs[MMU_PAGE_COUNT];
  134. extern int mmu_linear_psize;
  135. extern int mmu_virtual_psize;
  136. extern int mmu_vmalloc_psize;
  137. extern int mmu_io_psize;
  138. /*
  139. * If the processor supports 64k normal pages but not 64k cache
  140. * inhibited pages, we have to be prepared to switch processes
  141. * to use 4k pages when they create cache-inhibited mappings.
  142. * If this is the case, mmu_ci_restrictions will be set to 1.
  143. */
  144. extern int mmu_ci_restrictions;
  145. #ifdef CONFIG_HUGETLB_PAGE
  146. /*
  147. * The page size index of the huge pages for use by hugetlbfs
  148. */
  149. extern int mmu_huge_psize;
  150. #endif /* CONFIG_HUGETLB_PAGE */
  151. /*
  152. * This function sets the AVPN and L fields of the HPTE appropriately
  153. * for the page size
  154. */
  155. static inline unsigned long hpte_encode_v(unsigned long va, int psize)
  156. {
  157. unsigned long v =
  158. v = (va >> 23) & ~(mmu_psize_defs[psize].avpnm);
  159. v <<= HPTE_V_AVPN_SHIFT;
  160. if (psize != MMU_PAGE_4K)
  161. v |= HPTE_V_LARGE;
  162. return v;
  163. }
  164. /*
  165. * This function sets the ARPN, and LP fields of the HPTE appropriately
  166. * for the page size. We assume the pa is already "clean" that is properly
  167. * aligned for the requested page size
  168. */
  169. static inline unsigned long hpte_encode_r(unsigned long pa, int psize)
  170. {
  171. unsigned long r;
  172. /* A 4K page needs no special encoding */
  173. if (psize == MMU_PAGE_4K)
  174. return pa & HPTE_R_RPN;
  175. else {
  176. unsigned int penc = mmu_psize_defs[psize].penc;
  177. unsigned int shift = mmu_psize_defs[psize].shift;
  178. return (pa & ~((1ul << shift) - 1)) | (penc << 12);
  179. }
  180. return r;
  181. }
  182. /*
  183. * This hashes a virtual address for a 256Mb segment only for now
  184. */
  185. static inline unsigned long hpt_hash(unsigned long va, unsigned int shift)
  186. {
  187. return ((va >> 28) & 0x7fffffffffUL) ^ ((va & 0x0fffffffUL) >> shift);
  188. }
  189. extern int __hash_page_4K(unsigned long ea, unsigned long access,
  190. unsigned long vsid, pte_t *ptep, unsigned long trap,
  191. unsigned int local);
  192. extern int __hash_page_64K(unsigned long ea, unsigned long access,
  193. unsigned long vsid, pte_t *ptep, unsigned long trap,
  194. unsigned int local);
  195. struct mm_struct;
  196. extern int hash_page(unsigned long ea, unsigned long access, unsigned long trap);
  197. extern int hash_huge_page(struct mm_struct *mm, unsigned long access,
  198. unsigned long ea, unsigned long vsid, int local,
  199. unsigned long trap);
  200. extern int htab_bolt_mapping(unsigned long vstart, unsigned long vend,
  201. unsigned long pstart, unsigned long mode,
  202. int psize);
  203. extern void htab_initialize(void);
  204. extern void htab_initialize_secondary(void);
  205. extern void hpte_init_native(void);
  206. extern void hpte_init_lpar(void);
  207. extern void hpte_init_iSeries(void);
  208. extern void hpte_init_beat(void);
  209. extern void stabs_alloc(void);
  210. extern void slb_initialize(void);
  211. extern void slb_flush_and_rebolt(void);
  212. extern void stab_initialize(unsigned long stab);
  213. #endif /* __ASSEMBLY__ */
  214. /*
  215. * VSID allocation
  216. *
  217. * We first generate a 36-bit "proto-VSID". For kernel addresses this
  218. * is equal to the ESID, for user addresses it is:
  219. * (context << 15) | (esid & 0x7fff)
  220. *
  221. * The two forms are distinguishable because the top bit is 0 for user
  222. * addresses, whereas the top two bits are 1 for kernel addresses.
  223. * Proto-VSIDs with the top two bits equal to 0b10 are reserved for
  224. * now.
  225. *
  226. * The proto-VSIDs are then scrambled into real VSIDs with the
  227. * multiplicative hash:
  228. *
  229. * VSID = (proto-VSID * VSID_MULTIPLIER) % VSID_MODULUS
  230. * where VSID_MULTIPLIER = 268435399 = 0xFFFFFC7
  231. * VSID_MODULUS = 2^36-1 = 0xFFFFFFFFF
  232. *
  233. * This scramble is only well defined for proto-VSIDs below
  234. * 0xFFFFFFFFF, so both proto-VSID and actual VSID 0xFFFFFFFFF are
  235. * reserved. VSID_MULTIPLIER is prime, so in particular it is
  236. * co-prime to VSID_MODULUS, making this a 1:1 scrambling function.
  237. * Because the modulus is 2^n-1 we can compute it efficiently without
  238. * a divide or extra multiply (see below).
  239. *
  240. * This scheme has several advantages over older methods:
  241. *
  242. * - We have VSIDs allocated for every kernel address
  243. * (i.e. everything above 0xC000000000000000), except the very top
  244. * segment, which simplifies several things.
  245. *
  246. * - We allow for 15 significant bits of ESID and 20 bits of
  247. * context for user addresses. i.e. 8T (43 bits) of address space for
  248. * up to 1M contexts (although the page table structure and context
  249. * allocation will need changes to take advantage of this).
  250. *
  251. * - The scramble function gives robust scattering in the hash
  252. * table (at least based on some initial results). The previous
  253. * method was more susceptible to pathological cases giving excessive
  254. * hash collisions.
  255. */
  256. /*
  257. * WARNING - If you change these you must make sure the asm
  258. * implementations in slb_allocate (slb_low.S), do_stab_bolted
  259. * (head.S) and ASM_VSID_SCRAMBLE (below) are changed accordingly.
  260. *
  261. * You'll also need to change the precomputed VSID values in head.S
  262. * which are used by the iSeries firmware.
  263. */
  264. #define VSID_MULTIPLIER ASM_CONST(200730139) /* 28-bit prime */
  265. #define VSID_BITS 36
  266. #define VSID_MODULUS ((1UL<<VSID_BITS)-1)
  267. #define CONTEXT_BITS 19
  268. #define USER_ESID_BITS 16
  269. #define USER_VSID_RANGE (1UL << (USER_ESID_BITS + SID_SHIFT))
  270. /*
  271. * This macro generates asm code to compute the VSID scramble
  272. * function. Used in slb_allocate() and do_stab_bolted. The function
  273. * computed is: (protovsid*VSID_MULTIPLIER) % VSID_MODULUS
  274. *
  275. * rt = register continaing the proto-VSID and into which the
  276. * VSID will be stored
  277. * rx = scratch register (clobbered)
  278. *
  279. * - rt and rx must be different registers
  280. * - The answer will end up in the low 36 bits of rt. The higher
  281. * bits may contain other garbage, so you may need to mask the
  282. * result.
  283. */
  284. #define ASM_VSID_SCRAMBLE(rt, rx) \
  285. lis rx,VSID_MULTIPLIER@h; \
  286. ori rx,rx,VSID_MULTIPLIER@l; \
  287. mulld rt,rt,rx; /* rt = rt * MULTIPLIER */ \
  288. \
  289. srdi rx,rt,VSID_BITS; \
  290. clrldi rt,rt,(64-VSID_BITS); \
  291. add rt,rt,rx; /* add high and low bits */ \
  292. /* Now, r3 == VSID (mod 2^36-1), and lies between 0 and \
  293. * 2^36-1+2^28-1. That in particular means that if r3 >= \
  294. * 2^36-1, then r3+1 has the 2^36 bit set. So, if r3+1 has \
  295. * the bit clear, r3 already has the answer we want, if it \
  296. * doesn't, the answer is the low 36 bits of r3+1. So in all \
  297. * cases the answer is the low 36 bits of (r3 + ((r3+1) >> 36))*/\
  298. addi rx,rt,1; \
  299. srdi rx,rx,VSID_BITS; /* extract 2^36 bit */ \
  300. add rt,rt,rx
  301. #ifndef __ASSEMBLY__
  302. typedef unsigned long mm_context_id_t;
  303. typedef struct {
  304. mm_context_id_t id;
  305. u16 user_psize; /* page size index */
  306. #ifdef CONFIG_PPC_MM_SLICES
  307. u64 low_slices_psize; /* SLB page size encodings */
  308. u64 high_slices_psize; /* 4 bits per slice for now */
  309. #else
  310. u16 sllp; /* SLB page size encoding */
  311. #endif
  312. unsigned long vdso_base;
  313. } mm_context_t;
  314. static inline unsigned long vsid_scramble(unsigned long protovsid)
  315. {
  316. #if 0
  317. /* The code below is equivalent to this function for arguments
  318. * < 2^VSID_BITS, which is all this should ever be called
  319. * with. However gcc is not clever enough to compute the
  320. * modulus (2^n-1) without a second multiply. */
  321. return ((protovsid * VSID_MULTIPLIER) % VSID_MODULUS);
  322. #else /* 1 */
  323. unsigned long x;
  324. x = protovsid * VSID_MULTIPLIER;
  325. x = (x >> VSID_BITS) + (x & VSID_MODULUS);
  326. return (x + ((x+1) >> VSID_BITS)) & VSID_MODULUS;
  327. #endif /* 1 */
  328. }
  329. /* This is only valid for addresses >= KERNELBASE */
  330. static inline unsigned long get_kernel_vsid(unsigned long ea)
  331. {
  332. return vsid_scramble(ea >> SID_SHIFT);
  333. }
  334. /* This is only valid for user addresses (which are below 2^41) */
  335. static inline unsigned long get_vsid(unsigned long context, unsigned long ea)
  336. {
  337. return vsid_scramble((context << USER_ESID_BITS)
  338. | (ea >> SID_SHIFT));
  339. }
  340. #define VSID_SCRAMBLE(pvsid) (((pvsid) * VSID_MULTIPLIER) % VSID_MODULUS)
  341. #define KERNEL_VSID(ea) VSID_SCRAMBLE(GET_ESID(ea))
  342. /* Physical address used by some IO functions */
  343. typedef unsigned long phys_addr_t;
  344. #endif /* __ASSEMBLY__ */
  345. #endif /* _ASM_POWERPC_MMU_HASH64_H_ */