sched.c 249 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274827582768277827882798280828182828283828482858286828782888289829082918292829382948295829682978298829983008301830283038304830583068307830883098310831183128313831483158316831783188319832083218322832383248325832683278328832983308331833283338334833583368337833883398340834183428343834483458346834783488349835083518352835383548355835683578358835983608361836283638364836583668367836883698370837183728373837483758376837783788379838083818382838383848385838683878388838983908391839283938394839583968397839883998400840184028403840484058406840784088409841084118412841384148415841684178418841984208421842284238424842584268427842884298430843184328433843484358436843784388439844084418442844384448445844684478448844984508451845284538454845584568457845884598460846184628463846484658466846784688469847084718472847384748475847684778478847984808481848284838484848584868487848884898490849184928493849484958496849784988499850085018502850385048505850685078508850985108511851285138514851585168517851885198520852185228523852485258526852785288529853085318532853385348535853685378538853985408541854285438544854585468547854885498550855185528553855485558556855785588559856085618562856385648565856685678568856985708571857285738574857585768577857885798580858185828583858485858586858785888589859085918592859385948595859685978598859986008601860286038604860586068607860886098610861186128613861486158616861786188619862086218622862386248625862686278628862986308631863286338634863586368637863886398640864186428643864486458646864786488649865086518652865386548655865686578658865986608661866286638664866586668667866886698670867186728673867486758676867786788679868086818682868386848685868686878688868986908691869286938694869586968697869886998700870187028703870487058706870787088709871087118712871387148715871687178718871987208721872287238724872587268727872887298730873187328733873487358736873787388739874087418742874387448745874687478748874987508751875287538754875587568757875887598760876187628763876487658766876787688769877087718772877387748775877687778778877987808781878287838784878587868787878887898790879187928793879487958796879787988799880088018802880388048805880688078808880988108811881288138814881588168817881888198820882188228823882488258826882788288829883088318832883388348835883688378838883988408841884288438844884588468847884888498850885188528853885488558856885788588859886088618862886388648865886688678868886988708871887288738874887588768877887888798880888188828883888488858886888788888889889088918892889388948895889688978898889989008901890289038904890589068907890889098910891189128913891489158916891789188919892089218922892389248925892689278928892989308931893289338934893589368937893889398940894189428943894489458946894789488949895089518952895389548955895689578958895989608961896289638964896589668967896889698970897189728973897489758976897789788979898089818982898389848985898689878988898989908991899289938994899589968997899889999000900190029003900490059006900790089009901090119012901390149015901690179018901990209021902290239024902590269027902890299030903190329033903490359036903790389039904090419042904390449045904690479048904990509051905290539054905590569057905890599060906190629063906490659066906790689069907090719072907390749075907690779078907990809081908290839084908590869087908890899090909190929093909490959096909790989099910091019102910391049105910691079108910991109111911291139114911591169117911891199120912191229123912491259126912791289129913091319132913391349135913691379138913991409141914291439144914591469147914891499150915191529153915491559156915791589159916091619162916391649165916691679168916991709171917291739174917591769177917891799180918191829183918491859186918791889189919091919192919391949195919691979198919992009201920292039204920592069207920892099210921192129213921492159216921792189219922092219222922392249225922692279228922992309231923292339234923592369237923892399240924192429243924492459246924792489249925092519252925392549255925692579258925992609261926292639264926592669267926892699270927192729273927492759276927792789279928092819282928392849285928692879288928992909291929292939294929592969297929892999300930193029303930493059306930793089309931093119312931393149315931693179318931993209321932293239324932593269327932893299330933193329333933493359336933793389339934093419342934393449345934693479348934993509351935293539354935593569357935893599360936193629363936493659366936793689369937093719372937393749375937693779378937993809381938293839384938593869387938893899390939193929393939493959396939793989399940094019402940394049405940694079408940994109411941294139414941594169417941894199420942194229423942494259426942794289429943094319432943394349435943694379438943994409441944294439444944594469447944894499450945194529453945494559456945794589459946094619462946394649465946694679468946994709471947294739474947594769477947894799480948194829483948494859486948794889489949094919492949394949495949694979498949995009501950295039504950595069507950895099510951195129513951495159516951795189519952095219522952395249525952695279528952995309531953295339534953595369537953895399540954195429543954495459546954795489549955095519552955395549555955695579558955995609561956295639564956595669567956895699570957195729573957495759576957795789579958095819582958395849585958695879588958995909591959295939594959595969597959895999600960196029603960496059606960796089609961096119612961396149615961696179618961996209621962296239624962596269627962896299630963196329633963496359636963796389639964096419642964396449645964696479648964996509651965296539654965596569657965896599660966196629663966496659666966796689669967096719672967396749675967696779678967996809681968296839684968596869687968896899690969196929693969496959696969796989699970097019702970397049705970697079708970997109711971297139714971597169717971897199720972197229723972497259726972797289729973097319732973397349735973697379738973997409741974297439744974597469747974897499750975197529753975497559756975797589759976097619762976397649765976697679768976997709771977297739774977597769777977897799780978197829783978497859786978797889789979097919792979397949795979697979798979998009801980298039804980598069807980898099810981198129813981498159816981798189819982098219822982398249825982698279828982998309831983298339834983598369837983898399840984198429843984498459846984798489849985098519852985398549855985698579858985998609861986298639864986598669867986898699870987198729873987498759876987798789879988098819882988398849885988698879888988998909891989298939894989598969897989898999900990199029903990499059906990799089909991099119912991399149915991699179918991999209921992299239924992599269927992899299930993199329933993499359936993799389939994099419942994399449945994699479948994999509951995299539954995599569957995899599960996199629963996499659966996799689969997099719972997399749975997699779978997999809981998299839984998599869987998899899990999199929993999499959996999799989999100001000110002100031000410005100061000710008100091001010011100121001310014100151001610017100181001910020100211002210023100241002510026100271002810029100301003110032100331003410035100361003710038100391004010041100421004310044100451004610047100481004910050100511005210053100541005510056100571005810059100601006110062100631006410065100661006710068100691007010071100721007310074100751007610077100781007910080100811008210083100841008510086100871008810089100901009110092100931009410095100961009710098100991010010101101021010310104101051010610107101081010910110101111011210113101141011510116101171011810119101201012110122101231012410125101261012710128101291013010131101321013310134101351013610137101381013910140101411014210143101441014510146101471014810149101501015110152101531015410155101561015710158101591016010161101621016310164101651016610167101681016910170101711017210173101741017510176101771017810179101801018110182101831018410185101861018710188101891019010191101921019310194101951019610197101981019910200102011020210203102041020510206102071020810209102101021110212102131021410215102161021710218102191022010221102221022310224102251022610227102281022910230102311023210233
  1. /*
  2. * kernel/sched.c
  3. *
  4. * Kernel scheduler and related syscalls
  5. *
  6. * Copyright (C) 1991-2002 Linus Torvalds
  7. *
  8. * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
  9. * make semaphores SMP safe
  10. * 1998-11-19 Implemented schedule_timeout() and related stuff
  11. * by Andrea Arcangeli
  12. * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
  13. * hybrid priority-list and round-robin design with
  14. * an array-switch method of distributing timeslices
  15. * and per-CPU runqueues. Cleanups and useful suggestions
  16. * by Davide Libenzi, preemptible kernel bits by Robert Love.
  17. * 2003-09-03 Interactivity tuning by Con Kolivas.
  18. * 2004-04-02 Scheduler domains code by Nick Piggin
  19. * 2007-04-15 Work begun on replacing all interactivity tuning with a
  20. * fair scheduling design by Con Kolivas.
  21. * 2007-05-05 Load balancing (smp-nice) and other improvements
  22. * by Peter Williams
  23. * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
  24. * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
  25. * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
  26. * Thomas Gleixner, Mike Kravetz
  27. */
  28. #include <linux/mm.h>
  29. #include <linux/module.h>
  30. #include <linux/nmi.h>
  31. #include <linux/init.h>
  32. #include <linux/uaccess.h>
  33. #include <linux/highmem.h>
  34. #include <linux/smp_lock.h>
  35. #include <asm/mmu_context.h>
  36. #include <linux/interrupt.h>
  37. #include <linux/capability.h>
  38. #include <linux/completion.h>
  39. #include <linux/kernel_stat.h>
  40. #include <linux/debug_locks.h>
  41. #include <linux/security.h>
  42. #include <linux/notifier.h>
  43. #include <linux/profile.h>
  44. #include <linux/freezer.h>
  45. #include <linux/vmalloc.h>
  46. #include <linux/blkdev.h>
  47. #include <linux/delay.h>
  48. #include <linux/pid_namespace.h>
  49. #include <linux/smp.h>
  50. #include <linux/threads.h>
  51. #include <linux/timer.h>
  52. #include <linux/rcupdate.h>
  53. #include <linux/cpu.h>
  54. #include <linux/cpuset.h>
  55. #include <linux/percpu.h>
  56. #include <linux/kthread.h>
  57. #include <linux/proc_fs.h>
  58. #include <linux/seq_file.h>
  59. #include <linux/sysctl.h>
  60. #include <linux/syscalls.h>
  61. #include <linux/times.h>
  62. #include <linux/tsacct_kern.h>
  63. #include <linux/kprobes.h>
  64. #include <linux/delayacct.h>
  65. #include <linux/reciprocal_div.h>
  66. #include <linux/unistd.h>
  67. #include <linux/pagemap.h>
  68. #include <linux/hrtimer.h>
  69. #include <linux/tick.h>
  70. #include <linux/bootmem.h>
  71. #include <linux/debugfs.h>
  72. #include <linux/ctype.h>
  73. #include <linux/ftrace.h>
  74. #include <asm/tlb.h>
  75. #include <asm/irq_regs.h>
  76. #include "sched_cpupri.h"
  77. #define CREATE_TRACE_POINTS
  78. #include <trace/events/sched.h>
  79. /*
  80. * Convert user-nice values [ -20 ... 0 ... 19 ]
  81. * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
  82. * and back.
  83. */
  84. #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
  85. #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
  86. #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
  87. /*
  88. * 'User priority' is the nice value converted to something we
  89. * can work with better when scaling various scheduler parameters,
  90. * it's a [ 0 ... 39 ] range.
  91. */
  92. #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
  93. #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
  94. #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
  95. /*
  96. * Helpers for converting nanosecond timing to jiffy resolution
  97. */
  98. #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
  99. #define NICE_0_LOAD SCHED_LOAD_SCALE
  100. #define NICE_0_SHIFT SCHED_LOAD_SHIFT
  101. /*
  102. * These are the 'tuning knobs' of the scheduler:
  103. *
  104. * default timeslice is 100 msecs (used only for SCHED_RR tasks).
  105. * Timeslices get refilled after they expire.
  106. */
  107. #define DEF_TIMESLICE (100 * HZ / 1000)
  108. /*
  109. * single value that denotes runtime == period, ie unlimited time.
  110. */
  111. #define RUNTIME_INF ((u64)~0ULL)
  112. #ifdef CONFIG_SMP
  113. static void double_rq_lock(struct rq *rq1, struct rq *rq2);
  114. /*
  115. * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
  116. * Since cpu_power is a 'constant', we can use a reciprocal divide.
  117. */
  118. static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
  119. {
  120. return reciprocal_divide(load, sg->reciprocal_cpu_power);
  121. }
  122. /*
  123. * Each time a sched group cpu_power is changed,
  124. * we must compute its reciprocal value
  125. */
  126. static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
  127. {
  128. sg->__cpu_power += val;
  129. sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
  130. }
  131. #endif
  132. static inline int rt_policy(int policy)
  133. {
  134. if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
  135. return 1;
  136. return 0;
  137. }
  138. static inline int task_has_rt_policy(struct task_struct *p)
  139. {
  140. return rt_policy(p->policy);
  141. }
  142. /*
  143. * This is the priority-queue data structure of the RT scheduling class:
  144. */
  145. struct rt_prio_array {
  146. DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
  147. struct list_head queue[MAX_RT_PRIO];
  148. };
  149. struct rt_bandwidth {
  150. /* nests inside the rq lock: */
  151. spinlock_t rt_runtime_lock;
  152. ktime_t rt_period;
  153. u64 rt_runtime;
  154. struct hrtimer rt_period_timer;
  155. };
  156. static struct rt_bandwidth def_rt_bandwidth;
  157. static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
  158. static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
  159. {
  160. struct rt_bandwidth *rt_b =
  161. container_of(timer, struct rt_bandwidth, rt_period_timer);
  162. ktime_t now;
  163. int overrun;
  164. int idle = 0;
  165. for (;;) {
  166. now = hrtimer_cb_get_time(timer);
  167. overrun = hrtimer_forward(timer, now, rt_b->rt_period);
  168. if (!overrun)
  169. break;
  170. idle = do_sched_rt_period_timer(rt_b, overrun);
  171. }
  172. return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
  173. }
  174. static
  175. void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
  176. {
  177. rt_b->rt_period = ns_to_ktime(period);
  178. rt_b->rt_runtime = runtime;
  179. spin_lock_init(&rt_b->rt_runtime_lock);
  180. hrtimer_init(&rt_b->rt_period_timer,
  181. CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  182. rt_b->rt_period_timer.function = sched_rt_period_timer;
  183. }
  184. static inline int rt_bandwidth_enabled(void)
  185. {
  186. return sysctl_sched_rt_runtime >= 0;
  187. }
  188. static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
  189. {
  190. ktime_t now;
  191. if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
  192. return;
  193. if (hrtimer_active(&rt_b->rt_period_timer))
  194. return;
  195. spin_lock(&rt_b->rt_runtime_lock);
  196. for (;;) {
  197. unsigned long delta;
  198. ktime_t soft, hard;
  199. if (hrtimer_active(&rt_b->rt_period_timer))
  200. break;
  201. now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
  202. hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
  203. soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
  204. hard = hrtimer_get_expires(&rt_b->rt_period_timer);
  205. delta = ktime_to_ns(ktime_sub(hard, soft));
  206. __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
  207. HRTIMER_MODE_ABS, 0);
  208. }
  209. spin_unlock(&rt_b->rt_runtime_lock);
  210. }
  211. #ifdef CONFIG_RT_GROUP_SCHED
  212. static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
  213. {
  214. hrtimer_cancel(&rt_b->rt_period_timer);
  215. }
  216. #endif
  217. /*
  218. * sched_domains_mutex serializes calls to arch_init_sched_domains,
  219. * detach_destroy_domains and partition_sched_domains.
  220. */
  221. static DEFINE_MUTEX(sched_domains_mutex);
  222. #ifdef CONFIG_GROUP_SCHED
  223. #include <linux/cgroup.h>
  224. struct cfs_rq;
  225. static LIST_HEAD(task_groups);
  226. /* task group related information */
  227. struct task_group {
  228. #ifdef CONFIG_CGROUP_SCHED
  229. struct cgroup_subsys_state css;
  230. #endif
  231. #ifdef CONFIG_USER_SCHED
  232. uid_t uid;
  233. #endif
  234. #ifdef CONFIG_FAIR_GROUP_SCHED
  235. /* schedulable entities of this group on each cpu */
  236. struct sched_entity **se;
  237. /* runqueue "owned" by this group on each cpu */
  238. struct cfs_rq **cfs_rq;
  239. unsigned long shares;
  240. #endif
  241. #ifdef CONFIG_RT_GROUP_SCHED
  242. struct sched_rt_entity **rt_se;
  243. struct rt_rq **rt_rq;
  244. struct rt_bandwidth rt_bandwidth;
  245. #endif
  246. struct rcu_head rcu;
  247. struct list_head list;
  248. struct task_group *parent;
  249. struct list_head siblings;
  250. struct list_head children;
  251. };
  252. #ifdef CONFIG_USER_SCHED
  253. /* Helper function to pass uid information to create_sched_user() */
  254. void set_tg_uid(struct user_struct *user)
  255. {
  256. user->tg->uid = user->uid;
  257. }
  258. /*
  259. * Root task group.
  260. * Every UID task group (including init_task_group aka UID-0) will
  261. * be a child to this group.
  262. */
  263. struct task_group root_task_group;
  264. #ifdef CONFIG_FAIR_GROUP_SCHED
  265. /* Default task group's sched entity on each cpu */
  266. static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
  267. /* Default task group's cfs_rq on each cpu */
  268. static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
  269. #endif /* CONFIG_FAIR_GROUP_SCHED */
  270. #ifdef CONFIG_RT_GROUP_SCHED
  271. static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
  272. static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
  273. #endif /* CONFIG_RT_GROUP_SCHED */
  274. #else /* !CONFIG_USER_SCHED */
  275. #define root_task_group init_task_group
  276. #endif /* CONFIG_USER_SCHED */
  277. /* task_group_lock serializes add/remove of task groups and also changes to
  278. * a task group's cpu shares.
  279. */
  280. static DEFINE_SPINLOCK(task_group_lock);
  281. #ifdef CONFIG_SMP
  282. static int root_task_group_empty(void)
  283. {
  284. return list_empty(&root_task_group.children);
  285. }
  286. #endif
  287. #ifdef CONFIG_FAIR_GROUP_SCHED
  288. #ifdef CONFIG_USER_SCHED
  289. # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
  290. #else /* !CONFIG_USER_SCHED */
  291. # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
  292. #endif /* CONFIG_USER_SCHED */
  293. /*
  294. * A weight of 0 or 1 can cause arithmetics problems.
  295. * A weight of a cfs_rq is the sum of weights of which entities
  296. * are queued on this cfs_rq, so a weight of a entity should not be
  297. * too large, so as the shares value of a task group.
  298. * (The default weight is 1024 - so there's no practical
  299. * limitation from this.)
  300. */
  301. #define MIN_SHARES 2
  302. #define MAX_SHARES (1UL << 18)
  303. static int init_task_group_load = INIT_TASK_GROUP_LOAD;
  304. #endif
  305. /* Default task group.
  306. * Every task in system belong to this group at bootup.
  307. */
  308. struct task_group init_task_group;
  309. /* return group to which a task belongs */
  310. static inline struct task_group *task_group(struct task_struct *p)
  311. {
  312. struct task_group *tg;
  313. #ifdef CONFIG_USER_SCHED
  314. rcu_read_lock();
  315. tg = __task_cred(p)->user->tg;
  316. rcu_read_unlock();
  317. #elif defined(CONFIG_CGROUP_SCHED)
  318. tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
  319. struct task_group, css);
  320. #else
  321. tg = &init_task_group;
  322. #endif
  323. return tg;
  324. }
  325. /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
  326. static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
  327. {
  328. #ifdef CONFIG_FAIR_GROUP_SCHED
  329. p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
  330. p->se.parent = task_group(p)->se[cpu];
  331. #endif
  332. #ifdef CONFIG_RT_GROUP_SCHED
  333. p->rt.rt_rq = task_group(p)->rt_rq[cpu];
  334. p->rt.parent = task_group(p)->rt_se[cpu];
  335. #endif
  336. }
  337. #else
  338. #ifdef CONFIG_SMP
  339. static int root_task_group_empty(void)
  340. {
  341. return 1;
  342. }
  343. #endif
  344. static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
  345. static inline struct task_group *task_group(struct task_struct *p)
  346. {
  347. return NULL;
  348. }
  349. #endif /* CONFIG_GROUP_SCHED */
  350. /* CFS-related fields in a runqueue */
  351. struct cfs_rq {
  352. struct load_weight load;
  353. unsigned long nr_running;
  354. u64 exec_clock;
  355. u64 min_vruntime;
  356. struct rb_root tasks_timeline;
  357. struct rb_node *rb_leftmost;
  358. struct list_head tasks;
  359. struct list_head *balance_iterator;
  360. /*
  361. * 'curr' points to currently running entity on this cfs_rq.
  362. * It is set to NULL otherwise (i.e when none are currently running).
  363. */
  364. struct sched_entity *curr, *next, *last;
  365. unsigned int nr_spread_over;
  366. #ifdef CONFIG_FAIR_GROUP_SCHED
  367. struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
  368. /*
  369. * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
  370. * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
  371. * (like users, containers etc.)
  372. *
  373. * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
  374. * list is used during load balance.
  375. */
  376. struct list_head leaf_cfs_rq_list;
  377. struct task_group *tg; /* group that "owns" this runqueue */
  378. #ifdef CONFIG_SMP
  379. /*
  380. * the part of load.weight contributed by tasks
  381. */
  382. unsigned long task_weight;
  383. /*
  384. * h_load = weight * f(tg)
  385. *
  386. * Where f(tg) is the recursive weight fraction assigned to
  387. * this group.
  388. */
  389. unsigned long h_load;
  390. /*
  391. * this cpu's part of tg->shares
  392. */
  393. unsigned long shares;
  394. /*
  395. * load.weight at the time we set shares
  396. */
  397. unsigned long rq_weight;
  398. #endif
  399. #endif
  400. };
  401. /* Real-Time classes' related field in a runqueue: */
  402. struct rt_rq {
  403. struct rt_prio_array active;
  404. unsigned long rt_nr_running;
  405. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  406. struct {
  407. int curr; /* highest queued rt task prio */
  408. #ifdef CONFIG_SMP
  409. int next; /* next highest */
  410. #endif
  411. } highest_prio;
  412. #endif
  413. #ifdef CONFIG_SMP
  414. unsigned long rt_nr_migratory;
  415. int overloaded;
  416. struct plist_head pushable_tasks;
  417. #endif
  418. int rt_throttled;
  419. u64 rt_time;
  420. u64 rt_runtime;
  421. /* Nests inside the rq lock: */
  422. spinlock_t rt_runtime_lock;
  423. #ifdef CONFIG_RT_GROUP_SCHED
  424. unsigned long rt_nr_boosted;
  425. struct rq *rq;
  426. struct list_head leaf_rt_rq_list;
  427. struct task_group *tg;
  428. struct sched_rt_entity *rt_se;
  429. #endif
  430. };
  431. #ifdef CONFIG_SMP
  432. /*
  433. * We add the notion of a root-domain which will be used to define per-domain
  434. * variables. Each exclusive cpuset essentially defines an island domain by
  435. * fully partitioning the member cpus from any other cpuset. Whenever a new
  436. * exclusive cpuset is created, we also create and attach a new root-domain
  437. * object.
  438. *
  439. */
  440. struct root_domain {
  441. atomic_t refcount;
  442. cpumask_var_t span;
  443. cpumask_var_t online;
  444. /*
  445. * The "RT overload" flag: it gets set if a CPU has more than
  446. * one runnable RT task.
  447. */
  448. cpumask_var_t rto_mask;
  449. atomic_t rto_count;
  450. #ifdef CONFIG_SMP
  451. struct cpupri cpupri;
  452. #endif
  453. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  454. /*
  455. * Preferred wake up cpu nominated by sched_mc balance that will be
  456. * used when most cpus are idle in the system indicating overall very
  457. * low system utilisation. Triggered at POWERSAVINGS_BALANCE_WAKEUP(2)
  458. */
  459. unsigned int sched_mc_preferred_wakeup_cpu;
  460. #endif
  461. };
  462. /*
  463. * By default the system creates a single root-domain with all cpus as
  464. * members (mimicking the global state we have today).
  465. */
  466. static struct root_domain def_root_domain;
  467. #endif
  468. /*
  469. * This is the main, per-CPU runqueue data structure.
  470. *
  471. * Locking rule: those places that want to lock multiple runqueues
  472. * (such as the load balancing or the thread migration code), lock
  473. * acquire operations must be ordered by ascending &runqueue.
  474. */
  475. struct rq {
  476. /* runqueue lock: */
  477. spinlock_t lock;
  478. /*
  479. * nr_running and cpu_load should be in the same cacheline because
  480. * remote CPUs use both these fields when doing load calculation.
  481. */
  482. unsigned long nr_running;
  483. #define CPU_LOAD_IDX_MAX 5
  484. unsigned long cpu_load[CPU_LOAD_IDX_MAX];
  485. #ifdef CONFIG_NO_HZ
  486. unsigned long last_tick_seen;
  487. unsigned char in_nohz_recently;
  488. #endif
  489. /* capture load from *all* tasks on this cpu: */
  490. struct load_weight load;
  491. unsigned long nr_load_updates;
  492. u64 nr_switches;
  493. struct cfs_rq cfs;
  494. struct rt_rq rt;
  495. #ifdef CONFIG_FAIR_GROUP_SCHED
  496. /* list of leaf cfs_rq on this cpu: */
  497. struct list_head leaf_cfs_rq_list;
  498. #endif
  499. #ifdef CONFIG_RT_GROUP_SCHED
  500. struct list_head leaf_rt_rq_list;
  501. #endif
  502. /*
  503. * This is part of a global counter where only the total sum
  504. * over all CPUs matters. A task can increase this counter on
  505. * one CPU and if it got migrated afterwards it may decrease
  506. * it on another CPU. Always updated under the runqueue lock:
  507. */
  508. unsigned long nr_uninterruptible;
  509. struct task_struct *curr, *idle;
  510. unsigned long next_balance;
  511. struct mm_struct *prev_mm;
  512. u64 clock;
  513. atomic_t nr_iowait;
  514. #ifdef CONFIG_SMP
  515. struct root_domain *rd;
  516. struct sched_domain *sd;
  517. unsigned char idle_at_tick;
  518. /* For active balancing */
  519. int active_balance;
  520. int push_cpu;
  521. /* cpu of this runqueue: */
  522. int cpu;
  523. int online;
  524. unsigned long avg_load_per_task;
  525. struct task_struct *migration_thread;
  526. struct list_head migration_queue;
  527. #endif
  528. #ifdef CONFIG_SCHED_HRTICK
  529. #ifdef CONFIG_SMP
  530. int hrtick_csd_pending;
  531. struct call_single_data hrtick_csd;
  532. #endif
  533. struct hrtimer hrtick_timer;
  534. #endif
  535. #ifdef CONFIG_SCHEDSTATS
  536. /* latency stats */
  537. struct sched_info rq_sched_info;
  538. unsigned long long rq_cpu_time;
  539. /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
  540. /* sys_sched_yield() stats */
  541. unsigned int yld_count;
  542. /* schedule() stats */
  543. unsigned int sched_switch;
  544. unsigned int sched_count;
  545. unsigned int sched_goidle;
  546. /* try_to_wake_up() stats */
  547. unsigned int ttwu_count;
  548. unsigned int ttwu_local;
  549. /* BKL stats */
  550. unsigned int bkl_count;
  551. #endif
  552. };
  553. static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
  554. static inline void check_preempt_curr(struct rq *rq, struct task_struct *p, int sync)
  555. {
  556. rq->curr->sched_class->check_preempt_curr(rq, p, sync);
  557. }
  558. static inline int cpu_of(struct rq *rq)
  559. {
  560. #ifdef CONFIG_SMP
  561. return rq->cpu;
  562. #else
  563. return 0;
  564. #endif
  565. }
  566. /*
  567. * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
  568. * See detach_destroy_domains: synchronize_sched for details.
  569. *
  570. * The domain tree of any CPU may only be accessed from within
  571. * preempt-disabled sections.
  572. */
  573. #define for_each_domain(cpu, __sd) \
  574. for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
  575. #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
  576. #define this_rq() (&__get_cpu_var(runqueues))
  577. #define task_rq(p) cpu_rq(task_cpu(p))
  578. #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
  579. static inline void update_rq_clock(struct rq *rq)
  580. {
  581. rq->clock = sched_clock_cpu(cpu_of(rq));
  582. }
  583. /*
  584. * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
  585. */
  586. #ifdef CONFIG_SCHED_DEBUG
  587. # define const_debug __read_mostly
  588. #else
  589. # define const_debug static const
  590. #endif
  591. /**
  592. * runqueue_is_locked
  593. *
  594. * Returns true if the current cpu runqueue is locked.
  595. * This interface allows printk to be called with the runqueue lock
  596. * held and know whether or not it is OK to wake up the klogd.
  597. */
  598. int runqueue_is_locked(void)
  599. {
  600. int cpu = get_cpu();
  601. struct rq *rq = cpu_rq(cpu);
  602. int ret;
  603. ret = spin_is_locked(&rq->lock);
  604. put_cpu();
  605. return ret;
  606. }
  607. /*
  608. * Debugging: various feature bits
  609. */
  610. #define SCHED_FEAT(name, enabled) \
  611. __SCHED_FEAT_##name ,
  612. enum {
  613. #include "sched_features.h"
  614. };
  615. #undef SCHED_FEAT
  616. #define SCHED_FEAT(name, enabled) \
  617. (1UL << __SCHED_FEAT_##name) * enabled |
  618. const_debug unsigned int sysctl_sched_features =
  619. #include "sched_features.h"
  620. 0;
  621. #undef SCHED_FEAT
  622. #ifdef CONFIG_SCHED_DEBUG
  623. #define SCHED_FEAT(name, enabled) \
  624. #name ,
  625. static __read_mostly char *sched_feat_names[] = {
  626. #include "sched_features.h"
  627. NULL
  628. };
  629. #undef SCHED_FEAT
  630. static int sched_feat_show(struct seq_file *m, void *v)
  631. {
  632. int i;
  633. for (i = 0; sched_feat_names[i]; i++) {
  634. if (!(sysctl_sched_features & (1UL << i)))
  635. seq_puts(m, "NO_");
  636. seq_printf(m, "%s ", sched_feat_names[i]);
  637. }
  638. seq_puts(m, "\n");
  639. return 0;
  640. }
  641. static ssize_t
  642. sched_feat_write(struct file *filp, const char __user *ubuf,
  643. size_t cnt, loff_t *ppos)
  644. {
  645. char buf[64];
  646. char *cmp = buf;
  647. int neg = 0;
  648. int i;
  649. if (cnt > 63)
  650. cnt = 63;
  651. if (copy_from_user(&buf, ubuf, cnt))
  652. return -EFAULT;
  653. buf[cnt] = 0;
  654. if (strncmp(buf, "NO_", 3) == 0) {
  655. neg = 1;
  656. cmp += 3;
  657. }
  658. for (i = 0; sched_feat_names[i]; i++) {
  659. int len = strlen(sched_feat_names[i]);
  660. if (strncmp(cmp, sched_feat_names[i], len) == 0) {
  661. if (neg)
  662. sysctl_sched_features &= ~(1UL << i);
  663. else
  664. sysctl_sched_features |= (1UL << i);
  665. break;
  666. }
  667. }
  668. if (!sched_feat_names[i])
  669. return -EINVAL;
  670. filp->f_pos += cnt;
  671. return cnt;
  672. }
  673. static int sched_feat_open(struct inode *inode, struct file *filp)
  674. {
  675. return single_open(filp, sched_feat_show, NULL);
  676. }
  677. static struct file_operations sched_feat_fops = {
  678. .open = sched_feat_open,
  679. .write = sched_feat_write,
  680. .read = seq_read,
  681. .llseek = seq_lseek,
  682. .release = single_release,
  683. };
  684. static __init int sched_init_debug(void)
  685. {
  686. debugfs_create_file("sched_features", 0644, NULL, NULL,
  687. &sched_feat_fops);
  688. return 0;
  689. }
  690. late_initcall(sched_init_debug);
  691. #endif
  692. #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
  693. /*
  694. * Number of tasks to iterate in a single balance run.
  695. * Limited because this is done with IRQs disabled.
  696. */
  697. const_debug unsigned int sysctl_sched_nr_migrate = 32;
  698. /*
  699. * ratelimit for updating the group shares.
  700. * default: 0.25ms
  701. */
  702. unsigned int sysctl_sched_shares_ratelimit = 250000;
  703. /*
  704. * Inject some fuzzyness into changing the per-cpu group shares
  705. * this avoids remote rq-locks at the expense of fairness.
  706. * default: 4
  707. */
  708. unsigned int sysctl_sched_shares_thresh = 4;
  709. /*
  710. * period over which we measure -rt task cpu usage in us.
  711. * default: 1s
  712. */
  713. unsigned int sysctl_sched_rt_period = 1000000;
  714. static __read_mostly int scheduler_running;
  715. /*
  716. * part of the period that we allow rt tasks to run in us.
  717. * default: 0.95s
  718. */
  719. int sysctl_sched_rt_runtime = 950000;
  720. static inline u64 global_rt_period(void)
  721. {
  722. return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
  723. }
  724. static inline u64 global_rt_runtime(void)
  725. {
  726. if (sysctl_sched_rt_runtime < 0)
  727. return RUNTIME_INF;
  728. return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
  729. }
  730. #ifndef prepare_arch_switch
  731. # define prepare_arch_switch(next) do { } while (0)
  732. #endif
  733. #ifndef finish_arch_switch
  734. # define finish_arch_switch(prev) do { } while (0)
  735. #endif
  736. static inline int task_current(struct rq *rq, struct task_struct *p)
  737. {
  738. return rq->curr == p;
  739. }
  740. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  741. static inline int task_running(struct rq *rq, struct task_struct *p)
  742. {
  743. return task_current(rq, p);
  744. }
  745. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  746. {
  747. }
  748. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  749. {
  750. #ifdef CONFIG_DEBUG_SPINLOCK
  751. /* this is a valid case when another task releases the spinlock */
  752. rq->lock.owner = current;
  753. #endif
  754. /*
  755. * If we are tracking spinlock dependencies then we have to
  756. * fix up the runqueue lock - which gets 'carried over' from
  757. * prev into current:
  758. */
  759. spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
  760. spin_unlock_irq(&rq->lock);
  761. }
  762. #else /* __ARCH_WANT_UNLOCKED_CTXSW */
  763. static inline int task_running(struct rq *rq, struct task_struct *p)
  764. {
  765. #ifdef CONFIG_SMP
  766. return p->oncpu;
  767. #else
  768. return task_current(rq, p);
  769. #endif
  770. }
  771. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  772. {
  773. #ifdef CONFIG_SMP
  774. /*
  775. * We can optimise this out completely for !SMP, because the
  776. * SMP rebalancing from interrupt is the only thing that cares
  777. * here.
  778. */
  779. next->oncpu = 1;
  780. #endif
  781. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  782. spin_unlock_irq(&rq->lock);
  783. #else
  784. spin_unlock(&rq->lock);
  785. #endif
  786. }
  787. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  788. {
  789. #ifdef CONFIG_SMP
  790. /*
  791. * After ->oncpu is cleared, the task can be moved to a different CPU.
  792. * We must ensure this doesn't happen until the switch is completely
  793. * finished.
  794. */
  795. smp_wmb();
  796. prev->oncpu = 0;
  797. #endif
  798. #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  799. local_irq_enable();
  800. #endif
  801. }
  802. #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
  803. /*
  804. * __task_rq_lock - lock the runqueue a given task resides on.
  805. * Must be called interrupts disabled.
  806. */
  807. static inline struct rq *__task_rq_lock(struct task_struct *p)
  808. __acquires(rq->lock)
  809. {
  810. for (;;) {
  811. struct rq *rq = task_rq(p);
  812. spin_lock(&rq->lock);
  813. if (likely(rq == task_rq(p)))
  814. return rq;
  815. spin_unlock(&rq->lock);
  816. }
  817. }
  818. /*
  819. * task_rq_lock - lock the runqueue a given task resides on and disable
  820. * interrupts. Note the ordering: we can safely lookup the task_rq without
  821. * explicitly disabling preemption.
  822. */
  823. static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
  824. __acquires(rq->lock)
  825. {
  826. struct rq *rq;
  827. for (;;) {
  828. local_irq_save(*flags);
  829. rq = task_rq(p);
  830. spin_lock(&rq->lock);
  831. if (likely(rq == task_rq(p)))
  832. return rq;
  833. spin_unlock_irqrestore(&rq->lock, *flags);
  834. }
  835. }
  836. void task_rq_unlock_wait(struct task_struct *p)
  837. {
  838. struct rq *rq = task_rq(p);
  839. smp_mb(); /* spin-unlock-wait is not a full memory barrier */
  840. spin_unlock_wait(&rq->lock);
  841. }
  842. static void __task_rq_unlock(struct rq *rq)
  843. __releases(rq->lock)
  844. {
  845. spin_unlock(&rq->lock);
  846. }
  847. static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
  848. __releases(rq->lock)
  849. {
  850. spin_unlock_irqrestore(&rq->lock, *flags);
  851. }
  852. /*
  853. * this_rq_lock - lock this runqueue and disable interrupts.
  854. */
  855. static struct rq *this_rq_lock(void)
  856. __acquires(rq->lock)
  857. {
  858. struct rq *rq;
  859. local_irq_disable();
  860. rq = this_rq();
  861. spin_lock(&rq->lock);
  862. return rq;
  863. }
  864. #ifdef CONFIG_SCHED_HRTICK
  865. /*
  866. * Use HR-timers to deliver accurate preemption points.
  867. *
  868. * Its all a bit involved since we cannot program an hrt while holding the
  869. * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
  870. * reschedule event.
  871. *
  872. * When we get rescheduled we reprogram the hrtick_timer outside of the
  873. * rq->lock.
  874. */
  875. /*
  876. * Use hrtick when:
  877. * - enabled by features
  878. * - hrtimer is actually high res
  879. */
  880. static inline int hrtick_enabled(struct rq *rq)
  881. {
  882. if (!sched_feat(HRTICK))
  883. return 0;
  884. if (!cpu_active(cpu_of(rq)))
  885. return 0;
  886. return hrtimer_is_hres_active(&rq->hrtick_timer);
  887. }
  888. static void hrtick_clear(struct rq *rq)
  889. {
  890. if (hrtimer_active(&rq->hrtick_timer))
  891. hrtimer_cancel(&rq->hrtick_timer);
  892. }
  893. /*
  894. * High-resolution timer tick.
  895. * Runs from hardirq context with interrupts disabled.
  896. */
  897. static enum hrtimer_restart hrtick(struct hrtimer *timer)
  898. {
  899. struct rq *rq = container_of(timer, struct rq, hrtick_timer);
  900. WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
  901. spin_lock(&rq->lock);
  902. update_rq_clock(rq);
  903. rq->curr->sched_class->task_tick(rq, rq->curr, 1);
  904. spin_unlock(&rq->lock);
  905. return HRTIMER_NORESTART;
  906. }
  907. #ifdef CONFIG_SMP
  908. /*
  909. * called from hardirq (IPI) context
  910. */
  911. static void __hrtick_start(void *arg)
  912. {
  913. struct rq *rq = arg;
  914. spin_lock(&rq->lock);
  915. hrtimer_restart(&rq->hrtick_timer);
  916. rq->hrtick_csd_pending = 0;
  917. spin_unlock(&rq->lock);
  918. }
  919. /*
  920. * Called to set the hrtick timer state.
  921. *
  922. * called with rq->lock held and irqs disabled
  923. */
  924. static void hrtick_start(struct rq *rq, u64 delay)
  925. {
  926. struct hrtimer *timer = &rq->hrtick_timer;
  927. ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
  928. hrtimer_set_expires(timer, time);
  929. if (rq == this_rq()) {
  930. hrtimer_restart(timer);
  931. } else if (!rq->hrtick_csd_pending) {
  932. __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
  933. rq->hrtick_csd_pending = 1;
  934. }
  935. }
  936. static int
  937. hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
  938. {
  939. int cpu = (int)(long)hcpu;
  940. switch (action) {
  941. case CPU_UP_CANCELED:
  942. case CPU_UP_CANCELED_FROZEN:
  943. case CPU_DOWN_PREPARE:
  944. case CPU_DOWN_PREPARE_FROZEN:
  945. case CPU_DEAD:
  946. case CPU_DEAD_FROZEN:
  947. hrtick_clear(cpu_rq(cpu));
  948. return NOTIFY_OK;
  949. }
  950. return NOTIFY_DONE;
  951. }
  952. static __init void init_hrtick(void)
  953. {
  954. hotcpu_notifier(hotplug_hrtick, 0);
  955. }
  956. #else
  957. /*
  958. * Called to set the hrtick timer state.
  959. *
  960. * called with rq->lock held and irqs disabled
  961. */
  962. static void hrtick_start(struct rq *rq, u64 delay)
  963. {
  964. __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
  965. HRTIMER_MODE_REL, 0);
  966. }
  967. static inline void init_hrtick(void)
  968. {
  969. }
  970. #endif /* CONFIG_SMP */
  971. static void init_rq_hrtick(struct rq *rq)
  972. {
  973. #ifdef CONFIG_SMP
  974. rq->hrtick_csd_pending = 0;
  975. rq->hrtick_csd.flags = 0;
  976. rq->hrtick_csd.func = __hrtick_start;
  977. rq->hrtick_csd.info = rq;
  978. #endif
  979. hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  980. rq->hrtick_timer.function = hrtick;
  981. }
  982. #else /* CONFIG_SCHED_HRTICK */
  983. static inline void hrtick_clear(struct rq *rq)
  984. {
  985. }
  986. static inline void init_rq_hrtick(struct rq *rq)
  987. {
  988. }
  989. static inline void init_hrtick(void)
  990. {
  991. }
  992. #endif /* CONFIG_SCHED_HRTICK */
  993. /*
  994. * resched_task - mark a task 'to be rescheduled now'.
  995. *
  996. * On UP this means the setting of the need_resched flag, on SMP it
  997. * might also involve a cross-CPU call to trigger the scheduler on
  998. * the target CPU.
  999. */
  1000. #ifdef CONFIG_SMP
  1001. #ifndef tsk_is_polling
  1002. #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
  1003. #endif
  1004. static void resched_task(struct task_struct *p)
  1005. {
  1006. int cpu;
  1007. assert_spin_locked(&task_rq(p)->lock);
  1008. if (test_tsk_need_resched(p))
  1009. return;
  1010. set_tsk_need_resched(p);
  1011. cpu = task_cpu(p);
  1012. if (cpu == smp_processor_id())
  1013. return;
  1014. /* NEED_RESCHED must be visible before we test polling */
  1015. smp_mb();
  1016. if (!tsk_is_polling(p))
  1017. smp_send_reschedule(cpu);
  1018. }
  1019. static void resched_cpu(int cpu)
  1020. {
  1021. struct rq *rq = cpu_rq(cpu);
  1022. unsigned long flags;
  1023. if (!spin_trylock_irqsave(&rq->lock, flags))
  1024. return;
  1025. resched_task(cpu_curr(cpu));
  1026. spin_unlock_irqrestore(&rq->lock, flags);
  1027. }
  1028. #ifdef CONFIG_NO_HZ
  1029. /*
  1030. * When add_timer_on() enqueues a timer into the timer wheel of an
  1031. * idle CPU then this timer might expire before the next timer event
  1032. * which is scheduled to wake up that CPU. In case of a completely
  1033. * idle system the next event might even be infinite time into the
  1034. * future. wake_up_idle_cpu() ensures that the CPU is woken up and
  1035. * leaves the inner idle loop so the newly added timer is taken into
  1036. * account when the CPU goes back to idle and evaluates the timer
  1037. * wheel for the next timer event.
  1038. */
  1039. void wake_up_idle_cpu(int cpu)
  1040. {
  1041. struct rq *rq = cpu_rq(cpu);
  1042. if (cpu == smp_processor_id())
  1043. return;
  1044. /*
  1045. * This is safe, as this function is called with the timer
  1046. * wheel base lock of (cpu) held. When the CPU is on the way
  1047. * to idle and has not yet set rq->curr to idle then it will
  1048. * be serialized on the timer wheel base lock and take the new
  1049. * timer into account automatically.
  1050. */
  1051. if (rq->curr != rq->idle)
  1052. return;
  1053. /*
  1054. * We can set TIF_RESCHED on the idle task of the other CPU
  1055. * lockless. The worst case is that the other CPU runs the
  1056. * idle task through an additional NOOP schedule()
  1057. */
  1058. set_tsk_need_resched(rq->idle);
  1059. /* NEED_RESCHED must be visible before we test polling */
  1060. smp_mb();
  1061. if (!tsk_is_polling(rq->idle))
  1062. smp_send_reschedule(cpu);
  1063. }
  1064. #endif /* CONFIG_NO_HZ */
  1065. #else /* !CONFIG_SMP */
  1066. static void resched_task(struct task_struct *p)
  1067. {
  1068. assert_spin_locked(&task_rq(p)->lock);
  1069. set_tsk_need_resched(p);
  1070. }
  1071. #endif /* CONFIG_SMP */
  1072. #if BITS_PER_LONG == 32
  1073. # define WMULT_CONST (~0UL)
  1074. #else
  1075. # define WMULT_CONST (1UL << 32)
  1076. #endif
  1077. #define WMULT_SHIFT 32
  1078. /*
  1079. * Shift right and round:
  1080. */
  1081. #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
  1082. /*
  1083. * delta *= weight / lw
  1084. */
  1085. static unsigned long
  1086. calc_delta_mine(unsigned long delta_exec, unsigned long weight,
  1087. struct load_weight *lw)
  1088. {
  1089. u64 tmp;
  1090. if (!lw->inv_weight) {
  1091. if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
  1092. lw->inv_weight = 1;
  1093. else
  1094. lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
  1095. / (lw->weight+1);
  1096. }
  1097. tmp = (u64)delta_exec * weight;
  1098. /*
  1099. * Check whether we'd overflow the 64-bit multiplication:
  1100. */
  1101. if (unlikely(tmp > WMULT_CONST))
  1102. tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
  1103. WMULT_SHIFT/2);
  1104. else
  1105. tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
  1106. return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
  1107. }
  1108. static inline void update_load_add(struct load_weight *lw, unsigned long inc)
  1109. {
  1110. lw->weight += inc;
  1111. lw->inv_weight = 0;
  1112. }
  1113. static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
  1114. {
  1115. lw->weight -= dec;
  1116. lw->inv_weight = 0;
  1117. }
  1118. /*
  1119. * To aid in avoiding the subversion of "niceness" due to uneven distribution
  1120. * of tasks with abnormal "nice" values across CPUs the contribution that
  1121. * each task makes to its run queue's load is weighted according to its
  1122. * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
  1123. * scaled version of the new time slice allocation that they receive on time
  1124. * slice expiry etc.
  1125. */
  1126. #define WEIGHT_IDLEPRIO 3
  1127. #define WMULT_IDLEPRIO 1431655765
  1128. /*
  1129. * Nice levels are multiplicative, with a gentle 10% change for every
  1130. * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
  1131. * nice 1, it will get ~10% less CPU time than another CPU-bound task
  1132. * that remained on nice 0.
  1133. *
  1134. * The "10% effect" is relative and cumulative: from _any_ nice level,
  1135. * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
  1136. * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
  1137. * If a task goes up by ~10% and another task goes down by ~10% then
  1138. * the relative distance between them is ~25%.)
  1139. */
  1140. static const int prio_to_weight[40] = {
  1141. /* -20 */ 88761, 71755, 56483, 46273, 36291,
  1142. /* -15 */ 29154, 23254, 18705, 14949, 11916,
  1143. /* -10 */ 9548, 7620, 6100, 4904, 3906,
  1144. /* -5 */ 3121, 2501, 1991, 1586, 1277,
  1145. /* 0 */ 1024, 820, 655, 526, 423,
  1146. /* 5 */ 335, 272, 215, 172, 137,
  1147. /* 10 */ 110, 87, 70, 56, 45,
  1148. /* 15 */ 36, 29, 23, 18, 15,
  1149. };
  1150. /*
  1151. * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
  1152. *
  1153. * In cases where the weight does not change often, we can use the
  1154. * precalculated inverse to speed up arithmetics by turning divisions
  1155. * into multiplications:
  1156. */
  1157. static const u32 prio_to_wmult[40] = {
  1158. /* -20 */ 48388, 59856, 76040, 92818, 118348,
  1159. /* -15 */ 147320, 184698, 229616, 287308, 360437,
  1160. /* -10 */ 449829, 563644, 704093, 875809, 1099582,
  1161. /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
  1162. /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
  1163. /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
  1164. /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
  1165. /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
  1166. };
  1167. static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
  1168. /*
  1169. * runqueue iterator, to support SMP load-balancing between different
  1170. * scheduling classes, without having to expose their internal data
  1171. * structures to the load-balancing proper:
  1172. */
  1173. struct rq_iterator {
  1174. void *arg;
  1175. struct task_struct *(*start)(void *);
  1176. struct task_struct *(*next)(void *);
  1177. };
  1178. #ifdef CONFIG_SMP
  1179. static unsigned long
  1180. balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1181. unsigned long max_load_move, struct sched_domain *sd,
  1182. enum cpu_idle_type idle, int *all_pinned,
  1183. int *this_best_prio, struct rq_iterator *iterator);
  1184. static int
  1185. iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1186. struct sched_domain *sd, enum cpu_idle_type idle,
  1187. struct rq_iterator *iterator);
  1188. #endif
  1189. /* Time spent by the tasks of the cpu accounting group executing in ... */
  1190. enum cpuacct_stat_index {
  1191. CPUACCT_STAT_USER, /* ... user mode */
  1192. CPUACCT_STAT_SYSTEM, /* ... kernel mode */
  1193. CPUACCT_STAT_NSTATS,
  1194. };
  1195. #ifdef CONFIG_CGROUP_CPUACCT
  1196. static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
  1197. static void cpuacct_update_stats(struct task_struct *tsk,
  1198. enum cpuacct_stat_index idx, cputime_t val);
  1199. #else
  1200. static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
  1201. static inline void cpuacct_update_stats(struct task_struct *tsk,
  1202. enum cpuacct_stat_index idx, cputime_t val) {}
  1203. #endif
  1204. static inline void inc_cpu_load(struct rq *rq, unsigned long load)
  1205. {
  1206. update_load_add(&rq->load, load);
  1207. }
  1208. static inline void dec_cpu_load(struct rq *rq, unsigned long load)
  1209. {
  1210. update_load_sub(&rq->load, load);
  1211. }
  1212. #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
  1213. typedef int (*tg_visitor)(struct task_group *, void *);
  1214. /*
  1215. * Iterate the full tree, calling @down when first entering a node and @up when
  1216. * leaving it for the final time.
  1217. */
  1218. static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
  1219. {
  1220. struct task_group *parent, *child;
  1221. int ret;
  1222. rcu_read_lock();
  1223. parent = &root_task_group;
  1224. down:
  1225. ret = (*down)(parent, data);
  1226. if (ret)
  1227. goto out_unlock;
  1228. list_for_each_entry_rcu(child, &parent->children, siblings) {
  1229. parent = child;
  1230. goto down;
  1231. up:
  1232. continue;
  1233. }
  1234. ret = (*up)(parent, data);
  1235. if (ret)
  1236. goto out_unlock;
  1237. child = parent;
  1238. parent = parent->parent;
  1239. if (parent)
  1240. goto up;
  1241. out_unlock:
  1242. rcu_read_unlock();
  1243. return ret;
  1244. }
  1245. static int tg_nop(struct task_group *tg, void *data)
  1246. {
  1247. return 0;
  1248. }
  1249. #endif
  1250. #ifdef CONFIG_SMP
  1251. static unsigned long source_load(int cpu, int type);
  1252. static unsigned long target_load(int cpu, int type);
  1253. static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
  1254. static unsigned long cpu_avg_load_per_task(int cpu)
  1255. {
  1256. struct rq *rq = cpu_rq(cpu);
  1257. unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
  1258. if (nr_running)
  1259. rq->avg_load_per_task = rq->load.weight / nr_running;
  1260. else
  1261. rq->avg_load_per_task = 0;
  1262. return rq->avg_load_per_task;
  1263. }
  1264. #ifdef CONFIG_FAIR_GROUP_SCHED
  1265. static void __set_se_shares(struct sched_entity *se, unsigned long shares);
  1266. /*
  1267. * Calculate and set the cpu's group shares.
  1268. */
  1269. static void
  1270. update_group_shares_cpu(struct task_group *tg, int cpu,
  1271. unsigned long sd_shares, unsigned long sd_rq_weight)
  1272. {
  1273. unsigned long shares;
  1274. unsigned long rq_weight;
  1275. if (!tg->se[cpu])
  1276. return;
  1277. rq_weight = tg->cfs_rq[cpu]->rq_weight;
  1278. /*
  1279. * \Sum shares * rq_weight
  1280. * shares = -----------------------
  1281. * \Sum rq_weight
  1282. *
  1283. */
  1284. shares = (sd_shares * rq_weight) / sd_rq_weight;
  1285. shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
  1286. if (abs(shares - tg->se[cpu]->load.weight) >
  1287. sysctl_sched_shares_thresh) {
  1288. struct rq *rq = cpu_rq(cpu);
  1289. unsigned long flags;
  1290. spin_lock_irqsave(&rq->lock, flags);
  1291. tg->cfs_rq[cpu]->shares = shares;
  1292. __set_se_shares(tg->se[cpu], shares);
  1293. spin_unlock_irqrestore(&rq->lock, flags);
  1294. }
  1295. }
  1296. /*
  1297. * Re-compute the task group their per cpu shares over the given domain.
  1298. * This needs to be done in a bottom-up fashion because the rq weight of a
  1299. * parent group depends on the shares of its child groups.
  1300. */
  1301. static int tg_shares_up(struct task_group *tg, void *data)
  1302. {
  1303. unsigned long weight, rq_weight = 0;
  1304. unsigned long shares = 0;
  1305. struct sched_domain *sd = data;
  1306. int i;
  1307. for_each_cpu(i, sched_domain_span(sd)) {
  1308. /*
  1309. * If there are currently no tasks on the cpu pretend there
  1310. * is one of average load so that when a new task gets to
  1311. * run here it will not get delayed by group starvation.
  1312. */
  1313. weight = tg->cfs_rq[i]->load.weight;
  1314. if (!weight)
  1315. weight = NICE_0_LOAD;
  1316. tg->cfs_rq[i]->rq_weight = weight;
  1317. rq_weight += weight;
  1318. shares += tg->cfs_rq[i]->shares;
  1319. }
  1320. if ((!shares && rq_weight) || shares > tg->shares)
  1321. shares = tg->shares;
  1322. if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
  1323. shares = tg->shares;
  1324. for_each_cpu(i, sched_domain_span(sd))
  1325. update_group_shares_cpu(tg, i, shares, rq_weight);
  1326. return 0;
  1327. }
  1328. /*
  1329. * Compute the cpu's hierarchical load factor for each task group.
  1330. * This needs to be done in a top-down fashion because the load of a child
  1331. * group is a fraction of its parents load.
  1332. */
  1333. static int tg_load_down(struct task_group *tg, void *data)
  1334. {
  1335. unsigned long load;
  1336. long cpu = (long)data;
  1337. if (!tg->parent) {
  1338. load = cpu_rq(cpu)->load.weight;
  1339. } else {
  1340. load = tg->parent->cfs_rq[cpu]->h_load;
  1341. load *= tg->cfs_rq[cpu]->shares;
  1342. load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
  1343. }
  1344. tg->cfs_rq[cpu]->h_load = load;
  1345. return 0;
  1346. }
  1347. static void update_shares(struct sched_domain *sd)
  1348. {
  1349. u64 now = cpu_clock(raw_smp_processor_id());
  1350. s64 elapsed = now - sd->last_update;
  1351. if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
  1352. sd->last_update = now;
  1353. walk_tg_tree(tg_nop, tg_shares_up, sd);
  1354. }
  1355. }
  1356. static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
  1357. {
  1358. spin_unlock(&rq->lock);
  1359. update_shares(sd);
  1360. spin_lock(&rq->lock);
  1361. }
  1362. static void update_h_load(long cpu)
  1363. {
  1364. walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
  1365. }
  1366. #else
  1367. static inline void update_shares(struct sched_domain *sd)
  1368. {
  1369. }
  1370. static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
  1371. {
  1372. }
  1373. #endif
  1374. #ifdef CONFIG_PREEMPT
  1375. /*
  1376. * fair double_lock_balance: Safely acquires both rq->locks in a fair
  1377. * way at the expense of forcing extra atomic operations in all
  1378. * invocations. This assures that the double_lock is acquired using the
  1379. * same underlying policy as the spinlock_t on this architecture, which
  1380. * reduces latency compared to the unfair variant below. However, it
  1381. * also adds more overhead and therefore may reduce throughput.
  1382. */
  1383. static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1384. __releases(this_rq->lock)
  1385. __acquires(busiest->lock)
  1386. __acquires(this_rq->lock)
  1387. {
  1388. spin_unlock(&this_rq->lock);
  1389. double_rq_lock(this_rq, busiest);
  1390. return 1;
  1391. }
  1392. #else
  1393. /*
  1394. * Unfair double_lock_balance: Optimizes throughput at the expense of
  1395. * latency by eliminating extra atomic operations when the locks are
  1396. * already in proper order on entry. This favors lower cpu-ids and will
  1397. * grant the double lock to lower cpus over higher ids under contention,
  1398. * regardless of entry order into the function.
  1399. */
  1400. static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1401. __releases(this_rq->lock)
  1402. __acquires(busiest->lock)
  1403. __acquires(this_rq->lock)
  1404. {
  1405. int ret = 0;
  1406. if (unlikely(!spin_trylock(&busiest->lock))) {
  1407. if (busiest < this_rq) {
  1408. spin_unlock(&this_rq->lock);
  1409. spin_lock(&busiest->lock);
  1410. spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
  1411. ret = 1;
  1412. } else
  1413. spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
  1414. }
  1415. return ret;
  1416. }
  1417. #endif /* CONFIG_PREEMPT */
  1418. /*
  1419. * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
  1420. */
  1421. static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1422. {
  1423. if (unlikely(!irqs_disabled())) {
  1424. /* printk() doesn't work good under rq->lock */
  1425. spin_unlock(&this_rq->lock);
  1426. BUG_ON(1);
  1427. }
  1428. return _double_lock_balance(this_rq, busiest);
  1429. }
  1430. static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
  1431. __releases(busiest->lock)
  1432. {
  1433. spin_unlock(&busiest->lock);
  1434. lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
  1435. }
  1436. #endif
  1437. #ifdef CONFIG_FAIR_GROUP_SCHED
  1438. static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
  1439. {
  1440. #ifdef CONFIG_SMP
  1441. cfs_rq->shares = shares;
  1442. #endif
  1443. }
  1444. #endif
  1445. #include "sched_stats.h"
  1446. #include "sched_idletask.c"
  1447. #include "sched_fair.c"
  1448. #include "sched_rt.c"
  1449. #ifdef CONFIG_SCHED_DEBUG
  1450. # include "sched_debug.c"
  1451. #endif
  1452. #define sched_class_highest (&rt_sched_class)
  1453. #define for_each_class(class) \
  1454. for (class = sched_class_highest; class; class = class->next)
  1455. static void inc_nr_running(struct rq *rq)
  1456. {
  1457. rq->nr_running++;
  1458. }
  1459. static void dec_nr_running(struct rq *rq)
  1460. {
  1461. rq->nr_running--;
  1462. }
  1463. static void set_load_weight(struct task_struct *p)
  1464. {
  1465. if (task_has_rt_policy(p)) {
  1466. p->se.load.weight = prio_to_weight[0] * 2;
  1467. p->se.load.inv_weight = prio_to_wmult[0] >> 1;
  1468. return;
  1469. }
  1470. /*
  1471. * SCHED_IDLE tasks get minimal weight:
  1472. */
  1473. if (p->policy == SCHED_IDLE) {
  1474. p->se.load.weight = WEIGHT_IDLEPRIO;
  1475. p->se.load.inv_weight = WMULT_IDLEPRIO;
  1476. return;
  1477. }
  1478. p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
  1479. p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
  1480. }
  1481. static void update_avg(u64 *avg, u64 sample)
  1482. {
  1483. s64 diff = sample - *avg;
  1484. *avg += diff >> 3;
  1485. }
  1486. static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
  1487. {
  1488. if (wakeup)
  1489. p->se.start_runtime = p->se.sum_exec_runtime;
  1490. sched_info_queued(p);
  1491. p->sched_class->enqueue_task(rq, p, wakeup);
  1492. p->se.on_rq = 1;
  1493. }
  1494. static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
  1495. {
  1496. if (sleep) {
  1497. if (p->se.last_wakeup) {
  1498. update_avg(&p->se.avg_overlap,
  1499. p->se.sum_exec_runtime - p->se.last_wakeup);
  1500. p->se.last_wakeup = 0;
  1501. } else {
  1502. update_avg(&p->se.avg_wakeup,
  1503. sysctl_sched_wakeup_granularity);
  1504. }
  1505. }
  1506. sched_info_dequeued(p);
  1507. p->sched_class->dequeue_task(rq, p, sleep);
  1508. p->se.on_rq = 0;
  1509. }
  1510. /*
  1511. * __normal_prio - return the priority that is based on the static prio
  1512. */
  1513. static inline int __normal_prio(struct task_struct *p)
  1514. {
  1515. return p->static_prio;
  1516. }
  1517. /*
  1518. * Calculate the expected normal priority: i.e. priority
  1519. * without taking RT-inheritance into account. Might be
  1520. * boosted by interactivity modifiers. Changes upon fork,
  1521. * setprio syscalls, and whenever the interactivity
  1522. * estimator recalculates.
  1523. */
  1524. static inline int normal_prio(struct task_struct *p)
  1525. {
  1526. int prio;
  1527. if (task_has_rt_policy(p))
  1528. prio = MAX_RT_PRIO-1 - p->rt_priority;
  1529. else
  1530. prio = __normal_prio(p);
  1531. return prio;
  1532. }
  1533. /*
  1534. * Calculate the current priority, i.e. the priority
  1535. * taken into account by the scheduler. This value might
  1536. * be boosted by RT tasks, or might be boosted by
  1537. * interactivity modifiers. Will be RT if the task got
  1538. * RT-boosted. If not then it returns p->normal_prio.
  1539. */
  1540. static int effective_prio(struct task_struct *p)
  1541. {
  1542. p->normal_prio = normal_prio(p);
  1543. /*
  1544. * If we are RT tasks or we were boosted to RT priority,
  1545. * keep the priority unchanged. Otherwise, update priority
  1546. * to the normal priority:
  1547. */
  1548. if (!rt_prio(p->prio))
  1549. return p->normal_prio;
  1550. return p->prio;
  1551. }
  1552. /*
  1553. * activate_task - move a task to the runqueue.
  1554. */
  1555. static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
  1556. {
  1557. if (task_contributes_to_load(p))
  1558. rq->nr_uninterruptible--;
  1559. enqueue_task(rq, p, wakeup);
  1560. inc_nr_running(rq);
  1561. }
  1562. /*
  1563. * deactivate_task - remove a task from the runqueue.
  1564. */
  1565. static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
  1566. {
  1567. if (task_contributes_to_load(p))
  1568. rq->nr_uninterruptible++;
  1569. dequeue_task(rq, p, sleep);
  1570. dec_nr_running(rq);
  1571. }
  1572. /**
  1573. * task_curr - is this task currently executing on a CPU?
  1574. * @p: the task in question.
  1575. */
  1576. inline int task_curr(const struct task_struct *p)
  1577. {
  1578. return cpu_curr(task_cpu(p)) == p;
  1579. }
  1580. static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
  1581. {
  1582. set_task_rq(p, cpu);
  1583. #ifdef CONFIG_SMP
  1584. /*
  1585. * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
  1586. * successfuly executed on another CPU. We must ensure that updates of
  1587. * per-task data have been completed by this moment.
  1588. */
  1589. smp_wmb();
  1590. task_thread_info(p)->cpu = cpu;
  1591. #endif
  1592. }
  1593. static inline void check_class_changed(struct rq *rq, struct task_struct *p,
  1594. const struct sched_class *prev_class,
  1595. int oldprio, int running)
  1596. {
  1597. if (prev_class != p->sched_class) {
  1598. if (prev_class->switched_from)
  1599. prev_class->switched_from(rq, p, running);
  1600. p->sched_class->switched_to(rq, p, running);
  1601. } else
  1602. p->sched_class->prio_changed(rq, p, oldprio, running);
  1603. }
  1604. #ifdef CONFIG_SMP
  1605. /* Used instead of source_load when we know the type == 0 */
  1606. static unsigned long weighted_cpuload(const int cpu)
  1607. {
  1608. return cpu_rq(cpu)->load.weight;
  1609. }
  1610. /*
  1611. * Is this task likely cache-hot:
  1612. */
  1613. static int
  1614. task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
  1615. {
  1616. s64 delta;
  1617. /*
  1618. * Buddy candidates are cache hot:
  1619. */
  1620. if (sched_feat(CACHE_HOT_BUDDY) &&
  1621. (&p->se == cfs_rq_of(&p->se)->next ||
  1622. &p->se == cfs_rq_of(&p->se)->last))
  1623. return 1;
  1624. if (p->sched_class != &fair_sched_class)
  1625. return 0;
  1626. if (sysctl_sched_migration_cost == -1)
  1627. return 1;
  1628. if (sysctl_sched_migration_cost == 0)
  1629. return 0;
  1630. delta = now - p->se.exec_start;
  1631. return delta < (s64)sysctl_sched_migration_cost;
  1632. }
  1633. void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
  1634. {
  1635. int old_cpu = task_cpu(p);
  1636. struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
  1637. struct cfs_rq *old_cfsrq = task_cfs_rq(p),
  1638. *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
  1639. u64 clock_offset;
  1640. clock_offset = old_rq->clock - new_rq->clock;
  1641. trace_sched_migrate_task(p, task_cpu(p), new_cpu);
  1642. #ifdef CONFIG_SCHEDSTATS
  1643. if (p->se.wait_start)
  1644. p->se.wait_start -= clock_offset;
  1645. if (p->se.sleep_start)
  1646. p->se.sleep_start -= clock_offset;
  1647. if (p->se.block_start)
  1648. p->se.block_start -= clock_offset;
  1649. if (old_cpu != new_cpu) {
  1650. schedstat_inc(p, se.nr_migrations);
  1651. if (task_hot(p, old_rq->clock, NULL))
  1652. schedstat_inc(p, se.nr_forced2_migrations);
  1653. }
  1654. #endif
  1655. p->se.vruntime -= old_cfsrq->min_vruntime -
  1656. new_cfsrq->min_vruntime;
  1657. __set_task_cpu(p, new_cpu);
  1658. }
  1659. struct migration_req {
  1660. struct list_head list;
  1661. struct task_struct *task;
  1662. int dest_cpu;
  1663. struct completion done;
  1664. };
  1665. /*
  1666. * The task's runqueue lock must be held.
  1667. * Returns true if you have to wait for migration thread.
  1668. */
  1669. static int
  1670. migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
  1671. {
  1672. struct rq *rq = task_rq(p);
  1673. /*
  1674. * If the task is not on a runqueue (and not running), then
  1675. * it is sufficient to simply update the task's cpu field.
  1676. */
  1677. if (!p->se.on_rq && !task_running(rq, p)) {
  1678. set_task_cpu(p, dest_cpu);
  1679. return 0;
  1680. }
  1681. init_completion(&req->done);
  1682. req->task = p;
  1683. req->dest_cpu = dest_cpu;
  1684. list_add(&req->list, &rq->migration_queue);
  1685. return 1;
  1686. }
  1687. /*
  1688. * wait_task_inactive - wait for a thread to unschedule.
  1689. *
  1690. * If @match_state is nonzero, it's the @p->state value just checked and
  1691. * not expected to change. If it changes, i.e. @p might have woken up,
  1692. * then return zero. When we succeed in waiting for @p to be off its CPU,
  1693. * we return a positive number (its total switch count). If a second call
  1694. * a short while later returns the same number, the caller can be sure that
  1695. * @p has remained unscheduled the whole time.
  1696. *
  1697. * The caller must ensure that the task *will* unschedule sometime soon,
  1698. * else this function might spin for a *long* time. This function can't
  1699. * be called with interrupts off, or it may introduce deadlock with
  1700. * smp_call_function() if an IPI is sent by the same process we are
  1701. * waiting to become inactive.
  1702. */
  1703. unsigned long wait_task_inactive(struct task_struct *p, long match_state)
  1704. {
  1705. unsigned long flags;
  1706. int running, on_rq;
  1707. unsigned long ncsw;
  1708. struct rq *rq;
  1709. for (;;) {
  1710. /*
  1711. * We do the initial early heuristics without holding
  1712. * any task-queue locks at all. We'll only try to get
  1713. * the runqueue lock when things look like they will
  1714. * work out!
  1715. */
  1716. rq = task_rq(p);
  1717. /*
  1718. * If the task is actively running on another CPU
  1719. * still, just relax and busy-wait without holding
  1720. * any locks.
  1721. *
  1722. * NOTE! Since we don't hold any locks, it's not
  1723. * even sure that "rq" stays as the right runqueue!
  1724. * But we don't care, since "task_running()" will
  1725. * return false if the runqueue has changed and p
  1726. * is actually now running somewhere else!
  1727. */
  1728. while (task_running(rq, p)) {
  1729. if (match_state && unlikely(p->state != match_state))
  1730. return 0;
  1731. cpu_relax();
  1732. }
  1733. /*
  1734. * Ok, time to look more closely! We need the rq
  1735. * lock now, to be *sure*. If we're wrong, we'll
  1736. * just go back and repeat.
  1737. */
  1738. rq = task_rq_lock(p, &flags);
  1739. trace_sched_wait_task(rq, p);
  1740. running = task_running(rq, p);
  1741. on_rq = p->se.on_rq;
  1742. ncsw = 0;
  1743. if (!match_state || p->state == match_state)
  1744. ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
  1745. task_rq_unlock(rq, &flags);
  1746. /*
  1747. * If it changed from the expected state, bail out now.
  1748. */
  1749. if (unlikely(!ncsw))
  1750. break;
  1751. /*
  1752. * Was it really running after all now that we
  1753. * checked with the proper locks actually held?
  1754. *
  1755. * Oops. Go back and try again..
  1756. */
  1757. if (unlikely(running)) {
  1758. cpu_relax();
  1759. continue;
  1760. }
  1761. /*
  1762. * It's not enough that it's not actively running,
  1763. * it must be off the runqueue _entirely_, and not
  1764. * preempted!
  1765. *
  1766. * So if it was still runnable (but just not actively
  1767. * running right now), it's preempted, and we should
  1768. * yield - it could be a while.
  1769. */
  1770. if (unlikely(on_rq)) {
  1771. schedule_timeout_uninterruptible(1);
  1772. continue;
  1773. }
  1774. /*
  1775. * Ahh, all good. It wasn't running, and it wasn't
  1776. * runnable, which means that it will never become
  1777. * running in the future either. We're all done!
  1778. */
  1779. break;
  1780. }
  1781. return ncsw;
  1782. }
  1783. /***
  1784. * kick_process - kick a running thread to enter/exit the kernel
  1785. * @p: the to-be-kicked thread
  1786. *
  1787. * Cause a process which is running on another CPU to enter
  1788. * kernel-mode, without any delay. (to get signals handled.)
  1789. *
  1790. * NOTE: this function doesnt have to take the runqueue lock,
  1791. * because all it wants to ensure is that the remote task enters
  1792. * the kernel. If the IPI races and the task has been migrated
  1793. * to another CPU then no harm is done and the purpose has been
  1794. * achieved as well.
  1795. */
  1796. void kick_process(struct task_struct *p)
  1797. {
  1798. int cpu;
  1799. preempt_disable();
  1800. cpu = task_cpu(p);
  1801. if ((cpu != smp_processor_id()) && task_curr(p))
  1802. smp_send_reschedule(cpu);
  1803. preempt_enable();
  1804. }
  1805. /*
  1806. * Return a low guess at the load of a migration-source cpu weighted
  1807. * according to the scheduling class and "nice" value.
  1808. *
  1809. * We want to under-estimate the load of migration sources, to
  1810. * balance conservatively.
  1811. */
  1812. static unsigned long source_load(int cpu, int type)
  1813. {
  1814. struct rq *rq = cpu_rq(cpu);
  1815. unsigned long total = weighted_cpuload(cpu);
  1816. if (type == 0 || !sched_feat(LB_BIAS))
  1817. return total;
  1818. return min(rq->cpu_load[type-1], total);
  1819. }
  1820. /*
  1821. * Return a high guess at the load of a migration-target cpu weighted
  1822. * according to the scheduling class and "nice" value.
  1823. */
  1824. static unsigned long target_load(int cpu, int type)
  1825. {
  1826. struct rq *rq = cpu_rq(cpu);
  1827. unsigned long total = weighted_cpuload(cpu);
  1828. if (type == 0 || !sched_feat(LB_BIAS))
  1829. return total;
  1830. return max(rq->cpu_load[type-1], total);
  1831. }
  1832. /*
  1833. * find_idlest_group finds and returns the least busy CPU group within the
  1834. * domain.
  1835. */
  1836. static struct sched_group *
  1837. find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
  1838. {
  1839. struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
  1840. unsigned long min_load = ULONG_MAX, this_load = 0;
  1841. int load_idx = sd->forkexec_idx;
  1842. int imbalance = 100 + (sd->imbalance_pct-100)/2;
  1843. do {
  1844. unsigned long load, avg_load;
  1845. int local_group;
  1846. int i;
  1847. /* Skip over this group if it has no CPUs allowed */
  1848. if (!cpumask_intersects(sched_group_cpus(group),
  1849. &p->cpus_allowed))
  1850. continue;
  1851. local_group = cpumask_test_cpu(this_cpu,
  1852. sched_group_cpus(group));
  1853. /* Tally up the load of all CPUs in the group */
  1854. avg_load = 0;
  1855. for_each_cpu(i, sched_group_cpus(group)) {
  1856. /* Bias balancing toward cpus of our domain */
  1857. if (local_group)
  1858. load = source_load(i, load_idx);
  1859. else
  1860. load = target_load(i, load_idx);
  1861. avg_load += load;
  1862. }
  1863. /* Adjust by relative CPU power of the group */
  1864. avg_load = sg_div_cpu_power(group,
  1865. avg_load * SCHED_LOAD_SCALE);
  1866. if (local_group) {
  1867. this_load = avg_load;
  1868. this = group;
  1869. } else if (avg_load < min_load) {
  1870. min_load = avg_load;
  1871. idlest = group;
  1872. }
  1873. } while (group = group->next, group != sd->groups);
  1874. if (!idlest || 100*this_load < imbalance*min_load)
  1875. return NULL;
  1876. return idlest;
  1877. }
  1878. /*
  1879. * find_idlest_cpu - find the idlest cpu among the cpus in group.
  1880. */
  1881. static int
  1882. find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
  1883. {
  1884. unsigned long load, min_load = ULONG_MAX;
  1885. int idlest = -1;
  1886. int i;
  1887. /* Traverse only the allowed CPUs */
  1888. for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) {
  1889. load = weighted_cpuload(i);
  1890. if (load < min_load || (load == min_load && i == this_cpu)) {
  1891. min_load = load;
  1892. idlest = i;
  1893. }
  1894. }
  1895. return idlest;
  1896. }
  1897. /*
  1898. * sched_balance_self: balance the current task (running on cpu) in domains
  1899. * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
  1900. * SD_BALANCE_EXEC.
  1901. *
  1902. * Balance, ie. select the least loaded group.
  1903. *
  1904. * Returns the target CPU number, or the same CPU if no balancing is needed.
  1905. *
  1906. * preempt must be disabled.
  1907. */
  1908. static int sched_balance_self(int cpu, int flag)
  1909. {
  1910. struct task_struct *t = current;
  1911. struct sched_domain *tmp, *sd = NULL;
  1912. for_each_domain(cpu, tmp) {
  1913. /*
  1914. * If power savings logic is enabled for a domain, stop there.
  1915. */
  1916. if (tmp->flags & SD_POWERSAVINGS_BALANCE)
  1917. break;
  1918. if (tmp->flags & flag)
  1919. sd = tmp;
  1920. }
  1921. if (sd)
  1922. update_shares(sd);
  1923. while (sd) {
  1924. struct sched_group *group;
  1925. int new_cpu, weight;
  1926. if (!(sd->flags & flag)) {
  1927. sd = sd->child;
  1928. continue;
  1929. }
  1930. group = find_idlest_group(sd, t, cpu);
  1931. if (!group) {
  1932. sd = sd->child;
  1933. continue;
  1934. }
  1935. new_cpu = find_idlest_cpu(group, t, cpu);
  1936. if (new_cpu == -1 || new_cpu == cpu) {
  1937. /* Now try balancing at a lower domain level of cpu */
  1938. sd = sd->child;
  1939. continue;
  1940. }
  1941. /* Now try balancing at a lower domain level of new_cpu */
  1942. cpu = new_cpu;
  1943. weight = cpumask_weight(sched_domain_span(sd));
  1944. sd = NULL;
  1945. for_each_domain(cpu, tmp) {
  1946. if (weight <= cpumask_weight(sched_domain_span(tmp)))
  1947. break;
  1948. if (tmp->flags & flag)
  1949. sd = tmp;
  1950. }
  1951. /* while loop will break here if sd == NULL */
  1952. }
  1953. return cpu;
  1954. }
  1955. #endif /* CONFIG_SMP */
  1956. /***
  1957. * try_to_wake_up - wake up a thread
  1958. * @p: the to-be-woken-up thread
  1959. * @state: the mask of task states that can be woken
  1960. * @sync: do a synchronous wakeup?
  1961. *
  1962. * Put it on the run-queue if it's not already there. The "current"
  1963. * thread is always on the run-queue (except when the actual
  1964. * re-schedule is in progress), and as such you're allowed to do
  1965. * the simpler "current->state = TASK_RUNNING" to mark yourself
  1966. * runnable without the overhead of this.
  1967. *
  1968. * returns failure only if the task is already active.
  1969. */
  1970. static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
  1971. {
  1972. int cpu, orig_cpu, this_cpu, success = 0;
  1973. unsigned long flags;
  1974. long old_state;
  1975. struct rq *rq;
  1976. if (!sched_feat(SYNC_WAKEUPS))
  1977. sync = 0;
  1978. #ifdef CONFIG_SMP
  1979. if (sched_feat(LB_WAKEUP_UPDATE) && !root_task_group_empty()) {
  1980. struct sched_domain *sd;
  1981. this_cpu = raw_smp_processor_id();
  1982. cpu = task_cpu(p);
  1983. for_each_domain(this_cpu, sd) {
  1984. if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  1985. update_shares(sd);
  1986. break;
  1987. }
  1988. }
  1989. }
  1990. #endif
  1991. smp_wmb();
  1992. rq = task_rq_lock(p, &flags);
  1993. update_rq_clock(rq);
  1994. old_state = p->state;
  1995. if (!(old_state & state))
  1996. goto out;
  1997. if (p->se.on_rq)
  1998. goto out_running;
  1999. cpu = task_cpu(p);
  2000. orig_cpu = cpu;
  2001. this_cpu = smp_processor_id();
  2002. #ifdef CONFIG_SMP
  2003. if (unlikely(task_running(rq, p)))
  2004. goto out_activate;
  2005. cpu = p->sched_class->select_task_rq(p, sync);
  2006. if (cpu != orig_cpu) {
  2007. set_task_cpu(p, cpu);
  2008. task_rq_unlock(rq, &flags);
  2009. /* might preempt at this point */
  2010. rq = task_rq_lock(p, &flags);
  2011. old_state = p->state;
  2012. if (!(old_state & state))
  2013. goto out;
  2014. if (p->se.on_rq)
  2015. goto out_running;
  2016. this_cpu = smp_processor_id();
  2017. cpu = task_cpu(p);
  2018. }
  2019. #ifdef CONFIG_SCHEDSTATS
  2020. schedstat_inc(rq, ttwu_count);
  2021. if (cpu == this_cpu)
  2022. schedstat_inc(rq, ttwu_local);
  2023. else {
  2024. struct sched_domain *sd;
  2025. for_each_domain(this_cpu, sd) {
  2026. if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  2027. schedstat_inc(sd, ttwu_wake_remote);
  2028. break;
  2029. }
  2030. }
  2031. }
  2032. #endif /* CONFIG_SCHEDSTATS */
  2033. out_activate:
  2034. #endif /* CONFIG_SMP */
  2035. schedstat_inc(p, se.nr_wakeups);
  2036. if (sync)
  2037. schedstat_inc(p, se.nr_wakeups_sync);
  2038. if (orig_cpu != cpu)
  2039. schedstat_inc(p, se.nr_wakeups_migrate);
  2040. if (cpu == this_cpu)
  2041. schedstat_inc(p, se.nr_wakeups_local);
  2042. else
  2043. schedstat_inc(p, se.nr_wakeups_remote);
  2044. activate_task(rq, p, 1);
  2045. success = 1;
  2046. /*
  2047. * Only attribute actual wakeups done by this task.
  2048. */
  2049. if (!in_interrupt()) {
  2050. struct sched_entity *se = &current->se;
  2051. u64 sample = se->sum_exec_runtime;
  2052. if (se->last_wakeup)
  2053. sample -= se->last_wakeup;
  2054. else
  2055. sample -= se->start_runtime;
  2056. update_avg(&se->avg_wakeup, sample);
  2057. se->last_wakeup = se->sum_exec_runtime;
  2058. }
  2059. out_running:
  2060. trace_sched_wakeup(rq, p, success);
  2061. check_preempt_curr(rq, p, sync);
  2062. p->state = TASK_RUNNING;
  2063. #ifdef CONFIG_SMP
  2064. if (p->sched_class->task_wake_up)
  2065. p->sched_class->task_wake_up(rq, p);
  2066. #endif
  2067. out:
  2068. task_rq_unlock(rq, &flags);
  2069. return success;
  2070. }
  2071. int wake_up_process(struct task_struct *p)
  2072. {
  2073. return try_to_wake_up(p, TASK_ALL, 0);
  2074. }
  2075. EXPORT_SYMBOL(wake_up_process);
  2076. int wake_up_state(struct task_struct *p, unsigned int state)
  2077. {
  2078. return try_to_wake_up(p, state, 0);
  2079. }
  2080. /*
  2081. * Perform scheduler related setup for a newly forked process p.
  2082. * p is forked by current.
  2083. *
  2084. * __sched_fork() is basic setup used by init_idle() too:
  2085. */
  2086. static void __sched_fork(struct task_struct *p)
  2087. {
  2088. p->se.exec_start = 0;
  2089. p->se.sum_exec_runtime = 0;
  2090. p->se.prev_sum_exec_runtime = 0;
  2091. p->se.last_wakeup = 0;
  2092. p->se.avg_overlap = 0;
  2093. p->se.start_runtime = 0;
  2094. p->se.avg_wakeup = sysctl_sched_wakeup_granularity;
  2095. #ifdef CONFIG_SCHEDSTATS
  2096. p->se.wait_start = 0;
  2097. p->se.sum_sleep_runtime = 0;
  2098. p->se.sleep_start = 0;
  2099. p->se.block_start = 0;
  2100. p->se.sleep_max = 0;
  2101. p->se.block_max = 0;
  2102. p->se.exec_max = 0;
  2103. p->se.slice_max = 0;
  2104. p->se.wait_max = 0;
  2105. #endif
  2106. INIT_LIST_HEAD(&p->rt.run_list);
  2107. p->se.on_rq = 0;
  2108. INIT_LIST_HEAD(&p->se.group_node);
  2109. #ifdef CONFIG_PREEMPT_NOTIFIERS
  2110. INIT_HLIST_HEAD(&p->preempt_notifiers);
  2111. #endif
  2112. /*
  2113. * We mark the process as running here, but have not actually
  2114. * inserted it onto the runqueue yet. This guarantees that
  2115. * nobody will actually run it, and a signal or other external
  2116. * event cannot wake it up and insert it on the runqueue either.
  2117. */
  2118. p->state = TASK_RUNNING;
  2119. }
  2120. /*
  2121. * fork()/clone()-time setup:
  2122. */
  2123. void sched_fork(struct task_struct *p, int clone_flags)
  2124. {
  2125. int cpu = get_cpu();
  2126. __sched_fork(p);
  2127. #ifdef CONFIG_SMP
  2128. cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
  2129. #endif
  2130. set_task_cpu(p, cpu);
  2131. /*
  2132. * Make sure we do not leak PI boosting priority to the child:
  2133. */
  2134. p->prio = current->normal_prio;
  2135. if (!rt_prio(p->prio))
  2136. p->sched_class = &fair_sched_class;
  2137. #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
  2138. if (likely(sched_info_on()))
  2139. memset(&p->sched_info, 0, sizeof(p->sched_info));
  2140. #endif
  2141. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  2142. p->oncpu = 0;
  2143. #endif
  2144. #ifdef CONFIG_PREEMPT
  2145. /* Want to start with kernel preemption disabled. */
  2146. task_thread_info(p)->preempt_count = 1;
  2147. #endif
  2148. plist_node_init(&p->pushable_tasks, MAX_PRIO);
  2149. put_cpu();
  2150. }
  2151. /*
  2152. * wake_up_new_task - wake up a newly created task for the first time.
  2153. *
  2154. * This function will do some initial scheduler statistics housekeeping
  2155. * that must be done for every newly created context, then puts the task
  2156. * on the runqueue and wakes it.
  2157. */
  2158. void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
  2159. {
  2160. unsigned long flags;
  2161. struct rq *rq;
  2162. rq = task_rq_lock(p, &flags);
  2163. BUG_ON(p->state != TASK_RUNNING);
  2164. update_rq_clock(rq);
  2165. p->prio = effective_prio(p);
  2166. if (!p->sched_class->task_new || !current->se.on_rq) {
  2167. activate_task(rq, p, 0);
  2168. } else {
  2169. /*
  2170. * Let the scheduling class do new task startup
  2171. * management (if any):
  2172. */
  2173. p->sched_class->task_new(rq, p);
  2174. inc_nr_running(rq);
  2175. }
  2176. trace_sched_wakeup_new(rq, p, 1);
  2177. check_preempt_curr(rq, p, 0);
  2178. #ifdef CONFIG_SMP
  2179. if (p->sched_class->task_wake_up)
  2180. p->sched_class->task_wake_up(rq, p);
  2181. #endif
  2182. task_rq_unlock(rq, &flags);
  2183. }
  2184. #ifdef CONFIG_PREEMPT_NOTIFIERS
  2185. /**
  2186. * preempt_notifier_register - tell me when current is being preempted & rescheduled
  2187. * @notifier: notifier struct to register
  2188. */
  2189. void preempt_notifier_register(struct preempt_notifier *notifier)
  2190. {
  2191. hlist_add_head(&notifier->link, &current->preempt_notifiers);
  2192. }
  2193. EXPORT_SYMBOL_GPL(preempt_notifier_register);
  2194. /**
  2195. * preempt_notifier_unregister - no longer interested in preemption notifications
  2196. * @notifier: notifier struct to unregister
  2197. *
  2198. * This is safe to call from within a preemption notifier.
  2199. */
  2200. void preempt_notifier_unregister(struct preempt_notifier *notifier)
  2201. {
  2202. hlist_del(&notifier->link);
  2203. }
  2204. EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
  2205. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  2206. {
  2207. struct preempt_notifier *notifier;
  2208. struct hlist_node *node;
  2209. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  2210. notifier->ops->sched_in(notifier, raw_smp_processor_id());
  2211. }
  2212. static void
  2213. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  2214. struct task_struct *next)
  2215. {
  2216. struct preempt_notifier *notifier;
  2217. struct hlist_node *node;
  2218. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  2219. notifier->ops->sched_out(notifier, next);
  2220. }
  2221. #else /* !CONFIG_PREEMPT_NOTIFIERS */
  2222. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  2223. {
  2224. }
  2225. static void
  2226. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  2227. struct task_struct *next)
  2228. {
  2229. }
  2230. #endif /* CONFIG_PREEMPT_NOTIFIERS */
  2231. /**
  2232. * prepare_task_switch - prepare to switch tasks
  2233. * @rq: the runqueue preparing to switch
  2234. * @prev: the current task that is being switched out
  2235. * @next: the task we are going to switch to.
  2236. *
  2237. * This is called with the rq lock held and interrupts off. It must
  2238. * be paired with a subsequent finish_task_switch after the context
  2239. * switch.
  2240. *
  2241. * prepare_task_switch sets up locking and calls architecture specific
  2242. * hooks.
  2243. */
  2244. static inline void
  2245. prepare_task_switch(struct rq *rq, struct task_struct *prev,
  2246. struct task_struct *next)
  2247. {
  2248. fire_sched_out_preempt_notifiers(prev, next);
  2249. prepare_lock_switch(rq, next);
  2250. prepare_arch_switch(next);
  2251. }
  2252. /**
  2253. * finish_task_switch - clean up after a task-switch
  2254. * @rq: runqueue associated with task-switch
  2255. * @prev: the thread we just switched away from.
  2256. *
  2257. * finish_task_switch must be called after the context switch, paired
  2258. * with a prepare_task_switch call before the context switch.
  2259. * finish_task_switch will reconcile locking set up by prepare_task_switch,
  2260. * and do any other architecture-specific cleanup actions.
  2261. *
  2262. * Note that we may have delayed dropping an mm in context_switch(). If
  2263. * so, we finish that here outside of the runqueue lock. (Doing it
  2264. * with the lock held can cause deadlocks; see schedule() for
  2265. * details.)
  2266. */
  2267. static void finish_task_switch(struct rq *rq, struct task_struct *prev)
  2268. __releases(rq->lock)
  2269. {
  2270. struct mm_struct *mm = rq->prev_mm;
  2271. long prev_state;
  2272. #ifdef CONFIG_SMP
  2273. int post_schedule = 0;
  2274. if (current->sched_class->needs_post_schedule)
  2275. post_schedule = current->sched_class->needs_post_schedule(rq);
  2276. #endif
  2277. rq->prev_mm = NULL;
  2278. /*
  2279. * A task struct has one reference for the use as "current".
  2280. * If a task dies, then it sets TASK_DEAD in tsk->state and calls
  2281. * schedule one last time. The schedule call will never return, and
  2282. * the scheduled task must drop that reference.
  2283. * The test for TASK_DEAD must occur while the runqueue locks are
  2284. * still held, otherwise prev could be scheduled on another cpu, die
  2285. * there before we look at prev->state, and then the reference would
  2286. * be dropped twice.
  2287. * Manfred Spraul <manfred@colorfullife.com>
  2288. */
  2289. prev_state = prev->state;
  2290. finish_arch_switch(prev);
  2291. finish_lock_switch(rq, prev);
  2292. #ifdef CONFIG_SMP
  2293. if (post_schedule)
  2294. current->sched_class->post_schedule(rq);
  2295. #endif
  2296. fire_sched_in_preempt_notifiers(current);
  2297. if (mm)
  2298. mmdrop(mm);
  2299. if (unlikely(prev_state == TASK_DEAD)) {
  2300. /*
  2301. * Remove function-return probe instances associated with this
  2302. * task and put them back on the free list.
  2303. */
  2304. kprobe_flush_task(prev);
  2305. put_task_struct(prev);
  2306. }
  2307. }
  2308. /**
  2309. * schedule_tail - first thing a freshly forked thread must call.
  2310. * @prev: the thread we just switched away from.
  2311. */
  2312. asmlinkage void schedule_tail(struct task_struct *prev)
  2313. __releases(rq->lock)
  2314. {
  2315. struct rq *rq = this_rq();
  2316. finish_task_switch(rq, prev);
  2317. #ifdef __ARCH_WANT_UNLOCKED_CTXSW
  2318. /* In this case, finish_task_switch does not reenable preemption */
  2319. preempt_enable();
  2320. #endif
  2321. if (current->set_child_tid)
  2322. put_user(task_pid_vnr(current), current->set_child_tid);
  2323. }
  2324. /*
  2325. * context_switch - switch to the new MM and the new
  2326. * thread's register state.
  2327. */
  2328. static inline void
  2329. context_switch(struct rq *rq, struct task_struct *prev,
  2330. struct task_struct *next)
  2331. {
  2332. struct mm_struct *mm, *oldmm;
  2333. prepare_task_switch(rq, prev, next);
  2334. trace_sched_switch(rq, prev, next);
  2335. mm = next->mm;
  2336. oldmm = prev->active_mm;
  2337. /*
  2338. * For paravirt, this is coupled with an exit in switch_to to
  2339. * combine the page table reload and the switch backend into
  2340. * one hypercall.
  2341. */
  2342. arch_enter_lazy_cpu_mode();
  2343. if (unlikely(!mm)) {
  2344. next->active_mm = oldmm;
  2345. atomic_inc(&oldmm->mm_count);
  2346. enter_lazy_tlb(oldmm, next);
  2347. } else
  2348. switch_mm(oldmm, mm, next);
  2349. if (unlikely(!prev->mm)) {
  2350. prev->active_mm = NULL;
  2351. rq->prev_mm = oldmm;
  2352. }
  2353. /*
  2354. * Since the runqueue lock will be released by the next
  2355. * task (which is an invalid locking op but in the case
  2356. * of the scheduler it's an obvious special-case), so we
  2357. * do an early lockdep release here:
  2358. */
  2359. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  2360. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  2361. #endif
  2362. /* Here we just switch the register state and the stack. */
  2363. switch_to(prev, next, prev);
  2364. barrier();
  2365. /*
  2366. * this_rq must be evaluated again because prev may have moved
  2367. * CPUs since it called schedule(), thus the 'rq' on its stack
  2368. * frame will be invalid.
  2369. */
  2370. finish_task_switch(this_rq(), prev);
  2371. }
  2372. /*
  2373. * nr_running, nr_uninterruptible and nr_context_switches:
  2374. *
  2375. * externally visible scheduler statistics: current number of runnable
  2376. * threads, current number of uninterruptible-sleeping threads, total
  2377. * number of context switches performed since bootup.
  2378. */
  2379. unsigned long nr_running(void)
  2380. {
  2381. unsigned long i, sum = 0;
  2382. for_each_online_cpu(i)
  2383. sum += cpu_rq(i)->nr_running;
  2384. return sum;
  2385. }
  2386. unsigned long nr_uninterruptible(void)
  2387. {
  2388. unsigned long i, sum = 0;
  2389. for_each_possible_cpu(i)
  2390. sum += cpu_rq(i)->nr_uninterruptible;
  2391. /*
  2392. * Since we read the counters lockless, it might be slightly
  2393. * inaccurate. Do not allow it to go below zero though:
  2394. */
  2395. if (unlikely((long)sum < 0))
  2396. sum = 0;
  2397. return sum;
  2398. }
  2399. unsigned long long nr_context_switches(void)
  2400. {
  2401. int i;
  2402. unsigned long long sum = 0;
  2403. for_each_possible_cpu(i)
  2404. sum += cpu_rq(i)->nr_switches;
  2405. return sum;
  2406. }
  2407. unsigned long nr_iowait(void)
  2408. {
  2409. unsigned long i, sum = 0;
  2410. for_each_possible_cpu(i)
  2411. sum += atomic_read(&cpu_rq(i)->nr_iowait);
  2412. return sum;
  2413. }
  2414. unsigned long nr_active(void)
  2415. {
  2416. unsigned long i, running = 0, uninterruptible = 0;
  2417. for_each_online_cpu(i) {
  2418. running += cpu_rq(i)->nr_running;
  2419. uninterruptible += cpu_rq(i)->nr_uninterruptible;
  2420. }
  2421. if (unlikely((long)uninterruptible < 0))
  2422. uninterruptible = 0;
  2423. return running + uninterruptible;
  2424. }
  2425. /*
  2426. * Update rq->cpu_load[] statistics. This function is usually called every
  2427. * scheduler tick (TICK_NSEC).
  2428. */
  2429. static void update_cpu_load(struct rq *this_rq)
  2430. {
  2431. unsigned long this_load = this_rq->load.weight;
  2432. int i, scale;
  2433. this_rq->nr_load_updates++;
  2434. /* Update our load: */
  2435. for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
  2436. unsigned long old_load, new_load;
  2437. /* scale is effectively 1 << i now, and >> i divides by scale */
  2438. old_load = this_rq->cpu_load[i];
  2439. new_load = this_load;
  2440. /*
  2441. * Round up the averaging division if load is increasing. This
  2442. * prevents us from getting stuck on 9 if the load is 10, for
  2443. * example.
  2444. */
  2445. if (new_load > old_load)
  2446. new_load += scale-1;
  2447. this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
  2448. }
  2449. }
  2450. #ifdef CONFIG_SMP
  2451. /*
  2452. * double_rq_lock - safely lock two runqueues
  2453. *
  2454. * Note this does not disable interrupts like task_rq_lock,
  2455. * you need to do so manually before calling.
  2456. */
  2457. static void double_rq_lock(struct rq *rq1, struct rq *rq2)
  2458. __acquires(rq1->lock)
  2459. __acquires(rq2->lock)
  2460. {
  2461. BUG_ON(!irqs_disabled());
  2462. if (rq1 == rq2) {
  2463. spin_lock(&rq1->lock);
  2464. __acquire(rq2->lock); /* Fake it out ;) */
  2465. } else {
  2466. if (rq1 < rq2) {
  2467. spin_lock(&rq1->lock);
  2468. spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
  2469. } else {
  2470. spin_lock(&rq2->lock);
  2471. spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
  2472. }
  2473. }
  2474. update_rq_clock(rq1);
  2475. update_rq_clock(rq2);
  2476. }
  2477. /*
  2478. * double_rq_unlock - safely unlock two runqueues
  2479. *
  2480. * Note this does not restore interrupts like task_rq_unlock,
  2481. * you need to do so manually after calling.
  2482. */
  2483. static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
  2484. __releases(rq1->lock)
  2485. __releases(rq2->lock)
  2486. {
  2487. spin_unlock(&rq1->lock);
  2488. if (rq1 != rq2)
  2489. spin_unlock(&rq2->lock);
  2490. else
  2491. __release(rq2->lock);
  2492. }
  2493. /*
  2494. * If dest_cpu is allowed for this process, migrate the task to it.
  2495. * This is accomplished by forcing the cpu_allowed mask to only
  2496. * allow dest_cpu, which will force the cpu onto dest_cpu. Then
  2497. * the cpu_allowed mask is restored.
  2498. */
  2499. static void sched_migrate_task(struct task_struct *p, int dest_cpu)
  2500. {
  2501. struct migration_req req;
  2502. unsigned long flags;
  2503. struct rq *rq;
  2504. rq = task_rq_lock(p, &flags);
  2505. if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)
  2506. || unlikely(!cpu_active(dest_cpu)))
  2507. goto out;
  2508. /* force the process onto the specified CPU */
  2509. if (migrate_task(p, dest_cpu, &req)) {
  2510. /* Need to wait for migration thread (might exit: take ref). */
  2511. struct task_struct *mt = rq->migration_thread;
  2512. get_task_struct(mt);
  2513. task_rq_unlock(rq, &flags);
  2514. wake_up_process(mt);
  2515. put_task_struct(mt);
  2516. wait_for_completion(&req.done);
  2517. return;
  2518. }
  2519. out:
  2520. task_rq_unlock(rq, &flags);
  2521. }
  2522. /*
  2523. * sched_exec - execve() is a valuable balancing opportunity, because at
  2524. * this point the task has the smallest effective memory and cache footprint.
  2525. */
  2526. void sched_exec(void)
  2527. {
  2528. int new_cpu, this_cpu = get_cpu();
  2529. new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
  2530. put_cpu();
  2531. if (new_cpu != this_cpu)
  2532. sched_migrate_task(current, new_cpu);
  2533. }
  2534. /*
  2535. * pull_task - move a task from a remote runqueue to the local runqueue.
  2536. * Both runqueues must be locked.
  2537. */
  2538. static void pull_task(struct rq *src_rq, struct task_struct *p,
  2539. struct rq *this_rq, int this_cpu)
  2540. {
  2541. deactivate_task(src_rq, p, 0);
  2542. set_task_cpu(p, this_cpu);
  2543. activate_task(this_rq, p, 0);
  2544. /*
  2545. * Note that idle threads have a prio of MAX_PRIO, for this test
  2546. * to be always true for them.
  2547. */
  2548. check_preempt_curr(this_rq, p, 0);
  2549. }
  2550. /*
  2551. * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
  2552. */
  2553. static
  2554. int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
  2555. struct sched_domain *sd, enum cpu_idle_type idle,
  2556. int *all_pinned)
  2557. {
  2558. int tsk_cache_hot = 0;
  2559. /*
  2560. * We do not migrate tasks that are:
  2561. * 1) running (obviously), or
  2562. * 2) cannot be migrated to this CPU due to cpus_allowed, or
  2563. * 3) are cache-hot on their current CPU.
  2564. */
  2565. if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
  2566. schedstat_inc(p, se.nr_failed_migrations_affine);
  2567. return 0;
  2568. }
  2569. *all_pinned = 0;
  2570. if (task_running(rq, p)) {
  2571. schedstat_inc(p, se.nr_failed_migrations_running);
  2572. return 0;
  2573. }
  2574. /*
  2575. * Aggressive migration if:
  2576. * 1) task is cache cold, or
  2577. * 2) too many balance attempts have failed.
  2578. */
  2579. tsk_cache_hot = task_hot(p, rq->clock, sd);
  2580. if (!tsk_cache_hot ||
  2581. sd->nr_balance_failed > sd->cache_nice_tries) {
  2582. #ifdef CONFIG_SCHEDSTATS
  2583. if (tsk_cache_hot) {
  2584. schedstat_inc(sd, lb_hot_gained[idle]);
  2585. schedstat_inc(p, se.nr_forced_migrations);
  2586. }
  2587. #endif
  2588. return 1;
  2589. }
  2590. if (tsk_cache_hot) {
  2591. schedstat_inc(p, se.nr_failed_migrations_hot);
  2592. return 0;
  2593. }
  2594. return 1;
  2595. }
  2596. static unsigned long
  2597. balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2598. unsigned long max_load_move, struct sched_domain *sd,
  2599. enum cpu_idle_type idle, int *all_pinned,
  2600. int *this_best_prio, struct rq_iterator *iterator)
  2601. {
  2602. int loops = 0, pulled = 0, pinned = 0;
  2603. struct task_struct *p;
  2604. long rem_load_move = max_load_move;
  2605. if (max_load_move == 0)
  2606. goto out;
  2607. pinned = 1;
  2608. /*
  2609. * Start the load-balancing iterator:
  2610. */
  2611. p = iterator->start(iterator->arg);
  2612. next:
  2613. if (!p || loops++ > sysctl_sched_nr_migrate)
  2614. goto out;
  2615. if ((p->se.load.weight >> 1) > rem_load_move ||
  2616. !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
  2617. p = iterator->next(iterator->arg);
  2618. goto next;
  2619. }
  2620. pull_task(busiest, p, this_rq, this_cpu);
  2621. pulled++;
  2622. rem_load_move -= p->se.load.weight;
  2623. #ifdef CONFIG_PREEMPT
  2624. /*
  2625. * NEWIDLE balancing is a source of latency, so preemptible kernels
  2626. * will stop after the first task is pulled to minimize the critical
  2627. * section.
  2628. */
  2629. if (idle == CPU_NEWLY_IDLE)
  2630. goto out;
  2631. #endif
  2632. /*
  2633. * We only want to steal up to the prescribed amount of weighted load.
  2634. */
  2635. if (rem_load_move > 0) {
  2636. if (p->prio < *this_best_prio)
  2637. *this_best_prio = p->prio;
  2638. p = iterator->next(iterator->arg);
  2639. goto next;
  2640. }
  2641. out:
  2642. /*
  2643. * Right now, this is one of only two places pull_task() is called,
  2644. * so we can safely collect pull_task() stats here rather than
  2645. * inside pull_task().
  2646. */
  2647. schedstat_add(sd, lb_gained[idle], pulled);
  2648. if (all_pinned)
  2649. *all_pinned = pinned;
  2650. return max_load_move - rem_load_move;
  2651. }
  2652. /*
  2653. * move_tasks tries to move up to max_load_move weighted load from busiest to
  2654. * this_rq, as part of a balancing operation within domain "sd".
  2655. * Returns 1 if successful and 0 otherwise.
  2656. *
  2657. * Called with both runqueues locked.
  2658. */
  2659. static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2660. unsigned long max_load_move,
  2661. struct sched_domain *sd, enum cpu_idle_type idle,
  2662. int *all_pinned)
  2663. {
  2664. const struct sched_class *class = sched_class_highest;
  2665. unsigned long total_load_moved = 0;
  2666. int this_best_prio = this_rq->curr->prio;
  2667. do {
  2668. total_load_moved +=
  2669. class->load_balance(this_rq, this_cpu, busiest,
  2670. max_load_move - total_load_moved,
  2671. sd, idle, all_pinned, &this_best_prio);
  2672. class = class->next;
  2673. #ifdef CONFIG_PREEMPT
  2674. /*
  2675. * NEWIDLE balancing is a source of latency, so preemptible
  2676. * kernels will stop after the first task is pulled to minimize
  2677. * the critical section.
  2678. */
  2679. if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
  2680. break;
  2681. #endif
  2682. } while (class && max_load_move > total_load_moved);
  2683. return total_load_moved > 0;
  2684. }
  2685. static int
  2686. iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2687. struct sched_domain *sd, enum cpu_idle_type idle,
  2688. struct rq_iterator *iterator)
  2689. {
  2690. struct task_struct *p = iterator->start(iterator->arg);
  2691. int pinned = 0;
  2692. while (p) {
  2693. if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
  2694. pull_task(busiest, p, this_rq, this_cpu);
  2695. /*
  2696. * Right now, this is only the second place pull_task()
  2697. * is called, so we can safely collect pull_task()
  2698. * stats here rather than inside pull_task().
  2699. */
  2700. schedstat_inc(sd, lb_gained[idle]);
  2701. return 1;
  2702. }
  2703. p = iterator->next(iterator->arg);
  2704. }
  2705. return 0;
  2706. }
  2707. /*
  2708. * move_one_task tries to move exactly one task from busiest to this_rq, as
  2709. * part of active balancing operations within "domain".
  2710. * Returns 1 if successful and 0 otherwise.
  2711. *
  2712. * Called with both runqueues locked.
  2713. */
  2714. static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2715. struct sched_domain *sd, enum cpu_idle_type idle)
  2716. {
  2717. const struct sched_class *class;
  2718. for (class = sched_class_highest; class; class = class->next)
  2719. if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
  2720. return 1;
  2721. return 0;
  2722. }
  2723. /********** Helpers for find_busiest_group ************************/
  2724. /*
  2725. * sd_lb_stats - Structure to store the statistics of a sched_domain
  2726. * during load balancing.
  2727. */
  2728. struct sd_lb_stats {
  2729. struct sched_group *busiest; /* Busiest group in this sd */
  2730. struct sched_group *this; /* Local group in this sd */
  2731. unsigned long total_load; /* Total load of all groups in sd */
  2732. unsigned long total_pwr; /* Total power of all groups in sd */
  2733. unsigned long avg_load; /* Average load across all groups in sd */
  2734. /** Statistics of this group */
  2735. unsigned long this_load;
  2736. unsigned long this_load_per_task;
  2737. unsigned long this_nr_running;
  2738. /* Statistics of the busiest group */
  2739. unsigned long max_load;
  2740. unsigned long busiest_load_per_task;
  2741. unsigned long busiest_nr_running;
  2742. int group_imb; /* Is there imbalance in this sd */
  2743. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2744. int power_savings_balance; /* Is powersave balance needed for this sd */
  2745. struct sched_group *group_min; /* Least loaded group in sd */
  2746. struct sched_group *group_leader; /* Group which relieves group_min */
  2747. unsigned long min_load_per_task; /* load_per_task in group_min */
  2748. unsigned long leader_nr_running; /* Nr running of group_leader */
  2749. unsigned long min_nr_running; /* Nr running of group_min */
  2750. #endif
  2751. };
  2752. /*
  2753. * sg_lb_stats - stats of a sched_group required for load_balancing
  2754. */
  2755. struct sg_lb_stats {
  2756. unsigned long avg_load; /*Avg load across the CPUs of the group */
  2757. unsigned long group_load; /* Total load over the CPUs of the group */
  2758. unsigned long sum_nr_running; /* Nr tasks running in the group */
  2759. unsigned long sum_weighted_load; /* Weighted load of group's tasks */
  2760. unsigned long group_capacity;
  2761. int group_imb; /* Is there an imbalance in the group ? */
  2762. };
  2763. /**
  2764. * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
  2765. * @group: The group whose first cpu is to be returned.
  2766. */
  2767. static inline unsigned int group_first_cpu(struct sched_group *group)
  2768. {
  2769. return cpumask_first(sched_group_cpus(group));
  2770. }
  2771. /**
  2772. * get_sd_load_idx - Obtain the load index for a given sched domain.
  2773. * @sd: The sched_domain whose load_idx is to be obtained.
  2774. * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
  2775. */
  2776. static inline int get_sd_load_idx(struct sched_domain *sd,
  2777. enum cpu_idle_type idle)
  2778. {
  2779. int load_idx;
  2780. switch (idle) {
  2781. case CPU_NOT_IDLE:
  2782. load_idx = sd->busy_idx;
  2783. break;
  2784. case CPU_NEWLY_IDLE:
  2785. load_idx = sd->newidle_idx;
  2786. break;
  2787. default:
  2788. load_idx = sd->idle_idx;
  2789. break;
  2790. }
  2791. return load_idx;
  2792. }
  2793. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2794. /**
  2795. * init_sd_power_savings_stats - Initialize power savings statistics for
  2796. * the given sched_domain, during load balancing.
  2797. *
  2798. * @sd: Sched domain whose power-savings statistics are to be initialized.
  2799. * @sds: Variable containing the statistics for sd.
  2800. * @idle: Idle status of the CPU at which we're performing load-balancing.
  2801. */
  2802. static inline void init_sd_power_savings_stats(struct sched_domain *sd,
  2803. struct sd_lb_stats *sds, enum cpu_idle_type idle)
  2804. {
  2805. /*
  2806. * Busy processors will not participate in power savings
  2807. * balance.
  2808. */
  2809. if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
  2810. sds->power_savings_balance = 0;
  2811. else {
  2812. sds->power_savings_balance = 1;
  2813. sds->min_nr_running = ULONG_MAX;
  2814. sds->leader_nr_running = 0;
  2815. }
  2816. }
  2817. /**
  2818. * update_sd_power_savings_stats - Update the power saving stats for a
  2819. * sched_domain while performing load balancing.
  2820. *
  2821. * @group: sched_group belonging to the sched_domain under consideration.
  2822. * @sds: Variable containing the statistics of the sched_domain
  2823. * @local_group: Does group contain the CPU for which we're performing
  2824. * load balancing ?
  2825. * @sgs: Variable containing the statistics of the group.
  2826. */
  2827. static inline void update_sd_power_savings_stats(struct sched_group *group,
  2828. struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
  2829. {
  2830. if (!sds->power_savings_balance)
  2831. return;
  2832. /*
  2833. * If the local group is idle or completely loaded
  2834. * no need to do power savings balance at this domain
  2835. */
  2836. if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
  2837. !sds->this_nr_running))
  2838. sds->power_savings_balance = 0;
  2839. /*
  2840. * If a group is already running at full capacity or idle,
  2841. * don't include that group in power savings calculations
  2842. */
  2843. if (!sds->power_savings_balance ||
  2844. sgs->sum_nr_running >= sgs->group_capacity ||
  2845. !sgs->sum_nr_running)
  2846. return;
  2847. /*
  2848. * Calculate the group which has the least non-idle load.
  2849. * This is the group from where we need to pick up the load
  2850. * for saving power
  2851. */
  2852. if ((sgs->sum_nr_running < sds->min_nr_running) ||
  2853. (sgs->sum_nr_running == sds->min_nr_running &&
  2854. group_first_cpu(group) > group_first_cpu(sds->group_min))) {
  2855. sds->group_min = group;
  2856. sds->min_nr_running = sgs->sum_nr_running;
  2857. sds->min_load_per_task = sgs->sum_weighted_load /
  2858. sgs->sum_nr_running;
  2859. }
  2860. /*
  2861. * Calculate the group which is almost near its
  2862. * capacity but still has some space to pick up some load
  2863. * from other group and save more power
  2864. */
  2865. if (sgs->sum_nr_running > sgs->group_capacity - 1)
  2866. return;
  2867. if (sgs->sum_nr_running > sds->leader_nr_running ||
  2868. (sgs->sum_nr_running == sds->leader_nr_running &&
  2869. group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
  2870. sds->group_leader = group;
  2871. sds->leader_nr_running = sgs->sum_nr_running;
  2872. }
  2873. }
  2874. /**
  2875. * check_power_save_busiest_group - see if there is potential for some power-savings balance
  2876. * @sds: Variable containing the statistics of the sched_domain
  2877. * under consideration.
  2878. * @this_cpu: Cpu at which we're currently performing load-balancing.
  2879. * @imbalance: Variable to store the imbalance.
  2880. *
  2881. * Description:
  2882. * Check if we have potential to perform some power-savings balance.
  2883. * If yes, set the busiest group to be the least loaded group in the
  2884. * sched_domain, so that it's CPUs can be put to idle.
  2885. *
  2886. * Returns 1 if there is potential to perform power-savings balance.
  2887. * Else returns 0.
  2888. */
  2889. static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
  2890. int this_cpu, unsigned long *imbalance)
  2891. {
  2892. if (!sds->power_savings_balance)
  2893. return 0;
  2894. if (sds->this != sds->group_leader ||
  2895. sds->group_leader == sds->group_min)
  2896. return 0;
  2897. *imbalance = sds->min_load_per_task;
  2898. sds->busiest = sds->group_min;
  2899. if (sched_mc_power_savings >= POWERSAVINGS_BALANCE_WAKEUP) {
  2900. cpu_rq(this_cpu)->rd->sched_mc_preferred_wakeup_cpu =
  2901. group_first_cpu(sds->group_leader);
  2902. }
  2903. return 1;
  2904. }
  2905. #else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
  2906. static inline void init_sd_power_savings_stats(struct sched_domain *sd,
  2907. struct sd_lb_stats *sds, enum cpu_idle_type idle)
  2908. {
  2909. return;
  2910. }
  2911. static inline void update_sd_power_savings_stats(struct sched_group *group,
  2912. struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
  2913. {
  2914. return;
  2915. }
  2916. static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
  2917. int this_cpu, unsigned long *imbalance)
  2918. {
  2919. return 0;
  2920. }
  2921. #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
  2922. /**
  2923. * update_sg_lb_stats - Update sched_group's statistics for load balancing.
  2924. * @group: sched_group whose statistics are to be updated.
  2925. * @this_cpu: Cpu for which load balance is currently performed.
  2926. * @idle: Idle status of this_cpu
  2927. * @load_idx: Load index of sched_domain of this_cpu for load calc.
  2928. * @sd_idle: Idle status of the sched_domain containing group.
  2929. * @local_group: Does group contain this_cpu.
  2930. * @cpus: Set of cpus considered for load balancing.
  2931. * @balance: Should we balance.
  2932. * @sgs: variable to hold the statistics for this group.
  2933. */
  2934. static inline void update_sg_lb_stats(struct sched_group *group, int this_cpu,
  2935. enum cpu_idle_type idle, int load_idx, int *sd_idle,
  2936. int local_group, const struct cpumask *cpus,
  2937. int *balance, struct sg_lb_stats *sgs)
  2938. {
  2939. unsigned long load, max_cpu_load, min_cpu_load;
  2940. int i;
  2941. unsigned int balance_cpu = -1, first_idle_cpu = 0;
  2942. unsigned long sum_avg_load_per_task;
  2943. unsigned long avg_load_per_task;
  2944. if (local_group)
  2945. balance_cpu = group_first_cpu(group);
  2946. /* Tally up the load of all CPUs in the group */
  2947. sum_avg_load_per_task = avg_load_per_task = 0;
  2948. max_cpu_load = 0;
  2949. min_cpu_load = ~0UL;
  2950. for_each_cpu_and(i, sched_group_cpus(group), cpus) {
  2951. struct rq *rq = cpu_rq(i);
  2952. if (*sd_idle && rq->nr_running)
  2953. *sd_idle = 0;
  2954. /* Bias balancing toward cpus of our domain */
  2955. if (local_group) {
  2956. if (idle_cpu(i) && !first_idle_cpu) {
  2957. first_idle_cpu = 1;
  2958. balance_cpu = i;
  2959. }
  2960. load = target_load(i, load_idx);
  2961. } else {
  2962. load = source_load(i, load_idx);
  2963. if (load > max_cpu_load)
  2964. max_cpu_load = load;
  2965. if (min_cpu_load > load)
  2966. min_cpu_load = load;
  2967. }
  2968. sgs->group_load += load;
  2969. sgs->sum_nr_running += rq->nr_running;
  2970. sgs->sum_weighted_load += weighted_cpuload(i);
  2971. sum_avg_load_per_task += cpu_avg_load_per_task(i);
  2972. }
  2973. /*
  2974. * First idle cpu or the first cpu(busiest) in this sched group
  2975. * is eligible for doing load balancing at this and above
  2976. * domains. In the newly idle case, we will allow all the cpu's
  2977. * to do the newly idle load balance.
  2978. */
  2979. if (idle != CPU_NEWLY_IDLE && local_group &&
  2980. balance_cpu != this_cpu && balance) {
  2981. *balance = 0;
  2982. return;
  2983. }
  2984. /* Adjust by relative CPU power of the group */
  2985. sgs->avg_load = sg_div_cpu_power(group,
  2986. sgs->group_load * SCHED_LOAD_SCALE);
  2987. /*
  2988. * Consider the group unbalanced when the imbalance is larger
  2989. * than the average weight of two tasks.
  2990. *
  2991. * APZ: with cgroup the avg task weight can vary wildly and
  2992. * might not be a suitable number - should we keep a
  2993. * normalized nr_running number somewhere that negates
  2994. * the hierarchy?
  2995. */
  2996. avg_load_per_task = sg_div_cpu_power(group,
  2997. sum_avg_load_per_task * SCHED_LOAD_SCALE);
  2998. if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
  2999. sgs->group_imb = 1;
  3000. sgs->group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
  3001. }
  3002. /**
  3003. * update_sd_lb_stats - Update sched_group's statistics for load balancing.
  3004. * @sd: sched_domain whose statistics are to be updated.
  3005. * @this_cpu: Cpu for which load balance is currently performed.
  3006. * @idle: Idle status of this_cpu
  3007. * @sd_idle: Idle status of the sched_domain containing group.
  3008. * @cpus: Set of cpus considered for load balancing.
  3009. * @balance: Should we balance.
  3010. * @sds: variable to hold the statistics for this sched_domain.
  3011. */
  3012. static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
  3013. enum cpu_idle_type idle, int *sd_idle,
  3014. const struct cpumask *cpus, int *balance,
  3015. struct sd_lb_stats *sds)
  3016. {
  3017. struct sched_group *group = sd->groups;
  3018. struct sg_lb_stats sgs;
  3019. int load_idx;
  3020. init_sd_power_savings_stats(sd, sds, idle);
  3021. load_idx = get_sd_load_idx(sd, idle);
  3022. do {
  3023. int local_group;
  3024. local_group = cpumask_test_cpu(this_cpu,
  3025. sched_group_cpus(group));
  3026. memset(&sgs, 0, sizeof(sgs));
  3027. update_sg_lb_stats(group, this_cpu, idle, load_idx, sd_idle,
  3028. local_group, cpus, balance, &sgs);
  3029. if (local_group && balance && !(*balance))
  3030. return;
  3031. sds->total_load += sgs.group_load;
  3032. sds->total_pwr += group->__cpu_power;
  3033. if (local_group) {
  3034. sds->this_load = sgs.avg_load;
  3035. sds->this = group;
  3036. sds->this_nr_running = sgs.sum_nr_running;
  3037. sds->this_load_per_task = sgs.sum_weighted_load;
  3038. } else if (sgs.avg_load > sds->max_load &&
  3039. (sgs.sum_nr_running > sgs.group_capacity ||
  3040. sgs.group_imb)) {
  3041. sds->max_load = sgs.avg_load;
  3042. sds->busiest = group;
  3043. sds->busiest_nr_running = sgs.sum_nr_running;
  3044. sds->busiest_load_per_task = sgs.sum_weighted_load;
  3045. sds->group_imb = sgs.group_imb;
  3046. }
  3047. update_sd_power_savings_stats(group, sds, local_group, &sgs);
  3048. group = group->next;
  3049. } while (group != sd->groups);
  3050. }
  3051. /**
  3052. * fix_small_imbalance - Calculate the minor imbalance that exists
  3053. * amongst the groups of a sched_domain, during
  3054. * load balancing.
  3055. * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
  3056. * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
  3057. * @imbalance: Variable to store the imbalance.
  3058. */
  3059. static inline void fix_small_imbalance(struct sd_lb_stats *sds,
  3060. int this_cpu, unsigned long *imbalance)
  3061. {
  3062. unsigned long tmp, pwr_now = 0, pwr_move = 0;
  3063. unsigned int imbn = 2;
  3064. if (sds->this_nr_running) {
  3065. sds->this_load_per_task /= sds->this_nr_running;
  3066. if (sds->busiest_load_per_task >
  3067. sds->this_load_per_task)
  3068. imbn = 1;
  3069. } else
  3070. sds->this_load_per_task =
  3071. cpu_avg_load_per_task(this_cpu);
  3072. if (sds->max_load - sds->this_load + sds->busiest_load_per_task >=
  3073. sds->busiest_load_per_task * imbn) {
  3074. *imbalance = sds->busiest_load_per_task;
  3075. return;
  3076. }
  3077. /*
  3078. * OK, we don't have enough imbalance to justify moving tasks,
  3079. * however we may be able to increase total CPU power used by
  3080. * moving them.
  3081. */
  3082. pwr_now += sds->busiest->__cpu_power *
  3083. min(sds->busiest_load_per_task, sds->max_load);
  3084. pwr_now += sds->this->__cpu_power *
  3085. min(sds->this_load_per_task, sds->this_load);
  3086. pwr_now /= SCHED_LOAD_SCALE;
  3087. /* Amount of load we'd subtract */
  3088. tmp = sg_div_cpu_power(sds->busiest,
  3089. sds->busiest_load_per_task * SCHED_LOAD_SCALE);
  3090. if (sds->max_load > tmp)
  3091. pwr_move += sds->busiest->__cpu_power *
  3092. min(sds->busiest_load_per_task, sds->max_load - tmp);
  3093. /* Amount of load we'd add */
  3094. if (sds->max_load * sds->busiest->__cpu_power <
  3095. sds->busiest_load_per_task * SCHED_LOAD_SCALE)
  3096. tmp = sg_div_cpu_power(sds->this,
  3097. sds->max_load * sds->busiest->__cpu_power);
  3098. else
  3099. tmp = sg_div_cpu_power(sds->this,
  3100. sds->busiest_load_per_task * SCHED_LOAD_SCALE);
  3101. pwr_move += sds->this->__cpu_power *
  3102. min(sds->this_load_per_task, sds->this_load + tmp);
  3103. pwr_move /= SCHED_LOAD_SCALE;
  3104. /* Move if we gain throughput */
  3105. if (pwr_move > pwr_now)
  3106. *imbalance = sds->busiest_load_per_task;
  3107. }
  3108. /**
  3109. * calculate_imbalance - Calculate the amount of imbalance present within the
  3110. * groups of a given sched_domain during load balance.
  3111. * @sds: statistics of the sched_domain whose imbalance is to be calculated.
  3112. * @this_cpu: Cpu for which currently load balance is being performed.
  3113. * @imbalance: The variable to store the imbalance.
  3114. */
  3115. static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
  3116. unsigned long *imbalance)
  3117. {
  3118. unsigned long max_pull;
  3119. /*
  3120. * In the presence of smp nice balancing, certain scenarios can have
  3121. * max load less than avg load(as we skip the groups at or below
  3122. * its cpu_power, while calculating max_load..)
  3123. */
  3124. if (sds->max_load < sds->avg_load) {
  3125. *imbalance = 0;
  3126. return fix_small_imbalance(sds, this_cpu, imbalance);
  3127. }
  3128. /* Don't want to pull so many tasks that a group would go idle */
  3129. max_pull = min(sds->max_load - sds->avg_load,
  3130. sds->max_load - sds->busiest_load_per_task);
  3131. /* How much load to actually move to equalise the imbalance */
  3132. *imbalance = min(max_pull * sds->busiest->__cpu_power,
  3133. (sds->avg_load - sds->this_load) * sds->this->__cpu_power)
  3134. / SCHED_LOAD_SCALE;
  3135. /*
  3136. * if *imbalance is less than the average load per runnable task
  3137. * there is no gaurantee that any tasks will be moved so we'll have
  3138. * a think about bumping its value to force at least one task to be
  3139. * moved
  3140. */
  3141. if (*imbalance < sds->busiest_load_per_task)
  3142. return fix_small_imbalance(sds, this_cpu, imbalance);
  3143. }
  3144. /******* find_busiest_group() helpers end here *********************/
  3145. /**
  3146. * find_busiest_group - Returns the busiest group within the sched_domain
  3147. * if there is an imbalance. If there isn't an imbalance, and
  3148. * the user has opted for power-savings, it returns a group whose
  3149. * CPUs can be put to idle by rebalancing those tasks elsewhere, if
  3150. * such a group exists.
  3151. *
  3152. * Also calculates the amount of weighted load which should be moved
  3153. * to restore balance.
  3154. *
  3155. * @sd: The sched_domain whose busiest group is to be returned.
  3156. * @this_cpu: The cpu for which load balancing is currently being performed.
  3157. * @imbalance: Variable which stores amount of weighted load which should
  3158. * be moved to restore balance/put a group to idle.
  3159. * @idle: The idle status of this_cpu.
  3160. * @sd_idle: The idleness of sd
  3161. * @cpus: The set of CPUs under consideration for load-balancing.
  3162. * @balance: Pointer to a variable indicating if this_cpu
  3163. * is the appropriate cpu to perform load balancing at this_level.
  3164. *
  3165. * Returns: - the busiest group if imbalance exists.
  3166. * - If no imbalance and user has opted for power-savings balance,
  3167. * return the least loaded group whose CPUs can be
  3168. * put to idle by rebalancing its tasks onto our group.
  3169. */
  3170. static struct sched_group *
  3171. find_busiest_group(struct sched_domain *sd, int this_cpu,
  3172. unsigned long *imbalance, enum cpu_idle_type idle,
  3173. int *sd_idle, const struct cpumask *cpus, int *balance)
  3174. {
  3175. struct sd_lb_stats sds;
  3176. memset(&sds, 0, sizeof(sds));
  3177. /*
  3178. * Compute the various statistics relavent for load balancing at
  3179. * this level.
  3180. */
  3181. update_sd_lb_stats(sd, this_cpu, idle, sd_idle, cpus,
  3182. balance, &sds);
  3183. /* Cases where imbalance does not exist from POV of this_cpu */
  3184. /* 1) this_cpu is not the appropriate cpu to perform load balancing
  3185. * at this level.
  3186. * 2) There is no busy sibling group to pull from.
  3187. * 3) This group is the busiest group.
  3188. * 4) This group is more busy than the avg busieness at this
  3189. * sched_domain.
  3190. * 5) The imbalance is within the specified limit.
  3191. * 6) Any rebalance would lead to ping-pong
  3192. */
  3193. if (balance && !(*balance))
  3194. goto ret;
  3195. if (!sds.busiest || sds.busiest_nr_running == 0)
  3196. goto out_balanced;
  3197. if (sds.this_load >= sds.max_load)
  3198. goto out_balanced;
  3199. sds.avg_load = (SCHED_LOAD_SCALE * sds.total_load) / sds.total_pwr;
  3200. if (sds.this_load >= sds.avg_load)
  3201. goto out_balanced;
  3202. if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
  3203. goto out_balanced;
  3204. sds.busiest_load_per_task /= sds.busiest_nr_running;
  3205. if (sds.group_imb)
  3206. sds.busiest_load_per_task =
  3207. min(sds.busiest_load_per_task, sds.avg_load);
  3208. /*
  3209. * We're trying to get all the cpus to the average_load, so we don't
  3210. * want to push ourselves above the average load, nor do we wish to
  3211. * reduce the max loaded cpu below the average load, as either of these
  3212. * actions would just result in more rebalancing later, and ping-pong
  3213. * tasks around. Thus we look for the minimum possible imbalance.
  3214. * Negative imbalances (*we* are more loaded than anyone else) will
  3215. * be counted as no imbalance for these purposes -- we can't fix that
  3216. * by pulling tasks to us. Be careful of negative numbers as they'll
  3217. * appear as very large values with unsigned longs.
  3218. */
  3219. if (sds.max_load <= sds.busiest_load_per_task)
  3220. goto out_balanced;
  3221. /* Looks like there is an imbalance. Compute it */
  3222. calculate_imbalance(&sds, this_cpu, imbalance);
  3223. return sds.busiest;
  3224. out_balanced:
  3225. /*
  3226. * There is no obvious imbalance. But check if we can do some balancing
  3227. * to save power.
  3228. */
  3229. if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
  3230. return sds.busiest;
  3231. ret:
  3232. *imbalance = 0;
  3233. return NULL;
  3234. }
  3235. /*
  3236. * find_busiest_queue - find the busiest runqueue among the cpus in group.
  3237. */
  3238. static struct rq *
  3239. find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
  3240. unsigned long imbalance, const struct cpumask *cpus)
  3241. {
  3242. struct rq *busiest = NULL, *rq;
  3243. unsigned long max_load = 0;
  3244. int i;
  3245. for_each_cpu(i, sched_group_cpus(group)) {
  3246. unsigned long wl;
  3247. if (!cpumask_test_cpu(i, cpus))
  3248. continue;
  3249. rq = cpu_rq(i);
  3250. wl = weighted_cpuload(i);
  3251. if (rq->nr_running == 1 && wl > imbalance)
  3252. continue;
  3253. if (wl > max_load) {
  3254. max_load = wl;
  3255. busiest = rq;
  3256. }
  3257. }
  3258. return busiest;
  3259. }
  3260. /*
  3261. * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
  3262. * so long as it is large enough.
  3263. */
  3264. #define MAX_PINNED_INTERVAL 512
  3265. /* Working cpumask for load_balance and load_balance_newidle. */
  3266. static DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
  3267. /*
  3268. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  3269. * tasks if there is an imbalance.
  3270. */
  3271. static int load_balance(int this_cpu, struct rq *this_rq,
  3272. struct sched_domain *sd, enum cpu_idle_type idle,
  3273. int *balance)
  3274. {
  3275. int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
  3276. struct sched_group *group;
  3277. unsigned long imbalance;
  3278. struct rq *busiest;
  3279. unsigned long flags;
  3280. struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
  3281. cpumask_setall(cpus);
  3282. /*
  3283. * When power savings policy is enabled for the parent domain, idle
  3284. * sibling can pick up load irrespective of busy siblings. In this case,
  3285. * let the state of idle sibling percolate up as CPU_IDLE, instead of
  3286. * portraying it as CPU_NOT_IDLE.
  3287. */
  3288. if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
  3289. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3290. sd_idle = 1;
  3291. schedstat_inc(sd, lb_count[idle]);
  3292. redo:
  3293. update_shares(sd);
  3294. group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
  3295. cpus, balance);
  3296. if (*balance == 0)
  3297. goto out_balanced;
  3298. if (!group) {
  3299. schedstat_inc(sd, lb_nobusyg[idle]);
  3300. goto out_balanced;
  3301. }
  3302. busiest = find_busiest_queue(group, idle, imbalance, cpus);
  3303. if (!busiest) {
  3304. schedstat_inc(sd, lb_nobusyq[idle]);
  3305. goto out_balanced;
  3306. }
  3307. BUG_ON(busiest == this_rq);
  3308. schedstat_add(sd, lb_imbalance[idle], imbalance);
  3309. ld_moved = 0;
  3310. if (busiest->nr_running > 1) {
  3311. /*
  3312. * Attempt to move tasks. If find_busiest_group has found
  3313. * an imbalance but busiest->nr_running <= 1, the group is
  3314. * still unbalanced. ld_moved simply stays zero, so it is
  3315. * correctly treated as an imbalance.
  3316. */
  3317. local_irq_save(flags);
  3318. double_rq_lock(this_rq, busiest);
  3319. ld_moved = move_tasks(this_rq, this_cpu, busiest,
  3320. imbalance, sd, idle, &all_pinned);
  3321. double_rq_unlock(this_rq, busiest);
  3322. local_irq_restore(flags);
  3323. /*
  3324. * some other cpu did the load balance for us.
  3325. */
  3326. if (ld_moved && this_cpu != smp_processor_id())
  3327. resched_cpu(this_cpu);
  3328. /* All tasks on this runqueue were pinned by CPU affinity */
  3329. if (unlikely(all_pinned)) {
  3330. cpumask_clear_cpu(cpu_of(busiest), cpus);
  3331. if (!cpumask_empty(cpus))
  3332. goto redo;
  3333. goto out_balanced;
  3334. }
  3335. }
  3336. if (!ld_moved) {
  3337. schedstat_inc(sd, lb_failed[idle]);
  3338. sd->nr_balance_failed++;
  3339. if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
  3340. spin_lock_irqsave(&busiest->lock, flags);
  3341. /* don't kick the migration_thread, if the curr
  3342. * task on busiest cpu can't be moved to this_cpu
  3343. */
  3344. if (!cpumask_test_cpu(this_cpu,
  3345. &busiest->curr->cpus_allowed)) {
  3346. spin_unlock_irqrestore(&busiest->lock, flags);
  3347. all_pinned = 1;
  3348. goto out_one_pinned;
  3349. }
  3350. if (!busiest->active_balance) {
  3351. busiest->active_balance = 1;
  3352. busiest->push_cpu = this_cpu;
  3353. active_balance = 1;
  3354. }
  3355. spin_unlock_irqrestore(&busiest->lock, flags);
  3356. if (active_balance)
  3357. wake_up_process(busiest->migration_thread);
  3358. /*
  3359. * We've kicked active balancing, reset the failure
  3360. * counter.
  3361. */
  3362. sd->nr_balance_failed = sd->cache_nice_tries+1;
  3363. }
  3364. } else
  3365. sd->nr_balance_failed = 0;
  3366. if (likely(!active_balance)) {
  3367. /* We were unbalanced, so reset the balancing interval */
  3368. sd->balance_interval = sd->min_interval;
  3369. } else {
  3370. /*
  3371. * If we've begun active balancing, start to back off. This
  3372. * case may not be covered by the all_pinned logic if there
  3373. * is only 1 task on the busy runqueue (because we don't call
  3374. * move_tasks).
  3375. */
  3376. if (sd->balance_interval < sd->max_interval)
  3377. sd->balance_interval *= 2;
  3378. }
  3379. if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3380. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3381. ld_moved = -1;
  3382. goto out;
  3383. out_balanced:
  3384. schedstat_inc(sd, lb_balanced[idle]);
  3385. sd->nr_balance_failed = 0;
  3386. out_one_pinned:
  3387. /* tune up the balancing interval */
  3388. if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
  3389. (sd->balance_interval < sd->max_interval))
  3390. sd->balance_interval *= 2;
  3391. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3392. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3393. ld_moved = -1;
  3394. else
  3395. ld_moved = 0;
  3396. out:
  3397. if (ld_moved)
  3398. update_shares(sd);
  3399. return ld_moved;
  3400. }
  3401. /*
  3402. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  3403. * tasks if there is an imbalance.
  3404. *
  3405. * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
  3406. * this_rq is locked.
  3407. */
  3408. static int
  3409. load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
  3410. {
  3411. struct sched_group *group;
  3412. struct rq *busiest = NULL;
  3413. unsigned long imbalance;
  3414. int ld_moved = 0;
  3415. int sd_idle = 0;
  3416. int all_pinned = 0;
  3417. struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
  3418. cpumask_setall(cpus);
  3419. /*
  3420. * When power savings policy is enabled for the parent domain, idle
  3421. * sibling can pick up load irrespective of busy siblings. In this case,
  3422. * let the state of idle sibling percolate up as IDLE, instead of
  3423. * portraying it as CPU_NOT_IDLE.
  3424. */
  3425. if (sd->flags & SD_SHARE_CPUPOWER &&
  3426. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3427. sd_idle = 1;
  3428. schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
  3429. redo:
  3430. update_shares_locked(this_rq, sd);
  3431. group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
  3432. &sd_idle, cpus, NULL);
  3433. if (!group) {
  3434. schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
  3435. goto out_balanced;
  3436. }
  3437. busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
  3438. if (!busiest) {
  3439. schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
  3440. goto out_balanced;
  3441. }
  3442. BUG_ON(busiest == this_rq);
  3443. schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
  3444. ld_moved = 0;
  3445. if (busiest->nr_running > 1) {
  3446. /* Attempt to move tasks */
  3447. double_lock_balance(this_rq, busiest);
  3448. /* this_rq->clock is already updated */
  3449. update_rq_clock(busiest);
  3450. ld_moved = move_tasks(this_rq, this_cpu, busiest,
  3451. imbalance, sd, CPU_NEWLY_IDLE,
  3452. &all_pinned);
  3453. double_unlock_balance(this_rq, busiest);
  3454. if (unlikely(all_pinned)) {
  3455. cpumask_clear_cpu(cpu_of(busiest), cpus);
  3456. if (!cpumask_empty(cpus))
  3457. goto redo;
  3458. }
  3459. }
  3460. if (!ld_moved) {
  3461. int active_balance = 0;
  3462. schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
  3463. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3464. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3465. return -1;
  3466. if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
  3467. return -1;
  3468. if (sd->nr_balance_failed++ < 2)
  3469. return -1;
  3470. /*
  3471. * The only task running in a non-idle cpu can be moved to this
  3472. * cpu in an attempt to completely freeup the other CPU
  3473. * package. The same method used to move task in load_balance()
  3474. * have been extended for load_balance_newidle() to speedup
  3475. * consolidation at sched_mc=POWERSAVINGS_BALANCE_WAKEUP (2)
  3476. *
  3477. * The package power saving logic comes from
  3478. * find_busiest_group(). If there are no imbalance, then
  3479. * f_b_g() will return NULL. However when sched_mc={1,2} then
  3480. * f_b_g() will select a group from which a running task may be
  3481. * pulled to this cpu in order to make the other package idle.
  3482. * If there is no opportunity to make a package idle and if
  3483. * there are no imbalance, then f_b_g() will return NULL and no
  3484. * action will be taken in load_balance_newidle().
  3485. *
  3486. * Under normal task pull operation due to imbalance, there
  3487. * will be more than one task in the source run queue and
  3488. * move_tasks() will succeed. ld_moved will be true and this
  3489. * active balance code will not be triggered.
  3490. */
  3491. /* Lock busiest in correct order while this_rq is held */
  3492. double_lock_balance(this_rq, busiest);
  3493. /*
  3494. * don't kick the migration_thread, if the curr
  3495. * task on busiest cpu can't be moved to this_cpu
  3496. */
  3497. if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
  3498. double_unlock_balance(this_rq, busiest);
  3499. all_pinned = 1;
  3500. return ld_moved;
  3501. }
  3502. if (!busiest->active_balance) {
  3503. busiest->active_balance = 1;
  3504. busiest->push_cpu = this_cpu;
  3505. active_balance = 1;
  3506. }
  3507. double_unlock_balance(this_rq, busiest);
  3508. /*
  3509. * Should not call ttwu while holding a rq->lock
  3510. */
  3511. spin_unlock(&this_rq->lock);
  3512. if (active_balance)
  3513. wake_up_process(busiest->migration_thread);
  3514. spin_lock(&this_rq->lock);
  3515. } else
  3516. sd->nr_balance_failed = 0;
  3517. update_shares_locked(this_rq, sd);
  3518. return ld_moved;
  3519. out_balanced:
  3520. schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
  3521. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3522. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3523. return -1;
  3524. sd->nr_balance_failed = 0;
  3525. return 0;
  3526. }
  3527. /*
  3528. * idle_balance is called by schedule() if this_cpu is about to become
  3529. * idle. Attempts to pull tasks from other CPUs.
  3530. */
  3531. static void idle_balance(int this_cpu, struct rq *this_rq)
  3532. {
  3533. struct sched_domain *sd;
  3534. int pulled_task = 0;
  3535. unsigned long next_balance = jiffies + HZ;
  3536. for_each_domain(this_cpu, sd) {
  3537. unsigned long interval;
  3538. if (!(sd->flags & SD_LOAD_BALANCE))
  3539. continue;
  3540. if (sd->flags & SD_BALANCE_NEWIDLE)
  3541. /* If we've pulled tasks over stop searching: */
  3542. pulled_task = load_balance_newidle(this_cpu, this_rq,
  3543. sd);
  3544. interval = msecs_to_jiffies(sd->balance_interval);
  3545. if (time_after(next_balance, sd->last_balance + interval))
  3546. next_balance = sd->last_balance + interval;
  3547. if (pulled_task)
  3548. break;
  3549. }
  3550. if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
  3551. /*
  3552. * We are going idle. next_balance may be set based on
  3553. * a busy processor. So reset next_balance.
  3554. */
  3555. this_rq->next_balance = next_balance;
  3556. }
  3557. }
  3558. /*
  3559. * active_load_balance is run by migration threads. It pushes running tasks
  3560. * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
  3561. * running on each physical CPU where possible, and avoids physical /
  3562. * logical imbalances.
  3563. *
  3564. * Called with busiest_rq locked.
  3565. */
  3566. static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
  3567. {
  3568. int target_cpu = busiest_rq->push_cpu;
  3569. struct sched_domain *sd;
  3570. struct rq *target_rq;
  3571. /* Is there any task to move? */
  3572. if (busiest_rq->nr_running <= 1)
  3573. return;
  3574. target_rq = cpu_rq(target_cpu);
  3575. /*
  3576. * This condition is "impossible", if it occurs
  3577. * we need to fix it. Originally reported by
  3578. * Bjorn Helgaas on a 128-cpu setup.
  3579. */
  3580. BUG_ON(busiest_rq == target_rq);
  3581. /* move a task from busiest_rq to target_rq */
  3582. double_lock_balance(busiest_rq, target_rq);
  3583. update_rq_clock(busiest_rq);
  3584. update_rq_clock(target_rq);
  3585. /* Search for an sd spanning us and the target CPU. */
  3586. for_each_domain(target_cpu, sd) {
  3587. if ((sd->flags & SD_LOAD_BALANCE) &&
  3588. cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
  3589. break;
  3590. }
  3591. if (likely(sd)) {
  3592. schedstat_inc(sd, alb_count);
  3593. if (move_one_task(target_rq, target_cpu, busiest_rq,
  3594. sd, CPU_IDLE))
  3595. schedstat_inc(sd, alb_pushed);
  3596. else
  3597. schedstat_inc(sd, alb_failed);
  3598. }
  3599. double_unlock_balance(busiest_rq, target_rq);
  3600. }
  3601. #ifdef CONFIG_NO_HZ
  3602. static struct {
  3603. atomic_t load_balancer;
  3604. cpumask_var_t cpu_mask;
  3605. } nohz ____cacheline_aligned = {
  3606. .load_balancer = ATOMIC_INIT(-1),
  3607. };
  3608. /*
  3609. * This routine will try to nominate the ilb (idle load balancing)
  3610. * owner among the cpus whose ticks are stopped. ilb owner will do the idle
  3611. * load balancing on behalf of all those cpus. If all the cpus in the system
  3612. * go into this tickless mode, then there will be no ilb owner (as there is
  3613. * no need for one) and all the cpus will sleep till the next wakeup event
  3614. * arrives...
  3615. *
  3616. * For the ilb owner, tick is not stopped. And this tick will be used
  3617. * for idle load balancing. ilb owner will still be part of
  3618. * nohz.cpu_mask..
  3619. *
  3620. * While stopping the tick, this cpu will become the ilb owner if there
  3621. * is no other owner. And will be the owner till that cpu becomes busy
  3622. * or if all cpus in the system stop their ticks at which point
  3623. * there is no need for ilb owner.
  3624. *
  3625. * When the ilb owner becomes busy, it nominates another owner, during the
  3626. * next busy scheduler_tick()
  3627. */
  3628. int select_nohz_load_balancer(int stop_tick)
  3629. {
  3630. int cpu = smp_processor_id();
  3631. if (stop_tick) {
  3632. cpu_rq(cpu)->in_nohz_recently = 1;
  3633. if (!cpu_active(cpu)) {
  3634. if (atomic_read(&nohz.load_balancer) != cpu)
  3635. return 0;
  3636. /*
  3637. * If we are going offline and still the leader,
  3638. * give up!
  3639. */
  3640. if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
  3641. BUG();
  3642. return 0;
  3643. }
  3644. cpumask_set_cpu(cpu, nohz.cpu_mask);
  3645. /* time for ilb owner also to sleep */
  3646. if (cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
  3647. if (atomic_read(&nohz.load_balancer) == cpu)
  3648. atomic_set(&nohz.load_balancer, -1);
  3649. return 0;
  3650. }
  3651. if (atomic_read(&nohz.load_balancer) == -1) {
  3652. /* make me the ilb owner */
  3653. if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
  3654. return 1;
  3655. } else if (atomic_read(&nohz.load_balancer) == cpu)
  3656. return 1;
  3657. } else {
  3658. if (!cpumask_test_cpu(cpu, nohz.cpu_mask))
  3659. return 0;
  3660. cpumask_clear_cpu(cpu, nohz.cpu_mask);
  3661. if (atomic_read(&nohz.load_balancer) == cpu)
  3662. if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
  3663. BUG();
  3664. }
  3665. return 0;
  3666. }
  3667. #endif
  3668. static DEFINE_SPINLOCK(balancing);
  3669. /*
  3670. * It checks each scheduling domain to see if it is due to be balanced,
  3671. * and initiates a balancing operation if so.
  3672. *
  3673. * Balancing parameters are set up in arch_init_sched_domains.
  3674. */
  3675. static void rebalance_domains(int cpu, enum cpu_idle_type idle)
  3676. {
  3677. int balance = 1;
  3678. struct rq *rq = cpu_rq(cpu);
  3679. unsigned long interval;
  3680. struct sched_domain *sd;
  3681. /* Earliest time when we have to do rebalance again */
  3682. unsigned long next_balance = jiffies + 60*HZ;
  3683. int update_next_balance = 0;
  3684. int need_serialize;
  3685. for_each_domain(cpu, sd) {
  3686. if (!(sd->flags & SD_LOAD_BALANCE))
  3687. continue;
  3688. interval = sd->balance_interval;
  3689. if (idle != CPU_IDLE)
  3690. interval *= sd->busy_factor;
  3691. /* scale ms to jiffies */
  3692. interval = msecs_to_jiffies(interval);
  3693. if (unlikely(!interval))
  3694. interval = 1;
  3695. if (interval > HZ*NR_CPUS/10)
  3696. interval = HZ*NR_CPUS/10;
  3697. need_serialize = sd->flags & SD_SERIALIZE;
  3698. if (need_serialize) {
  3699. if (!spin_trylock(&balancing))
  3700. goto out;
  3701. }
  3702. if (time_after_eq(jiffies, sd->last_balance + interval)) {
  3703. if (load_balance(cpu, rq, sd, idle, &balance)) {
  3704. /*
  3705. * We've pulled tasks over so either we're no
  3706. * longer idle, or one of our SMT siblings is
  3707. * not idle.
  3708. */
  3709. idle = CPU_NOT_IDLE;
  3710. }
  3711. sd->last_balance = jiffies;
  3712. }
  3713. if (need_serialize)
  3714. spin_unlock(&balancing);
  3715. out:
  3716. if (time_after(next_balance, sd->last_balance + interval)) {
  3717. next_balance = sd->last_balance + interval;
  3718. update_next_balance = 1;
  3719. }
  3720. /*
  3721. * Stop the load balance at this level. There is another
  3722. * CPU in our sched group which is doing load balancing more
  3723. * actively.
  3724. */
  3725. if (!balance)
  3726. break;
  3727. }
  3728. /*
  3729. * next_balance will be updated only when there is a need.
  3730. * When the cpu is attached to null domain for ex, it will not be
  3731. * updated.
  3732. */
  3733. if (likely(update_next_balance))
  3734. rq->next_balance = next_balance;
  3735. }
  3736. /*
  3737. * run_rebalance_domains is triggered when needed from the scheduler tick.
  3738. * In CONFIG_NO_HZ case, the idle load balance owner will do the
  3739. * rebalancing for all the cpus for whom scheduler ticks are stopped.
  3740. */
  3741. static void run_rebalance_domains(struct softirq_action *h)
  3742. {
  3743. int this_cpu = smp_processor_id();
  3744. struct rq *this_rq = cpu_rq(this_cpu);
  3745. enum cpu_idle_type idle = this_rq->idle_at_tick ?
  3746. CPU_IDLE : CPU_NOT_IDLE;
  3747. rebalance_domains(this_cpu, idle);
  3748. #ifdef CONFIG_NO_HZ
  3749. /*
  3750. * If this cpu is the owner for idle load balancing, then do the
  3751. * balancing on behalf of the other idle cpus whose ticks are
  3752. * stopped.
  3753. */
  3754. if (this_rq->idle_at_tick &&
  3755. atomic_read(&nohz.load_balancer) == this_cpu) {
  3756. struct rq *rq;
  3757. int balance_cpu;
  3758. for_each_cpu(balance_cpu, nohz.cpu_mask) {
  3759. if (balance_cpu == this_cpu)
  3760. continue;
  3761. /*
  3762. * If this cpu gets work to do, stop the load balancing
  3763. * work being done for other cpus. Next load
  3764. * balancing owner will pick it up.
  3765. */
  3766. if (need_resched())
  3767. break;
  3768. rebalance_domains(balance_cpu, CPU_IDLE);
  3769. rq = cpu_rq(balance_cpu);
  3770. if (time_after(this_rq->next_balance, rq->next_balance))
  3771. this_rq->next_balance = rq->next_balance;
  3772. }
  3773. }
  3774. #endif
  3775. }
  3776. static inline int on_null_domain(int cpu)
  3777. {
  3778. return !rcu_dereference(cpu_rq(cpu)->sd);
  3779. }
  3780. /*
  3781. * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
  3782. *
  3783. * In case of CONFIG_NO_HZ, this is the place where we nominate a new
  3784. * idle load balancing owner or decide to stop the periodic load balancing,
  3785. * if the whole system is idle.
  3786. */
  3787. static inline void trigger_load_balance(struct rq *rq, int cpu)
  3788. {
  3789. #ifdef CONFIG_NO_HZ
  3790. /*
  3791. * If we were in the nohz mode recently and busy at the current
  3792. * scheduler tick, then check if we need to nominate new idle
  3793. * load balancer.
  3794. */
  3795. if (rq->in_nohz_recently && !rq->idle_at_tick) {
  3796. rq->in_nohz_recently = 0;
  3797. if (atomic_read(&nohz.load_balancer) == cpu) {
  3798. cpumask_clear_cpu(cpu, nohz.cpu_mask);
  3799. atomic_set(&nohz.load_balancer, -1);
  3800. }
  3801. if (atomic_read(&nohz.load_balancer) == -1) {
  3802. /*
  3803. * simple selection for now: Nominate the
  3804. * first cpu in the nohz list to be the next
  3805. * ilb owner.
  3806. *
  3807. * TBD: Traverse the sched domains and nominate
  3808. * the nearest cpu in the nohz.cpu_mask.
  3809. */
  3810. int ilb = cpumask_first(nohz.cpu_mask);
  3811. if (ilb < nr_cpu_ids)
  3812. resched_cpu(ilb);
  3813. }
  3814. }
  3815. /*
  3816. * If this cpu is idle and doing idle load balancing for all the
  3817. * cpus with ticks stopped, is it time for that to stop?
  3818. */
  3819. if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
  3820. cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
  3821. resched_cpu(cpu);
  3822. return;
  3823. }
  3824. /*
  3825. * If this cpu is idle and the idle load balancing is done by
  3826. * someone else, then no need raise the SCHED_SOFTIRQ
  3827. */
  3828. if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
  3829. cpumask_test_cpu(cpu, nohz.cpu_mask))
  3830. return;
  3831. #endif
  3832. /* Don't need to rebalance while attached to NULL domain */
  3833. if (time_after_eq(jiffies, rq->next_balance) &&
  3834. likely(!on_null_domain(cpu)))
  3835. raise_softirq(SCHED_SOFTIRQ);
  3836. }
  3837. #else /* CONFIG_SMP */
  3838. /*
  3839. * on UP we do not need to balance between CPUs:
  3840. */
  3841. static inline void idle_balance(int cpu, struct rq *rq)
  3842. {
  3843. }
  3844. #endif
  3845. DEFINE_PER_CPU(struct kernel_stat, kstat);
  3846. EXPORT_PER_CPU_SYMBOL(kstat);
  3847. /*
  3848. * Return any ns on the sched_clock that have not yet been accounted in
  3849. * @p in case that task is currently running.
  3850. *
  3851. * Called with task_rq_lock() held on @rq.
  3852. */
  3853. static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
  3854. {
  3855. u64 ns = 0;
  3856. if (task_current(rq, p)) {
  3857. update_rq_clock(rq);
  3858. ns = rq->clock - p->se.exec_start;
  3859. if ((s64)ns < 0)
  3860. ns = 0;
  3861. }
  3862. return ns;
  3863. }
  3864. unsigned long long task_delta_exec(struct task_struct *p)
  3865. {
  3866. unsigned long flags;
  3867. struct rq *rq;
  3868. u64 ns = 0;
  3869. rq = task_rq_lock(p, &flags);
  3870. ns = do_task_delta_exec(p, rq);
  3871. task_rq_unlock(rq, &flags);
  3872. return ns;
  3873. }
  3874. /*
  3875. * Return accounted runtime for the task.
  3876. * In case the task is currently running, return the runtime plus current's
  3877. * pending runtime that have not been accounted yet.
  3878. */
  3879. unsigned long long task_sched_runtime(struct task_struct *p)
  3880. {
  3881. unsigned long flags;
  3882. struct rq *rq;
  3883. u64 ns = 0;
  3884. rq = task_rq_lock(p, &flags);
  3885. ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
  3886. task_rq_unlock(rq, &flags);
  3887. return ns;
  3888. }
  3889. /*
  3890. * Return sum_exec_runtime for the thread group.
  3891. * In case the task is currently running, return the sum plus current's
  3892. * pending runtime that have not been accounted yet.
  3893. *
  3894. * Note that the thread group might have other running tasks as well,
  3895. * so the return value not includes other pending runtime that other
  3896. * running tasks might have.
  3897. */
  3898. unsigned long long thread_group_sched_runtime(struct task_struct *p)
  3899. {
  3900. struct task_cputime totals;
  3901. unsigned long flags;
  3902. struct rq *rq;
  3903. u64 ns;
  3904. rq = task_rq_lock(p, &flags);
  3905. thread_group_cputime(p, &totals);
  3906. ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
  3907. task_rq_unlock(rq, &flags);
  3908. return ns;
  3909. }
  3910. /*
  3911. * Account user cpu time to a process.
  3912. * @p: the process that the cpu time gets accounted to
  3913. * @cputime: the cpu time spent in user space since the last update
  3914. * @cputime_scaled: cputime scaled by cpu frequency
  3915. */
  3916. void account_user_time(struct task_struct *p, cputime_t cputime,
  3917. cputime_t cputime_scaled)
  3918. {
  3919. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3920. cputime64_t tmp;
  3921. /* Add user time to process. */
  3922. p->utime = cputime_add(p->utime, cputime);
  3923. p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
  3924. account_group_user_time(p, cputime);
  3925. /* Add user time to cpustat. */
  3926. tmp = cputime_to_cputime64(cputime);
  3927. if (TASK_NICE(p) > 0)
  3928. cpustat->nice = cputime64_add(cpustat->nice, tmp);
  3929. else
  3930. cpustat->user = cputime64_add(cpustat->user, tmp);
  3931. cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
  3932. /* Account for user time used */
  3933. acct_update_integrals(p);
  3934. }
  3935. /*
  3936. * Account guest cpu time to a process.
  3937. * @p: the process that the cpu time gets accounted to
  3938. * @cputime: the cpu time spent in virtual machine since the last update
  3939. * @cputime_scaled: cputime scaled by cpu frequency
  3940. */
  3941. static void account_guest_time(struct task_struct *p, cputime_t cputime,
  3942. cputime_t cputime_scaled)
  3943. {
  3944. cputime64_t tmp;
  3945. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3946. tmp = cputime_to_cputime64(cputime);
  3947. /* Add guest time to process. */
  3948. p->utime = cputime_add(p->utime, cputime);
  3949. p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
  3950. account_group_user_time(p, cputime);
  3951. p->gtime = cputime_add(p->gtime, cputime);
  3952. /* Add guest time to cpustat. */
  3953. cpustat->user = cputime64_add(cpustat->user, tmp);
  3954. cpustat->guest = cputime64_add(cpustat->guest, tmp);
  3955. }
  3956. /*
  3957. * Account system cpu time to a process.
  3958. * @p: the process that the cpu time gets accounted to
  3959. * @hardirq_offset: the offset to subtract from hardirq_count()
  3960. * @cputime: the cpu time spent in kernel space since the last update
  3961. * @cputime_scaled: cputime scaled by cpu frequency
  3962. */
  3963. void account_system_time(struct task_struct *p, int hardirq_offset,
  3964. cputime_t cputime, cputime_t cputime_scaled)
  3965. {
  3966. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3967. cputime64_t tmp;
  3968. if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
  3969. account_guest_time(p, cputime, cputime_scaled);
  3970. return;
  3971. }
  3972. /* Add system time to process. */
  3973. p->stime = cputime_add(p->stime, cputime);
  3974. p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
  3975. account_group_system_time(p, cputime);
  3976. /* Add system time to cpustat. */
  3977. tmp = cputime_to_cputime64(cputime);
  3978. if (hardirq_count() - hardirq_offset)
  3979. cpustat->irq = cputime64_add(cpustat->irq, tmp);
  3980. else if (softirq_count())
  3981. cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
  3982. else
  3983. cpustat->system = cputime64_add(cpustat->system, tmp);
  3984. cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
  3985. /* Account for system time used */
  3986. acct_update_integrals(p);
  3987. }
  3988. /*
  3989. * Account for involuntary wait time.
  3990. * @steal: the cpu time spent in involuntary wait
  3991. */
  3992. void account_steal_time(cputime_t cputime)
  3993. {
  3994. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3995. cputime64_t cputime64 = cputime_to_cputime64(cputime);
  3996. cpustat->steal = cputime64_add(cpustat->steal, cputime64);
  3997. }
  3998. /*
  3999. * Account for idle time.
  4000. * @cputime: the cpu time spent in idle wait
  4001. */
  4002. void account_idle_time(cputime_t cputime)
  4003. {
  4004. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  4005. cputime64_t cputime64 = cputime_to_cputime64(cputime);
  4006. struct rq *rq = this_rq();
  4007. if (atomic_read(&rq->nr_iowait) > 0)
  4008. cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
  4009. else
  4010. cpustat->idle = cputime64_add(cpustat->idle, cputime64);
  4011. }
  4012. #ifndef CONFIG_VIRT_CPU_ACCOUNTING
  4013. /*
  4014. * Account a single tick of cpu time.
  4015. * @p: the process that the cpu time gets accounted to
  4016. * @user_tick: indicates if the tick is a user or a system tick
  4017. */
  4018. void account_process_tick(struct task_struct *p, int user_tick)
  4019. {
  4020. cputime_t one_jiffy = jiffies_to_cputime(1);
  4021. cputime_t one_jiffy_scaled = cputime_to_scaled(one_jiffy);
  4022. struct rq *rq = this_rq();
  4023. if (user_tick)
  4024. account_user_time(p, one_jiffy, one_jiffy_scaled);
  4025. else if (p != rq->idle)
  4026. account_system_time(p, HARDIRQ_OFFSET, one_jiffy,
  4027. one_jiffy_scaled);
  4028. else
  4029. account_idle_time(one_jiffy);
  4030. }
  4031. /*
  4032. * Account multiple ticks of steal time.
  4033. * @p: the process from which the cpu time has been stolen
  4034. * @ticks: number of stolen ticks
  4035. */
  4036. void account_steal_ticks(unsigned long ticks)
  4037. {
  4038. account_steal_time(jiffies_to_cputime(ticks));
  4039. }
  4040. /*
  4041. * Account multiple ticks of idle time.
  4042. * @ticks: number of stolen ticks
  4043. */
  4044. void account_idle_ticks(unsigned long ticks)
  4045. {
  4046. account_idle_time(jiffies_to_cputime(ticks));
  4047. }
  4048. #endif
  4049. /*
  4050. * Use precise platform statistics if available:
  4051. */
  4052. #ifdef CONFIG_VIRT_CPU_ACCOUNTING
  4053. cputime_t task_utime(struct task_struct *p)
  4054. {
  4055. return p->utime;
  4056. }
  4057. cputime_t task_stime(struct task_struct *p)
  4058. {
  4059. return p->stime;
  4060. }
  4061. #else
  4062. cputime_t task_utime(struct task_struct *p)
  4063. {
  4064. clock_t utime = cputime_to_clock_t(p->utime),
  4065. total = utime + cputime_to_clock_t(p->stime);
  4066. u64 temp;
  4067. /*
  4068. * Use CFS's precise accounting:
  4069. */
  4070. temp = (u64)nsec_to_clock_t(p->se.sum_exec_runtime);
  4071. if (total) {
  4072. temp *= utime;
  4073. do_div(temp, total);
  4074. }
  4075. utime = (clock_t)temp;
  4076. p->prev_utime = max(p->prev_utime, clock_t_to_cputime(utime));
  4077. return p->prev_utime;
  4078. }
  4079. cputime_t task_stime(struct task_struct *p)
  4080. {
  4081. clock_t stime;
  4082. /*
  4083. * Use CFS's precise accounting. (we subtract utime from
  4084. * the total, to make sure the total observed by userspace
  4085. * grows monotonically - apps rely on that):
  4086. */
  4087. stime = nsec_to_clock_t(p->se.sum_exec_runtime) -
  4088. cputime_to_clock_t(task_utime(p));
  4089. if (stime >= 0)
  4090. p->prev_stime = max(p->prev_stime, clock_t_to_cputime(stime));
  4091. return p->prev_stime;
  4092. }
  4093. #endif
  4094. inline cputime_t task_gtime(struct task_struct *p)
  4095. {
  4096. return p->gtime;
  4097. }
  4098. /*
  4099. * This function gets called by the timer code, with HZ frequency.
  4100. * We call it with interrupts disabled.
  4101. *
  4102. * It also gets called by the fork code, when changing the parent's
  4103. * timeslices.
  4104. */
  4105. void scheduler_tick(void)
  4106. {
  4107. int cpu = smp_processor_id();
  4108. struct rq *rq = cpu_rq(cpu);
  4109. struct task_struct *curr = rq->curr;
  4110. sched_clock_tick();
  4111. spin_lock(&rq->lock);
  4112. update_rq_clock(rq);
  4113. update_cpu_load(rq);
  4114. curr->sched_class->task_tick(rq, curr, 0);
  4115. spin_unlock(&rq->lock);
  4116. #ifdef CONFIG_SMP
  4117. rq->idle_at_tick = idle_cpu(cpu);
  4118. trigger_load_balance(rq, cpu);
  4119. #endif
  4120. }
  4121. unsigned long get_parent_ip(unsigned long addr)
  4122. {
  4123. if (in_lock_functions(addr)) {
  4124. addr = CALLER_ADDR2;
  4125. if (in_lock_functions(addr))
  4126. addr = CALLER_ADDR3;
  4127. }
  4128. return addr;
  4129. }
  4130. #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
  4131. defined(CONFIG_PREEMPT_TRACER))
  4132. void __kprobes add_preempt_count(int val)
  4133. {
  4134. #ifdef CONFIG_DEBUG_PREEMPT
  4135. /*
  4136. * Underflow?
  4137. */
  4138. if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
  4139. return;
  4140. #endif
  4141. preempt_count() += val;
  4142. #ifdef CONFIG_DEBUG_PREEMPT
  4143. /*
  4144. * Spinlock count overflowing soon?
  4145. */
  4146. DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
  4147. PREEMPT_MASK - 10);
  4148. #endif
  4149. if (preempt_count() == val)
  4150. trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  4151. }
  4152. EXPORT_SYMBOL(add_preempt_count);
  4153. void __kprobes sub_preempt_count(int val)
  4154. {
  4155. #ifdef CONFIG_DEBUG_PREEMPT
  4156. /*
  4157. * Underflow?
  4158. */
  4159. if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
  4160. return;
  4161. /*
  4162. * Is the spinlock portion underflowing?
  4163. */
  4164. if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
  4165. !(preempt_count() & PREEMPT_MASK)))
  4166. return;
  4167. #endif
  4168. if (preempt_count() == val)
  4169. trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  4170. preempt_count() -= val;
  4171. }
  4172. EXPORT_SYMBOL(sub_preempt_count);
  4173. #endif
  4174. /*
  4175. * Print scheduling while atomic bug:
  4176. */
  4177. static noinline void __schedule_bug(struct task_struct *prev)
  4178. {
  4179. struct pt_regs *regs = get_irq_regs();
  4180. printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
  4181. prev->comm, prev->pid, preempt_count());
  4182. debug_show_held_locks(prev);
  4183. print_modules();
  4184. if (irqs_disabled())
  4185. print_irqtrace_events(prev);
  4186. if (regs)
  4187. show_regs(regs);
  4188. else
  4189. dump_stack();
  4190. }
  4191. /*
  4192. * Various schedule()-time debugging checks and statistics:
  4193. */
  4194. static inline void schedule_debug(struct task_struct *prev)
  4195. {
  4196. /*
  4197. * Test if we are atomic. Since do_exit() needs to call into
  4198. * schedule() atomically, we ignore that path for now.
  4199. * Otherwise, whine if we are scheduling when we should not be.
  4200. */
  4201. if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
  4202. __schedule_bug(prev);
  4203. profile_hit(SCHED_PROFILING, __builtin_return_address(0));
  4204. schedstat_inc(this_rq(), sched_count);
  4205. #ifdef CONFIG_SCHEDSTATS
  4206. if (unlikely(prev->lock_depth >= 0)) {
  4207. schedstat_inc(this_rq(), bkl_count);
  4208. schedstat_inc(prev, sched_info.bkl_count);
  4209. }
  4210. #endif
  4211. }
  4212. static void put_prev_task(struct rq *rq, struct task_struct *prev)
  4213. {
  4214. if (prev->state == TASK_RUNNING) {
  4215. u64 runtime = prev->se.sum_exec_runtime;
  4216. runtime -= prev->se.prev_sum_exec_runtime;
  4217. runtime = min_t(u64, runtime, 2*sysctl_sched_migration_cost);
  4218. /*
  4219. * In order to avoid avg_overlap growing stale when we are
  4220. * indeed overlapping and hence not getting put to sleep, grow
  4221. * the avg_overlap on preemption.
  4222. *
  4223. * We use the average preemption runtime because that
  4224. * correlates to the amount of cache footprint a task can
  4225. * build up.
  4226. */
  4227. update_avg(&prev->se.avg_overlap, runtime);
  4228. }
  4229. prev->sched_class->put_prev_task(rq, prev);
  4230. }
  4231. /*
  4232. * Pick up the highest-prio task:
  4233. */
  4234. static inline struct task_struct *
  4235. pick_next_task(struct rq *rq)
  4236. {
  4237. const struct sched_class *class;
  4238. struct task_struct *p;
  4239. /*
  4240. * Optimization: we know that if all tasks are in
  4241. * the fair class we can call that function directly:
  4242. */
  4243. if (likely(rq->nr_running == rq->cfs.nr_running)) {
  4244. p = fair_sched_class.pick_next_task(rq);
  4245. if (likely(p))
  4246. return p;
  4247. }
  4248. class = sched_class_highest;
  4249. for ( ; ; ) {
  4250. p = class->pick_next_task(rq);
  4251. if (p)
  4252. return p;
  4253. /*
  4254. * Will never be NULL as the idle class always
  4255. * returns a non-NULL p:
  4256. */
  4257. class = class->next;
  4258. }
  4259. }
  4260. /*
  4261. * schedule() is the main scheduler function.
  4262. */
  4263. asmlinkage void __sched __schedule(void)
  4264. {
  4265. struct task_struct *prev, *next;
  4266. unsigned long *switch_count;
  4267. struct rq *rq;
  4268. int cpu;
  4269. cpu = smp_processor_id();
  4270. rq = cpu_rq(cpu);
  4271. rcu_qsctr_inc(cpu);
  4272. prev = rq->curr;
  4273. switch_count = &prev->nivcsw;
  4274. release_kernel_lock(prev);
  4275. need_resched_nonpreemptible:
  4276. schedule_debug(prev);
  4277. if (sched_feat(HRTICK))
  4278. hrtick_clear(rq);
  4279. spin_lock_irq(&rq->lock);
  4280. update_rq_clock(rq);
  4281. clear_tsk_need_resched(prev);
  4282. if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
  4283. if (unlikely(signal_pending_state(prev->state, prev)))
  4284. prev->state = TASK_RUNNING;
  4285. else
  4286. deactivate_task(rq, prev, 1);
  4287. switch_count = &prev->nvcsw;
  4288. }
  4289. #ifdef CONFIG_SMP
  4290. if (prev->sched_class->pre_schedule)
  4291. prev->sched_class->pre_schedule(rq, prev);
  4292. #endif
  4293. if (unlikely(!rq->nr_running))
  4294. idle_balance(cpu, rq);
  4295. put_prev_task(rq, prev);
  4296. next = pick_next_task(rq);
  4297. if (likely(prev != next)) {
  4298. sched_info_switch(prev, next);
  4299. rq->nr_switches++;
  4300. rq->curr = next;
  4301. ++*switch_count;
  4302. context_switch(rq, prev, next); /* unlocks the rq */
  4303. /*
  4304. * the context switch might have flipped the stack from under
  4305. * us, hence refresh the local variables.
  4306. */
  4307. cpu = smp_processor_id();
  4308. rq = cpu_rq(cpu);
  4309. } else
  4310. spin_unlock_irq(&rq->lock);
  4311. if (unlikely(reacquire_kernel_lock(current) < 0))
  4312. goto need_resched_nonpreemptible;
  4313. }
  4314. asmlinkage void __sched schedule(void)
  4315. {
  4316. need_resched:
  4317. preempt_disable();
  4318. __schedule();
  4319. preempt_enable_no_resched();
  4320. if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
  4321. goto need_resched;
  4322. }
  4323. EXPORT_SYMBOL(schedule);
  4324. #ifdef CONFIG_SMP
  4325. /*
  4326. * Look out! "owner" is an entirely speculative pointer
  4327. * access and not reliable.
  4328. */
  4329. int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
  4330. {
  4331. unsigned int cpu;
  4332. struct rq *rq;
  4333. if (!sched_feat(OWNER_SPIN))
  4334. return 0;
  4335. #ifdef CONFIG_DEBUG_PAGEALLOC
  4336. /*
  4337. * Need to access the cpu field knowing that
  4338. * DEBUG_PAGEALLOC could have unmapped it if
  4339. * the mutex owner just released it and exited.
  4340. */
  4341. if (probe_kernel_address(&owner->cpu, cpu))
  4342. goto out;
  4343. #else
  4344. cpu = owner->cpu;
  4345. #endif
  4346. /*
  4347. * Even if the access succeeded (likely case),
  4348. * the cpu field may no longer be valid.
  4349. */
  4350. if (cpu >= nr_cpumask_bits)
  4351. goto out;
  4352. /*
  4353. * We need to validate that we can do a
  4354. * get_cpu() and that we have the percpu area.
  4355. */
  4356. if (!cpu_online(cpu))
  4357. goto out;
  4358. rq = cpu_rq(cpu);
  4359. for (;;) {
  4360. /*
  4361. * Owner changed, break to re-assess state.
  4362. */
  4363. if (lock->owner != owner)
  4364. break;
  4365. /*
  4366. * Is that owner really running on that cpu?
  4367. */
  4368. if (task_thread_info(rq->curr) != owner || need_resched())
  4369. return 0;
  4370. cpu_relax();
  4371. }
  4372. out:
  4373. return 1;
  4374. }
  4375. #endif
  4376. #ifdef CONFIG_PREEMPT
  4377. /*
  4378. * this is the entry point to schedule() from in-kernel preemption
  4379. * off of preempt_enable. Kernel preemptions off return from interrupt
  4380. * occur there and call schedule directly.
  4381. */
  4382. asmlinkage void __sched preempt_schedule(void)
  4383. {
  4384. struct thread_info *ti = current_thread_info();
  4385. /*
  4386. * If there is a non-zero preempt_count or interrupts are disabled,
  4387. * we do not want to preempt the current task. Just return..
  4388. */
  4389. if (likely(ti->preempt_count || irqs_disabled()))
  4390. return;
  4391. do {
  4392. add_preempt_count(PREEMPT_ACTIVE);
  4393. schedule();
  4394. sub_preempt_count(PREEMPT_ACTIVE);
  4395. /*
  4396. * Check again in case we missed a preemption opportunity
  4397. * between schedule and now.
  4398. */
  4399. barrier();
  4400. } while (need_resched());
  4401. }
  4402. EXPORT_SYMBOL(preempt_schedule);
  4403. /*
  4404. * this is the entry point to schedule() from kernel preemption
  4405. * off of irq context.
  4406. * Note, that this is called and return with irqs disabled. This will
  4407. * protect us against recursive calling from irq.
  4408. */
  4409. asmlinkage void __sched preempt_schedule_irq(void)
  4410. {
  4411. struct thread_info *ti = current_thread_info();
  4412. /* Catch callers which need to be fixed */
  4413. BUG_ON(ti->preempt_count || !irqs_disabled());
  4414. do {
  4415. add_preempt_count(PREEMPT_ACTIVE);
  4416. local_irq_enable();
  4417. schedule();
  4418. local_irq_disable();
  4419. sub_preempt_count(PREEMPT_ACTIVE);
  4420. /*
  4421. * Check again in case we missed a preemption opportunity
  4422. * between schedule and now.
  4423. */
  4424. barrier();
  4425. } while (need_resched());
  4426. }
  4427. #endif /* CONFIG_PREEMPT */
  4428. int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
  4429. void *key)
  4430. {
  4431. return try_to_wake_up(curr->private, mode, sync);
  4432. }
  4433. EXPORT_SYMBOL(default_wake_function);
  4434. /*
  4435. * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
  4436. * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
  4437. * number) then we wake all the non-exclusive tasks and one exclusive task.
  4438. *
  4439. * There are circumstances in which we can try to wake a task which has already
  4440. * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
  4441. * zero in this (rare) case, and we handle it by continuing to scan the queue.
  4442. */
  4443. void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
  4444. int nr_exclusive, int sync, void *key)
  4445. {
  4446. wait_queue_t *curr, *next;
  4447. list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
  4448. unsigned flags = curr->flags;
  4449. if (curr->func(curr, mode, sync, key) &&
  4450. (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
  4451. break;
  4452. }
  4453. }
  4454. /**
  4455. * __wake_up - wake up threads blocked on a waitqueue.
  4456. * @q: the waitqueue
  4457. * @mode: which threads
  4458. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  4459. * @key: is directly passed to the wakeup function
  4460. */
  4461. void __wake_up(wait_queue_head_t *q, unsigned int mode,
  4462. int nr_exclusive, void *key)
  4463. {
  4464. unsigned long flags;
  4465. spin_lock_irqsave(&q->lock, flags);
  4466. __wake_up_common(q, mode, nr_exclusive, 0, key);
  4467. spin_unlock_irqrestore(&q->lock, flags);
  4468. }
  4469. EXPORT_SYMBOL(__wake_up);
  4470. /*
  4471. * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
  4472. */
  4473. void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
  4474. {
  4475. __wake_up_common(q, mode, 1, 0, NULL);
  4476. }
  4477. void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
  4478. {
  4479. __wake_up_common(q, mode, 1, 0, key);
  4480. }
  4481. /**
  4482. * __wake_up_sync_key - wake up threads blocked on a waitqueue.
  4483. * @q: the waitqueue
  4484. * @mode: which threads
  4485. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  4486. * @key: opaque value to be passed to wakeup targets
  4487. *
  4488. * The sync wakeup differs that the waker knows that it will schedule
  4489. * away soon, so while the target thread will be woken up, it will not
  4490. * be migrated to another CPU - ie. the two threads are 'synchronized'
  4491. * with each other. This can prevent needless bouncing between CPUs.
  4492. *
  4493. * On UP it can prevent extra preemption.
  4494. */
  4495. void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
  4496. int nr_exclusive, void *key)
  4497. {
  4498. unsigned long flags;
  4499. int sync = 1;
  4500. if (unlikely(!q))
  4501. return;
  4502. if (unlikely(!nr_exclusive))
  4503. sync = 0;
  4504. spin_lock_irqsave(&q->lock, flags);
  4505. __wake_up_common(q, mode, nr_exclusive, sync, key);
  4506. spin_unlock_irqrestore(&q->lock, flags);
  4507. }
  4508. EXPORT_SYMBOL_GPL(__wake_up_sync_key);
  4509. /*
  4510. * __wake_up_sync - see __wake_up_sync_key()
  4511. */
  4512. void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
  4513. {
  4514. __wake_up_sync_key(q, mode, nr_exclusive, NULL);
  4515. }
  4516. EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
  4517. /**
  4518. * complete: - signals a single thread waiting on this completion
  4519. * @x: holds the state of this particular completion
  4520. *
  4521. * This will wake up a single thread waiting on this completion. Threads will be
  4522. * awakened in the same order in which they were queued.
  4523. *
  4524. * See also complete_all(), wait_for_completion() and related routines.
  4525. */
  4526. void complete(struct completion *x)
  4527. {
  4528. unsigned long flags;
  4529. spin_lock_irqsave(&x->wait.lock, flags);
  4530. x->done++;
  4531. __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
  4532. spin_unlock_irqrestore(&x->wait.lock, flags);
  4533. }
  4534. EXPORT_SYMBOL(complete);
  4535. /**
  4536. * complete_all: - signals all threads waiting on this completion
  4537. * @x: holds the state of this particular completion
  4538. *
  4539. * This will wake up all threads waiting on this particular completion event.
  4540. */
  4541. void complete_all(struct completion *x)
  4542. {
  4543. unsigned long flags;
  4544. spin_lock_irqsave(&x->wait.lock, flags);
  4545. x->done += UINT_MAX/2;
  4546. __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
  4547. spin_unlock_irqrestore(&x->wait.lock, flags);
  4548. }
  4549. EXPORT_SYMBOL(complete_all);
  4550. static inline long __sched
  4551. do_wait_for_common(struct completion *x, long timeout, int state)
  4552. {
  4553. if (!x->done) {
  4554. DECLARE_WAITQUEUE(wait, current);
  4555. wait.flags |= WQ_FLAG_EXCLUSIVE;
  4556. __add_wait_queue_tail(&x->wait, &wait);
  4557. do {
  4558. if (signal_pending_state(state, current)) {
  4559. timeout = -ERESTARTSYS;
  4560. break;
  4561. }
  4562. __set_current_state(state);
  4563. spin_unlock_irq(&x->wait.lock);
  4564. timeout = schedule_timeout(timeout);
  4565. spin_lock_irq(&x->wait.lock);
  4566. } while (!x->done && timeout);
  4567. __remove_wait_queue(&x->wait, &wait);
  4568. if (!x->done)
  4569. return timeout;
  4570. }
  4571. x->done--;
  4572. return timeout ?: 1;
  4573. }
  4574. static long __sched
  4575. wait_for_common(struct completion *x, long timeout, int state)
  4576. {
  4577. might_sleep();
  4578. spin_lock_irq(&x->wait.lock);
  4579. timeout = do_wait_for_common(x, timeout, state);
  4580. spin_unlock_irq(&x->wait.lock);
  4581. return timeout;
  4582. }
  4583. /**
  4584. * wait_for_completion: - waits for completion of a task
  4585. * @x: holds the state of this particular completion
  4586. *
  4587. * This waits to be signaled for completion of a specific task. It is NOT
  4588. * interruptible and there is no timeout.
  4589. *
  4590. * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
  4591. * and interrupt capability. Also see complete().
  4592. */
  4593. void __sched wait_for_completion(struct completion *x)
  4594. {
  4595. wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
  4596. }
  4597. EXPORT_SYMBOL(wait_for_completion);
  4598. /**
  4599. * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
  4600. * @x: holds the state of this particular completion
  4601. * @timeout: timeout value in jiffies
  4602. *
  4603. * This waits for either a completion of a specific task to be signaled or for a
  4604. * specified timeout to expire. The timeout is in jiffies. It is not
  4605. * interruptible.
  4606. */
  4607. unsigned long __sched
  4608. wait_for_completion_timeout(struct completion *x, unsigned long timeout)
  4609. {
  4610. return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
  4611. }
  4612. EXPORT_SYMBOL(wait_for_completion_timeout);
  4613. /**
  4614. * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
  4615. * @x: holds the state of this particular completion
  4616. *
  4617. * This waits for completion of a specific task to be signaled. It is
  4618. * interruptible.
  4619. */
  4620. int __sched wait_for_completion_interruptible(struct completion *x)
  4621. {
  4622. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
  4623. if (t == -ERESTARTSYS)
  4624. return t;
  4625. return 0;
  4626. }
  4627. EXPORT_SYMBOL(wait_for_completion_interruptible);
  4628. /**
  4629. * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
  4630. * @x: holds the state of this particular completion
  4631. * @timeout: timeout value in jiffies
  4632. *
  4633. * This waits for either a completion of a specific task to be signaled or for a
  4634. * specified timeout to expire. It is interruptible. The timeout is in jiffies.
  4635. */
  4636. unsigned long __sched
  4637. wait_for_completion_interruptible_timeout(struct completion *x,
  4638. unsigned long timeout)
  4639. {
  4640. return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
  4641. }
  4642. EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
  4643. /**
  4644. * wait_for_completion_killable: - waits for completion of a task (killable)
  4645. * @x: holds the state of this particular completion
  4646. *
  4647. * This waits to be signaled for completion of a specific task. It can be
  4648. * interrupted by a kill signal.
  4649. */
  4650. int __sched wait_for_completion_killable(struct completion *x)
  4651. {
  4652. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
  4653. if (t == -ERESTARTSYS)
  4654. return t;
  4655. return 0;
  4656. }
  4657. EXPORT_SYMBOL(wait_for_completion_killable);
  4658. /**
  4659. * try_wait_for_completion - try to decrement a completion without blocking
  4660. * @x: completion structure
  4661. *
  4662. * Returns: 0 if a decrement cannot be done without blocking
  4663. * 1 if a decrement succeeded.
  4664. *
  4665. * If a completion is being used as a counting completion,
  4666. * attempt to decrement the counter without blocking. This
  4667. * enables us to avoid waiting if the resource the completion
  4668. * is protecting is not available.
  4669. */
  4670. bool try_wait_for_completion(struct completion *x)
  4671. {
  4672. int ret = 1;
  4673. spin_lock_irq(&x->wait.lock);
  4674. if (!x->done)
  4675. ret = 0;
  4676. else
  4677. x->done--;
  4678. spin_unlock_irq(&x->wait.lock);
  4679. return ret;
  4680. }
  4681. EXPORT_SYMBOL(try_wait_for_completion);
  4682. /**
  4683. * completion_done - Test to see if a completion has any waiters
  4684. * @x: completion structure
  4685. *
  4686. * Returns: 0 if there are waiters (wait_for_completion() in progress)
  4687. * 1 if there are no waiters.
  4688. *
  4689. */
  4690. bool completion_done(struct completion *x)
  4691. {
  4692. int ret = 1;
  4693. spin_lock_irq(&x->wait.lock);
  4694. if (!x->done)
  4695. ret = 0;
  4696. spin_unlock_irq(&x->wait.lock);
  4697. return ret;
  4698. }
  4699. EXPORT_SYMBOL(completion_done);
  4700. static long __sched
  4701. sleep_on_common(wait_queue_head_t *q, int state, long timeout)
  4702. {
  4703. unsigned long flags;
  4704. wait_queue_t wait;
  4705. init_waitqueue_entry(&wait, current);
  4706. __set_current_state(state);
  4707. spin_lock_irqsave(&q->lock, flags);
  4708. __add_wait_queue(q, &wait);
  4709. spin_unlock(&q->lock);
  4710. timeout = schedule_timeout(timeout);
  4711. spin_lock_irq(&q->lock);
  4712. __remove_wait_queue(q, &wait);
  4713. spin_unlock_irqrestore(&q->lock, flags);
  4714. return timeout;
  4715. }
  4716. void __sched interruptible_sleep_on(wait_queue_head_t *q)
  4717. {
  4718. sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  4719. }
  4720. EXPORT_SYMBOL(interruptible_sleep_on);
  4721. long __sched
  4722. interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
  4723. {
  4724. return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
  4725. }
  4726. EXPORT_SYMBOL(interruptible_sleep_on_timeout);
  4727. void __sched sleep_on(wait_queue_head_t *q)
  4728. {
  4729. sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  4730. }
  4731. EXPORT_SYMBOL(sleep_on);
  4732. long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
  4733. {
  4734. return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
  4735. }
  4736. EXPORT_SYMBOL(sleep_on_timeout);
  4737. #ifdef CONFIG_RT_MUTEXES
  4738. /*
  4739. * rt_mutex_setprio - set the current priority of a task
  4740. * @p: task
  4741. * @prio: prio value (kernel-internal form)
  4742. *
  4743. * This function changes the 'effective' priority of a task. It does
  4744. * not touch ->normal_prio like __setscheduler().
  4745. *
  4746. * Used by the rt_mutex code to implement priority inheritance logic.
  4747. */
  4748. void rt_mutex_setprio(struct task_struct *p, int prio)
  4749. {
  4750. unsigned long flags;
  4751. int oldprio, on_rq, running;
  4752. struct rq *rq;
  4753. const struct sched_class *prev_class = p->sched_class;
  4754. BUG_ON(prio < 0 || prio > MAX_PRIO);
  4755. rq = task_rq_lock(p, &flags);
  4756. update_rq_clock(rq);
  4757. oldprio = p->prio;
  4758. on_rq = p->se.on_rq;
  4759. running = task_current(rq, p);
  4760. if (on_rq)
  4761. dequeue_task(rq, p, 0);
  4762. if (running)
  4763. p->sched_class->put_prev_task(rq, p);
  4764. if (rt_prio(prio))
  4765. p->sched_class = &rt_sched_class;
  4766. else
  4767. p->sched_class = &fair_sched_class;
  4768. p->prio = prio;
  4769. if (running)
  4770. p->sched_class->set_curr_task(rq);
  4771. if (on_rq) {
  4772. enqueue_task(rq, p, 0);
  4773. check_class_changed(rq, p, prev_class, oldprio, running);
  4774. }
  4775. task_rq_unlock(rq, &flags);
  4776. }
  4777. #endif
  4778. void set_user_nice(struct task_struct *p, long nice)
  4779. {
  4780. int old_prio, delta, on_rq;
  4781. unsigned long flags;
  4782. struct rq *rq;
  4783. if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
  4784. return;
  4785. /*
  4786. * We have to be careful, if called from sys_setpriority(),
  4787. * the task might be in the middle of scheduling on another CPU.
  4788. */
  4789. rq = task_rq_lock(p, &flags);
  4790. update_rq_clock(rq);
  4791. /*
  4792. * The RT priorities are set via sched_setscheduler(), but we still
  4793. * allow the 'normal' nice value to be set - but as expected
  4794. * it wont have any effect on scheduling until the task is
  4795. * SCHED_FIFO/SCHED_RR:
  4796. */
  4797. if (task_has_rt_policy(p)) {
  4798. p->static_prio = NICE_TO_PRIO(nice);
  4799. goto out_unlock;
  4800. }
  4801. on_rq = p->se.on_rq;
  4802. if (on_rq)
  4803. dequeue_task(rq, p, 0);
  4804. p->static_prio = NICE_TO_PRIO(nice);
  4805. set_load_weight(p);
  4806. old_prio = p->prio;
  4807. p->prio = effective_prio(p);
  4808. delta = p->prio - old_prio;
  4809. if (on_rq) {
  4810. enqueue_task(rq, p, 0);
  4811. /*
  4812. * If the task increased its priority or is running and
  4813. * lowered its priority, then reschedule its CPU:
  4814. */
  4815. if (delta < 0 || (delta > 0 && task_running(rq, p)))
  4816. resched_task(rq->curr);
  4817. }
  4818. out_unlock:
  4819. task_rq_unlock(rq, &flags);
  4820. }
  4821. EXPORT_SYMBOL(set_user_nice);
  4822. /*
  4823. * can_nice - check if a task can reduce its nice value
  4824. * @p: task
  4825. * @nice: nice value
  4826. */
  4827. int can_nice(const struct task_struct *p, const int nice)
  4828. {
  4829. /* convert nice value [19,-20] to rlimit style value [1,40] */
  4830. int nice_rlim = 20 - nice;
  4831. return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
  4832. capable(CAP_SYS_NICE));
  4833. }
  4834. #ifdef __ARCH_WANT_SYS_NICE
  4835. /*
  4836. * sys_nice - change the priority of the current process.
  4837. * @increment: priority increment
  4838. *
  4839. * sys_setpriority is a more generic, but much slower function that
  4840. * does similar things.
  4841. */
  4842. SYSCALL_DEFINE1(nice, int, increment)
  4843. {
  4844. long nice, retval;
  4845. /*
  4846. * Setpriority might change our priority at the same moment.
  4847. * We don't have to worry. Conceptually one call occurs first
  4848. * and we have a single winner.
  4849. */
  4850. if (increment < -40)
  4851. increment = -40;
  4852. if (increment > 40)
  4853. increment = 40;
  4854. nice = TASK_NICE(current) + increment;
  4855. if (nice < -20)
  4856. nice = -20;
  4857. if (nice > 19)
  4858. nice = 19;
  4859. if (increment < 0 && !can_nice(current, nice))
  4860. return -EPERM;
  4861. retval = security_task_setnice(current, nice);
  4862. if (retval)
  4863. return retval;
  4864. set_user_nice(current, nice);
  4865. return 0;
  4866. }
  4867. #endif
  4868. /**
  4869. * task_prio - return the priority value of a given task.
  4870. * @p: the task in question.
  4871. *
  4872. * This is the priority value as seen by users in /proc.
  4873. * RT tasks are offset by -200. Normal tasks are centered
  4874. * around 0, value goes from -16 to +15.
  4875. */
  4876. int task_prio(const struct task_struct *p)
  4877. {
  4878. return p->prio - MAX_RT_PRIO;
  4879. }
  4880. /**
  4881. * task_nice - return the nice value of a given task.
  4882. * @p: the task in question.
  4883. */
  4884. int task_nice(const struct task_struct *p)
  4885. {
  4886. return TASK_NICE(p);
  4887. }
  4888. EXPORT_SYMBOL(task_nice);
  4889. /**
  4890. * idle_cpu - is a given cpu idle currently?
  4891. * @cpu: the processor in question.
  4892. */
  4893. int idle_cpu(int cpu)
  4894. {
  4895. return cpu_curr(cpu) == cpu_rq(cpu)->idle;
  4896. }
  4897. /**
  4898. * idle_task - return the idle task for a given cpu.
  4899. * @cpu: the processor in question.
  4900. */
  4901. struct task_struct *idle_task(int cpu)
  4902. {
  4903. return cpu_rq(cpu)->idle;
  4904. }
  4905. /**
  4906. * find_process_by_pid - find a process with a matching PID value.
  4907. * @pid: the pid in question.
  4908. */
  4909. static struct task_struct *find_process_by_pid(pid_t pid)
  4910. {
  4911. return pid ? find_task_by_vpid(pid) : current;
  4912. }
  4913. /* Actually do priority change: must hold rq lock. */
  4914. static void
  4915. __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
  4916. {
  4917. BUG_ON(p->se.on_rq);
  4918. p->policy = policy;
  4919. switch (p->policy) {
  4920. case SCHED_NORMAL:
  4921. case SCHED_BATCH:
  4922. case SCHED_IDLE:
  4923. p->sched_class = &fair_sched_class;
  4924. break;
  4925. case SCHED_FIFO:
  4926. case SCHED_RR:
  4927. p->sched_class = &rt_sched_class;
  4928. break;
  4929. }
  4930. p->rt_priority = prio;
  4931. p->normal_prio = normal_prio(p);
  4932. /* we are holding p->pi_lock already */
  4933. p->prio = rt_mutex_getprio(p);
  4934. set_load_weight(p);
  4935. }
  4936. /*
  4937. * check the target process has a UID that matches the current process's
  4938. */
  4939. static bool check_same_owner(struct task_struct *p)
  4940. {
  4941. const struct cred *cred = current_cred(), *pcred;
  4942. bool match;
  4943. rcu_read_lock();
  4944. pcred = __task_cred(p);
  4945. match = (cred->euid == pcred->euid ||
  4946. cred->euid == pcred->uid);
  4947. rcu_read_unlock();
  4948. return match;
  4949. }
  4950. static int __sched_setscheduler(struct task_struct *p, int policy,
  4951. struct sched_param *param, bool user)
  4952. {
  4953. int retval, oldprio, oldpolicy = -1, on_rq, running;
  4954. unsigned long flags;
  4955. const struct sched_class *prev_class = p->sched_class;
  4956. struct rq *rq;
  4957. /* may grab non-irq protected spin_locks */
  4958. BUG_ON(in_interrupt());
  4959. recheck:
  4960. /* double check policy once rq lock held */
  4961. if (policy < 0)
  4962. policy = oldpolicy = p->policy;
  4963. else if (policy != SCHED_FIFO && policy != SCHED_RR &&
  4964. policy != SCHED_NORMAL && policy != SCHED_BATCH &&
  4965. policy != SCHED_IDLE)
  4966. return -EINVAL;
  4967. /*
  4968. * Valid priorities for SCHED_FIFO and SCHED_RR are
  4969. * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
  4970. * SCHED_BATCH and SCHED_IDLE is 0.
  4971. */
  4972. if (param->sched_priority < 0 ||
  4973. (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
  4974. (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
  4975. return -EINVAL;
  4976. if (rt_policy(policy) != (param->sched_priority != 0))
  4977. return -EINVAL;
  4978. /*
  4979. * Allow unprivileged RT tasks to decrease priority:
  4980. */
  4981. if (user && !capable(CAP_SYS_NICE)) {
  4982. if (rt_policy(policy)) {
  4983. unsigned long rlim_rtprio;
  4984. if (!lock_task_sighand(p, &flags))
  4985. return -ESRCH;
  4986. rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
  4987. unlock_task_sighand(p, &flags);
  4988. /* can't set/change the rt policy */
  4989. if (policy != p->policy && !rlim_rtprio)
  4990. return -EPERM;
  4991. /* can't increase priority */
  4992. if (param->sched_priority > p->rt_priority &&
  4993. param->sched_priority > rlim_rtprio)
  4994. return -EPERM;
  4995. }
  4996. /*
  4997. * Like positive nice levels, dont allow tasks to
  4998. * move out of SCHED_IDLE either:
  4999. */
  5000. if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
  5001. return -EPERM;
  5002. /* can't change other user's priorities */
  5003. if (!check_same_owner(p))
  5004. return -EPERM;
  5005. }
  5006. if (user) {
  5007. #ifdef CONFIG_RT_GROUP_SCHED
  5008. /*
  5009. * Do not allow realtime tasks into groups that have no runtime
  5010. * assigned.
  5011. */
  5012. if (rt_bandwidth_enabled() && rt_policy(policy) &&
  5013. task_group(p)->rt_bandwidth.rt_runtime == 0)
  5014. return -EPERM;
  5015. #endif
  5016. retval = security_task_setscheduler(p, policy, param);
  5017. if (retval)
  5018. return retval;
  5019. }
  5020. /*
  5021. * make sure no PI-waiters arrive (or leave) while we are
  5022. * changing the priority of the task:
  5023. */
  5024. spin_lock_irqsave(&p->pi_lock, flags);
  5025. /*
  5026. * To be able to change p->policy safely, the apropriate
  5027. * runqueue lock must be held.
  5028. */
  5029. rq = __task_rq_lock(p);
  5030. /* recheck policy now with rq lock held */
  5031. if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
  5032. policy = oldpolicy = -1;
  5033. __task_rq_unlock(rq);
  5034. spin_unlock_irqrestore(&p->pi_lock, flags);
  5035. goto recheck;
  5036. }
  5037. update_rq_clock(rq);
  5038. on_rq = p->se.on_rq;
  5039. running = task_current(rq, p);
  5040. if (on_rq)
  5041. deactivate_task(rq, p, 0);
  5042. if (running)
  5043. p->sched_class->put_prev_task(rq, p);
  5044. oldprio = p->prio;
  5045. __setscheduler(rq, p, policy, param->sched_priority);
  5046. if (running)
  5047. p->sched_class->set_curr_task(rq);
  5048. if (on_rq) {
  5049. activate_task(rq, p, 0);
  5050. check_class_changed(rq, p, prev_class, oldprio, running);
  5051. }
  5052. __task_rq_unlock(rq);
  5053. spin_unlock_irqrestore(&p->pi_lock, flags);
  5054. rt_mutex_adjust_pi(p);
  5055. return 0;
  5056. }
  5057. /**
  5058. * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
  5059. * @p: the task in question.
  5060. * @policy: new policy.
  5061. * @param: structure containing the new RT priority.
  5062. *
  5063. * NOTE that the task may be already dead.
  5064. */
  5065. int sched_setscheduler(struct task_struct *p, int policy,
  5066. struct sched_param *param)
  5067. {
  5068. return __sched_setscheduler(p, policy, param, true);
  5069. }
  5070. EXPORT_SYMBOL_GPL(sched_setscheduler);
  5071. /**
  5072. * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
  5073. * @p: the task in question.
  5074. * @policy: new policy.
  5075. * @param: structure containing the new RT priority.
  5076. *
  5077. * Just like sched_setscheduler, only don't bother checking if the
  5078. * current context has permission. For example, this is needed in
  5079. * stop_machine(): we create temporary high priority worker threads,
  5080. * but our caller might not have that capability.
  5081. */
  5082. int sched_setscheduler_nocheck(struct task_struct *p, int policy,
  5083. struct sched_param *param)
  5084. {
  5085. return __sched_setscheduler(p, policy, param, false);
  5086. }
  5087. static int
  5088. do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  5089. {
  5090. struct sched_param lparam;
  5091. struct task_struct *p;
  5092. int retval;
  5093. if (!param || pid < 0)
  5094. return -EINVAL;
  5095. if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
  5096. return -EFAULT;
  5097. rcu_read_lock();
  5098. retval = -ESRCH;
  5099. p = find_process_by_pid(pid);
  5100. if (p != NULL)
  5101. retval = sched_setscheduler(p, policy, &lparam);
  5102. rcu_read_unlock();
  5103. return retval;
  5104. }
  5105. /**
  5106. * sys_sched_setscheduler - set/change the scheduler policy and RT priority
  5107. * @pid: the pid in question.
  5108. * @policy: new policy.
  5109. * @param: structure containing the new RT priority.
  5110. */
  5111. SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
  5112. struct sched_param __user *, param)
  5113. {
  5114. /* negative values for policy are not valid */
  5115. if (policy < 0)
  5116. return -EINVAL;
  5117. return do_sched_setscheduler(pid, policy, param);
  5118. }
  5119. /**
  5120. * sys_sched_setparam - set/change the RT priority of a thread
  5121. * @pid: the pid in question.
  5122. * @param: structure containing the new RT priority.
  5123. */
  5124. SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
  5125. {
  5126. return do_sched_setscheduler(pid, -1, param);
  5127. }
  5128. /**
  5129. * sys_sched_getscheduler - get the policy (scheduling class) of a thread
  5130. * @pid: the pid in question.
  5131. */
  5132. SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
  5133. {
  5134. struct task_struct *p;
  5135. int retval;
  5136. if (pid < 0)
  5137. return -EINVAL;
  5138. retval = -ESRCH;
  5139. read_lock(&tasklist_lock);
  5140. p = find_process_by_pid(pid);
  5141. if (p) {
  5142. retval = security_task_getscheduler(p);
  5143. if (!retval)
  5144. retval = p->policy;
  5145. }
  5146. read_unlock(&tasklist_lock);
  5147. return retval;
  5148. }
  5149. /**
  5150. * sys_sched_getscheduler - get the RT priority of a thread
  5151. * @pid: the pid in question.
  5152. * @param: structure containing the RT priority.
  5153. */
  5154. SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
  5155. {
  5156. struct sched_param lp;
  5157. struct task_struct *p;
  5158. int retval;
  5159. if (!param || pid < 0)
  5160. return -EINVAL;
  5161. read_lock(&tasklist_lock);
  5162. p = find_process_by_pid(pid);
  5163. retval = -ESRCH;
  5164. if (!p)
  5165. goto out_unlock;
  5166. retval = security_task_getscheduler(p);
  5167. if (retval)
  5168. goto out_unlock;
  5169. lp.sched_priority = p->rt_priority;
  5170. read_unlock(&tasklist_lock);
  5171. /*
  5172. * This one might sleep, we cannot do it with a spinlock held ...
  5173. */
  5174. retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
  5175. return retval;
  5176. out_unlock:
  5177. read_unlock(&tasklist_lock);
  5178. return retval;
  5179. }
  5180. long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
  5181. {
  5182. cpumask_var_t cpus_allowed, new_mask;
  5183. struct task_struct *p;
  5184. int retval;
  5185. get_online_cpus();
  5186. read_lock(&tasklist_lock);
  5187. p = find_process_by_pid(pid);
  5188. if (!p) {
  5189. read_unlock(&tasklist_lock);
  5190. put_online_cpus();
  5191. return -ESRCH;
  5192. }
  5193. /*
  5194. * It is not safe to call set_cpus_allowed with the
  5195. * tasklist_lock held. We will bump the task_struct's
  5196. * usage count and then drop tasklist_lock.
  5197. */
  5198. get_task_struct(p);
  5199. read_unlock(&tasklist_lock);
  5200. if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
  5201. retval = -ENOMEM;
  5202. goto out_put_task;
  5203. }
  5204. if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
  5205. retval = -ENOMEM;
  5206. goto out_free_cpus_allowed;
  5207. }
  5208. retval = -EPERM;
  5209. if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
  5210. goto out_unlock;
  5211. retval = security_task_setscheduler(p, 0, NULL);
  5212. if (retval)
  5213. goto out_unlock;
  5214. cpuset_cpus_allowed(p, cpus_allowed);
  5215. cpumask_and(new_mask, in_mask, cpus_allowed);
  5216. again:
  5217. retval = set_cpus_allowed_ptr(p, new_mask);
  5218. if (!retval) {
  5219. cpuset_cpus_allowed(p, cpus_allowed);
  5220. if (!cpumask_subset(new_mask, cpus_allowed)) {
  5221. /*
  5222. * We must have raced with a concurrent cpuset
  5223. * update. Just reset the cpus_allowed to the
  5224. * cpuset's cpus_allowed
  5225. */
  5226. cpumask_copy(new_mask, cpus_allowed);
  5227. goto again;
  5228. }
  5229. }
  5230. out_unlock:
  5231. free_cpumask_var(new_mask);
  5232. out_free_cpus_allowed:
  5233. free_cpumask_var(cpus_allowed);
  5234. out_put_task:
  5235. put_task_struct(p);
  5236. put_online_cpus();
  5237. return retval;
  5238. }
  5239. static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
  5240. struct cpumask *new_mask)
  5241. {
  5242. if (len < cpumask_size())
  5243. cpumask_clear(new_mask);
  5244. else if (len > cpumask_size())
  5245. len = cpumask_size();
  5246. return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
  5247. }
  5248. /**
  5249. * sys_sched_setaffinity - set the cpu affinity of a process
  5250. * @pid: pid of the process
  5251. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  5252. * @user_mask_ptr: user-space pointer to the new cpu mask
  5253. */
  5254. SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
  5255. unsigned long __user *, user_mask_ptr)
  5256. {
  5257. cpumask_var_t new_mask;
  5258. int retval;
  5259. if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
  5260. return -ENOMEM;
  5261. retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
  5262. if (retval == 0)
  5263. retval = sched_setaffinity(pid, new_mask);
  5264. free_cpumask_var(new_mask);
  5265. return retval;
  5266. }
  5267. long sched_getaffinity(pid_t pid, struct cpumask *mask)
  5268. {
  5269. struct task_struct *p;
  5270. int retval;
  5271. get_online_cpus();
  5272. read_lock(&tasklist_lock);
  5273. retval = -ESRCH;
  5274. p = find_process_by_pid(pid);
  5275. if (!p)
  5276. goto out_unlock;
  5277. retval = security_task_getscheduler(p);
  5278. if (retval)
  5279. goto out_unlock;
  5280. cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
  5281. out_unlock:
  5282. read_unlock(&tasklist_lock);
  5283. put_online_cpus();
  5284. return retval;
  5285. }
  5286. /**
  5287. * sys_sched_getaffinity - get the cpu affinity of a process
  5288. * @pid: pid of the process
  5289. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  5290. * @user_mask_ptr: user-space pointer to hold the current cpu mask
  5291. */
  5292. SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
  5293. unsigned long __user *, user_mask_ptr)
  5294. {
  5295. int ret;
  5296. cpumask_var_t mask;
  5297. if (len < cpumask_size())
  5298. return -EINVAL;
  5299. if (!alloc_cpumask_var(&mask, GFP_KERNEL))
  5300. return -ENOMEM;
  5301. ret = sched_getaffinity(pid, mask);
  5302. if (ret == 0) {
  5303. if (copy_to_user(user_mask_ptr, mask, cpumask_size()))
  5304. ret = -EFAULT;
  5305. else
  5306. ret = cpumask_size();
  5307. }
  5308. free_cpumask_var(mask);
  5309. return ret;
  5310. }
  5311. /**
  5312. * sys_sched_yield - yield the current processor to other threads.
  5313. *
  5314. * This function yields the current CPU to other tasks. If there are no
  5315. * other threads running on this CPU then this function will return.
  5316. */
  5317. SYSCALL_DEFINE0(sched_yield)
  5318. {
  5319. struct rq *rq = this_rq_lock();
  5320. schedstat_inc(rq, yld_count);
  5321. current->sched_class->yield_task(rq);
  5322. /*
  5323. * Since we are going to call schedule() anyway, there's
  5324. * no need to preempt or enable interrupts:
  5325. */
  5326. __release(rq->lock);
  5327. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  5328. _raw_spin_unlock(&rq->lock);
  5329. preempt_enable_no_resched();
  5330. schedule();
  5331. return 0;
  5332. }
  5333. static void __cond_resched(void)
  5334. {
  5335. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  5336. __might_sleep(__FILE__, __LINE__);
  5337. #endif
  5338. /*
  5339. * The BKS might be reacquired before we have dropped
  5340. * PREEMPT_ACTIVE, which could trigger a second
  5341. * cond_resched() call.
  5342. */
  5343. do {
  5344. add_preempt_count(PREEMPT_ACTIVE);
  5345. schedule();
  5346. sub_preempt_count(PREEMPT_ACTIVE);
  5347. } while (need_resched());
  5348. }
  5349. int __sched _cond_resched(void)
  5350. {
  5351. if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
  5352. system_state == SYSTEM_RUNNING) {
  5353. __cond_resched();
  5354. return 1;
  5355. }
  5356. return 0;
  5357. }
  5358. EXPORT_SYMBOL(_cond_resched);
  5359. /*
  5360. * cond_resched_lock() - if a reschedule is pending, drop the given lock,
  5361. * call schedule, and on return reacquire the lock.
  5362. *
  5363. * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
  5364. * operations here to prevent schedule() from being called twice (once via
  5365. * spin_unlock(), once by hand).
  5366. */
  5367. int cond_resched_lock(spinlock_t *lock)
  5368. {
  5369. int resched = need_resched() && system_state == SYSTEM_RUNNING;
  5370. int ret = 0;
  5371. if (spin_needbreak(lock) || resched) {
  5372. spin_unlock(lock);
  5373. if (resched && need_resched())
  5374. __cond_resched();
  5375. else
  5376. cpu_relax();
  5377. ret = 1;
  5378. spin_lock(lock);
  5379. }
  5380. return ret;
  5381. }
  5382. EXPORT_SYMBOL(cond_resched_lock);
  5383. int __sched cond_resched_softirq(void)
  5384. {
  5385. BUG_ON(!in_softirq());
  5386. if (need_resched() && system_state == SYSTEM_RUNNING) {
  5387. local_bh_enable();
  5388. __cond_resched();
  5389. local_bh_disable();
  5390. return 1;
  5391. }
  5392. return 0;
  5393. }
  5394. EXPORT_SYMBOL(cond_resched_softirq);
  5395. /**
  5396. * yield - yield the current processor to other threads.
  5397. *
  5398. * This is a shortcut for kernel-space yielding - it marks the
  5399. * thread runnable and calls sys_sched_yield().
  5400. */
  5401. void __sched yield(void)
  5402. {
  5403. set_current_state(TASK_RUNNING);
  5404. sys_sched_yield();
  5405. }
  5406. EXPORT_SYMBOL(yield);
  5407. /*
  5408. * This task is about to go to sleep on IO. Increment rq->nr_iowait so
  5409. * that process accounting knows that this is a task in IO wait state.
  5410. *
  5411. * But don't do that if it is a deliberate, throttling IO wait (this task
  5412. * has set its backing_dev_info: the queue against which it should throttle)
  5413. */
  5414. void __sched io_schedule(void)
  5415. {
  5416. struct rq *rq = &__raw_get_cpu_var(runqueues);
  5417. delayacct_blkio_start();
  5418. atomic_inc(&rq->nr_iowait);
  5419. schedule();
  5420. atomic_dec(&rq->nr_iowait);
  5421. delayacct_blkio_end();
  5422. }
  5423. EXPORT_SYMBOL(io_schedule);
  5424. long __sched io_schedule_timeout(long timeout)
  5425. {
  5426. struct rq *rq = &__raw_get_cpu_var(runqueues);
  5427. long ret;
  5428. delayacct_blkio_start();
  5429. atomic_inc(&rq->nr_iowait);
  5430. ret = schedule_timeout(timeout);
  5431. atomic_dec(&rq->nr_iowait);
  5432. delayacct_blkio_end();
  5433. return ret;
  5434. }
  5435. /**
  5436. * sys_sched_get_priority_max - return maximum RT priority.
  5437. * @policy: scheduling class.
  5438. *
  5439. * this syscall returns the maximum rt_priority that can be used
  5440. * by a given scheduling class.
  5441. */
  5442. SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
  5443. {
  5444. int ret = -EINVAL;
  5445. switch (policy) {
  5446. case SCHED_FIFO:
  5447. case SCHED_RR:
  5448. ret = MAX_USER_RT_PRIO-1;
  5449. break;
  5450. case SCHED_NORMAL:
  5451. case SCHED_BATCH:
  5452. case SCHED_IDLE:
  5453. ret = 0;
  5454. break;
  5455. }
  5456. return ret;
  5457. }
  5458. /**
  5459. * sys_sched_get_priority_min - return minimum RT priority.
  5460. * @policy: scheduling class.
  5461. *
  5462. * this syscall returns the minimum rt_priority that can be used
  5463. * by a given scheduling class.
  5464. */
  5465. SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
  5466. {
  5467. int ret = -EINVAL;
  5468. switch (policy) {
  5469. case SCHED_FIFO:
  5470. case SCHED_RR:
  5471. ret = 1;
  5472. break;
  5473. case SCHED_NORMAL:
  5474. case SCHED_BATCH:
  5475. case SCHED_IDLE:
  5476. ret = 0;
  5477. }
  5478. return ret;
  5479. }
  5480. /**
  5481. * sys_sched_rr_get_interval - return the default timeslice of a process.
  5482. * @pid: pid of the process.
  5483. * @interval: userspace pointer to the timeslice value.
  5484. *
  5485. * this syscall writes the default timeslice value of a given process
  5486. * into the user-space timespec buffer. A value of '0' means infinity.
  5487. */
  5488. SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
  5489. struct timespec __user *, interval)
  5490. {
  5491. struct task_struct *p;
  5492. unsigned int time_slice;
  5493. int retval;
  5494. struct timespec t;
  5495. if (pid < 0)
  5496. return -EINVAL;
  5497. retval = -ESRCH;
  5498. read_lock(&tasklist_lock);
  5499. p = find_process_by_pid(pid);
  5500. if (!p)
  5501. goto out_unlock;
  5502. retval = security_task_getscheduler(p);
  5503. if (retval)
  5504. goto out_unlock;
  5505. /*
  5506. * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
  5507. * tasks that are on an otherwise idle runqueue:
  5508. */
  5509. time_slice = 0;
  5510. if (p->policy == SCHED_RR) {
  5511. time_slice = DEF_TIMESLICE;
  5512. } else if (p->policy != SCHED_FIFO) {
  5513. struct sched_entity *se = &p->se;
  5514. unsigned long flags;
  5515. struct rq *rq;
  5516. rq = task_rq_lock(p, &flags);
  5517. if (rq->cfs.load.weight)
  5518. time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
  5519. task_rq_unlock(rq, &flags);
  5520. }
  5521. read_unlock(&tasklist_lock);
  5522. jiffies_to_timespec(time_slice, &t);
  5523. retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
  5524. return retval;
  5525. out_unlock:
  5526. read_unlock(&tasklist_lock);
  5527. return retval;
  5528. }
  5529. static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
  5530. void sched_show_task(struct task_struct *p)
  5531. {
  5532. unsigned long free = 0;
  5533. unsigned state;
  5534. state = p->state ? __ffs(p->state) + 1 : 0;
  5535. printk(KERN_INFO "%-13.13s %c", p->comm,
  5536. state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
  5537. #if BITS_PER_LONG == 32
  5538. if (state == TASK_RUNNING)
  5539. printk(KERN_CONT " running ");
  5540. else
  5541. printk(KERN_CONT " %08lx ", thread_saved_pc(p));
  5542. #else
  5543. if (state == TASK_RUNNING)
  5544. printk(KERN_CONT " running task ");
  5545. else
  5546. printk(KERN_CONT " %016lx ", thread_saved_pc(p));
  5547. #endif
  5548. #ifdef CONFIG_DEBUG_STACK_USAGE
  5549. free = stack_not_used(p);
  5550. #endif
  5551. printk(KERN_CONT "%5lu %5d %6d\n", free,
  5552. task_pid_nr(p), task_pid_nr(p->real_parent));
  5553. show_stack(p, NULL);
  5554. }
  5555. void show_state_filter(unsigned long state_filter)
  5556. {
  5557. struct task_struct *g, *p;
  5558. #if BITS_PER_LONG == 32
  5559. printk(KERN_INFO
  5560. " task PC stack pid father\n");
  5561. #else
  5562. printk(KERN_INFO
  5563. " task PC stack pid father\n");
  5564. #endif
  5565. read_lock(&tasklist_lock);
  5566. do_each_thread(g, p) {
  5567. /*
  5568. * reset the NMI-timeout, listing all files on a slow
  5569. * console might take alot of time:
  5570. */
  5571. touch_nmi_watchdog();
  5572. if (!state_filter || (p->state & state_filter))
  5573. sched_show_task(p);
  5574. } while_each_thread(g, p);
  5575. touch_all_softlockup_watchdogs();
  5576. #ifdef CONFIG_SCHED_DEBUG
  5577. sysrq_sched_debug_show();
  5578. #endif
  5579. read_unlock(&tasklist_lock);
  5580. /*
  5581. * Only show locks if all tasks are dumped:
  5582. */
  5583. if (state_filter == -1)
  5584. debug_show_all_locks();
  5585. }
  5586. void __cpuinit init_idle_bootup_task(struct task_struct *idle)
  5587. {
  5588. idle->sched_class = &idle_sched_class;
  5589. }
  5590. /**
  5591. * init_idle - set up an idle thread for a given CPU
  5592. * @idle: task in question
  5593. * @cpu: cpu the idle task belongs to
  5594. *
  5595. * NOTE: this function does not set the idle thread's NEED_RESCHED
  5596. * flag, to make booting more robust.
  5597. */
  5598. void __cpuinit init_idle(struct task_struct *idle, int cpu)
  5599. {
  5600. struct rq *rq = cpu_rq(cpu);
  5601. unsigned long flags;
  5602. spin_lock_irqsave(&rq->lock, flags);
  5603. __sched_fork(idle);
  5604. idle->se.exec_start = sched_clock();
  5605. idle->prio = idle->normal_prio = MAX_PRIO;
  5606. cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
  5607. __set_task_cpu(idle, cpu);
  5608. rq->curr = rq->idle = idle;
  5609. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  5610. idle->oncpu = 1;
  5611. #endif
  5612. spin_unlock_irqrestore(&rq->lock, flags);
  5613. /* Set the preempt count _outside_ the spinlocks! */
  5614. #if defined(CONFIG_PREEMPT)
  5615. task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
  5616. #else
  5617. task_thread_info(idle)->preempt_count = 0;
  5618. #endif
  5619. /*
  5620. * The idle tasks have their own, simple scheduling class:
  5621. */
  5622. idle->sched_class = &idle_sched_class;
  5623. ftrace_graph_init_task(idle);
  5624. }
  5625. /*
  5626. * In a system that switches off the HZ timer nohz_cpu_mask
  5627. * indicates which cpus entered this state. This is used
  5628. * in the rcu update to wait only for active cpus. For system
  5629. * which do not switch off the HZ timer nohz_cpu_mask should
  5630. * always be CPU_BITS_NONE.
  5631. */
  5632. cpumask_var_t nohz_cpu_mask;
  5633. /*
  5634. * Increase the granularity value when there are more CPUs,
  5635. * because with more CPUs the 'effective latency' as visible
  5636. * to users decreases. But the relationship is not linear,
  5637. * so pick a second-best guess by going with the log2 of the
  5638. * number of CPUs.
  5639. *
  5640. * This idea comes from the SD scheduler of Con Kolivas:
  5641. */
  5642. static inline void sched_init_granularity(void)
  5643. {
  5644. unsigned int factor = 1 + ilog2(num_online_cpus());
  5645. const unsigned long limit = 200000000;
  5646. sysctl_sched_min_granularity *= factor;
  5647. if (sysctl_sched_min_granularity > limit)
  5648. sysctl_sched_min_granularity = limit;
  5649. sysctl_sched_latency *= factor;
  5650. if (sysctl_sched_latency > limit)
  5651. sysctl_sched_latency = limit;
  5652. sysctl_sched_wakeup_granularity *= factor;
  5653. sysctl_sched_shares_ratelimit *= factor;
  5654. }
  5655. #ifdef CONFIG_SMP
  5656. /*
  5657. * This is how migration works:
  5658. *
  5659. * 1) we queue a struct migration_req structure in the source CPU's
  5660. * runqueue and wake up that CPU's migration thread.
  5661. * 2) we down() the locked semaphore => thread blocks.
  5662. * 3) migration thread wakes up (implicitly it forces the migrated
  5663. * thread off the CPU)
  5664. * 4) it gets the migration request and checks whether the migrated
  5665. * task is still in the wrong runqueue.
  5666. * 5) if it's in the wrong runqueue then the migration thread removes
  5667. * it and puts it into the right queue.
  5668. * 6) migration thread up()s the semaphore.
  5669. * 7) we wake up and the migration is done.
  5670. */
  5671. /*
  5672. * Change a given task's CPU affinity. Migrate the thread to a
  5673. * proper CPU and schedule it away if the CPU it's executing on
  5674. * is removed from the allowed bitmask.
  5675. *
  5676. * NOTE: the caller must have a valid reference to the task, the
  5677. * task must not exit() & deallocate itself prematurely. The
  5678. * call is not atomic; no spinlocks may be held.
  5679. */
  5680. int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
  5681. {
  5682. struct migration_req req;
  5683. unsigned long flags;
  5684. struct rq *rq;
  5685. int ret = 0;
  5686. rq = task_rq_lock(p, &flags);
  5687. if (!cpumask_intersects(new_mask, cpu_online_mask)) {
  5688. ret = -EINVAL;
  5689. goto out;
  5690. }
  5691. if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
  5692. !cpumask_equal(&p->cpus_allowed, new_mask))) {
  5693. ret = -EINVAL;
  5694. goto out;
  5695. }
  5696. if (p->sched_class->set_cpus_allowed)
  5697. p->sched_class->set_cpus_allowed(p, new_mask);
  5698. else {
  5699. cpumask_copy(&p->cpus_allowed, new_mask);
  5700. p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
  5701. }
  5702. /* Can the task run on the task's current CPU? If so, we're done */
  5703. if (cpumask_test_cpu(task_cpu(p), new_mask))
  5704. goto out;
  5705. if (migrate_task(p, cpumask_any_and(cpu_online_mask, new_mask), &req)) {
  5706. /* Need help from migration thread: drop lock and wait. */
  5707. task_rq_unlock(rq, &flags);
  5708. wake_up_process(rq->migration_thread);
  5709. wait_for_completion(&req.done);
  5710. tlb_migrate_finish(p->mm);
  5711. return 0;
  5712. }
  5713. out:
  5714. task_rq_unlock(rq, &flags);
  5715. return ret;
  5716. }
  5717. EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
  5718. /*
  5719. * Move (not current) task off this cpu, onto dest cpu. We're doing
  5720. * this because either it can't run here any more (set_cpus_allowed()
  5721. * away from this CPU, or CPU going down), or because we're
  5722. * attempting to rebalance this task on exec (sched_exec).
  5723. *
  5724. * So we race with normal scheduler movements, but that's OK, as long
  5725. * as the task is no longer on this CPU.
  5726. *
  5727. * Returns non-zero if task was successfully migrated.
  5728. */
  5729. static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
  5730. {
  5731. struct rq *rq_dest, *rq_src;
  5732. int ret = 0, on_rq;
  5733. if (unlikely(!cpu_active(dest_cpu)))
  5734. return ret;
  5735. rq_src = cpu_rq(src_cpu);
  5736. rq_dest = cpu_rq(dest_cpu);
  5737. double_rq_lock(rq_src, rq_dest);
  5738. /* Already moved. */
  5739. if (task_cpu(p) != src_cpu)
  5740. goto done;
  5741. /* Affinity changed (again). */
  5742. if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
  5743. goto fail;
  5744. on_rq = p->se.on_rq;
  5745. if (on_rq)
  5746. deactivate_task(rq_src, p, 0);
  5747. set_task_cpu(p, dest_cpu);
  5748. if (on_rq) {
  5749. activate_task(rq_dest, p, 0);
  5750. check_preempt_curr(rq_dest, p, 0);
  5751. }
  5752. done:
  5753. ret = 1;
  5754. fail:
  5755. double_rq_unlock(rq_src, rq_dest);
  5756. return ret;
  5757. }
  5758. /*
  5759. * migration_thread - this is a highprio system thread that performs
  5760. * thread migration by bumping thread off CPU then 'pushing' onto
  5761. * another runqueue.
  5762. */
  5763. static int migration_thread(void *data)
  5764. {
  5765. int cpu = (long)data;
  5766. struct rq *rq;
  5767. rq = cpu_rq(cpu);
  5768. BUG_ON(rq->migration_thread != current);
  5769. set_current_state(TASK_INTERRUPTIBLE);
  5770. while (!kthread_should_stop()) {
  5771. struct migration_req *req;
  5772. struct list_head *head;
  5773. spin_lock_irq(&rq->lock);
  5774. if (cpu_is_offline(cpu)) {
  5775. spin_unlock_irq(&rq->lock);
  5776. goto wait_to_die;
  5777. }
  5778. if (rq->active_balance) {
  5779. active_load_balance(rq, cpu);
  5780. rq->active_balance = 0;
  5781. }
  5782. head = &rq->migration_queue;
  5783. if (list_empty(head)) {
  5784. spin_unlock_irq(&rq->lock);
  5785. schedule();
  5786. set_current_state(TASK_INTERRUPTIBLE);
  5787. continue;
  5788. }
  5789. req = list_entry(head->next, struct migration_req, list);
  5790. list_del_init(head->next);
  5791. spin_unlock(&rq->lock);
  5792. __migrate_task(req->task, cpu, req->dest_cpu);
  5793. local_irq_enable();
  5794. complete(&req->done);
  5795. }
  5796. __set_current_state(TASK_RUNNING);
  5797. return 0;
  5798. wait_to_die:
  5799. /* Wait for kthread_stop */
  5800. set_current_state(TASK_INTERRUPTIBLE);
  5801. while (!kthread_should_stop()) {
  5802. schedule();
  5803. set_current_state(TASK_INTERRUPTIBLE);
  5804. }
  5805. __set_current_state(TASK_RUNNING);
  5806. return 0;
  5807. }
  5808. #ifdef CONFIG_HOTPLUG_CPU
  5809. static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
  5810. {
  5811. int ret;
  5812. local_irq_disable();
  5813. ret = __migrate_task(p, src_cpu, dest_cpu);
  5814. local_irq_enable();
  5815. return ret;
  5816. }
  5817. /*
  5818. * Figure out where task on dead CPU should go, use force if necessary.
  5819. */
  5820. static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
  5821. {
  5822. int dest_cpu;
  5823. const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(dead_cpu));
  5824. again:
  5825. /* Look for allowed, online CPU in same node. */
  5826. for_each_cpu_and(dest_cpu, nodemask, cpu_online_mask)
  5827. if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
  5828. goto move;
  5829. /* Any allowed, online CPU? */
  5830. dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_online_mask);
  5831. if (dest_cpu < nr_cpu_ids)
  5832. goto move;
  5833. /* No more Mr. Nice Guy. */
  5834. if (dest_cpu >= nr_cpu_ids) {
  5835. cpuset_cpus_allowed_locked(p, &p->cpus_allowed);
  5836. dest_cpu = cpumask_any_and(cpu_online_mask, &p->cpus_allowed);
  5837. /*
  5838. * Don't tell them about moving exiting tasks or
  5839. * kernel threads (both mm NULL), since they never
  5840. * leave kernel.
  5841. */
  5842. if (p->mm && printk_ratelimit()) {
  5843. printk(KERN_INFO "process %d (%s) no "
  5844. "longer affine to cpu%d\n",
  5845. task_pid_nr(p), p->comm, dead_cpu);
  5846. }
  5847. }
  5848. move:
  5849. /* It can have affinity changed while we were choosing. */
  5850. if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu)))
  5851. goto again;
  5852. }
  5853. /*
  5854. * While a dead CPU has no uninterruptible tasks queued at this point,
  5855. * it might still have a nonzero ->nr_uninterruptible counter, because
  5856. * for performance reasons the counter is not stricly tracking tasks to
  5857. * their home CPUs. So we just add the counter to another CPU's counter,
  5858. * to keep the global sum constant after CPU-down:
  5859. */
  5860. static void migrate_nr_uninterruptible(struct rq *rq_src)
  5861. {
  5862. struct rq *rq_dest = cpu_rq(cpumask_any(cpu_online_mask));
  5863. unsigned long flags;
  5864. local_irq_save(flags);
  5865. double_rq_lock(rq_src, rq_dest);
  5866. rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
  5867. rq_src->nr_uninterruptible = 0;
  5868. double_rq_unlock(rq_src, rq_dest);
  5869. local_irq_restore(flags);
  5870. }
  5871. /* Run through task list and migrate tasks from the dead cpu. */
  5872. static void migrate_live_tasks(int src_cpu)
  5873. {
  5874. struct task_struct *p, *t;
  5875. read_lock(&tasklist_lock);
  5876. do_each_thread(t, p) {
  5877. if (p == current)
  5878. continue;
  5879. if (task_cpu(p) == src_cpu)
  5880. move_task_off_dead_cpu(src_cpu, p);
  5881. } while_each_thread(t, p);
  5882. read_unlock(&tasklist_lock);
  5883. }
  5884. /*
  5885. * Schedules idle task to be the next runnable task on current CPU.
  5886. * It does so by boosting its priority to highest possible.
  5887. * Used by CPU offline code.
  5888. */
  5889. void sched_idle_next(void)
  5890. {
  5891. int this_cpu = smp_processor_id();
  5892. struct rq *rq = cpu_rq(this_cpu);
  5893. struct task_struct *p = rq->idle;
  5894. unsigned long flags;
  5895. /* cpu has to be offline */
  5896. BUG_ON(cpu_online(this_cpu));
  5897. /*
  5898. * Strictly not necessary since rest of the CPUs are stopped by now
  5899. * and interrupts disabled on the current cpu.
  5900. */
  5901. spin_lock_irqsave(&rq->lock, flags);
  5902. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  5903. update_rq_clock(rq);
  5904. activate_task(rq, p, 0);
  5905. spin_unlock_irqrestore(&rq->lock, flags);
  5906. }
  5907. /*
  5908. * Ensures that the idle task is using init_mm right before its cpu goes
  5909. * offline.
  5910. */
  5911. void idle_task_exit(void)
  5912. {
  5913. struct mm_struct *mm = current->active_mm;
  5914. BUG_ON(cpu_online(smp_processor_id()));
  5915. if (mm != &init_mm)
  5916. switch_mm(mm, &init_mm, current);
  5917. mmdrop(mm);
  5918. }
  5919. /* called under rq->lock with disabled interrupts */
  5920. static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
  5921. {
  5922. struct rq *rq = cpu_rq(dead_cpu);
  5923. /* Must be exiting, otherwise would be on tasklist. */
  5924. BUG_ON(!p->exit_state);
  5925. /* Cannot have done final schedule yet: would have vanished. */
  5926. BUG_ON(p->state == TASK_DEAD);
  5927. get_task_struct(p);
  5928. /*
  5929. * Drop lock around migration; if someone else moves it,
  5930. * that's OK. No task can be added to this CPU, so iteration is
  5931. * fine.
  5932. */
  5933. spin_unlock_irq(&rq->lock);
  5934. move_task_off_dead_cpu(dead_cpu, p);
  5935. spin_lock_irq(&rq->lock);
  5936. put_task_struct(p);
  5937. }
  5938. /* release_task() removes task from tasklist, so we won't find dead tasks. */
  5939. static void migrate_dead_tasks(unsigned int dead_cpu)
  5940. {
  5941. struct rq *rq = cpu_rq(dead_cpu);
  5942. struct task_struct *next;
  5943. for ( ; ; ) {
  5944. if (!rq->nr_running)
  5945. break;
  5946. update_rq_clock(rq);
  5947. next = pick_next_task(rq);
  5948. if (!next)
  5949. break;
  5950. next->sched_class->put_prev_task(rq, next);
  5951. migrate_dead(dead_cpu, next);
  5952. }
  5953. }
  5954. #endif /* CONFIG_HOTPLUG_CPU */
  5955. #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
  5956. static struct ctl_table sd_ctl_dir[] = {
  5957. {
  5958. .procname = "sched_domain",
  5959. .mode = 0555,
  5960. },
  5961. {0, },
  5962. };
  5963. static struct ctl_table sd_ctl_root[] = {
  5964. {
  5965. .ctl_name = CTL_KERN,
  5966. .procname = "kernel",
  5967. .mode = 0555,
  5968. .child = sd_ctl_dir,
  5969. },
  5970. {0, },
  5971. };
  5972. static struct ctl_table *sd_alloc_ctl_entry(int n)
  5973. {
  5974. struct ctl_table *entry =
  5975. kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
  5976. return entry;
  5977. }
  5978. static void sd_free_ctl_entry(struct ctl_table **tablep)
  5979. {
  5980. struct ctl_table *entry;
  5981. /*
  5982. * In the intermediate directories, both the child directory and
  5983. * procname are dynamically allocated and could fail but the mode
  5984. * will always be set. In the lowest directory the names are
  5985. * static strings and all have proc handlers.
  5986. */
  5987. for (entry = *tablep; entry->mode; entry++) {
  5988. if (entry->child)
  5989. sd_free_ctl_entry(&entry->child);
  5990. if (entry->proc_handler == NULL)
  5991. kfree(entry->procname);
  5992. }
  5993. kfree(*tablep);
  5994. *tablep = NULL;
  5995. }
  5996. static void
  5997. set_table_entry(struct ctl_table *entry,
  5998. const char *procname, void *data, int maxlen,
  5999. mode_t mode, proc_handler *proc_handler)
  6000. {
  6001. entry->procname = procname;
  6002. entry->data = data;
  6003. entry->maxlen = maxlen;
  6004. entry->mode = mode;
  6005. entry->proc_handler = proc_handler;
  6006. }
  6007. static struct ctl_table *
  6008. sd_alloc_ctl_domain_table(struct sched_domain *sd)
  6009. {
  6010. struct ctl_table *table = sd_alloc_ctl_entry(13);
  6011. if (table == NULL)
  6012. return NULL;
  6013. set_table_entry(&table[0], "min_interval", &sd->min_interval,
  6014. sizeof(long), 0644, proc_doulongvec_minmax);
  6015. set_table_entry(&table[1], "max_interval", &sd->max_interval,
  6016. sizeof(long), 0644, proc_doulongvec_minmax);
  6017. set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
  6018. sizeof(int), 0644, proc_dointvec_minmax);
  6019. set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
  6020. sizeof(int), 0644, proc_dointvec_minmax);
  6021. set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
  6022. sizeof(int), 0644, proc_dointvec_minmax);
  6023. set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
  6024. sizeof(int), 0644, proc_dointvec_minmax);
  6025. set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
  6026. sizeof(int), 0644, proc_dointvec_minmax);
  6027. set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
  6028. sizeof(int), 0644, proc_dointvec_minmax);
  6029. set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
  6030. sizeof(int), 0644, proc_dointvec_minmax);
  6031. set_table_entry(&table[9], "cache_nice_tries",
  6032. &sd->cache_nice_tries,
  6033. sizeof(int), 0644, proc_dointvec_minmax);
  6034. set_table_entry(&table[10], "flags", &sd->flags,
  6035. sizeof(int), 0644, proc_dointvec_minmax);
  6036. set_table_entry(&table[11], "name", sd->name,
  6037. CORENAME_MAX_SIZE, 0444, proc_dostring);
  6038. /* &table[12] is terminator */
  6039. return table;
  6040. }
  6041. static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
  6042. {
  6043. struct ctl_table *entry, *table;
  6044. struct sched_domain *sd;
  6045. int domain_num = 0, i;
  6046. char buf[32];
  6047. for_each_domain(cpu, sd)
  6048. domain_num++;
  6049. entry = table = sd_alloc_ctl_entry(domain_num + 1);
  6050. if (table == NULL)
  6051. return NULL;
  6052. i = 0;
  6053. for_each_domain(cpu, sd) {
  6054. snprintf(buf, 32, "domain%d", i);
  6055. entry->procname = kstrdup(buf, GFP_KERNEL);
  6056. entry->mode = 0555;
  6057. entry->child = sd_alloc_ctl_domain_table(sd);
  6058. entry++;
  6059. i++;
  6060. }
  6061. return table;
  6062. }
  6063. static struct ctl_table_header *sd_sysctl_header;
  6064. static void register_sched_domain_sysctl(void)
  6065. {
  6066. int i, cpu_num = num_online_cpus();
  6067. struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
  6068. char buf[32];
  6069. WARN_ON(sd_ctl_dir[0].child);
  6070. sd_ctl_dir[0].child = entry;
  6071. if (entry == NULL)
  6072. return;
  6073. for_each_online_cpu(i) {
  6074. snprintf(buf, 32, "cpu%d", i);
  6075. entry->procname = kstrdup(buf, GFP_KERNEL);
  6076. entry->mode = 0555;
  6077. entry->child = sd_alloc_ctl_cpu_table(i);
  6078. entry++;
  6079. }
  6080. WARN_ON(sd_sysctl_header);
  6081. sd_sysctl_header = register_sysctl_table(sd_ctl_root);
  6082. }
  6083. /* may be called multiple times per register */
  6084. static void unregister_sched_domain_sysctl(void)
  6085. {
  6086. if (sd_sysctl_header)
  6087. unregister_sysctl_table(sd_sysctl_header);
  6088. sd_sysctl_header = NULL;
  6089. if (sd_ctl_dir[0].child)
  6090. sd_free_ctl_entry(&sd_ctl_dir[0].child);
  6091. }
  6092. #else
  6093. static void register_sched_domain_sysctl(void)
  6094. {
  6095. }
  6096. static void unregister_sched_domain_sysctl(void)
  6097. {
  6098. }
  6099. #endif
  6100. static void set_rq_online(struct rq *rq)
  6101. {
  6102. if (!rq->online) {
  6103. const struct sched_class *class;
  6104. cpumask_set_cpu(rq->cpu, rq->rd->online);
  6105. rq->online = 1;
  6106. for_each_class(class) {
  6107. if (class->rq_online)
  6108. class->rq_online(rq);
  6109. }
  6110. }
  6111. }
  6112. static void set_rq_offline(struct rq *rq)
  6113. {
  6114. if (rq->online) {
  6115. const struct sched_class *class;
  6116. for_each_class(class) {
  6117. if (class->rq_offline)
  6118. class->rq_offline(rq);
  6119. }
  6120. cpumask_clear_cpu(rq->cpu, rq->rd->online);
  6121. rq->online = 0;
  6122. }
  6123. }
  6124. /*
  6125. * migration_call - callback that gets triggered when a CPU is added.
  6126. * Here we can start up the necessary migration thread for the new CPU.
  6127. */
  6128. static int __cpuinit
  6129. migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
  6130. {
  6131. struct task_struct *p;
  6132. int cpu = (long)hcpu;
  6133. unsigned long flags;
  6134. struct rq *rq;
  6135. switch (action) {
  6136. case CPU_UP_PREPARE:
  6137. case CPU_UP_PREPARE_FROZEN:
  6138. p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
  6139. if (IS_ERR(p))
  6140. return NOTIFY_BAD;
  6141. kthread_bind(p, cpu);
  6142. /* Must be high prio: stop_machine expects to yield to it. */
  6143. rq = task_rq_lock(p, &flags);
  6144. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  6145. task_rq_unlock(rq, &flags);
  6146. cpu_rq(cpu)->migration_thread = p;
  6147. break;
  6148. case CPU_ONLINE:
  6149. case CPU_ONLINE_FROZEN:
  6150. /* Strictly unnecessary, as first user will wake it. */
  6151. wake_up_process(cpu_rq(cpu)->migration_thread);
  6152. /* Update our root-domain */
  6153. rq = cpu_rq(cpu);
  6154. spin_lock_irqsave(&rq->lock, flags);
  6155. if (rq->rd) {
  6156. BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
  6157. set_rq_online(rq);
  6158. }
  6159. spin_unlock_irqrestore(&rq->lock, flags);
  6160. break;
  6161. #ifdef CONFIG_HOTPLUG_CPU
  6162. case CPU_UP_CANCELED:
  6163. case CPU_UP_CANCELED_FROZEN:
  6164. if (!cpu_rq(cpu)->migration_thread)
  6165. break;
  6166. /* Unbind it from offline cpu so it can run. Fall thru. */
  6167. kthread_bind(cpu_rq(cpu)->migration_thread,
  6168. cpumask_any(cpu_online_mask));
  6169. kthread_stop(cpu_rq(cpu)->migration_thread);
  6170. cpu_rq(cpu)->migration_thread = NULL;
  6171. break;
  6172. case CPU_DEAD:
  6173. case CPU_DEAD_FROZEN:
  6174. cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
  6175. migrate_live_tasks(cpu);
  6176. rq = cpu_rq(cpu);
  6177. kthread_stop(rq->migration_thread);
  6178. rq->migration_thread = NULL;
  6179. /* Idle task back to normal (off runqueue, low prio) */
  6180. spin_lock_irq(&rq->lock);
  6181. update_rq_clock(rq);
  6182. deactivate_task(rq, rq->idle, 0);
  6183. rq->idle->static_prio = MAX_PRIO;
  6184. __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
  6185. rq->idle->sched_class = &idle_sched_class;
  6186. migrate_dead_tasks(cpu);
  6187. spin_unlock_irq(&rq->lock);
  6188. cpuset_unlock();
  6189. migrate_nr_uninterruptible(rq);
  6190. BUG_ON(rq->nr_running != 0);
  6191. /*
  6192. * No need to migrate the tasks: it was best-effort if
  6193. * they didn't take sched_hotcpu_mutex. Just wake up
  6194. * the requestors.
  6195. */
  6196. spin_lock_irq(&rq->lock);
  6197. while (!list_empty(&rq->migration_queue)) {
  6198. struct migration_req *req;
  6199. req = list_entry(rq->migration_queue.next,
  6200. struct migration_req, list);
  6201. list_del_init(&req->list);
  6202. spin_unlock_irq(&rq->lock);
  6203. complete(&req->done);
  6204. spin_lock_irq(&rq->lock);
  6205. }
  6206. spin_unlock_irq(&rq->lock);
  6207. break;
  6208. case CPU_DYING:
  6209. case CPU_DYING_FROZEN:
  6210. /* Update our root-domain */
  6211. rq = cpu_rq(cpu);
  6212. spin_lock_irqsave(&rq->lock, flags);
  6213. if (rq->rd) {
  6214. BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
  6215. set_rq_offline(rq);
  6216. }
  6217. spin_unlock_irqrestore(&rq->lock, flags);
  6218. break;
  6219. #endif
  6220. }
  6221. return NOTIFY_OK;
  6222. }
  6223. /* Register at highest priority so that task migration (migrate_all_tasks)
  6224. * happens before everything else.
  6225. */
  6226. static struct notifier_block __cpuinitdata migration_notifier = {
  6227. .notifier_call = migration_call,
  6228. .priority = 10
  6229. };
  6230. static int __init migration_init(void)
  6231. {
  6232. void *cpu = (void *)(long)smp_processor_id();
  6233. int err;
  6234. /* Start one for the boot CPU: */
  6235. err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
  6236. BUG_ON(err == NOTIFY_BAD);
  6237. migration_call(&migration_notifier, CPU_ONLINE, cpu);
  6238. register_cpu_notifier(&migration_notifier);
  6239. return err;
  6240. }
  6241. early_initcall(migration_init);
  6242. #endif
  6243. #ifdef CONFIG_SMP
  6244. #ifdef CONFIG_SCHED_DEBUG
  6245. static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
  6246. struct cpumask *groupmask)
  6247. {
  6248. struct sched_group *group = sd->groups;
  6249. char str[256];
  6250. cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
  6251. cpumask_clear(groupmask);
  6252. printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
  6253. if (!(sd->flags & SD_LOAD_BALANCE)) {
  6254. printk("does not load-balance\n");
  6255. if (sd->parent)
  6256. printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
  6257. " has parent");
  6258. return -1;
  6259. }
  6260. printk(KERN_CONT "span %s level %s\n", str, sd->name);
  6261. if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  6262. printk(KERN_ERR "ERROR: domain->span does not contain "
  6263. "CPU%d\n", cpu);
  6264. }
  6265. if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
  6266. printk(KERN_ERR "ERROR: domain->groups does not contain"
  6267. " CPU%d\n", cpu);
  6268. }
  6269. printk(KERN_DEBUG "%*s groups:", level + 1, "");
  6270. do {
  6271. if (!group) {
  6272. printk("\n");
  6273. printk(KERN_ERR "ERROR: group is NULL\n");
  6274. break;
  6275. }
  6276. if (!group->__cpu_power) {
  6277. printk(KERN_CONT "\n");
  6278. printk(KERN_ERR "ERROR: domain->cpu_power not "
  6279. "set\n");
  6280. break;
  6281. }
  6282. if (!cpumask_weight(sched_group_cpus(group))) {
  6283. printk(KERN_CONT "\n");
  6284. printk(KERN_ERR "ERROR: empty group\n");
  6285. break;
  6286. }
  6287. if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
  6288. printk(KERN_CONT "\n");
  6289. printk(KERN_ERR "ERROR: repeated CPUs\n");
  6290. break;
  6291. }
  6292. cpumask_or(groupmask, groupmask, sched_group_cpus(group));
  6293. cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
  6294. printk(KERN_CONT " %s (__cpu_power = %d)", str,
  6295. group->__cpu_power);
  6296. group = group->next;
  6297. } while (group != sd->groups);
  6298. printk(KERN_CONT "\n");
  6299. if (!cpumask_equal(sched_domain_span(sd), groupmask))
  6300. printk(KERN_ERR "ERROR: groups don't span domain->span\n");
  6301. if (sd->parent &&
  6302. !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
  6303. printk(KERN_ERR "ERROR: parent span is not a superset "
  6304. "of domain->span\n");
  6305. return 0;
  6306. }
  6307. static void sched_domain_debug(struct sched_domain *sd, int cpu)
  6308. {
  6309. cpumask_var_t groupmask;
  6310. int level = 0;
  6311. if (!sd) {
  6312. printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
  6313. return;
  6314. }
  6315. printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
  6316. if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
  6317. printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
  6318. return;
  6319. }
  6320. for (;;) {
  6321. if (sched_domain_debug_one(sd, cpu, level, groupmask))
  6322. break;
  6323. level++;
  6324. sd = sd->parent;
  6325. if (!sd)
  6326. break;
  6327. }
  6328. free_cpumask_var(groupmask);
  6329. }
  6330. #else /* !CONFIG_SCHED_DEBUG */
  6331. # define sched_domain_debug(sd, cpu) do { } while (0)
  6332. #endif /* CONFIG_SCHED_DEBUG */
  6333. static int sd_degenerate(struct sched_domain *sd)
  6334. {
  6335. if (cpumask_weight(sched_domain_span(sd)) == 1)
  6336. return 1;
  6337. /* Following flags need at least 2 groups */
  6338. if (sd->flags & (SD_LOAD_BALANCE |
  6339. SD_BALANCE_NEWIDLE |
  6340. SD_BALANCE_FORK |
  6341. SD_BALANCE_EXEC |
  6342. SD_SHARE_CPUPOWER |
  6343. SD_SHARE_PKG_RESOURCES)) {
  6344. if (sd->groups != sd->groups->next)
  6345. return 0;
  6346. }
  6347. /* Following flags don't use groups */
  6348. if (sd->flags & (SD_WAKE_IDLE |
  6349. SD_WAKE_AFFINE |
  6350. SD_WAKE_BALANCE))
  6351. return 0;
  6352. return 1;
  6353. }
  6354. static int
  6355. sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
  6356. {
  6357. unsigned long cflags = sd->flags, pflags = parent->flags;
  6358. if (sd_degenerate(parent))
  6359. return 1;
  6360. if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
  6361. return 0;
  6362. /* Does parent contain flags not in child? */
  6363. /* WAKE_BALANCE is a subset of WAKE_AFFINE */
  6364. if (cflags & SD_WAKE_AFFINE)
  6365. pflags &= ~SD_WAKE_BALANCE;
  6366. /* Flags needing groups don't count if only 1 group in parent */
  6367. if (parent->groups == parent->groups->next) {
  6368. pflags &= ~(SD_LOAD_BALANCE |
  6369. SD_BALANCE_NEWIDLE |
  6370. SD_BALANCE_FORK |
  6371. SD_BALANCE_EXEC |
  6372. SD_SHARE_CPUPOWER |
  6373. SD_SHARE_PKG_RESOURCES);
  6374. if (nr_node_ids == 1)
  6375. pflags &= ~SD_SERIALIZE;
  6376. }
  6377. if (~cflags & pflags)
  6378. return 0;
  6379. return 1;
  6380. }
  6381. static void free_rootdomain(struct root_domain *rd)
  6382. {
  6383. cpupri_cleanup(&rd->cpupri);
  6384. free_cpumask_var(rd->rto_mask);
  6385. free_cpumask_var(rd->online);
  6386. free_cpumask_var(rd->span);
  6387. kfree(rd);
  6388. }
  6389. static void rq_attach_root(struct rq *rq, struct root_domain *rd)
  6390. {
  6391. struct root_domain *old_rd = NULL;
  6392. unsigned long flags;
  6393. spin_lock_irqsave(&rq->lock, flags);
  6394. if (rq->rd) {
  6395. old_rd = rq->rd;
  6396. if (cpumask_test_cpu(rq->cpu, old_rd->online))
  6397. set_rq_offline(rq);
  6398. cpumask_clear_cpu(rq->cpu, old_rd->span);
  6399. /*
  6400. * If we dont want to free the old_rt yet then
  6401. * set old_rd to NULL to skip the freeing later
  6402. * in this function:
  6403. */
  6404. if (!atomic_dec_and_test(&old_rd->refcount))
  6405. old_rd = NULL;
  6406. }
  6407. atomic_inc(&rd->refcount);
  6408. rq->rd = rd;
  6409. cpumask_set_cpu(rq->cpu, rd->span);
  6410. if (cpumask_test_cpu(rq->cpu, cpu_online_mask))
  6411. set_rq_online(rq);
  6412. spin_unlock_irqrestore(&rq->lock, flags);
  6413. if (old_rd)
  6414. free_rootdomain(old_rd);
  6415. }
  6416. static int __init_refok init_rootdomain(struct root_domain *rd, bool bootmem)
  6417. {
  6418. memset(rd, 0, sizeof(*rd));
  6419. if (bootmem) {
  6420. alloc_bootmem_cpumask_var(&def_root_domain.span);
  6421. alloc_bootmem_cpumask_var(&def_root_domain.online);
  6422. alloc_bootmem_cpumask_var(&def_root_domain.rto_mask);
  6423. cpupri_init(&rd->cpupri, true);
  6424. return 0;
  6425. }
  6426. if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
  6427. goto out;
  6428. if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
  6429. goto free_span;
  6430. if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
  6431. goto free_online;
  6432. if (cpupri_init(&rd->cpupri, false) != 0)
  6433. goto free_rto_mask;
  6434. return 0;
  6435. free_rto_mask:
  6436. free_cpumask_var(rd->rto_mask);
  6437. free_online:
  6438. free_cpumask_var(rd->online);
  6439. free_span:
  6440. free_cpumask_var(rd->span);
  6441. out:
  6442. return -ENOMEM;
  6443. }
  6444. static void init_defrootdomain(void)
  6445. {
  6446. init_rootdomain(&def_root_domain, true);
  6447. atomic_set(&def_root_domain.refcount, 1);
  6448. }
  6449. static struct root_domain *alloc_rootdomain(void)
  6450. {
  6451. struct root_domain *rd;
  6452. rd = kmalloc(sizeof(*rd), GFP_KERNEL);
  6453. if (!rd)
  6454. return NULL;
  6455. if (init_rootdomain(rd, false) != 0) {
  6456. kfree(rd);
  6457. return NULL;
  6458. }
  6459. return rd;
  6460. }
  6461. /*
  6462. * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
  6463. * hold the hotplug lock.
  6464. */
  6465. static void
  6466. cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
  6467. {
  6468. struct rq *rq = cpu_rq(cpu);
  6469. struct sched_domain *tmp;
  6470. /* Remove the sched domains which do not contribute to scheduling. */
  6471. for (tmp = sd; tmp; ) {
  6472. struct sched_domain *parent = tmp->parent;
  6473. if (!parent)
  6474. break;
  6475. if (sd_parent_degenerate(tmp, parent)) {
  6476. tmp->parent = parent->parent;
  6477. if (parent->parent)
  6478. parent->parent->child = tmp;
  6479. } else
  6480. tmp = tmp->parent;
  6481. }
  6482. if (sd && sd_degenerate(sd)) {
  6483. sd = sd->parent;
  6484. if (sd)
  6485. sd->child = NULL;
  6486. }
  6487. sched_domain_debug(sd, cpu);
  6488. rq_attach_root(rq, rd);
  6489. rcu_assign_pointer(rq->sd, sd);
  6490. }
  6491. /* cpus with isolated domains */
  6492. static cpumask_var_t cpu_isolated_map;
  6493. /* Setup the mask of cpus configured for isolated domains */
  6494. static int __init isolated_cpu_setup(char *str)
  6495. {
  6496. cpulist_parse(str, cpu_isolated_map);
  6497. return 1;
  6498. }
  6499. __setup("isolcpus=", isolated_cpu_setup);
  6500. /*
  6501. * init_sched_build_groups takes the cpumask we wish to span, and a pointer
  6502. * to a function which identifies what group(along with sched group) a CPU
  6503. * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
  6504. * (due to the fact that we keep track of groups covered with a struct cpumask).
  6505. *
  6506. * init_sched_build_groups will build a circular linked list of the groups
  6507. * covered by the given span, and will set each group's ->cpumask correctly,
  6508. * and ->cpu_power to 0.
  6509. */
  6510. static void
  6511. init_sched_build_groups(const struct cpumask *span,
  6512. const struct cpumask *cpu_map,
  6513. int (*group_fn)(int cpu, const struct cpumask *cpu_map,
  6514. struct sched_group **sg,
  6515. struct cpumask *tmpmask),
  6516. struct cpumask *covered, struct cpumask *tmpmask)
  6517. {
  6518. struct sched_group *first = NULL, *last = NULL;
  6519. int i;
  6520. cpumask_clear(covered);
  6521. for_each_cpu(i, span) {
  6522. struct sched_group *sg;
  6523. int group = group_fn(i, cpu_map, &sg, tmpmask);
  6524. int j;
  6525. if (cpumask_test_cpu(i, covered))
  6526. continue;
  6527. cpumask_clear(sched_group_cpus(sg));
  6528. sg->__cpu_power = 0;
  6529. for_each_cpu(j, span) {
  6530. if (group_fn(j, cpu_map, NULL, tmpmask) != group)
  6531. continue;
  6532. cpumask_set_cpu(j, covered);
  6533. cpumask_set_cpu(j, sched_group_cpus(sg));
  6534. }
  6535. if (!first)
  6536. first = sg;
  6537. if (last)
  6538. last->next = sg;
  6539. last = sg;
  6540. }
  6541. last->next = first;
  6542. }
  6543. #define SD_NODES_PER_DOMAIN 16
  6544. #ifdef CONFIG_NUMA
  6545. /**
  6546. * find_next_best_node - find the next node to include in a sched_domain
  6547. * @node: node whose sched_domain we're building
  6548. * @used_nodes: nodes already in the sched_domain
  6549. *
  6550. * Find the next node to include in a given scheduling domain. Simply
  6551. * finds the closest node not already in the @used_nodes map.
  6552. *
  6553. * Should use nodemask_t.
  6554. */
  6555. static int find_next_best_node(int node, nodemask_t *used_nodes)
  6556. {
  6557. int i, n, val, min_val, best_node = 0;
  6558. min_val = INT_MAX;
  6559. for (i = 0; i < nr_node_ids; i++) {
  6560. /* Start at @node */
  6561. n = (node + i) % nr_node_ids;
  6562. if (!nr_cpus_node(n))
  6563. continue;
  6564. /* Skip already used nodes */
  6565. if (node_isset(n, *used_nodes))
  6566. continue;
  6567. /* Simple min distance search */
  6568. val = node_distance(node, n);
  6569. if (val < min_val) {
  6570. min_val = val;
  6571. best_node = n;
  6572. }
  6573. }
  6574. node_set(best_node, *used_nodes);
  6575. return best_node;
  6576. }
  6577. /**
  6578. * sched_domain_node_span - get a cpumask for a node's sched_domain
  6579. * @node: node whose cpumask we're constructing
  6580. * @span: resulting cpumask
  6581. *
  6582. * Given a node, construct a good cpumask for its sched_domain to span. It
  6583. * should be one that prevents unnecessary balancing, but also spreads tasks
  6584. * out optimally.
  6585. */
  6586. static void sched_domain_node_span(int node, struct cpumask *span)
  6587. {
  6588. nodemask_t used_nodes;
  6589. int i;
  6590. cpumask_clear(span);
  6591. nodes_clear(used_nodes);
  6592. cpumask_or(span, span, cpumask_of_node(node));
  6593. node_set(node, used_nodes);
  6594. for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
  6595. int next_node = find_next_best_node(node, &used_nodes);
  6596. cpumask_or(span, span, cpumask_of_node(next_node));
  6597. }
  6598. }
  6599. #endif /* CONFIG_NUMA */
  6600. int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
  6601. /*
  6602. * The cpus mask in sched_group and sched_domain hangs off the end.
  6603. * FIXME: use cpumask_var_t or dynamic percpu alloc to avoid wasting space
  6604. * for nr_cpu_ids < CONFIG_NR_CPUS.
  6605. */
  6606. struct static_sched_group {
  6607. struct sched_group sg;
  6608. DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
  6609. };
  6610. struct static_sched_domain {
  6611. struct sched_domain sd;
  6612. DECLARE_BITMAP(span, CONFIG_NR_CPUS);
  6613. };
  6614. /*
  6615. * SMT sched-domains:
  6616. */
  6617. #ifdef CONFIG_SCHED_SMT
  6618. static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
  6619. static DEFINE_PER_CPU(struct static_sched_group, sched_group_cpus);
  6620. static int
  6621. cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
  6622. struct sched_group **sg, struct cpumask *unused)
  6623. {
  6624. if (sg)
  6625. *sg = &per_cpu(sched_group_cpus, cpu).sg;
  6626. return cpu;
  6627. }
  6628. #endif /* CONFIG_SCHED_SMT */
  6629. /*
  6630. * multi-core sched-domains:
  6631. */
  6632. #ifdef CONFIG_SCHED_MC
  6633. static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
  6634. static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
  6635. #endif /* CONFIG_SCHED_MC */
  6636. #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
  6637. static int
  6638. cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
  6639. struct sched_group **sg, struct cpumask *mask)
  6640. {
  6641. int group;
  6642. cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
  6643. group = cpumask_first(mask);
  6644. if (sg)
  6645. *sg = &per_cpu(sched_group_core, group).sg;
  6646. return group;
  6647. }
  6648. #elif defined(CONFIG_SCHED_MC)
  6649. static int
  6650. cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
  6651. struct sched_group **sg, struct cpumask *unused)
  6652. {
  6653. if (sg)
  6654. *sg = &per_cpu(sched_group_core, cpu).sg;
  6655. return cpu;
  6656. }
  6657. #endif
  6658. static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
  6659. static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
  6660. static int
  6661. cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
  6662. struct sched_group **sg, struct cpumask *mask)
  6663. {
  6664. int group;
  6665. #ifdef CONFIG_SCHED_MC
  6666. cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
  6667. group = cpumask_first(mask);
  6668. #elif defined(CONFIG_SCHED_SMT)
  6669. cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
  6670. group = cpumask_first(mask);
  6671. #else
  6672. group = cpu;
  6673. #endif
  6674. if (sg)
  6675. *sg = &per_cpu(sched_group_phys, group).sg;
  6676. return group;
  6677. }
  6678. #ifdef CONFIG_NUMA
  6679. /*
  6680. * The init_sched_build_groups can't handle what we want to do with node
  6681. * groups, so roll our own. Now each node has its own list of groups which
  6682. * gets dynamically allocated.
  6683. */
  6684. static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
  6685. static struct sched_group ***sched_group_nodes_bycpu;
  6686. static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
  6687. static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
  6688. static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
  6689. struct sched_group **sg,
  6690. struct cpumask *nodemask)
  6691. {
  6692. int group;
  6693. cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
  6694. group = cpumask_first(nodemask);
  6695. if (sg)
  6696. *sg = &per_cpu(sched_group_allnodes, group).sg;
  6697. return group;
  6698. }
  6699. static void init_numa_sched_groups_power(struct sched_group *group_head)
  6700. {
  6701. struct sched_group *sg = group_head;
  6702. int j;
  6703. if (!sg)
  6704. return;
  6705. do {
  6706. for_each_cpu(j, sched_group_cpus(sg)) {
  6707. struct sched_domain *sd;
  6708. sd = &per_cpu(phys_domains, j).sd;
  6709. if (j != cpumask_first(sched_group_cpus(sd->groups))) {
  6710. /*
  6711. * Only add "power" once for each
  6712. * physical package.
  6713. */
  6714. continue;
  6715. }
  6716. sg_inc_cpu_power(sg, sd->groups->__cpu_power);
  6717. }
  6718. sg = sg->next;
  6719. } while (sg != group_head);
  6720. }
  6721. #endif /* CONFIG_NUMA */
  6722. #ifdef CONFIG_NUMA
  6723. /* Free memory allocated for various sched_group structures */
  6724. static void free_sched_groups(const struct cpumask *cpu_map,
  6725. struct cpumask *nodemask)
  6726. {
  6727. int cpu, i;
  6728. for_each_cpu(cpu, cpu_map) {
  6729. struct sched_group **sched_group_nodes
  6730. = sched_group_nodes_bycpu[cpu];
  6731. if (!sched_group_nodes)
  6732. continue;
  6733. for (i = 0; i < nr_node_ids; i++) {
  6734. struct sched_group *oldsg, *sg = sched_group_nodes[i];
  6735. cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
  6736. if (cpumask_empty(nodemask))
  6737. continue;
  6738. if (sg == NULL)
  6739. continue;
  6740. sg = sg->next;
  6741. next_sg:
  6742. oldsg = sg;
  6743. sg = sg->next;
  6744. kfree(oldsg);
  6745. if (oldsg != sched_group_nodes[i])
  6746. goto next_sg;
  6747. }
  6748. kfree(sched_group_nodes);
  6749. sched_group_nodes_bycpu[cpu] = NULL;
  6750. }
  6751. }
  6752. #else /* !CONFIG_NUMA */
  6753. static void free_sched_groups(const struct cpumask *cpu_map,
  6754. struct cpumask *nodemask)
  6755. {
  6756. }
  6757. #endif /* CONFIG_NUMA */
  6758. /*
  6759. * Initialize sched groups cpu_power.
  6760. *
  6761. * cpu_power indicates the capacity of sched group, which is used while
  6762. * distributing the load between different sched groups in a sched domain.
  6763. * Typically cpu_power for all the groups in a sched domain will be same unless
  6764. * there are asymmetries in the topology. If there are asymmetries, group
  6765. * having more cpu_power will pickup more load compared to the group having
  6766. * less cpu_power.
  6767. *
  6768. * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
  6769. * the maximum number of tasks a group can handle in the presence of other idle
  6770. * or lightly loaded groups in the same sched domain.
  6771. */
  6772. static void init_sched_groups_power(int cpu, struct sched_domain *sd)
  6773. {
  6774. struct sched_domain *child;
  6775. struct sched_group *group;
  6776. WARN_ON(!sd || !sd->groups);
  6777. if (cpu != cpumask_first(sched_group_cpus(sd->groups)))
  6778. return;
  6779. child = sd->child;
  6780. sd->groups->__cpu_power = 0;
  6781. /*
  6782. * For perf policy, if the groups in child domain share resources
  6783. * (for example cores sharing some portions of the cache hierarchy
  6784. * or SMT), then set this domain groups cpu_power such that each group
  6785. * can handle only one task, when there are other idle groups in the
  6786. * same sched domain.
  6787. */
  6788. if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
  6789. (child->flags &
  6790. (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
  6791. sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
  6792. return;
  6793. }
  6794. /*
  6795. * add cpu_power of each child group to this groups cpu_power
  6796. */
  6797. group = child->groups;
  6798. do {
  6799. sg_inc_cpu_power(sd->groups, group->__cpu_power);
  6800. group = group->next;
  6801. } while (group != child->groups);
  6802. }
  6803. /*
  6804. * Initializers for schedule domains
  6805. * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
  6806. */
  6807. #ifdef CONFIG_SCHED_DEBUG
  6808. # define SD_INIT_NAME(sd, type) sd->name = #type
  6809. #else
  6810. # define SD_INIT_NAME(sd, type) do { } while (0)
  6811. #endif
  6812. #define SD_INIT(sd, type) sd_init_##type(sd)
  6813. #define SD_INIT_FUNC(type) \
  6814. static noinline void sd_init_##type(struct sched_domain *sd) \
  6815. { \
  6816. memset(sd, 0, sizeof(*sd)); \
  6817. *sd = SD_##type##_INIT; \
  6818. sd->level = SD_LV_##type; \
  6819. SD_INIT_NAME(sd, type); \
  6820. }
  6821. SD_INIT_FUNC(CPU)
  6822. #ifdef CONFIG_NUMA
  6823. SD_INIT_FUNC(ALLNODES)
  6824. SD_INIT_FUNC(NODE)
  6825. #endif
  6826. #ifdef CONFIG_SCHED_SMT
  6827. SD_INIT_FUNC(SIBLING)
  6828. #endif
  6829. #ifdef CONFIG_SCHED_MC
  6830. SD_INIT_FUNC(MC)
  6831. #endif
  6832. static int default_relax_domain_level = -1;
  6833. static int __init setup_relax_domain_level(char *str)
  6834. {
  6835. unsigned long val;
  6836. val = simple_strtoul(str, NULL, 0);
  6837. if (val < SD_LV_MAX)
  6838. default_relax_domain_level = val;
  6839. return 1;
  6840. }
  6841. __setup("relax_domain_level=", setup_relax_domain_level);
  6842. static void set_domain_attribute(struct sched_domain *sd,
  6843. struct sched_domain_attr *attr)
  6844. {
  6845. int request;
  6846. if (!attr || attr->relax_domain_level < 0) {
  6847. if (default_relax_domain_level < 0)
  6848. return;
  6849. else
  6850. request = default_relax_domain_level;
  6851. } else
  6852. request = attr->relax_domain_level;
  6853. if (request < sd->level) {
  6854. /* turn off idle balance on this domain */
  6855. sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
  6856. } else {
  6857. /* turn on idle balance on this domain */
  6858. sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
  6859. }
  6860. }
  6861. /*
  6862. * Build sched domains for a given set of cpus and attach the sched domains
  6863. * to the individual cpus
  6864. */
  6865. static int __build_sched_domains(const struct cpumask *cpu_map,
  6866. struct sched_domain_attr *attr)
  6867. {
  6868. int i, err = -ENOMEM;
  6869. struct root_domain *rd;
  6870. cpumask_var_t nodemask, this_sibling_map, this_core_map, send_covered,
  6871. tmpmask;
  6872. #ifdef CONFIG_NUMA
  6873. cpumask_var_t domainspan, covered, notcovered;
  6874. struct sched_group **sched_group_nodes = NULL;
  6875. int sd_allnodes = 0;
  6876. if (!alloc_cpumask_var(&domainspan, GFP_KERNEL))
  6877. goto out;
  6878. if (!alloc_cpumask_var(&covered, GFP_KERNEL))
  6879. goto free_domainspan;
  6880. if (!alloc_cpumask_var(&notcovered, GFP_KERNEL))
  6881. goto free_covered;
  6882. #endif
  6883. if (!alloc_cpumask_var(&nodemask, GFP_KERNEL))
  6884. goto free_notcovered;
  6885. if (!alloc_cpumask_var(&this_sibling_map, GFP_KERNEL))
  6886. goto free_nodemask;
  6887. if (!alloc_cpumask_var(&this_core_map, GFP_KERNEL))
  6888. goto free_this_sibling_map;
  6889. if (!alloc_cpumask_var(&send_covered, GFP_KERNEL))
  6890. goto free_this_core_map;
  6891. if (!alloc_cpumask_var(&tmpmask, GFP_KERNEL))
  6892. goto free_send_covered;
  6893. #ifdef CONFIG_NUMA
  6894. /*
  6895. * Allocate the per-node list of sched groups
  6896. */
  6897. sched_group_nodes = kcalloc(nr_node_ids, sizeof(struct sched_group *),
  6898. GFP_KERNEL);
  6899. if (!sched_group_nodes) {
  6900. printk(KERN_WARNING "Can not alloc sched group node list\n");
  6901. goto free_tmpmask;
  6902. }
  6903. #endif
  6904. rd = alloc_rootdomain();
  6905. if (!rd) {
  6906. printk(KERN_WARNING "Cannot alloc root domain\n");
  6907. goto free_sched_groups;
  6908. }
  6909. #ifdef CONFIG_NUMA
  6910. sched_group_nodes_bycpu[cpumask_first(cpu_map)] = sched_group_nodes;
  6911. #endif
  6912. /*
  6913. * Set up domains for cpus specified by the cpu_map.
  6914. */
  6915. for_each_cpu(i, cpu_map) {
  6916. struct sched_domain *sd = NULL, *p;
  6917. cpumask_and(nodemask, cpumask_of_node(cpu_to_node(i)), cpu_map);
  6918. #ifdef CONFIG_NUMA
  6919. if (cpumask_weight(cpu_map) >
  6920. SD_NODES_PER_DOMAIN*cpumask_weight(nodemask)) {
  6921. sd = &per_cpu(allnodes_domains, i).sd;
  6922. SD_INIT(sd, ALLNODES);
  6923. set_domain_attribute(sd, attr);
  6924. cpumask_copy(sched_domain_span(sd), cpu_map);
  6925. cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
  6926. p = sd;
  6927. sd_allnodes = 1;
  6928. } else
  6929. p = NULL;
  6930. sd = &per_cpu(node_domains, i).sd;
  6931. SD_INIT(sd, NODE);
  6932. set_domain_attribute(sd, attr);
  6933. sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
  6934. sd->parent = p;
  6935. if (p)
  6936. p->child = sd;
  6937. cpumask_and(sched_domain_span(sd),
  6938. sched_domain_span(sd), cpu_map);
  6939. #endif
  6940. p = sd;
  6941. sd = &per_cpu(phys_domains, i).sd;
  6942. SD_INIT(sd, CPU);
  6943. set_domain_attribute(sd, attr);
  6944. cpumask_copy(sched_domain_span(sd), nodemask);
  6945. sd->parent = p;
  6946. if (p)
  6947. p->child = sd;
  6948. cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
  6949. #ifdef CONFIG_SCHED_MC
  6950. p = sd;
  6951. sd = &per_cpu(core_domains, i).sd;
  6952. SD_INIT(sd, MC);
  6953. set_domain_attribute(sd, attr);
  6954. cpumask_and(sched_domain_span(sd), cpu_map,
  6955. cpu_coregroup_mask(i));
  6956. sd->parent = p;
  6957. p->child = sd;
  6958. cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
  6959. #endif
  6960. #ifdef CONFIG_SCHED_SMT
  6961. p = sd;
  6962. sd = &per_cpu(cpu_domains, i).sd;
  6963. SD_INIT(sd, SIBLING);
  6964. set_domain_attribute(sd, attr);
  6965. cpumask_and(sched_domain_span(sd),
  6966. topology_thread_cpumask(i), cpu_map);
  6967. sd->parent = p;
  6968. p->child = sd;
  6969. cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
  6970. #endif
  6971. }
  6972. #ifdef CONFIG_SCHED_SMT
  6973. /* Set up CPU (sibling) groups */
  6974. for_each_cpu(i, cpu_map) {
  6975. cpumask_and(this_sibling_map,
  6976. topology_thread_cpumask(i), cpu_map);
  6977. if (i != cpumask_first(this_sibling_map))
  6978. continue;
  6979. init_sched_build_groups(this_sibling_map, cpu_map,
  6980. &cpu_to_cpu_group,
  6981. send_covered, tmpmask);
  6982. }
  6983. #endif
  6984. #ifdef CONFIG_SCHED_MC
  6985. /* Set up multi-core groups */
  6986. for_each_cpu(i, cpu_map) {
  6987. cpumask_and(this_core_map, cpu_coregroup_mask(i), cpu_map);
  6988. if (i != cpumask_first(this_core_map))
  6989. continue;
  6990. init_sched_build_groups(this_core_map, cpu_map,
  6991. &cpu_to_core_group,
  6992. send_covered, tmpmask);
  6993. }
  6994. #endif
  6995. /* Set up physical groups */
  6996. for (i = 0; i < nr_node_ids; i++) {
  6997. cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
  6998. if (cpumask_empty(nodemask))
  6999. continue;
  7000. init_sched_build_groups(nodemask, cpu_map,
  7001. &cpu_to_phys_group,
  7002. send_covered, tmpmask);
  7003. }
  7004. #ifdef CONFIG_NUMA
  7005. /* Set up node groups */
  7006. if (sd_allnodes) {
  7007. init_sched_build_groups(cpu_map, cpu_map,
  7008. &cpu_to_allnodes_group,
  7009. send_covered, tmpmask);
  7010. }
  7011. for (i = 0; i < nr_node_ids; i++) {
  7012. /* Set up node groups */
  7013. struct sched_group *sg, *prev;
  7014. int j;
  7015. cpumask_clear(covered);
  7016. cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
  7017. if (cpumask_empty(nodemask)) {
  7018. sched_group_nodes[i] = NULL;
  7019. continue;
  7020. }
  7021. sched_domain_node_span(i, domainspan);
  7022. cpumask_and(domainspan, domainspan, cpu_map);
  7023. sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
  7024. GFP_KERNEL, i);
  7025. if (!sg) {
  7026. printk(KERN_WARNING "Can not alloc domain group for "
  7027. "node %d\n", i);
  7028. goto error;
  7029. }
  7030. sched_group_nodes[i] = sg;
  7031. for_each_cpu(j, nodemask) {
  7032. struct sched_domain *sd;
  7033. sd = &per_cpu(node_domains, j).sd;
  7034. sd->groups = sg;
  7035. }
  7036. sg->__cpu_power = 0;
  7037. cpumask_copy(sched_group_cpus(sg), nodemask);
  7038. sg->next = sg;
  7039. cpumask_or(covered, covered, nodemask);
  7040. prev = sg;
  7041. for (j = 0; j < nr_node_ids; j++) {
  7042. int n = (i + j) % nr_node_ids;
  7043. cpumask_complement(notcovered, covered);
  7044. cpumask_and(tmpmask, notcovered, cpu_map);
  7045. cpumask_and(tmpmask, tmpmask, domainspan);
  7046. if (cpumask_empty(tmpmask))
  7047. break;
  7048. cpumask_and(tmpmask, tmpmask, cpumask_of_node(n));
  7049. if (cpumask_empty(tmpmask))
  7050. continue;
  7051. sg = kmalloc_node(sizeof(struct sched_group) +
  7052. cpumask_size(),
  7053. GFP_KERNEL, i);
  7054. if (!sg) {
  7055. printk(KERN_WARNING
  7056. "Can not alloc domain group for node %d\n", j);
  7057. goto error;
  7058. }
  7059. sg->__cpu_power = 0;
  7060. cpumask_copy(sched_group_cpus(sg), tmpmask);
  7061. sg->next = prev->next;
  7062. cpumask_or(covered, covered, tmpmask);
  7063. prev->next = sg;
  7064. prev = sg;
  7065. }
  7066. }
  7067. #endif
  7068. /* Calculate CPU power for physical packages and nodes */
  7069. #ifdef CONFIG_SCHED_SMT
  7070. for_each_cpu(i, cpu_map) {
  7071. struct sched_domain *sd = &per_cpu(cpu_domains, i).sd;
  7072. init_sched_groups_power(i, sd);
  7073. }
  7074. #endif
  7075. #ifdef CONFIG_SCHED_MC
  7076. for_each_cpu(i, cpu_map) {
  7077. struct sched_domain *sd = &per_cpu(core_domains, i).sd;
  7078. init_sched_groups_power(i, sd);
  7079. }
  7080. #endif
  7081. for_each_cpu(i, cpu_map) {
  7082. struct sched_domain *sd = &per_cpu(phys_domains, i).sd;
  7083. init_sched_groups_power(i, sd);
  7084. }
  7085. #ifdef CONFIG_NUMA
  7086. for (i = 0; i < nr_node_ids; i++)
  7087. init_numa_sched_groups_power(sched_group_nodes[i]);
  7088. if (sd_allnodes) {
  7089. struct sched_group *sg;
  7090. cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
  7091. tmpmask);
  7092. init_numa_sched_groups_power(sg);
  7093. }
  7094. #endif
  7095. /* Attach the domains */
  7096. for_each_cpu(i, cpu_map) {
  7097. struct sched_domain *sd;
  7098. #ifdef CONFIG_SCHED_SMT
  7099. sd = &per_cpu(cpu_domains, i).sd;
  7100. #elif defined(CONFIG_SCHED_MC)
  7101. sd = &per_cpu(core_domains, i).sd;
  7102. #else
  7103. sd = &per_cpu(phys_domains, i).sd;
  7104. #endif
  7105. cpu_attach_domain(sd, rd, i);
  7106. }
  7107. err = 0;
  7108. free_tmpmask:
  7109. free_cpumask_var(tmpmask);
  7110. free_send_covered:
  7111. free_cpumask_var(send_covered);
  7112. free_this_core_map:
  7113. free_cpumask_var(this_core_map);
  7114. free_this_sibling_map:
  7115. free_cpumask_var(this_sibling_map);
  7116. free_nodemask:
  7117. free_cpumask_var(nodemask);
  7118. free_notcovered:
  7119. #ifdef CONFIG_NUMA
  7120. free_cpumask_var(notcovered);
  7121. free_covered:
  7122. free_cpumask_var(covered);
  7123. free_domainspan:
  7124. free_cpumask_var(domainspan);
  7125. out:
  7126. #endif
  7127. return err;
  7128. free_sched_groups:
  7129. #ifdef CONFIG_NUMA
  7130. kfree(sched_group_nodes);
  7131. #endif
  7132. goto free_tmpmask;
  7133. #ifdef CONFIG_NUMA
  7134. error:
  7135. free_sched_groups(cpu_map, tmpmask);
  7136. free_rootdomain(rd);
  7137. goto free_tmpmask;
  7138. #endif
  7139. }
  7140. static int build_sched_domains(const struct cpumask *cpu_map)
  7141. {
  7142. return __build_sched_domains(cpu_map, NULL);
  7143. }
  7144. static struct cpumask *doms_cur; /* current sched domains */
  7145. static int ndoms_cur; /* number of sched domains in 'doms_cur' */
  7146. static struct sched_domain_attr *dattr_cur;
  7147. /* attribues of custom domains in 'doms_cur' */
  7148. /*
  7149. * Special case: If a kmalloc of a doms_cur partition (array of
  7150. * cpumask) fails, then fallback to a single sched domain,
  7151. * as determined by the single cpumask fallback_doms.
  7152. */
  7153. static cpumask_var_t fallback_doms;
  7154. /*
  7155. * arch_update_cpu_topology lets virtualized architectures update the
  7156. * cpu core maps. It is supposed to return 1 if the topology changed
  7157. * or 0 if it stayed the same.
  7158. */
  7159. int __attribute__((weak)) arch_update_cpu_topology(void)
  7160. {
  7161. return 0;
  7162. }
  7163. /*
  7164. * Set up scheduler domains and groups. Callers must hold the hotplug lock.
  7165. * For now this just excludes isolated cpus, but could be used to
  7166. * exclude other special cases in the future.
  7167. */
  7168. static int arch_init_sched_domains(const struct cpumask *cpu_map)
  7169. {
  7170. int err;
  7171. arch_update_cpu_topology();
  7172. ndoms_cur = 1;
  7173. doms_cur = kmalloc(cpumask_size(), GFP_KERNEL);
  7174. if (!doms_cur)
  7175. doms_cur = fallback_doms;
  7176. cpumask_andnot(doms_cur, cpu_map, cpu_isolated_map);
  7177. dattr_cur = NULL;
  7178. err = build_sched_domains(doms_cur);
  7179. register_sched_domain_sysctl();
  7180. return err;
  7181. }
  7182. static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
  7183. struct cpumask *tmpmask)
  7184. {
  7185. free_sched_groups(cpu_map, tmpmask);
  7186. }
  7187. /*
  7188. * Detach sched domains from a group of cpus specified in cpu_map
  7189. * These cpus will now be attached to the NULL domain
  7190. */
  7191. static void detach_destroy_domains(const struct cpumask *cpu_map)
  7192. {
  7193. /* Save because hotplug lock held. */
  7194. static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
  7195. int i;
  7196. for_each_cpu(i, cpu_map)
  7197. cpu_attach_domain(NULL, &def_root_domain, i);
  7198. synchronize_sched();
  7199. arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
  7200. }
  7201. /* handle null as "default" */
  7202. static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
  7203. struct sched_domain_attr *new, int idx_new)
  7204. {
  7205. struct sched_domain_attr tmp;
  7206. /* fast path */
  7207. if (!new && !cur)
  7208. return 1;
  7209. tmp = SD_ATTR_INIT;
  7210. return !memcmp(cur ? (cur + idx_cur) : &tmp,
  7211. new ? (new + idx_new) : &tmp,
  7212. sizeof(struct sched_domain_attr));
  7213. }
  7214. /*
  7215. * Partition sched domains as specified by the 'ndoms_new'
  7216. * cpumasks in the array doms_new[] of cpumasks. This compares
  7217. * doms_new[] to the current sched domain partitioning, doms_cur[].
  7218. * It destroys each deleted domain and builds each new domain.
  7219. *
  7220. * 'doms_new' is an array of cpumask's of length 'ndoms_new'.
  7221. * The masks don't intersect (don't overlap.) We should setup one
  7222. * sched domain for each mask. CPUs not in any of the cpumasks will
  7223. * not be load balanced. If the same cpumask appears both in the
  7224. * current 'doms_cur' domains and in the new 'doms_new', we can leave
  7225. * it as it is.
  7226. *
  7227. * The passed in 'doms_new' should be kmalloc'd. This routine takes
  7228. * ownership of it and will kfree it when done with it. If the caller
  7229. * failed the kmalloc call, then it can pass in doms_new == NULL &&
  7230. * ndoms_new == 1, and partition_sched_domains() will fallback to
  7231. * the single partition 'fallback_doms', it also forces the domains
  7232. * to be rebuilt.
  7233. *
  7234. * If doms_new == NULL it will be replaced with cpu_online_mask.
  7235. * ndoms_new == 0 is a special case for destroying existing domains,
  7236. * and it will not create the default domain.
  7237. *
  7238. * Call with hotplug lock held
  7239. */
  7240. /* FIXME: Change to struct cpumask *doms_new[] */
  7241. void partition_sched_domains(int ndoms_new, struct cpumask *doms_new,
  7242. struct sched_domain_attr *dattr_new)
  7243. {
  7244. int i, j, n;
  7245. int new_topology;
  7246. mutex_lock(&sched_domains_mutex);
  7247. /* always unregister in case we don't destroy any domains */
  7248. unregister_sched_domain_sysctl();
  7249. /* Let architecture update cpu core mappings. */
  7250. new_topology = arch_update_cpu_topology();
  7251. n = doms_new ? ndoms_new : 0;
  7252. /* Destroy deleted domains */
  7253. for (i = 0; i < ndoms_cur; i++) {
  7254. for (j = 0; j < n && !new_topology; j++) {
  7255. if (cpumask_equal(&doms_cur[i], &doms_new[j])
  7256. && dattrs_equal(dattr_cur, i, dattr_new, j))
  7257. goto match1;
  7258. }
  7259. /* no match - a current sched domain not in new doms_new[] */
  7260. detach_destroy_domains(doms_cur + i);
  7261. match1:
  7262. ;
  7263. }
  7264. if (doms_new == NULL) {
  7265. ndoms_cur = 0;
  7266. doms_new = fallback_doms;
  7267. cpumask_andnot(&doms_new[0], cpu_online_mask, cpu_isolated_map);
  7268. WARN_ON_ONCE(dattr_new);
  7269. }
  7270. /* Build new domains */
  7271. for (i = 0; i < ndoms_new; i++) {
  7272. for (j = 0; j < ndoms_cur && !new_topology; j++) {
  7273. if (cpumask_equal(&doms_new[i], &doms_cur[j])
  7274. && dattrs_equal(dattr_new, i, dattr_cur, j))
  7275. goto match2;
  7276. }
  7277. /* no match - add a new doms_new */
  7278. __build_sched_domains(doms_new + i,
  7279. dattr_new ? dattr_new + i : NULL);
  7280. match2:
  7281. ;
  7282. }
  7283. /* Remember the new sched domains */
  7284. if (doms_cur != fallback_doms)
  7285. kfree(doms_cur);
  7286. kfree(dattr_cur); /* kfree(NULL) is safe */
  7287. doms_cur = doms_new;
  7288. dattr_cur = dattr_new;
  7289. ndoms_cur = ndoms_new;
  7290. register_sched_domain_sysctl();
  7291. mutex_unlock(&sched_domains_mutex);
  7292. }
  7293. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  7294. static void arch_reinit_sched_domains(void)
  7295. {
  7296. get_online_cpus();
  7297. /* Destroy domains first to force the rebuild */
  7298. partition_sched_domains(0, NULL, NULL);
  7299. rebuild_sched_domains();
  7300. put_online_cpus();
  7301. }
  7302. static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
  7303. {
  7304. unsigned int level = 0;
  7305. if (sscanf(buf, "%u", &level) != 1)
  7306. return -EINVAL;
  7307. /*
  7308. * level is always be positive so don't check for
  7309. * level < POWERSAVINGS_BALANCE_NONE which is 0
  7310. * What happens on 0 or 1 byte write,
  7311. * need to check for count as well?
  7312. */
  7313. if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
  7314. return -EINVAL;
  7315. if (smt)
  7316. sched_smt_power_savings = level;
  7317. else
  7318. sched_mc_power_savings = level;
  7319. arch_reinit_sched_domains();
  7320. return count;
  7321. }
  7322. #ifdef CONFIG_SCHED_MC
  7323. static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
  7324. char *page)
  7325. {
  7326. return sprintf(page, "%u\n", sched_mc_power_savings);
  7327. }
  7328. static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
  7329. const char *buf, size_t count)
  7330. {
  7331. return sched_power_savings_store(buf, count, 0);
  7332. }
  7333. static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
  7334. sched_mc_power_savings_show,
  7335. sched_mc_power_savings_store);
  7336. #endif
  7337. #ifdef CONFIG_SCHED_SMT
  7338. static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
  7339. char *page)
  7340. {
  7341. return sprintf(page, "%u\n", sched_smt_power_savings);
  7342. }
  7343. static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
  7344. const char *buf, size_t count)
  7345. {
  7346. return sched_power_savings_store(buf, count, 1);
  7347. }
  7348. static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
  7349. sched_smt_power_savings_show,
  7350. sched_smt_power_savings_store);
  7351. #endif
  7352. int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
  7353. {
  7354. int err = 0;
  7355. #ifdef CONFIG_SCHED_SMT
  7356. if (smt_capable())
  7357. err = sysfs_create_file(&cls->kset.kobj,
  7358. &attr_sched_smt_power_savings.attr);
  7359. #endif
  7360. #ifdef CONFIG_SCHED_MC
  7361. if (!err && mc_capable())
  7362. err = sysfs_create_file(&cls->kset.kobj,
  7363. &attr_sched_mc_power_savings.attr);
  7364. #endif
  7365. return err;
  7366. }
  7367. #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
  7368. #ifndef CONFIG_CPUSETS
  7369. /*
  7370. * Add online and remove offline CPUs from the scheduler domains.
  7371. * When cpusets are enabled they take over this function.
  7372. */
  7373. static int update_sched_domains(struct notifier_block *nfb,
  7374. unsigned long action, void *hcpu)
  7375. {
  7376. switch (action) {
  7377. case CPU_ONLINE:
  7378. case CPU_ONLINE_FROZEN:
  7379. case CPU_DEAD:
  7380. case CPU_DEAD_FROZEN:
  7381. partition_sched_domains(1, NULL, NULL);
  7382. return NOTIFY_OK;
  7383. default:
  7384. return NOTIFY_DONE;
  7385. }
  7386. }
  7387. #endif
  7388. static int update_runtime(struct notifier_block *nfb,
  7389. unsigned long action, void *hcpu)
  7390. {
  7391. int cpu = (int)(long)hcpu;
  7392. switch (action) {
  7393. case CPU_DOWN_PREPARE:
  7394. case CPU_DOWN_PREPARE_FROZEN:
  7395. disable_runtime(cpu_rq(cpu));
  7396. return NOTIFY_OK;
  7397. case CPU_DOWN_FAILED:
  7398. case CPU_DOWN_FAILED_FROZEN:
  7399. case CPU_ONLINE:
  7400. case CPU_ONLINE_FROZEN:
  7401. enable_runtime(cpu_rq(cpu));
  7402. return NOTIFY_OK;
  7403. default:
  7404. return NOTIFY_DONE;
  7405. }
  7406. }
  7407. void __init sched_init_smp(void)
  7408. {
  7409. cpumask_var_t non_isolated_cpus;
  7410. alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
  7411. #if defined(CONFIG_NUMA)
  7412. sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
  7413. GFP_KERNEL);
  7414. BUG_ON(sched_group_nodes_bycpu == NULL);
  7415. #endif
  7416. get_online_cpus();
  7417. mutex_lock(&sched_domains_mutex);
  7418. arch_init_sched_domains(cpu_online_mask);
  7419. cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
  7420. if (cpumask_empty(non_isolated_cpus))
  7421. cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
  7422. mutex_unlock(&sched_domains_mutex);
  7423. put_online_cpus();
  7424. #ifndef CONFIG_CPUSETS
  7425. /* XXX: Theoretical race here - CPU may be hotplugged now */
  7426. hotcpu_notifier(update_sched_domains, 0);
  7427. #endif
  7428. /* RT runtime code needs to handle some hotplug events */
  7429. hotcpu_notifier(update_runtime, 0);
  7430. init_hrtick();
  7431. /* Move init over to a non-isolated CPU */
  7432. if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
  7433. BUG();
  7434. sched_init_granularity();
  7435. free_cpumask_var(non_isolated_cpus);
  7436. alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
  7437. init_sched_rt_class();
  7438. }
  7439. #else
  7440. void __init sched_init_smp(void)
  7441. {
  7442. sched_init_granularity();
  7443. }
  7444. #endif /* CONFIG_SMP */
  7445. int in_sched_functions(unsigned long addr)
  7446. {
  7447. return in_lock_functions(addr) ||
  7448. (addr >= (unsigned long)__sched_text_start
  7449. && addr < (unsigned long)__sched_text_end);
  7450. }
  7451. static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
  7452. {
  7453. cfs_rq->tasks_timeline = RB_ROOT;
  7454. INIT_LIST_HEAD(&cfs_rq->tasks);
  7455. #ifdef CONFIG_FAIR_GROUP_SCHED
  7456. cfs_rq->rq = rq;
  7457. #endif
  7458. cfs_rq->min_vruntime = (u64)(-(1LL << 20));
  7459. }
  7460. static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
  7461. {
  7462. struct rt_prio_array *array;
  7463. int i;
  7464. array = &rt_rq->active;
  7465. for (i = 0; i < MAX_RT_PRIO; i++) {
  7466. INIT_LIST_HEAD(array->queue + i);
  7467. __clear_bit(i, array->bitmap);
  7468. }
  7469. /* delimiter for bitsearch: */
  7470. __set_bit(MAX_RT_PRIO, array->bitmap);
  7471. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  7472. rt_rq->highest_prio.curr = MAX_RT_PRIO;
  7473. #ifdef CONFIG_SMP
  7474. rt_rq->highest_prio.next = MAX_RT_PRIO;
  7475. #endif
  7476. #endif
  7477. #ifdef CONFIG_SMP
  7478. rt_rq->rt_nr_migratory = 0;
  7479. rt_rq->overloaded = 0;
  7480. plist_head_init(&rq->rt.pushable_tasks, &rq->lock);
  7481. #endif
  7482. rt_rq->rt_time = 0;
  7483. rt_rq->rt_throttled = 0;
  7484. rt_rq->rt_runtime = 0;
  7485. spin_lock_init(&rt_rq->rt_runtime_lock);
  7486. #ifdef CONFIG_RT_GROUP_SCHED
  7487. rt_rq->rt_nr_boosted = 0;
  7488. rt_rq->rq = rq;
  7489. #endif
  7490. }
  7491. #ifdef CONFIG_FAIR_GROUP_SCHED
  7492. static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
  7493. struct sched_entity *se, int cpu, int add,
  7494. struct sched_entity *parent)
  7495. {
  7496. struct rq *rq = cpu_rq(cpu);
  7497. tg->cfs_rq[cpu] = cfs_rq;
  7498. init_cfs_rq(cfs_rq, rq);
  7499. cfs_rq->tg = tg;
  7500. if (add)
  7501. list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
  7502. tg->se[cpu] = se;
  7503. /* se could be NULL for init_task_group */
  7504. if (!se)
  7505. return;
  7506. if (!parent)
  7507. se->cfs_rq = &rq->cfs;
  7508. else
  7509. se->cfs_rq = parent->my_q;
  7510. se->my_q = cfs_rq;
  7511. se->load.weight = tg->shares;
  7512. se->load.inv_weight = 0;
  7513. se->parent = parent;
  7514. }
  7515. #endif
  7516. #ifdef CONFIG_RT_GROUP_SCHED
  7517. static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
  7518. struct sched_rt_entity *rt_se, int cpu, int add,
  7519. struct sched_rt_entity *parent)
  7520. {
  7521. struct rq *rq = cpu_rq(cpu);
  7522. tg->rt_rq[cpu] = rt_rq;
  7523. init_rt_rq(rt_rq, rq);
  7524. rt_rq->tg = tg;
  7525. rt_rq->rt_se = rt_se;
  7526. rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
  7527. if (add)
  7528. list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
  7529. tg->rt_se[cpu] = rt_se;
  7530. if (!rt_se)
  7531. return;
  7532. if (!parent)
  7533. rt_se->rt_rq = &rq->rt;
  7534. else
  7535. rt_se->rt_rq = parent->my_q;
  7536. rt_se->my_q = rt_rq;
  7537. rt_se->parent = parent;
  7538. INIT_LIST_HEAD(&rt_se->run_list);
  7539. }
  7540. #endif
  7541. void __init sched_init(void)
  7542. {
  7543. int i, j;
  7544. unsigned long alloc_size = 0, ptr;
  7545. #ifdef CONFIG_FAIR_GROUP_SCHED
  7546. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  7547. #endif
  7548. #ifdef CONFIG_RT_GROUP_SCHED
  7549. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  7550. #endif
  7551. #ifdef CONFIG_USER_SCHED
  7552. alloc_size *= 2;
  7553. #endif
  7554. #ifdef CONFIG_CPUMASK_OFFSTACK
  7555. alloc_size += num_possible_cpus() * cpumask_size();
  7556. #endif
  7557. /*
  7558. * As sched_init() is called before page_alloc is setup,
  7559. * we use alloc_bootmem().
  7560. */
  7561. if (alloc_size) {
  7562. ptr = (unsigned long)alloc_bootmem(alloc_size);
  7563. #ifdef CONFIG_FAIR_GROUP_SCHED
  7564. init_task_group.se = (struct sched_entity **)ptr;
  7565. ptr += nr_cpu_ids * sizeof(void **);
  7566. init_task_group.cfs_rq = (struct cfs_rq **)ptr;
  7567. ptr += nr_cpu_ids * sizeof(void **);
  7568. #ifdef CONFIG_USER_SCHED
  7569. root_task_group.se = (struct sched_entity **)ptr;
  7570. ptr += nr_cpu_ids * sizeof(void **);
  7571. root_task_group.cfs_rq = (struct cfs_rq **)ptr;
  7572. ptr += nr_cpu_ids * sizeof(void **);
  7573. #endif /* CONFIG_USER_SCHED */
  7574. #endif /* CONFIG_FAIR_GROUP_SCHED */
  7575. #ifdef CONFIG_RT_GROUP_SCHED
  7576. init_task_group.rt_se = (struct sched_rt_entity **)ptr;
  7577. ptr += nr_cpu_ids * sizeof(void **);
  7578. init_task_group.rt_rq = (struct rt_rq **)ptr;
  7579. ptr += nr_cpu_ids * sizeof(void **);
  7580. #ifdef CONFIG_USER_SCHED
  7581. root_task_group.rt_se = (struct sched_rt_entity **)ptr;
  7582. ptr += nr_cpu_ids * sizeof(void **);
  7583. root_task_group.rt_rq = (struct rt_rq **)ptr;
  7584. ptr += nr_cpu_ids * sizeof(void **);
  7585. #endif /* CONFIG_USER_SCHED */
  7586. #endif /* CONFIG_RT_GROUP_SCHED */
  7587. #ifdef CONFIG_CPUMASK_OFFSTACK
  7588. for_each_possible_cpu(i) {
  7589. per_cpu(load_balance_tmpmask, i) = (void *)ptr;
  7590. ptr += cpumask_size();
  7591. }
  7592. #endif /* CONFIG_CPUMASK_OFFSTACK */
  7593. }
  7594. #ifdef CONFIG_SMP
  7595. init_defrootdomain();
  7596. #endif
  7597. init_rt_bandwidth(&def_rt_bandwidth,
  7598. global_rt_period(), global_rt_runtime());
  7599. #ifdef CONFIG_RT_GROUP_SCHED
  7600. init_rt_bandwidth(&init_task_group.rt_bandwidth,
  7601. global_rt_period(), global_rt_runtime());
  7602. #ifdef CONFIG_USER_SCHED
  7603. init_rt_bandwidth(&root_task_group.rt_bandwidth,
  7604. global_rt_period(), RUNTIME_INF);
  7605. #endif /* CONFIG_USER_SCHED */
  7606. #endif /* CONFIG_RT_GROUP_SCHED */
  7607. #ifdef CONFIG_GROUP_SCHED
  7608. list_add(&init_task_group.list, &task_groups);
  7609. INIT_LIST_HEAD(&init_task_group.children);
  7610. #ifdef CONFIG_USER_SCHED
  7611. INIT_LIST_HEAD(&root_task_group.children);
  7612. init_task_group.parent = &root_task_group;
  7613. list_add(&init_task_group.siblings, &root_task_group.children);
  7614. #endif /* CONFIG_USER_SCHED */
  7615. #endif /* CONFIG_GROUP_SCHED */
  7616. for_each_possible_cpu(i) {
  7617. struct rq *rq;
  7618. rq = cpu_rq(i);
  7619. spin_lock_init(&rq->lock);
  7620. rq->nr_running = 0;
  7621. init_cfs_rq(&rq->cfs, rq);
  7622. init_rt_rq(&rq->rt, rq);
  7623. #ifdef CONFIG_FAIR_GROUP_SCHED
  7624. init_task_group.shares = init_task_group_load;
  7625. INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
  7626. #ifdef CONFIG_CGROUP_SCHED
  7627. /*
  7628. * How much cpu bandwidth does init_task_group get?
  7629. *
  7630. * In case of task-groups formed thr' the cgroup filesystem, it
  7631. * gets 100% of the cpu resources in the system. This overall
  7632. * system cpu resource is divided among the tasks of
  7633. * init_task_group and its child task-groups in a fair manner,
  7634. * based on each entity's (task or task-group's) weight
  7635. * (se->load.weight).
  7636. *
  7637. * In other words, if init_task_group has 10 tasks of weight
  7638. * 1024) and two child groups A0 and A1 (of weight 1024 each),
  7639. * then A0's share of the cpu resource is:
  7640. *
  7641. * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
  7642. *
  7643. * We achieve this by letting init_task_group's tasks sit
  7644. * directly in rq->cfs (i.e init_task_group->se[] = NULL).
  7645. */
  7646. init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
  7647. #elif defined CONFIG_USER_SCHED
  7648. root_task_group.shares = NICE_0_LOAD;
  7649. init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
  7650. /*
  7651. * In case of task-groups formed thr' the user id of tasks,
  7652. * init_task_group represents tasks belonging to root user.
  7653. * Hence it forms a sibling of all subsequent groups formed.
  7654. * In this case, init_task_group gets only a fraction of overall
  7655. * system cpu resource, based on the weight assigned to root
  7656. * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
  7657. * by letting tasks of init_task_group sit in a separate cfs_rq
  7658. * (init_cfs_rq) and having one entity represent this group of
  7659. * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
  7660. */
  7661. init_tg_cfs_entry(&init_task_group,
  7662. &per_cpu(init_cfs_rq, i),
  7663. &per_cpu(init_sched_entity, i), i, 1,
  7664. root_task_group.se[i]);
  7665. #endif
  7666. #endif /* CONFIG_FAIR_GROUP_SCHED */
  7667. rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
  7668. #ifdef CONFIG_RT_GROUP_SCHED
  7669. INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
  7670. #ifdef CONFIG_CGROUP_SCHED
  7671. init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
  7672. #elif defined CONFIG_USER_SCHED
  7673. init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
  7674. init_tg_rt_entry(&init_task_group,
  7675. &per_cpu(init_rt_rq, i),
  7676. &per_cpu(init_sched_rt_entity, i), i, 1,
  7677. root_task_group.rt_se[i]);
  7678. #endif
  7679. #endif
  7680. for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
  7681. rq->cpu_load[j] = 0;
  7682. #ifdef CONFIG_SMP
  7683. rq->sd = NULL;
  7684. rq->rd = NULL;
  7685. rq->active_balance = 0;
  7686. rq->next_balance = jiffies;
  7687. rq->push_cpu = 0;
  7688. rq->cpu = i;
  7689. rq->online = 0;
  7690. rq->migration_thread = NULL;
  7691. INIT_LIST_HEAD(&rq->migration_queue);
  7692. rq_attach_root(rq, &def_root_domain);
  7693. #endif
  7694. init_rq_hrtick(rq);
  7695. atomic_set(&rq->nr_iowait, 0);
  7696. }
  7697. set_load_weight(&init_task);
  7698. #ifdef CONFIG_PREEMPT_NOTIFIERS
  7699. INIT_HLIST_HEAD(&init_task.preempt_notifiers);
  7700. #endif
  7701. #ifdef CONFIG_SMP
  7702. open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
  7703. #endif
  7704. #ifdef CONFIG_RT_MUTEXES
  7705. plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
  7706. #endif
  7707. /*
  7708. * The boot idle thread does lazy MMU switching as well:
  7709. */
  7710. atomic_inc(&init_mm.mm_count);
  7711. enter_lazy_tlb(&init_mm, current);
  7712. /*
  7713. * Make us the idle thread. Technically, schedule() should not be
  7714. * called from this thread, however somewhere below it might be,
  7715. * but because we are the idle thread, we just pick up running again
  7716. * when this runqueue becomes "idle".
  7717. */
  7718. init_idle(current, smp_processor_id());
  7719. /*
  7720. * During early bootup we pretend to be a normal task:
  7721. */
  7722. current->sched_class = &fair_sched_class;
  7723. /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
  7724. alloc_bootmem_cpumask_var(&nohz_cpu_mask);
  7725. #ifdef CONFIG_SMP
  7726. #ifdef CONFIG_NO_HZ
  7727. alloc_bootmem_cpumask_var(&nohz.cpu_mask);
  7728. #endif
  7729. alloc_bootmem_cpumask_var(&cpu_isolated_map);
  7730. #endif /* SMP */
  7731. scheduler_running = 1;
  7732. }
  7733. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  7734. void __might_sleep(char *file, int line)
  7735. {
  7736. #ifdef in_atomic
  7737. static unsigned long prev_jiffy; /* ratelimiting */
  7738. if ((!in_atomic() && !irqs_disabled()) ||
  7739. system_state != SYSTEM_RUNNING || oops_in_progress)
  7740. return;
  7741. if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
  7742. return;
  7743. prev_jiffy = jiffies;
  7744. printk(KERN_ERR
  7745. "BUG: sleeping function called from invalid context at %s:%d\n",
  7746. file, line);
  7747. printk(KERN_ERR
  7748. "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
  7749. in_atomic(), irqs_disabled(),
  7750. current->pid, current->comm);
  7751. debug_show_held_locks(current);
  7752. if (irqs_disabled())
  7753. print_irqtrace_events(current);
  7754. dump_stack();
  7755. #endif
  7756. }
  7757. EXPORT_SYMBOL(__might_sleep);
  7758. #endif
  7759. #ifdef CONFIG_MAGIC_SYSRQ
  7760. static void normalize_task(struct rq *rq, struct task_struct *p)
  7761. {
  7762. int on_rq;
  7763. update_rq_clock(rq);
  7764. on_rq = p->se.on_rq;
  7765. if (on_rq)
  7766. deactivate_task(rq, p, 0);
  7767. __setscheduler(rq, p, SCHED_NORMAL, 0);
  7768. if (on_rq) {
  7769. activate_task(rq, p, 0);
  7770. resched_task(rq->curr);
  7771. }
  7772. }
  7773. void normalize_rt_tasks(void)
  7774. {
  7775. struct task_struct *g, *p;
  7776. unsigned long flags;
  7777. struct rq *rq;
  7778. read_lock_irqsave(&tasklist_lock, flags);
  7779. do_each_thread(g, p) {
  7780. /*
  7781. * Only normalize user tasks:
  7782. */
  7783. if (!p->mm)
  7784. continue;
  7785. p->se.exec_start = 0;
  7786. #ifdef CONFIG_SCHEDSTATS
  7787. p->se.wait_start = 0;
  7788. p->se.sleep_start = 0;
  7789. p->se.block_start = 0;
  7790. #endif
  7791. if (!rt_task(p)) {
  7792. /*
  7793. * Renice negative nice level userspace
  7794. * tasks back to 0:
  7795. */
  7796. if (TASK_NICE(p) < 0 && p->mm)
  7797. set_user_nice(p, 0);
  7798. continue;
  7799. }
  7800. spin_lock(&p->pi_lock);
  7801. rq = __task_rq_lock(p);
  7802. normalize_task(rq, p);
  7803. __task_rq_unlock(rq);
  7804. spin_unlock(&p->pi_lock);
  7805. } while_each_thread(g, p);
  7806. read_unlock_irqrestore(&tasklist_lock, flags);
  7807. }
  7808. #endif /* CONFIG_MAGIC_SYSRQ */
  7809. #ifdef CONFIG_IA64
  7810. /*
  7811. * These functions are only useful for the IA64 MCA handling.
  7812. *
  7813. * They can only be called when the whole system has been
  7814. * stopped - every CPU needs to be quiescent, and no scheduling
  7815. * activity can take place. Using them for anything else would
  7816. * be a serious bug, and as a result, they aren't even visible
  7817. * under any other configuration.
  7818. */
  7819. /**
  7820. * curr_task - return the current task for a given cpu.
  7821. * @cpu: the processor in question.
  7822. *
  7823. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  7824. */
  7825. struct task_struct *curr_task(int cpu)
  7826. {
  7827. return cpu_curr(cpu);
  7828. }
  7829. /**
  7830. * set_curr_task - set the current task for a given cpu.
  7831. * @cpu: the processor in question.
  7832. * @p: the task pointer to set.
  7833. *
  7834. * Description: This function must only be used when non-maskable interrupts
  7835. * are serviced on a separate stack. It allows the architecture to switch the
  7836. * notion of the current task on a cpu in a non-blocking manner. This function
  7837. * must be called with all CPU's synchronized, and interrupts disabled, the
  7838. * and caller must save the original value of the current task (see
  7839. * curr_task() above) and restore that value before reenabling interrupts and
  7840. * re-starting the system.
  7841. *
  7842. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  7843. */
  7844. void set_curr_task(int cpu, struct task_struct *p)
  7845. {
  7846. cpu_curr(cpu) = p;
  7847. }
  7848. #endif
  7849. #ifdef CONFIG_FAIR_GROUP_SCHED
  7850. static void free_fair_sched_group(struct task_group *tg)
  7851. {
  7852. int i;
  7853. for_each_possible_cpu(i) {
  7854. if (tg->cfs_rq)
  7855. kfree(tg->cfs_rq[i]);
  7856. if (tg->se)
  7857. kfree(tg->se[i]);
  7858. }
  7859. kfree(tg->cfs_rq);
  7860. kfree(tg->se);
  7861. }
  7862. static
  7863. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  7864. {
  7865. struct cfs_rq *cfs_rq;
  7866. struct sched_entity *se;
  7867. struct rq *rq;
  7868. int i;
  7869. tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
  7870. if (!tg->cfs_rq)
  7871. goto err;
  7872. tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
  7873. if (!tg->se)
  7874. goto err;
  7875. tg->shares = NICE_0_LOAD;
  7876. for_each_possible_cpu(i) {
  7877. rq = cpu_rq(i);
  7878. cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
  7879. GFP_KERNEL, cpu_to_node(i));
  7880. if (!cfs_rq)
  7881. goto err;
  7882. se = kzalloc_node(sizeof(struct sched_entity),
  7883. GFP_KERNEL, cpu_to_node(i));
  7884. if (!se)
  7885. goto err;
  7886. init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
  7887. }
  7888. return 1;
  7889. err:
  7890. return 0;
  7891. }
  7892. static inline void register_fair_sched_group(struct task_group *tg, int cpu)
  7893. {
  7894. list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
  7895. &cpu_rq(cpu)->leaf_cfs_rq_list);
  7896. }
  7897. static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
  7898. {
  7899. list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
  7900. }
  7901. #else /* !CONFG_FAIR_GROUP_SCHED */
  7902. static inline void free_fair_sched_group(struct task_group *tg)
  7903. {
  7904. }
  7905. static inline
  7906. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  7907. {
  7908. return 1;
  7909. }
  7910. static inline void register_fair_sched_group(struct task_group *tg, int cpu)
  7911. {
  7912. }
  7913. static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
  7914. {
  7915. }
  7916. #endif /* CONFIG_FAIR_GROUP_SCHED */
  7917. #ifdef CONFIG_RT_GROUP_SCHED
  7918. static void free_rt_sched_group(struct task_group *tg)
  7919. {
  7920. int i;
  7921. destroy_rt_bandwidth(&tg->rt_bandwidth);
  7922. for_each_possible_cpu(i) {
  7923. if (tg->rt_rq)
  7924. kfree(tg->rt_rq[i]);
  7925. if (tg->rt_se)
  7926. kfree(tg->rt_se[i]);
  7927. }
  7928. kfree(tg->rt_rq);
  7929. kfree(tg->rt_se);
  7930. }
  7931. static
  7932. int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
  7933. {
  7934. struct rt_rq *rt_rq;
  7935. struct sched_rt_entity *rt_se;
  7936. struct rq *rq;
  7937. int i;
  7938. tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
  7939. if (!tg->rt_rq)
  7940. goto err;
  7941. tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
  7942. if (!tg->rt_se)
  7943. goto err;
  7944. init_rt_bandwidth(&tg->rt_bandwidth,
  7945. ktime_to_ns(def_rt_bandwidth.rt_period), 0);
  7946. for_each_possible_cpu(i) {
  7947. rq = cpu_rq(i);
  7948. rt_rq = kzalloc_node(sizeof(struct rt_rq),
  7949. GFP_KERNEL, cpu_to_node(i));
  7950. if (!rt_rq)
  7951. goto err;
  7952. rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
  7953. GFP_KERNEL, cpu_to_node(i));
  7954. if (!rt_se)
  7955. goto err;
  7956. init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
  7957. }
  7958. return 1;
  7959. err:
  7960. return 0;
  7961. }
  7962. static inline void register_rt_sched_group(struct task_group *tg, int cpu)
  7963. {
  7964. list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
  7965. &cpu_rq(cpu)->leaf_rt_rq_list);
  7966. }
  7967. static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
  7968. {
  7969. list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
  7970. }
  7971. #else /* !CONFIG_RT_GROUP_SCHED */
  7972. static inline void free_rt_sched_group(struct task_group *tg)
  7973. {
  7974. }
  7975. static inline
  7976. int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
  7977. {
  7978. return 1;
  7979. }
  7980. static inline void register_rt_sched_group(struct task_group *tg, int cpu)
  7981. {
  7982. }
  7983. static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
  7984. {
  7985. }
  7986. #endif /* CONFIG_RT_GROUP_SCHED */
  7987. #ifdef CONFIG_GROUP_SCHED
  7988. static void free_sched_group(struct task_group *tg)
  7989. {
  7990. free_fair_sched_group(tg);
  7991. free_rt_sched_group(tg);
  7992. kfree(tg);
  7993. }
  7994. /* allocate runqueue etc for a new task group */
  7995. struct task_group *sched_create_group(struct task_group *parent)
  7996. {
  7997. struct task_group *tg;
  7998. unsigned long flags;
  7999. int i;
  8000. tg = kzalloc(sizeof(*tg), GFP_KERNEL);
  8001. if (!tg)
  8002. return ERR_PTR(-ENOMEM);
  8003. if (!alloc_fair_sched_group(tg, parent))
  8004. goto err;
  8005. if (!alloc_rt_sched_group(tg, parent))
  8006. goto err;
  8007. spin_lock_irqsave(&task_group_lock, flags);
  8008. for_each_possible_cpu(i) {
  8009. register_fair_sched_group(tg, i);
  8010. register_rt_sched_group(tg, i);
  8011. }
  8012. list_add_rcu(&tg->list, &task_groups);
  8013. WARN_ON(!parent); /* root should already exist */
  8014. tg->parent = parent;
  8015. INIT_LIST_HEAD(&tg->children);
  8016. list_add_rcu(&tg->siblings, &parent->children);
  8017. spin_unlock_irqrestore(&task_group_lock, flags);
  8018. return tg;
  8019. err:
  8020. free_sched_group(tg);
  8021. return ERR_PTR(-ENOMEM);
  8022. }
  8023. /* rcu callback to free various structures associated with a task group */
  8024. static void free_sched_group_rcu(struct rcu_head *rhp)
  8025. {
  8026. /* now it should be safe to free those cfs_rqs */
  8027. free_sched_group(container_of(rhp, struct task_group, rcu));
  8028. }
  8029. /* Destroy runqueue etc associated with a task group */
  8030. void sched_destroy_group(struct task_group *tg)
  8031. {
  8032. unsigned long flags;
  8033. int i;
  8034. spin_lock_irqsave(&task_group_lock, flags);
  8035. for_each_possible_cpu(i) {
  8036. unregister_fair_sched_group(tg, i);
  8037. unregister_rt_sched_group(tg, i);
  8038. }
  8039. list_del_rcu(&tg->list);
  8040. list_del_rcu(&tg->siblings);
  8041. spin_unlock_irqrestore(&task_group_lock, flags);
  8042. /* wait for possible concurrent references to cfs_rqs complete */
  8043. call_rcu(&tg->rcu, free_sched_group_rcu);
  8044. }
  8045. /* change task's runqueue when it moves between groups.
  8046. * The caller of this function should have put the task in its new group
  8047. * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
  8048. * reflect its new group.
  8049. */
  8050. void sched_move_task(struct task_struct *tsk)
  8051. {
  8052. int on_rq, running;
  8053. unsigned long flags;
  8054. struct rq *rq;
  8055. rq = task_rq_lock(tsk, &flags);
  8056. update_rq_clock(rq);
  8057. running = task_current(rq, tsk);
  8058. on_rq = tsk->se.on_rq;
  8059. if (on_rq)
  8060. dequeue_task(rq, tsk, 0);
  8061. if (unlikely(running))
  8062. tsk->sched_class->put_prev_task(rq, tsk);
  8063. set_task_rq(tsk, task_cpu(tsk));
  8064. #ifdef CONFIG_FAIR_GROUP_SCHED
  8065. if (tsk->sched_class->moved_group)
  8066. tsk->sched_class->moved_group(tsk);
  8067. #endif
  8068. if (unlikely(running))
  8069. tsk->sched_class->set_curr_task(rq);
  8070. if (on_rq)
  8071. enqueue_task(rq, tsk, 0);
  8072. task_rq_unlock(rq, &flags);
  8073. }
  8074. #endif /* CONFIG_GROUP_SCHED */
  8075. #ifdef CONFIG_FAIR_GROUP_SCHED
  8076. static void __set_se_shares(struct sched_entity *se, unsigned long shares)
  8077. {
  8078. struct cfs_rq *cfs_rq = se->cfs_rq;
  8079. int on_rq;
  8080. on_rq = se->on_rq;
  8081. if (on_rq)
  8082. dequeue_entity(cfs_rq, se, 0);
  8083. se->load.weight = shares;
  8084. se->load.inv_weight = 0;
  8085. if (on_rq)
  8086. enqueue_entity(cfs_rq, se, 0);
  8087. }
  8088. static void set_se_shares(struct sched_entity *se, unsigned long shares)
  8089. {
  8090. struct cfs_rq *cfs_rq = se->cfs_rq;
  8091. struct rq *rq = cfs_rq->rq;
  8092. unsigned long flags;
  8093. spin_lock_irqsave(&rq->lock, flags);
  8094. __set_se_shares(se, shares);
  8095. spin_unlock_irqrestore(&rq->lock, flags);
  8096. }
  8097. static DEFINE_MUTEX(shares_mutex);
  8098. int sched_group_set_shares(struct task_group *tg, unsigned long shares)
  8099. {
  8100. int i;
  8101. unsigned long flags;
  8102. /*
  8103. * We can't change the weight of the root cgroup.
  8104. */
  8105. if (!tg->se[0])
  8106. return -EINVAL;
  8107. if (shares < MIN_SHARES)
  8108. shares = MIN_SHARES;
  8109. else if (shares > MAX_SHARES)
  8110. shares = MAX_SHARES;
  8111. mutex_lock(&shares_mutex);
  8112. if (tg->shares == shares)
  8113. goto done;
  8114. spin_lock_irqsave(&task_group_lock, flags);
  8115. for_each_possible_cpu(i)
  8116. unregister_fair_sched_group(tg, i);
  8117. list_del_rcu(&tg->siblings);
  8118. spin_unlock_irqrestore(&task_group_lock, flags);
  8119. /* wait for any ongoing reference to this group to finish */
  8120. synchronize_sched();
  8121. /*
  8122. * Now we are free to modify the group's share on each cpu
  8123. * w/o tripping rebalance_share or load_balance_fair.
  8124. */
  8125. tg->shares = shares;
  8126. for_each_possible_cpu(i) {
  8127. /*
  8128. * force a rebalance
  8129. */
  8130. cfs_rq_set_shares(tg->cfs_rq[i], 0);
  8131. set_se_shares(tg->se[i], shares);
  8132. }
  8133. /*
  8134. * Enable load balance activity on this group, by inserting it back on
  8135. * each cpu's rq->leaf_cfs_rq_list.
  8136. */
  8137. spin_lock_irqsave(&task_group_lock, flags);
  8138. for_each_possible_cpu(i)
  8139. register_fair_sched_group(tg, i);
  8140. list_add_rcu(&tg->siblings, &tg->parent->children);
  8141. spin_unlock_irqrestore(&task_group_lock, flags);
  8142. done:
  8143. mutex_unlock(&shares_mutex);
  8144. return 0;
  8145. }
  8146. unsigned long sched_group_shares(struct task_group *tg)
  8147. {
  8148. return tg->shares;
  8149. }
  8150. #endif
  8151. #ifdef CONFIG_RT_GROUP_SCHED
  8152. /*
  8153. * Ensure that the real time constraints are schedulable.
  8154. */
  8155. static DEFINE_MUTEX(rt_constraints_mutex);
  8156. static unsigned long to_ratio(u64 period, u64 runtime)
  8157. {
  8158. if (runtime == RUNTIME_INF)
  8159. return 1ULL << 20;
  8160. return div64_u64(runtime << 20, period);
  8161. }
  8162. /* Must be called with tasklist_lock held */
  8163. static inline int tg_has_rt_tasks(struct task_group *tg)
  8164. {
  8165. struct task_struct *g, *p;
  8166. do_each_thread(g, p) {
  8167. if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
  8168. return 1;
  8169. } while_each_thread(g, p);
  8170. return 0;
  8171. }
  8172. struct rt_schedulable_data {
  8173. struct task_group *tg;
  8174. u64 rt_period;
  8175. u64 rt_runtime;
  8176. };
  8177. static int tg_schedulable(struct task_group *tg, void *data)
  8178. {
  8179. struct rt_schedulable_data *d = data;
  8180. struct task_group *child;
  8181. unsigned long total, sum = 0;
  8182. u64 period, runtime;
  8183. period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  8184. runtime = tg->rt_bandwidth.rt_runtime;
  8185. if (tg == d->tg) {
  8186. period = d->rt_period;
  8187. runtime = d->rt_runtime;
  8188. }
  8189. #ifdef CONFIG_USER_SCHED
  8190. if (tg == &root_task_group) {
  8191. period = global_rt_period();
  8192. runtime = global_rt_runtime();
  8193. }
  8194. #endif
  8195. /*
  8196. * Cannot have more runtime than the period.
  8197. */
  8198. if (runtime > period && runtime != RUNTIME_INF)
  8199. return -EINVAL;
  8200. /*
  8201. * Ensure we don't starve existing RT tasks.
  8202. */
  8203. if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
  8204. return -EBUSY;
  8205. total = to_ratio(period, runtime);
  8206. /*
  8207. * Nobody can have more than the global setting allows.
  8208. */
  8209. if (total > to_ratio(global_rt_period(), global_rt_runtime()))
  8210. return -EINVAL;
  8211. /*
  8212. * The sum of our children's runtime should not exceed our own.
  8213. */
  8214. list_for_each_entry_rcu(child, &tg->children, siblings) {
  8215. period = ktime_to_ns(child->rt_bandwidth.rt_period);
  8216. runtime = child->rt_bandwidth.rt_runtime;
  8217. if (child == d->tg) {
  8218. period = d->rt_period;
  8219. runtime = d->rt_runtime;
  8220. }
  8221. sum += to_ratio(period, runtime);
  8222. }
  8223. if (sum > total)
  8224. return -EINVAL;
  8225. return 0;
  8226. }
  8227. static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
  8228. {
  8229. struct rt_schedulable_data data = {
  8230. .tg = tg,
  8231. .rt_period = period,
  8232. .rt_runtime = runtime,
  8233. };
  8234. return walk_tg_tree(tg_schedulable, tg_nop, &data);
  8235. }
  8236. static int tg_set_bandwidth(struct task_group *tg,
  8237. u64 rt_period, u64 rt_runtime)
  8238. {
  8239. int i, err = 0;
  8240. mutex_lock(&rt_constraints_mutex);
  8241. read_lock(&tasklist_lock);
  8242. err = __rt_schedulable(tg, rt_period, rt_runtime);
  8243. if (err)
  8244. goto unlock;
  8245. spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  8246. tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
  8247. tg->rt_bandwidth.rt_runtime = rt_runtime;
  8248. for_each_possible_cpu(i) {
  8249. struct rt_rq *rt_rq = tg->rt_rq[i];
  8250. spin_lock(&rt_rq->rt_runtime_lock);
  8251. rt_rq->rt_runtime = rt_runtime;
  8252. spin_unlock(&rt_rq->rt_runtime_lock);
  8253. }
  8254. spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  8255. unlock:
  8256. read_unlock(&tasklist_lock);
  8257. mutex_unlock(&rt_constraints_mutex);
  8258. return err;
  8259. }
  8260. int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
  8261. {
  8262. u64 rt_runtime, rt_period;
  8263. rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  8264. rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
  8265. if (rt_runtime_us < 0)
  8266. rt_runtime = RUNTIME_INF;
  8267. return tg_set_bandwidth(tg, rt_period, rt_runtime);
  8268. }
  8269. long sched_group_rt_runtime(struct task_group *tg)
  8270. {
  8271. u64 rt_runtime_us;
  8272. if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
  8273. return -1;
  8274. rt_runtime_us = tg->rt_bandwidth.rt_runtime;
  8275. do_div(rt_runtime_us, NSEC_PER_USEC);
  8276. return rt_runtime_us;
  8277. }
  8278. int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
  8279. {
  8280. u64 rt_runtime, rt_period;
  8281. rt_period = (u64)rt_period_us * NSEC_PER_USEC;
  8282. rt_runtime = tg->rt_bandwidth.rt_runtime;
  8283. if (rt_period == 0)
  8284. return -EINVAL;
  8285. return tg_set_bandwidth(tg, rt_period, rt_runtime);
  8286. }
  8287. long sched_group_rt_period(struct task_group *tg)
  8288. {
  8289. u64 rt_period_us;
  8290. rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
  8291. do_div(rt_period_us, NSEC_PER_USEC);
  8292. return rt_period_us;
  8293. }
  8294. static int sched_rt_global_constraints(void)
  8295. {
  8296. u64 runtime, period;
  8297. int ret = 0;
  8298. if (sysctl_sched_rt_period <= 0)
  8299. return -EINVAL;
  8300. runtime = global_rt_runtime();
  8301. period = global_rt_period();
  8302. /*
  8303. * Sanity check on the sysctl variables.
  8304. */
  8305. if (runtime > period && runtime != RUNTIME_INF)
  8306. return -EINVAL;
  8307. mutex_lock(&rt_constraints_mutex);
  8308. read_lock(&tasklist_lock);
  8309. ret = __rt_schedulable(NULL, 0, 0);
  8310. read_unlock(&tasklist_lock);
  8311. mutex_unlock(&rt_constraints_mutex);
  8312. return ret;
  8313. }
  8314. int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
  8315. {
  8316. /* Don't accept realtime tasks when there is no way for them to run */
  8317. if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
  8318. return 0;
  8319. return 1;
  8320. }
  8321. #else /* !CONFIG_RT_GROUP_SCHED */
  8322. static int sched_rt_global_constraints(void)
  8323. {
  8324. unsigned long flags;
  8325. int i;
  8326. if (sysctl_sched_rt_period <= 0)
  8327. return -EINVAL;
  8328. spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
  8329. for_each_possible_cpu(i) {
  8330. struct rt_rq *rt_rq = &cpu_rq(i)->rt;
  8331. spin_lock(&rt_rq->rt_runtime_lock);
  8332. rt_rq->rt_runtime = global_rt_runtime();
  8333. spin_unlock(&rt_rq->rt_runtime_lock);
  8334. }
  8335. spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
  8336. return 0;
  8337. }
  8338. #endif /* CONFIG_RT_GROUP_SCHED */
  8339. int sched_rt_handler(struct ctl_table *table, int write,
  8340. struct file *filp, void __user *buffer, size_t *lenp,
  8341. loff_t *ppos)
  8342. {
  8343. int ret;
  8344. int old_period, old_runtime;
  8345. static DEFINE_MUTEX(mutex);
  8346. mutex_lock(&mutex);
  8347. old_period = sysctl_sched_rt_period;
  8348. old_runtime = sysctl_sched_rt_runtime;
  8349. ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);
  8350. if (!ret && write) {
  8351. ret = sched_rt_global_constraints();
  8352. if (ret) {
  8353. sysctl_sched_rt_period = old_period;
  8354. sysctl_sched_rt_runtime = old_runtime;
  8355. } else {
  8356. def_rt_bandwidth.rt_runtime = global_rt_runtime();
  8357. def_rt_bandwidth.rt_period =
  8358. ns_to_ktime(global_rt_period());
  8359. }
  8360. }
  8361. mutex_unlock(&mutex);
  8362. return ret;
  8363. }
  8364. #ifdef CONFIG_CGROUP_SCHED
  8365. /* return corresponding task_group object of a cgroup */
  8366. static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
  8367. {
  8368. return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
  8369. struct task_group, css);
  8370. }
  8371. static struct cgroup_subsys_state *
  8372. cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
  8373. {
  8374. struct task_group *tg, *parent;
  8375. if (!cgrp->parent) {
  8376. /* This is early initialization for the top cgroup */
  8377. return &init_task_group.css;
  8378. }
  8379. parent = cgroup_tg(cgrp->parent);
  8380. tg = sched_create_group(parent);
  8381. if (IS_ERR(tg))
  8382. return ERR_PTR(-ENOMEM);
  8383. return &tg->css;
  8384. }
  8385. static void
  8386. cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  8387. {
  8388. struct task_group *tg = cgroup_tg(cgrp);
  8389. sched_destroy_group(tg);
  8390. }
  8391. static int
  8392. cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  8393. struct task_struct *tsk)
  8394. {
  8395. #ifdef CONFIG_RT_GROUP_SCHED
  8396. if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
  8397. return -EINVAL;
  8398. #else
  8399. /* We don't support RT-tasks being in separate groups */
  8400. if (tsk->sched_class != &fair_sched_class)
  8401. return -EINVAL;
  8402. #endif
  8403. return 0;
  8404. }
  8405. static void
  8406. cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  8407. struct cgroup *old_cont, struct task_struct *tsk)
  8408. {
  8409. sched_move_task(tsk);
  8410. }
  8411. #ifdef CONFIG_FAIR_GROUP_SCHED
  8412. static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
  8413. u64 shareval)
  8414. {
  8415. return sched_group_set_shares(cgroup_tg(cgrp), shareval);
  8416. }
  8417. static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
  8418. {
  8419. struct task_group *tg = cgroup_tg(cgrp);
  8420. return (u64) tg->shares;
  8421. }
  8422. #endif /* CONFIG_FAIR_GROUP_SCHED */
  8423. #ifdef CONFIG_RT_GROUP_SCHED
  8424. static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
  8425. s64 val)
  8426. {
  8427. return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
  8428. }
  8429. static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
  8430. {
  8431. return sched_group_rt_runtime(cgroup_tg(cgrp));
  8432. }
  8433. static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
  8434. u64 rt_period_us)
  8435. {
  8436. return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
  8437. }
  8438. static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
  8439. {
  8440. return sched_group_rt_period(cgroup_tg(cgrp));
  8441. }
  8442. #endif /* CONFIG_RT_GROUP_SCHED */
  8443. static struct cftype cpu_files[] = {
  8444. #ifdef CONFIG_FAIR_GROUP_SCHED
  8445. {
  8446. .name = "shares",
  8447. .read_u64 = cpu_shares_read_u64,
  8448. .write_u64 = cpu_shares_write_u64,
  8449. },
  8450. #endif
  8451. #ifdef CONFIG_RT_GROUP_SCHED
  8452. {
  8453. .name = "rt_runtime_us",
  8454. .read_s64 = cpu_rt_runtime_read,
  8455. .write_s64 = cpu_rt_runtime_write,
  8456. },
  8457. {
  8458. .name = "rt_period_us",
  8459. .read_u64 = cpu_rt_period_read_uint,
  8460. .write_u64 = cpu_rt_period_write_uint,
  8461. },
  8462. #endif
  8463. };
  8464. static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
  8465. {
  8466. return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
  8467. }
  8468. struct cgroup_subsys cpu_cgroup_subsys = {
  8469. .name = "cpu",
  8470. .create = cpu_cgroup_create,
  8471. .destroy = cpu_cgroup_destroy,
  8472. .can_attach = cpu_cgroup_can_attach,
  8473. .attach = cpu_cgroup_attach,
  8474. .populate = cpu_cgroup_populate,
  8475. .subsys_id = cpu_cgroup_subsys_id,
  8476. .early_init = 1,
  8477. };
  8478. #endif /* CONFIG_CGROUP_SCHED */
  8479. #ifdef CONFIG_CGROUP_CPUACCT
  8480. /*
  8481. * CPU accounting code for task groups.
  8482. *
  8483. * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
  8484. * (balbir@in.ibm.com).
  8485. */
  8486. /* track cpu usage of a group of tasks and its child groups */
  8487. struct cpuacct {
  8488. struct cgroup_subsys_state css;
  8489. /* cpuusage holds pointer to a u64-type object on every cpu */
  8490. u64 *cpuusage;
  8491. struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
  8492. struct cpuacct *parent;
  8493. };
  8494. struct cgroup_subsys cpuacct_subsys;
  8495. /* return cpu accounting group corresponding to this container */
  8496. static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
  8497. {
  8498. return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
  8499. struct cpuacct, css);
  8500. }
  8501. /* return cpu accounting group to which this task belongs */
  8502. static inline struct cpuacct *task_ca(struct task_struct *tsk)
  8503. {
  8504. return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
  8505. struct cpuacct, css);
  8506. }
  8507. /* create a new cpu accounting group */
  8508. static struct cgroup_subsys_state *cpuacct_create(
  8509. struct cgroup_subsys *ss, struct cgroup *cgrp)
  8510. {
  8511. struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
  8512. int i;
  8513. if (!ca)
  8514. goto out;
  8515. ca->cpuusage = alloc_percpu(u64);
  8516. if (!ca->cpuusage)
  8517. goto out_free_ca;
  8518. for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
  8519. if (percpu_counter_init(&ca->cpustat[i], 0))
  8520. goto out_free_counters;
  8521. if (cgrp->parent)
  8522. ca->parent = cgroup_ca(cgrp->parent);
  8523. return &ca->css;
  8524. out_free_counters:
  8525. while (--i >= 0)
  8526. percpu_counter_destroy(&ca->cpustat[i]);
  8527. free_percpu(ca->cpuusage);
  8528. out_free_ca:
  8529. kfree(ca);
  8530. out:
  8531. return ERR_PTR(-ENOMEM);
  8532. }
  8533. /* destroy an existing cpu accounting group */
  8534. static void
  8535. cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  8536. {
  8537. struct cpuacct *ca = cgroup_ca(cgrp);
  8538. int i;
  8539. for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
  8540. percpu_counter_destroy(&ca->cpustat[i]);
  8541. free_percpu(ca->cpuusage);
  8542. kfree(ca);
  8543. }
  8544. static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
  8545. {
  8546. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  8547. u64 data;
  8548. #ifndef CONFIG_64BIT
  8549. /*
  8550. * Take rq->lock to make 64-bit read safe on 32-bit platforms.
  8551. */
  8552. spin_lock_irq(&cpu_rq(cpu)->lock);
  8553. data = *cpuusage;
  8554. spin_unlock_irq(&cpu_rq(cpu)->lock);
  8555. #else
  8556. data = *cpuusage;
  8557. #endif
  8558. return data;
  8559. }
  8560. static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
  8561. {
  8562. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  8563. #ifndef CONFIG_64BIT
  8564. /*
  8565. * Take rq->lock to make 64-bit write safe on 32-bit platforms.
  8566. */
  8567. spin_lock_irq(&cpu_rq(cpu)->lock);
  8568. *cpuusage = val;
  8569. spin_unlock_irq(&cpu_rq(cpu)->lock);
  8570. #else
  8571. *cpuusage = val;
  8572. #endif
  8573. }
  8574. /* return total cpu usage (in nanoseconds) of a group */
  8575. static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
  8576. {
  8577. struct cpuacct *ca = cgroup_ca(cgrp);
  8578. u64 totalcpuusage = 0;
  8579. int i;
  8580. for_each_present_cpu(i)
  8581. totalcpuusage += cpuacct_cpuusage_read(ca, i);
  8582. return totalcpuusage;
  8583. }
  8584. static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
  8585. u64 reset)
  8586. {
  8587. struct cpuacct *ca = cgroup_ca(cgrp);
  8588. int err = 0;
  8589. int i;
  8590. if (reset) {
  8591. err = -EINVAL;
  8592. goto out;
  8593. }
  8594. for_each_present_cpu(i)
  8595. cpuacct_cpuusage_write(ca, i, 0);
  8596. out:
  8597. return err;
  8598. }
  8599. static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
  8600. struct seq_file *m)
  8601. {
  8602. struct cpuacct *ca = cgroup_ca(cgroup);
  8603. u64 percpu;
  8604. int i;
  8605. for_each_present_cpu(i) {
  8606. percpu = cpuacct_cpuusage_read(ca, i);
  8607. seq_printf(m, "%llu ", (unsigned long long) percpu);
  8608. }
  8609. seq_printf(m, "\n");
  8610. return 0;
  8611. }
  8612. static const char *cpuacct_stat_desc[] = {
  8613. [CPUACCT_STAT_USER] = "user",
  8614. [CPUACCT_STAT_SYSTEM] = "system",
  8615. };
  8616. static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
  8617. struct cgroup_map_cb *cb)
  8618. {
  8619. struct cpuacct *ca = cgroup_ca(cgrp);
  8620. int i;
  8621. for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
  8622. s64 val = percpu_counter_read(&ca->cpustat[i]);
  8623. val = cputime64_to_clock_t(val);
  8624. cb->fill(cb, cpuacct_stat_desc[i], val);
  8625. }
  8626. return 0;
  8627. }
  8628. static struct cftype files[] = {
  8629. {
  8630. .name = "usage",
  8631. .read_u64 = cpuusage_read,
  8632. .write_u64 = cpuusage_write,
  8633. },
  8634. {
  8635. .name = "usage_percpu",
  8636. .read_seq_string = cpuacct_percpu_seq_read,
  8637. },
  8638. {
  8639. .name = "stat",
  8640. .read_map = cpuacct_stats_show,
  8641. },
  8642. };
  8643. static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
  8644. {
  8645. return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
  8646. }
  8647. /*
  8648. * charge this task's execution time to its accounting group.
  8649. *
  8650. * called with rq->lock held.
  8651. */
  8652. static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
  8653. {
  8654. struct cpuacct *ca;
  8655. int cpu;
  8656. if (unlikely(!cpuacct_subsys.active))
  8657. return;
  8658. cpu = task_cpu(tsk);
  8659. rcu_read_lock();
  8660. ca = task_ca(tsk);
  8661. for (; ca; ca = ca->parent) {
  8662. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  8663. *cpuusage += cputime;
  8664. }
  8665. rcu_read_unlock();
  8666. }
  8667. /*
  8668. * Charge the system/user time to the task's accounting group.
  8669. */
  8670. static void cpuacct_update_stats(struct task_struct *tsk,
  8671. enum cpuacct_stat_index idx, cputime_t val)
  8672. {
  8673. struct cpuacct *ca;
  8674. if (unlikely(!cpuacct_subsys.active))
  8675. return;
  8676. rcu_read_lock();
  8677. ca = task_ca(tsk);
  8678. do {
  8679. percpu_counter_add(&ca->cpustat[idx], val);
  8680. ca = ca->parent;
  8681. } while (ca);
  8682. rcu_read_unlock();
  8683. }
  8684. struct cgroup_subsys cpuacct_subsys = {
  8685. .name = "cpuacct",
  8686. .create = cpuacct_create,
  8687. .destroy = cpuacct_destroy,
  8688. .populate = cpuacct_populate,
  8689. .subsys_id = cpuacct_subsys_id,
  8690. };
  8691. #endif /* CONFIG_CGROUP_CPUACCT */