namespace.c 47 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861
  1. /*
  2. * linux/fs/namespace.c
  3. *
  4. * (C) Copyright Al Viro 2000, 2001
  5. * Released under GPL v2.
  6. *
  7. * Based on code from fs/super.c, copyright Linus Torvalds and others.
  8. * Heavily rewritten.
  9. */
  10. #include <linux/syscalls.h>
  11. #include <linux/slab.h>
  12. #include <linux/sched.h>
  13. #include <linux/smp_lock.h>
  14. #include <linux/init.h>
  15. #include <linux/kernel.h>
  16. #include <linux/quotaops.h>
  17. #include <linux/acct.h>
  18. #include <linux/capability.h>
  19. #include <linux/module.h>
  20. #include <linux/sysfs.h>
  21. #include <linux/seq_file.h>
  22. #include <linux/mnt_namespace.h>
  23. #include <linux/namei.h>
  24. #include <linux/security.h>
  25. #include <linux/mount.h>
  26. #include <linux/ramfs.h>
  27. #include <linux/log2.h>
  28. #include <asm/uaccess.h>
  29. #include <asm/unistd.h>
  30. #include "pnode.h"
  31. #include "internal.h"
  32. #define HASH_SHIFT ilog2(PAGE_SIZE / sizeof(struct list_head))
  33. #define HASH_SIZE (1UL << HASH_SHIFT)
  34. /* spinlock for vfsmount related operations, inplace of dcache_lock */
  35. __cacheline_aligned_in_smp DEFINE_SPINLOCK(vfsmount_lock);
  36. static int event;
  37. static struct list_head *mount_hashtable __read_mostly;
  38. static struct kmem_cache *mnt_cache __read_mostly;
  39. static struct rw_semaphore namespace_sem;
  40. /* /sys/fs */
  41. struct kobject *fs_kobj;
  42. EXPORT_SYMBOL_GPL(fs_kobj);
  43. static inline unsigned long hash(struct vfsmount *mnt, struct dentry *dentry)
  44. {
  45. unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
  46. tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
  47. tmp = tmp + (tmp >> HASH_SHIFT);
  48. return tmp & (HASH_SIZE - 1);
  49. }
  50. struct vfsmount *alloc_vfsmnt(const char *name)
  51. {
  52. struct vfsmount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
  53. if (mnt) {
  54. atomic_set(&mnt->mnt_count, 1);
  55. INIT_LIST_HEAD(&mnt->mnt_hash);
  56. INIT_LIST_HEAD(&mnt->mnt_child);
  57. INIT_LIST_HEAD(&mnt->mnt_mounts);
  58. INIT_LIST_HEAD(&mnt->mnt_list);
  59. INIT_LIST_HEAD(&mnt->mnt_expire);
  60. INIT_LIST_HEAD(&mnt->mnt_share);
  61. INIT_LIST_HEAD(&mnt->mnt_slave_list);
  62. INIT_LIST_HEAD(&mnt->mnt_slave);
  63. if (name) {
  64. int size = strlen(name) + 1;
  65. char *newname = kmalloc(size, GFP_KERNEL);
  66. if (newname) {
  67. memcpy(newname, name, size);
  68. mnt->mnt_devname = newname;
  69. }
  70. }
  71. }
  72. return mnt;
  73. }
  74. int simple_set_mnt(struct vfsmount *mnt, struct super_block *sb)
  75. {
  76. mnt->mnt_sb = sb;
  77. mnt->mnt_root = dget(sb->s_root);
  78. return 0;
  79. }
  80. EXPORT_SYMBOL(simple_set_mnt);
  81. void free_vfsmnt(struct vfsmount *mnt)
  82. {
  83. kfree(mnt->mnt_devname);
  84. kmem_cache_free(mnt_cache, mnt);
  85. }
  86. /*
  87. * find the first or last mount at @dentry on vfsmount @mnt depending on
  88. * @dir. If @dir is set return the first mount else return the last mount.
  89. */
  90. struct vfsmount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry,
  91. int dir)
  92. {
  93. struct list_head *head = mount_hashtable + hash(mnt, dentry);
  94. struct list_head *tmp = head;
  95. struct vfsmount *p, *found = NULL;
  96. for (;;) {
  97. tmp = dir ? tmp->next : tmp->prev;
  98. p = NULL;
  99. if (tmp == head)
  100. break;
  101. p = list_entry(tmp, struct vfsmount, mnt_hash);
  102. if (p->mnt_parent == mnt && p->mnt_mountpoint == dentry) {
  103. found = p;
  104. break;
  105. }
  106. }
  107. return found;
  108. }
  109. /*
  110. * lookup_mnt increments the ref count before returning
  111. * the vfsmount struct.
  112. */
  113. struct vfsmount *lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
  114. {
  115. struct vfsmount *child_mnt;
  116. spin_lock(&vfsmount_lock);
  117. if ((child_mnt = __lookup_mnt(mnt, dentry, 1)))
  118. mntget(child_mnt);
  119. spin_unlock(&vfsmount_lock);
  120. return child_mnt;
  121. }
  122. static inline int check_mnt(struct vfsmount *mnt)
  123. {
  124. return mnt->mnt_ns == current->nsproxy->mnt_ns;
  125. }
  126. static void touch_mnt_namespace(struct mnt_namespace *ns)
  127. {
  128. if (ns) {
  129. ns->event = ++event;
  130. wake_up_interruptible(&ns->poll);
  131. }
  132. }
  133. static void __touch_mnt_namespace(struct mnt_namespace *ns)
  134. {
  135. if (ns && ns->event != event) {
  136. ns->event = event;
  137. wake_up_interruptible(&ns->poll);
  138. }
  139. }
  140. static void detach_mnt(struct vfsmount *mnt, struct nameidata *old_nd)
  141. {
  142. old_nd->dentry = mnt->mnt_mountpoint;
  143. old_nd->mnt = mnt->mnt_parent;
  144. mnt->mnt_parent = mnt;
  145. mnt->mnt_mountpoint = mnt->mnt_root;
  146. list_del_init(&mnt->mnt_child);
  147. list_del_init(&mnt->mnt_hash);
  148. old_nd->dentry->d_mounted--;
  149. }
  150. void mnt_set_mountpoint(struct vfsmount *mnt, struct dentry *dentry,
  151. struct vfsmount *child_mnt)
  152. {
  153. child_mnt->mnt_parent = mntget(mnt);
  154. child_mnt->mnt_mountpoint = dget(dentry);
  155. dentry->d_mounted++;
  156. }
  157. static void attach_mnt(struct vfsmount *mnt, struct nameidata *nd)
  158. {
  159. mnt_set_mountpoint(nd->mnt, nd->dentry, mnt);
  160. list_add_tail(&mnt->mnt_hash, mount_hashtable +
  161. hash(nd->mnt, nd->dentry));
  162. list_add_tail(&mnt->mnt_child, &nd->mnt->mnt_mounts);
  163. }
  164. /*
  165. * the caller must hold vfsmount_lock
  166. */
  167. static void commit_tree(struct vfsmount *mnt)
  168. {
  169. struct vfsmount *parent = mnt->mnt_parent;
  170. struct vfsmount *m;
  171. LIST_HEAD(head);
  172. struct mnt_namespace *n = parent->mnt_ns;
  173. BUG_ON(parent == mnt);
  174. list_add_tail(&head, &mnt->mnt_list);
  175. list_for_each_entry(m, &head, mnt_list)
  176. m->mnt_ns = n;
  177. list_splice(&head, n->list.prev);
  178. list_add_tail(&mnt->mnt_hash, mount_hashtable +
  179. hash(parent, mnt->mnt_mountpoint));
  180. list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
  181. touch_mnt_namespace(n);
  182. }
  183. static struct vfsmount *next_mnt(struct vfsmount *p, struct vfsmount *root)
  184. {
  185. struct list_head *next = p->mnt_mounts.next;
  186. if (next == &p->mnt_mounts) {
  187. while (1) {
  188. if (p == root)
  189. return NULL;
  190. next = p->mnt_child.next;
  191. if (next != &p->mnt_parent->mnt_mounts)
  192. break;
  193. p = p->mnt_parent;
  194. }
  195. }
  196. return list_entry(next, struct vfsmount, mnt_child);
  197. }
  198. static struct vfsmount *skip_mnt_tree(struct vfsmount *p)
  199. {
  200. struct list_head *prev = p->mnt_mounts.prev;
  201. while (prev != &p->mnt_mounts) {
  202. p = list_entry(prev, struct vfsmount, mnt_child);
  203. prev = p->mnt_mounts.prev;
  204. }
  205. return p;
  206. }
  207. static struct vfsmount *clone_mnt(struct vfsmount *old, struct dentry *root,
  208. int flag)
  209. {
  210. struct super_block *sb = old->mnt_sb;
  211. struct vfsmount *mnt = alloc_vfsmnt(old->mnt_devname);
  212. if (mnt) {
  213. mnt->mnt_flags = old->mnt_flags;
  214. atomic_inc(&sb->s_active);
  215. mnt->mnt_sb = sb;
  216. mnt->mnt_root = dget(root);
  217. mnt->mnt_mountpoint = mnt->mnt_root;
  218. mnt->mnt_parent = mnt;
  219. if (flag & CL_SLAVE) {
  220. list_add(&mnt->mnt_slave, &old->mnt_slave_list);
  221. mnt->mnt_master = old;
  222. CLEAR_MNT_SHARED(mnt);
  223. } else if (!(flag & CL_PRIVATE)) {
  224. if ((flag & CL_PROPAGATION) || IS_MNT_SHARED(old))
  225. list_add(&mnt->mnt_share, &old->mnt_share);
  226. if (IS_MNT_SLAVE(old))
  227. list_add(&mnt->mnt_slave, &old->mnt_slave);
  228. mnt->mnt_master = old->mnt_master;
  229. }
  230. if (flag & CL_MAKE_SHARED)
  231. set_mnt_shared(mnt);
  232. /* stick the duplicate mount on the same expiry list
  233. * as the original if that was on one */
  234. if (flag & CL_EXPIRE) {
  235. spin_lock(&vfsmount_lock);
  236. if (!list_empty(&old->mnt_expire))
  237. list_add(&mnt->mnt_expire, &old->mnt_expire);
  238. spin_unlock(&vfsmount_lock);
  239. }
  240. }
  241. return mnt;
  242. }
  243. static inline void __mntput(struct vfsmount *mnt)
  244. {
  245. struct super_block *sb = mnt->mnt_sb;
  246. dput(mnt->mnt_root);
  247. free_vfsmnt(mnt);
  248. deactivate_super(sb);
  249. }
  250. void mntput_no_expire(struct vfsmount *mnt)
  251. {
  252. repeat:
  253. if (atomic_dec_and_lock(&mnt->mnt_count, &vfsmount_lock)) {
  254. if (likely(!mnt->mnt_pinned)) {
  255. spin_unlock(&vfsmount_lock);
  256. __mntput(mnt);
  257. return;
  258. }
  259. atomic_add(mnt->mnt_pinned + 1, &mnt->mnt_count);
  260. mnt->mnt_pinned = 0;
  261. spin_unlock(&vfsmount_lock);
  262. acct_auto_close_mnt(mnt);
  263. security_sb_umount_close(mnt);
  264. goto repeat;
  265. }
  266. }
  267. EXPORT_SYMBOL(mntput_no_expire);
  268. void mnt_pin(struct vfsmount *mnt)
  269. {
  270. spin_lock(&vfsmount_lock);
  271. mnt->mnt_pinned++;
  272. spin_unlock(&vfsmount_lock);
  273. }
  274. EXPORT_SYMBOL(mnt_pin);
  275. void mnt_unpin(struct vfsmount *mnt)
  276. {
  277. spin_lock(&vfsmount_lock);
  278. if (mnt->mnt_pinned) {
  279. atomic_inc(&mnt->mnt_count);
  280. mnt->mnt_pinned--;
  281. }
  282. spin_unlock(&vfsmount_lock);
  283. }
  284. EXPORT_SYMBOL(mnt_unpin);
  285. /* iterator */
  286. static void *m_start(struct seq_file *m, loff_t *pos)
  287. {
  288. struct mnt_namespace *n = m->private;
  289. down_read(&namespace_sem);
  290. return seq_list_start(&n->list, *pos);
  291. }
  292. static void *m_next(struct seq_file *m, void *v, loff_t *pos)
  293. {
  294. struct mnt_namespace *n = m->private;
  295. return seq_list_next(v, &n->list, pos);
  296. }
  297. static void m_stop(struct seq_file *m, void *v)
  298. {
  299. up_read(&namespace_sem);
  300. }
  301. static inline void mangle(struct seq_file *m, const char *s)
  302. {
  303. seq_escape(m, s, " \t\n\\");
  304. }
  305. static int show_vfsmnt(struct seq_file *m, void *v)
  306. {
  307. struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list);
  308. int err = 0;
  309. static struct proc_fs_info {
  310. int flag;
  311. char *str;
  312. } fs_info[] = {
  313. { MS_SYNCHRONOUS, ",sync" },
  314. { MS_DIRSYNC, ",dirsync" },
  315. { MS_MANDLOCK, ",mand" },
  316. { 0, NULL }
  317. };
  318. static struct proc_fs_info mnt_info[] = {
  319. { MNT_NOSUID, ",nosuid" },
  320. { MNT_NODEV, ",nodev" },
  321. { MNT_NOEXEC, ",noexec" },
  322. { MNT_NOATIME, ",noatime" },
  323. { MNT_NODIRATIME, ",nodiratime" },
  324. { MNT_RELATIME, ",relatime" },
  325. { 0, NULL }
  326. };
  327. struct proc_fs_info *fs_infop;
  328. mangle(m, mnt->mnt_devname ? mnt->mnt_devname : "none");
  329. seq_putc(m, ' ');
  330. seq_path(m, mnt, mnt->mnt_root, " \t\n\\");
  331. seq_putc(m, ' ');
  332. mangle(m, mnt->mnt_sb->s_type->name);
  333. if (mnt->mnt_sb->s_subtype && mnt->mnt_sb->s_subtype[0]) {
  334. seq_putc(m, '.');
  335. mangle(m, mnt->mnt_sb->s_subtype);
  336. }
  337. seq_puts(m, mnt->mnt_sb->s_flags & MS_RDONLY ? " ro" : " rw");
  338. for (fs_infop = fs_info; fs_infop->flag; fs_infop++) {
  339. if (mnt->mnt_sb->s_flags & fs_infop->flag)
  340. seq_puts(m, fs_infop->str);
  341. }
  342. for (fs_infop = mnt_info; fs_infop->flag; fs_infop++) {
  343. if (mnt->mnt_flags & fs_infop->flag)
  344. seq_puts(m, fs_infop->str);
  345. }
  346. if (mnt->mnt_sb->s_op->show_options)
  347. err = mnt->mnt_sb->s_op->show_options(m, mnt);
  348. seq_puts(m, " 0 0\n");
  349. return err;
  350. }
  351. struct seq_operations mounts_op = {
  352. .start = m_start,
  353. .next = m_next,
  354. .stop = m_stop,
  355. .show = show_vfsmnt
  356. };
  357. static int show_vfsstat(struct seq_file *m, void *v)
  358. {
  359. struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list);
  360. int err = 0;
  361. /* device */
  362. if (mnt->mnt_devname) {
  363. seq_puts(m, "device ");
  364. mangle(m, mnt->mnt_devname);
  365. } else
  366. seq_puts(m, "no device");
  367. /* mount point */
  368. seq_puts(m, " mounted on ");
  369. seq_path(m, mnt, mnt->mnt_root, " \t\n\\");
  370. seq_putc(m, ' ');
  371. /* file system type */
  372. seq_puts(m, "with fstype ");
  373. mangle(m, mnt->mnt_sb->s_type->name);
  374. /* optional statistics */
  375. if (mnt->mnt_sb->s_op->show_stats) {
  376. seq_putc(m, ' ');
  377. err = mnt->mnt_sb->s_op->show_stats(m, mnt);
  378. }
  379. seq_putc(m, '\n');
  380. return err;
  381. }
  382. struct seq_operations mountstats_op = {
  383. .start = m_start,
  384. .next = m_next,
  385. .stop = m_stop,
  386. .show = show_vfsstat,
  387. };
  388. /**
  389. * may_umount_tree - check if a mount tree is busy
  390. * @mnt: root of mount tree
  391. *
  392. * This is called to check if a tree of mounts has any
  393. * open files, pwds, chroots or sub mounts that are
  394. * busy.
  395. */
  396. int may_umount_tree(struct vfsmount *mnt)
  397. {
  398. int actual_refs = 0;
  399. int minimum_refs = 0;
  400. struct vfsmount *p;
  401. spin_lock(&vfsmount_lock);
  402. for (p = mnt; p; p = next_mnt(p, mnt)) {
  403. actual_refs += atomic_read(&p->mnt_count);
  404. minimum_refs += 2;
  405. }
  406. spin_unlock(&vfsmount_lock);
  407. if (actual_refs > minimum_refs)
  408. return 0;
  409. return 1;
  410. }
  411. EXPORT_SYMBOL(may_umount_tree);
  412. /**
  413. * may_umount - check if a mount point is busy
  414. * @mnt: root of mount
  415. *
  416. * This is called to check if a mount point has any
  417. * open files, pwds, chroots or sub mounts. If the
  418. * mount has sub mounts this will return busy
  419. * regardless of whether the sub mounts are busy.
  420. *
  421. * Doesn't take quota and stuff into account. IOW, in some cases it will
  422. * give false negatives. The main reason why it's here is that we need
  423. * a non-destructive way to look for easily umountable filesystems.
  424. */
  425. int may_umount(struct vfsmount *mnt)
  426. {
  427. int ret = 1;
  428. spin_lock(&vfsmount_lock);
  429. if (propagate_mount_busy(mnt, 2))
  430. ret = 0;
  431. spin_unlock(&vfsmount_lock);
  432. return ret;
  433. }
  434. EXPORT_SYMBOL(may_umount);
  435. void release_mounts(struct list_head *head)
  436. {
  437. struct vfsmount *mnt;
  438. while (!list_empty(head)) {
  439. mnt = list_first_entry(head, struct vfsmount, mnt_hash);
  440. list_del_init(&mnt->mnt_hash);
  441. if (mnt->mnt_parent != mnt) {
  442. struct dentry *dentry;
  443. struct vfsmount *m;
  444. spin_lock(&vfsmount_lock);
  445. dentry = mnt->mnt_mountpoint;
  446. m = mnt->mnt_parent;
  447. mnt->mnt_mountpoint = mnt->mnt_root;
  448. mnt->mnt_parent = mnt;
  449. spin_unlock(&vfsmount_lock);
  450. dput(dentry);
  451. mntput(m);
  452. }
  453. mntput(mnt);
  454. }
  455. }
  456. void umount_tree(struct vfsmount *mnt, int propagate, struct list_head *kill)
  457. {
  458. struct vfsmount *p;
  459. for (p = mnt; p; p = next_mnt(p, mnt))
  460. list_move(&p->mnt_hash, kill);
  461. if (propagate)
  462. propagate_umount(kill);
  463. list_for_each_entry(p, kill, mnt_hash) {
  464. list_del_init(&p->mnt_expire);
  465. list_del_init(&p->mnt_list);
  466. __touch_mnt_namespace(p->mnt_ns);
  467. p->mnt_ns = NULL;
  468. list_del_init(&p->mnt_child);
  469. if (p->mnt_parent != p)
  470. p->mnt_mountpoint->d_mounted--;
  471. change_mnt_propagation(p, MS_PRIVATE);
  472. }
  473. }
  474. static int do_umount(struct vfsmount *mnt, int flags)
  475. {
  476. struct super_block *sb = mnt->mnt_sb;
  477. int retval;
  478. LIST_HEAD(umount_list);
  479. retval = security_sb_umount(mnt, flags);
  480. if (retval)
  481. return retval;
  482. /*
  483. * Allow userspace to request a mountpoint be expired rather than
  484. * unmounting unconditionally. Unmount only happens if:
  485. * (1) the mark is already set (the mark is cleared by mntput())
  486. * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
  487. */
  488. if (flags & MNT_EXPIRE) {
  489. if (mnt == current->fs->rootmnt ||
  490. flags & (MNT_FORCE | MNT_DETACH))
  491. return -EINVAL;
  492. if (atomic_read(&mnt->mnt_count) != 2)
  493. return -EBUSY;
  494. if (!xchg(&mnt->mnt_expiry_mark, 1))
  495. return -EAGAIN;
  496. }
  497. /*
  498. * If we may have to abort operations to get out of this
  499. * mount, and they will themselves hold resources we must
  500. * allow the fs to do things. In the Unix tradition of
  501. * 'Gee thats tricky lets do it in userspace' the umount_begin
  502. * might fail to complete on the first run through as other tasks
  503. * must return, and the like. Thats for the mount program to worry
  504. * about for the moment.
  505. */
  506. lock_kernel();
  507. if (sb->s_op->umount_begin)
  508. sb->s_op->umount_begin(mnt, flags);
  509. unlock_kernel();
  510. /*
  511. * No sense to grab the lock for this test, but test itself looks
  512. * somewhat bogus. Suggestions for better replacement?
  513. * Ho-hum... In principle, we might treat that as umount + switch
  514. * to rootfs. GC would eventually take care of the old vfsmount.
  515. * Actually it makes sense, especially if rootfs would contain a
  516. * /reboot - static binary that would close all descriptors and
  517. * call reboot(9). Then init(8) could umount root and exec /reboot.
  518. */
  519. if (mnt == current->fs->rootmnt && !(flags & MNT_DETACH)) {
  520. /*
  521. * Special case for "unmounting" root ...
  522. * we just try to remount it readonly.
  523. */
  524. down_write(&sb->s_umount);
  525. if (!(sb->s_flags & MS_RDONLY)) {
  526. lock_kernel();
  527. DQUOT_OFF(sb);
  528. retval = do_remount_sb(sb, MS_RDONLY, NULL, 0);
  529. unlock_kernel();
  530. }
  531. up_write(&sb->s_umount);
  532. return retval;
  533. }
  534. down_write(&namespace_sem);
  535. spin_lock(&vfsmount_lock);
  536. event++;
  537. retval = -EBUSY;
  538. if (flags & MNT_DETACH || !propagate_mount_busy(mnt, 2)) {
  539. if (!list_empty(&mnt->mnt_list))
  540. umount_tree(mnt, 1, &umount_list);
  541. retval = 0;
  542. }
  543. spin_unlock(&vfsmount_lock);
  544. if (retval)
  545. security_sb_umount_busy(mnt);
  546. up_write(&namespace_sem);
  547. release_mounts(&umount_list);
  548. return retval;
  549. }
  550. /*
  551. * Now umount can handle mount points as well as block devices.
  552. * This is important for filesystems which use unnamed block devices.
  553. *
  554. * We now support a flag for forced unmount like the other 'big iron'
  555. * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
  556. */
  557. asmlinkage long sys_umount(char __user * name, int flags)
  558. {
  559. struct nameidata nd;
  560. int retval;
  561. retval = __user_walk(name, LOOKUP_FOLLOW, &nd);
  562. if (retval)
  563. goto out;
  564. retval = -EINVAL;
  565. if (nd.dentry != nd.mnt->mnt_root)
  566. goto dput_and_out;
  567. if (!check_mnt(nd.mnt))
  568. goto dput_and_out;
  569. retval = -EPERM;
  570. if (!capable(CAP_SYS_ADMIN))
  571. goto dput_and_out;
  572. retval = do_umount(nd.mnt, flags);
  573. dput_and_out:
  574. path_release_on_umount(&nd);
  575. out:
  576. return retval;
  577. }
  578. #ifdef __ARCH_WANT_SYS_OLDUMOUNT
  579. /*
  580. * The 2.0 compatible umount. No flags.
  581. */
  582. asmlinkage long sys_oldumount(char __user * name)
  583. {
  584. return sys_umount(name, 0);
  585. }
  586. #endif
  587. static int mount_is_safe(struct nameidata *nd)
  588. {
  589. if (capable(CAP_SYS_ADMIN))
  590. return 0;
  591. return -EPERM;
  592. #ifdef notyet
  593. if (S_ISLNK(nd->dentry->d_inode->i_mode))
  594. return -EPERM;
  595. if (nd->dentry->d_inode->i_mode & S_ISVTX) {
  596. if (current->uid != nd->dentry->d_inode->i_uid)
  597. return -EPERM;
  598. }
  599. if (vfs_permission(nd, MAY_WRITE))
  600. return -EPERM;
  601. return 0;
  602. #endif
  603. }
  604. static int lives_below_in_same_fs(struct dentry *d, struct dentry *dentry)
  605. {
  606. while (1) {
  607. if (d == dentry)
  608. return 1;
  609. if (d == NULL || d == d->d_parent)
  610. return 0;
  611. d = d->d_parent;
  612. }
  613. }
  614. struct vfsmount *copy_tree(struct vfsmount *mnt, struct dentry *dentry,
  615. int flag)
  616. {
  617. struct vfsmount *res, *p, *q, *r, *s;
  618. struct nameidata nd;
  619. if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(mnt))
  620. return NULL;
  621. res = q = clone_mnt(mnt, dentry, flag);
  622. if (!q)
  623. goto Enomem;
  624. q->mnt_mountpoint = mnt->mnt_mountpoint;
  625. p = mnt;
  626. list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
  627. if (!lives_below_in_same_fs(r->mnt_mountpoint, dentry))
  628. continue;
  629. for (s = r; s; s = next_mnt(s, r)) {
  630. if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(s)) {
  631. s = skip_mnt_tree(s);
  632. continue;
  633. }
  634. while (p != s->mnt_parent) {
  635. p = p->mnt_parent;
  636. q = q->mnt_parent;
  637. }
  638. p = s;
  639. nd.mnt = q;
  640. nd.dentry = p->mnt_mountpoint;
  641. q = clone_mnt(p, p->mnt_root, flag);
  642. if (!q)
  643. goto Enomem;
  644. spin_lock(&vfsmount_lock);
  645. list_add_tail(&q->mnt_list, &res->mnt_list);
  646. attach_mnt(q, &nd);
  647. spin_unlock(&vfsmount_lock);
  648. }
  649. }
  650. return res;
  651. Enomem:
  652. if (res) {
  653. LIST_HEAD(umount_list);
  654. spin_lock(&vfsmount_lock);
  655. umount_tree(res, 0, &umount_list);
  656. spin_unlock(&vfsmount_lock);
  657. release_mounts(&umount_list);
  658. }
  659. return NULL;
  660. }
  661. struct vfsmount *collect_mounts(struct vfsmount *mnt, struct dentry *dentry)
  662. {
  663. struct vfsmount *tree;
  664. down_read(&namespace_sem);
  665. tree = copy_tree(mnt, dentry, CL_COPY_ALL | CL_PRIVATE);
  666. up_read(&namespace_sem);
  667. return tree;
  668. }
  669. void drop_collected_mounts(struct vfsmount *mnt)
  670. {
  671. LIST_HEAD(umount_list);
  672. down_read(&namespace_sem);
  673. spin_lock(&vfsmount_lock);
  674. umount_tree(mnt, 0, &umount_list);
  675. spin_unlock(&vfsmount_lock);
  676. up_read(&namespace_sem);
  677. release_mounts(&umount_list);
  678. }
  679. /*
  680. * @source_mnt : mount tree to be attached
  681. * @nd : place the mount tree @source_mnt is attached
  682. * @parent_nd : if non-null, detach the source_mnt from its parent and
  683. * store the parent mount and mountpoint dentry.
  684. * (done when source_mnt is moved)
  685. *
  686. * NOTE: in the table below explains the semantics when a source mount
  687. * of a given type is attached to a destination mount of a given type.
  688. * ---------------------------------------------------------------------------
  689. * | BIND MOUNT OPERATION |
  690. * |**************************************************************************
  691. * | source-->| shared | private | slave | unbindable |
  692. * | dest | | | | |
  693. * | | | | | | |
  694. * | v | | | | |
  695. * |**************************************************************************
  696. * | shared | shared (++) | shared (+) | shared(+++)| invalid |
  697. * | | | | | |
  698. * |non-shared| shared (+) | private | slave (*) | invalid |
  699. * ***************************************************************************
  700. * A bind operation clones the source mount and mounts the clone on the
  701. * destination mount.
  702. *
  703. * (++) the cloned mount is propagated to all the mounts in the propagation
  704. * tree of the destination mount and the cloned mount is added to
  705. * the peer group of the source mount.
  706. * (+) the cloned mount is created under the destination mount and is marked
  707. * as shared. The cloned mount is added to the peer group of the source
  708. * mount.
  709. * (+++) the mount is propagated to all the mounts in the propagation tree
  710. * of the destination mount and the cloned mount is made slave
  711. * of the same master as that of the source mount. The cloned mount
  712. * is marked as 'shared and slave'.
  713. * (*) the cloned mount is made a slave of the same master as that of the
  714. * source mount.
  715. *
  716. * ---------------------------------------------------------------------------
  717. * | MOVE MOUNT OPERATION |
  718. * |**************************************************************************
  719. * | source-->| shared | private | slave | unbindable |
  720. * | dest | | | | |
  721. * | | | | | | |
  722. * | v | | | | |
  723. * |**************************************************************************
  724. * | shared | shared (+) | shared (+) | shared(+++) | invalid |
  725. * | | | | | |
  726. * |non-shared| shared (+*) | private | slave (*) | unbindable |
  727. * ***************************************************************************
  728. *
  729. * (+) the mount is moved to the destination. And is then propagated to
  730. * all the mounts in the propagation tree of the destination mount.
  731. * (+*) the mount is moved to the destination.
  732. * (+++) the mount is moved to the destination and is then propagated to
  733. * all the mounts belonging to the destination mount's propagation tree.
  734. * the mount is marked as 'shared and slave'.
  735. * (*) the mount continues to be a slave at the new location.
  736. *
  737. * if the source mount is a tree, the operations explained above is
  738. * applied to each mount in the tree.
  739. * Must be called without spinlocks held, since this function can sleep
  740. * in allocations.
  741. */
  742. static int attach_recursive_mnt(struct vfsmount *source_mnt,
  743. struct nameidata *nd, struct nameidata *parent_nd)
  744. {
  745. LIST_HEAD(tree_list);
  746. struct vfsmount *dest_mnt = nd->mnt;
  747. struct dentry *dest_dentry = nd->dentry;
  748. struct vfsmount *child, *p;
  749. if (propagate_mnt(dest_mnt, dest_dentry, source_mnt, &tree_list))
  750. return -EINVAL;
  751. if (IS_MNT_SHARED(dest_mnt)) {
  752. for (p = source_mnt; p; p = next_mnt(p, source_mnt))
  753. set_mnt_shared(p);
  754. }
  755. spin_lock(&vfsmount_lock);
  756. if (parent_nd) {
  757. detach_mnt(source_mnt, parent_nd);
  758. attach_mnt(source_mnt, nd);
  759. touch_mnt_namespace(current->nsproxy->mnt_ns);
  760. } else {
  761. mnt_set_mountpoint(dest_mnt, dest_dentry, source_mnt);
  762. commit_tree(source_mnt);
  763. }
  764. list_for_each_entry_safe(child, p, &tree_list, mnt_hash) {
  765. list_del_init(&child->mnt_hash);
  766. commit_tree(child);
  767. }
  768. spin_unlock(&vfsmount_lock);
  769. return 0;
  770. }
  771. static int graft_tree(struct vfsmount *mnt, struct nameidata *nd)
  772. {
  773. int err;
  774. if (mnt->mnt_sb->s_flags & MS_NOUSER)
  775. return -EINVAL;
  776. if (S_ISDIR(nd->dentry->d_inode->i_mode) !=
  777. S_ISDIR(mnt->mnt_root->d_inode->i_mode))
  778. return -ENOTDIR;
  779. err = -ENOENT;
  780. mutex_lock(&nd->dentry->d_inode->i_mutex);
  781. if (IS_DEADDIR(nd->dentry->d_inode))
  782. goto out_unlock;
  783. err = security_sb_check_sb(mnt, nd);
  784. if (err)
  785. goto out_unlock;
  786. err = -ENOENT;
  787. if (IS_ROOT(nd->dentry) || !d_unhashed(nd->dentry))
  788. err = attach_recursive_mnt(mnt, nd, NULL);
  789. out_unlock:
  790. mutex_unlock(&nd->dentry->d_inode->i_mutex);
  791. if (!err)
  792. security_sb_post_addmount(mnt, nd);
  793. return err;
  794. }
  795. /*
  796. * recursively change the type of the mountpoint.
  797. */
  798. static int do_change_type(struct nameidata *nd, int flag)
  799. {
  800. struct vfsmount *m, *mnt = nd->mnt;
  801. int recurse = flag & MS_REC;
  802. int type = flag & ~MS_REC;
  803. if (!capable(CAP_SYS_ADMIN))
  804. return -EPERM;
  805. if (nd->dentry != nd->mnt->mnt_root)
  806. return -EINVAL;
  807. down_write(&namespace_sem);
  808. spin_lock(&vfsmount_lock);
  809. for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
  810. change_mnt_propagation(m, type);
  811. spin_unlock(&vfsmount_lock);
  812. up_write(&namespace_sem);
  813. return 0;
  814. }
  815. /*
  816. * do loopback mount.
  817. */
  818. static int do_loopback(struct nameidata *nd, char *old_name, int recurse)
  819. {
  820. struct nameidata old_nd;
  821. struct vfsmount *mnt = NULL;
  822. int err = mount_is_safe(nd);
  823. if (err)
  824. return err;
  825. if (!old_name || !*old_name)
  826. return -EINVAL;
  827. err = path_lookup(old_name, LOOKUP_FOLLOW, &old_nd);
  828. if (err)
  829. return err;
  830. down_write(&namespace_sem);
  831. err = -EINVAL;
  832. if (IS_MNT_UNBINDABLE(old_nd.mnt))
  833. goto out;
  834. if (!check_mnt(nd->mnt) || !check_mnt(old_nd.mnt))
  835. goto out;
  836. err = -ENOMEM;
  837. if (recurse)
  838. mnt = copy_tree(old_nd.mnt, old_nd.dentry, 0);
  839. else
  840. mnt = clone_mnt(old_nd.mnt, old_nd.dentry, 0);
  841. if (!mnt)
  842. goto out;
  843. err = graft_tree(mnt, nd);
  844. if (err) {
  845. LIST_HEAD(umount_list);
  846. spin_lock(&vfsmount_lock);
  847. umount_tree(mnt, 0, &umount_list);
  848. spin_unlock(&vfsmount_lock);
  849. release_mounts(&umount_list);
  850. }
  851. out:
  852. up_write(&namespace_sem);
  853. path_release(&old_nd);
  854. return err;
  855. }
  856. /*
  857. * change filesystem flags. dir should be a physical root of filesystem.
  858. * If you've mounted a non-root directory somewhere and want to do remount
  859. * on it - tough luck.
  860. */
  861. static int do_remount(struct nameidata *nd, int flags, int mnt_flags,
  862. void *data)
  863. {
  864. int err;
  865. struct super_block *sb = nd->mnt->mnt_sb;
  866. if (!capable(CAP_SYS_ADMIN))
  867. return -EPERM;
  868. if (!check_mnt(nd->mnt))
  869. return -EINVAL;
  870. if (nd->dentry != nd->mnt->mnt_root)
  871. return -EINVAL;
  872. down_write(&sb->s_umount);
  873. err = do_remount_sb(sb, flags, data, 0);
  874. if (!err)
  875. nd->mnt->mnt_flags = mnt_flags;
  876. up_write(&sb->s_umount);
  877. if (!err)
  878. security_sb_post_remount(nd->mnt, flags, data);
  879. return err;
  880. }
  881. static inline int tree_contains_unbindable(struct vfsmount *mnt)
  882. {
  883. struct vfsmount *p;
  884. for (p = mnt; p; p = next_mnt(p, mnt)) {
  885. if (IS_MNT_UNBINDABLE(p))
  886. return 1;
  887. }
  888. return 0;
  889. }
  890. static int do_move_mount(struct nameidata *nd, char *old_name)
  891. {
  892. struct nameidata old_nd, parent_nd;
  893. struct vfsmount *p;
  894. int err = 0;
  895. if (!capable(CAP_SYS_ADMIN))
  896. return -EPERM;
  897. if (!old_name || !*old_name)
  898. return -EINVAL;
  899. err = path_lookup(old_name, LOOKUP_FOLLOW, &old_nd);
  900. if (err)
  901. return err;
  902. down_write(&namespace_sem);
  903. while (d_mountpoint(nd->dentry) && follow_down(&nd->mnt, &nd->dentry))
  904. ;
  905. err = -EINVAL;
  906. if (!check_mnt(nd->mnt) || !check_mnt(old_nd.mnt))
  907. goto out;
  908. err = -ENOENT;
  909. mutex_lock(&nd->dentry->d_inode->i_mutex);
  910. if (IS_DEADDIR(nd->dentry->d_inode))
  911. goto out1;
  912. if (!IS_ROOT(nd->dentry) && d_unhashed(nd->dentry))
  913. goto out1;
  914. err = -EINVAL;
  915. if (old_nd.dentry != old_nd.mnt->mnt_root)
  916. goto out1;
  917. if (old_nd.mnt == old_nd.mnt->mnt_parent)
  918. goto out1;
  919. if (S_ISDIR(nd->dentry->d_inode->i_mode) !=
  920. S_ISDIR(old_nd.dentry->d_inode->i_mode))
  921. goto out1;
  922. /*
  923. * Don't move a mount residing in a shared parent.
  924. */
  925. if (old_nd.mnt->mnt_parent && IS_MNT_SHARED(old_nd.mnt->mnt_parent))
  926. goto out1;
  927. /*
  928. * Don't move a mount tree containing unbindable mounts to a destination
  929. * mount which is shared.
  930. */
  931. if (IS_MNT_SHARED(nd->mnt) && tree_contains_unbindable(old_nd.mnt))
  932. goto out1;
  933. err = -ELOOP;
  934. for (p = nd->mnt; p->mnt_parent != p; p = p->mnt_parent)
  935. if (p == old_nd.mnt)
  936. goto out1;
  937. if ((err = attach_recursive_mnt(old_nd.mnt, nd, &parent_nd)))
  938. goto out1;
  939. spin_lock(&vfsmount_lock);
  940. /* if the mount is moved, it should no longer be expire
  941. * automatically */
  942. list_del_init(&old_nd.mnt->mnt_expire);
  943. spin_unlock(&vfsmount_lock);
  944. out1:
  945. mutex_unlock(&nd->dentry->d_inode->i_mutex);
  946. out:
  947. up_write(&namespace_sem);
  948. if (!err)
  949. path_release(&parent_nd);
  950. path_release(&old_nd);
  951. return err;
  952. }
  953. /*
  954. * create a new mount for userspace and request it to be added into the
  955. * namespace's tree
  956. */
  957. static int do_new_mount(struct nameidata *nd, char *type, int flags,
  958. int mnt_flags, char *name, void *data)
  959. {
  960. struct vfsmount *mnt;
  961. if (!type || !memchr(type, 0, PAGE_SIZE))
  962. return -EINVAL;
  963. /* we need capabilities... */
  964. if (!capable(CAP_SYS_ADMIN))
  965. return -EPERM;
  966. mnt = do_kern_mount(type, flags, name, data);
  967. if (IS_ERR(mnt))
  968. return PTR_ERR(mnt);
  969. return do_add_mount(mnt, nd, mnt_flags, NULL);
  970. }
  971. /*
  972. * add a mount into a namespace's mount tree
  973. * - provide the option of adding the new mount to an expiration list
  974. */
  975. int do_add_mount(struct vfsmount *newmnt, struct nameidata *nd,
  976. int mnt_flags, struct list_head *fslist)
  977. {
  978. int err;
  979. down_write(&namespace_sem);
  980. /* Something was mounted here while we slept */
  981. while (d_mountpoint(nd->dentry) && follow_down(&nd->mnt, &nd->dentry))
  982. ;
  983. err = -EINVAL;
  984. if (!check_mnt(nd->mnt))
  985. goto unlock;
  986. /* Refuse the same filesystem on the same mount point */
  987. err = -EBUSY;
  988. if (nd->mnt->mnt_sb == newmnt->mnt_sb &&
  989. nd->mnt->mnt_root == nd->dentry)
  990. goto unlock;
  991. err = -EINVAL;
  992. if (S_ISLNK(newmnt->mnt_root->d_inode->i_mode))
  993. goto unlock;
  994. newmnt->mnt_flags = mnt_flags;
  995. if ((err = graft_tree(newmnt, nd)))
  996. goto unlock;
  997. if (fslist) {
  998. /* add to the specified expiration list */
  999. spin_lock(&vfsmount_lock);
  1000. list_add_tail(&newmnt->mnt_expire, fslist);
  1001. spin_unlock(&vfsmount_lock);
  1002. }
  1003. up_write(&namespace_sem);
  1004. return 0;
  1005. unlock:
  1006. up_write(&namespace_sem);
  1007. mntput(newmnt);
  1008. return err;
  1009. }
  1010. EXPORT_SYMBOL_GPL(do_add_mount);
  1011. static void expire_mount(struct vfsmount *mnt, struct list_head *mounts,
  1012. struct list_head *umounts)
  1013. {
  1014. spin_lock(&vfsmount_lock);
  1015. /*
  1016. * Check if mount is still attached, if not, let whoever holds it deal
  1017. * with the sucker
  1018. */
  1019. if (mnt->mnt_parent == mnt) {
  1020. spin_unlock(&vfsmount_lock);
  1021. return;
  1022. }
  1023. /*
  1024. * Check that it is still dead: the count should now be 2 - as
  1025. * contributed by the vfsmount parent and the mntget above
  1026. */
  1027. if (!propagate_mount_busy(mnt, 2)) {
  1028. /* delete from the namespace */
  1029. touch_mnt_namespace(mnt->mnt_ns);
  1030. list_del_init(&mnt->mnt_list);
  1031. mnt->mnt_ns = NULL;
  1032. umount_tree(mnt, 1, umounts);
  1033. spin_unlock(&vfsmount_lock);
  1034. } else {
  1035. /*
  1036. * Someone brought it back to life whilst we didn't have any
  1037. * locks held so return it to the expiration list
  1038. */
  1039. list_add_tail(&mnt->mnt_expire, mounts);
  1040. spin_unlock(&vfsmount_lock);
  1041. }
  1042. }
  1043. /*
  1044. * go through the vfsmounts we've just consigned to the graveyard to
  1045. * - check that they're still dead
  1046. * - delete the vfsmount from the appropriate namespace under lock
  1047. * - dispose of the corpse
  1048. */
  1049. static void expire_mount_list(struct list_head *graveyard, struct list_head *mounts)
  1050. {
  1051. struct mnt_namespace *ns;
  1052. struct vfsmount *mnt;
  1053. while (!list_empty(graveyard)) {
  1054. LIST_HEAD(umounts);
  1055. mnt = list_first_entry(graveyard, struct vfsmount, mnt_expire);
  1056. list_del_init(&mnt->mnt_expire);
  1057. /* don't do anything if the namespace is dead - all the
  1058. * vfsmounts from it are going away anyway */
  1059. ns = mnt->mnt_ns;
  1060. if (!ns || !ns->root)
  1061. continue;
  1062. get_mnt_ns(ns);
  1063. spin_unlock(&vfsmount_lock);
  1064. down_write(&namespace_sem);
  1065. expire_mount(mnt, mounts, &umounts);
  1066. up_write(&namespace_sem);
  1067. release_mounts(&umounts);
  1068. mntput(mnt);
  1069. put_mnt_ns(ns);
  1070. spin_lock(&vfsmount_lock);
  1071. }
  1072. }
  1073. /*
  1074. * process a list of expirable mountpoints with the intent of discarding any
  1075. * mountpoints that aren't in use and haven't been touched since last we came
  1076. * here
  1077. */
  1078. void mark_mounts_for_expiry(struct list_head *mounts)
  1079. {
  1080. struct vfsmount *mnt, *next;
  1081. LIST_HEAD(graveyard);
  1082. if (list_empty(mounts))
  1083. return;
  1084. spin_lock(&vfsmount_lock);
  1085. /* extract from the expiration list every vfsmount that matches the
  1086. * following criteria:
  1087. * - only referenced by its parent vfsmount
  1088. * - still marked for expiry (marked on the last call here; marks are
  1089. * cleared by mntput())
  1090. */
  1091. list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
  1092. if (!xchg(&mnt->mnt_expiry_mark, 1) ||
  1093. atomic_read(&mnt->mnt_count) != 1)
  1094. continue;
  1095. mntget(mnt);
  1096. list_move(&mnt->mnt_expire, &graveyard);
  1097. }
  1098. expire_mount_list(&graveyard, mounts);
  1099. spin_unlock(&vfsmount_lock);
  1100. }
  1101. EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
  1102. /*
  1103. * Ripoff of 'select_parent()'
  1104. *
  1105. * search the list of submounts for a given mountpoint, and move any
  1106. * shrinkable submounts to the 'graveyard' list.
  1107. */
  1108. static int select_submounts(struct vfsmount *parent, struct list_head *graveyard)
  1109. {
  1110. struct vfsmount *this_parent = parent;
  1111. struct list_head *next;
  1112. int found = 0;
  1113. repeat:
  1114. next = this_parent->mnt_mounts.next;
  1115. resume:
  1116. while (next != &this_parent->mnt_mounts) {
  1117. struct list_head *tmp = next;
  1118. struct vfsmount *mnt = list_entry(tmp, struct vfsmount, mnt_child);
  1119. next = tmp->next;
  1120. if (!(mnt->mnt_flags & MNT_SHRINKABLE))
  1121. continue;
  1122. /*
  1123. * Descend a level if the d_mounts list is non-empty.
  1124. */
  1125. if (!list_empty(&mnt->mnt_mounts)) {
  1126. this_parent = mnt;
  1127. goto repeat;
  1128. }
  1129. if (!propagate_mount_busy(mnt, 1)) {
  1130. mntget(mnt);
  1131. list_move_tail(&mnt->mnt_expire, graveyard);
  1132. found++;
  1133. }
  1134. }
  1135. /*
  1136. * All done at this level ... ascend and resume the search
  1137. */
  1138. if (this_parent != parent) {
  1139. next = this_parent->mnt_child.next;
  1140. this_parent = this_parent->mnt_parent;
  1141. goto resume;
  1142. }
  1143. return found;
  1144. }
  1145. /*
  1146. * process a list of expirable mountpoints with the intent of discarding any
  1147. * submounts of a specific parent mountpoint
  1148. */
  1149. void shrink_submounts(struct vfsmount *mountpoint, struct list_head *mounts)
  1150. {
  1151. LIST_HEAD(graveyard);
  1152. int found;
  1153. spin_lock(&vfsmount_lock);
  1154. /* extract submounts of 'mountpoint' from the expiration list */
  1155. while ((found = select_submounts(mountpoint, &graveyard)) != 0)
  1156. expire_mount_list(&graveyard, mounts);
  1157. spin_unlock(&vfsmount_lock);
  1158. }
  1159. EXPORT_SYMBOL_GPL(shrink_submounts);
  1160. /*
  1161. * Some copy_from_user() implementations do not return the exact number of
  1162. * bytes remaining to copy on a fault. But copy_mount_options() requires that.
  1163. * Note that this function differs from copy_from_user() in that it will oops
  1164. * on bad values of `to', rather than returning a short copy.
  1165. */
  1166. static long exact_copy_from_user(void *to, const void __user * from,
  1167. unsigned long n)
  1168. {
  1169. char *t = to;
  1170. const char __user *f = from;
  1171. char c;
  1172. if (!access_ok(VERIFY_READ, from, n))
  1173. return n;
  1174. while (n) {
  1175. if (__get_user(c, f)) {
  1176. memset(t, 0, n);
  1177. break;
  1178. }
  1179. *t++ = c;
  1180. f++;
  1181. n--;
  1182. }
  1183. return n;
  1184. }
  1185. int copy_mount_options(const void __user * data, unsigned long *where)
  1186. {
  1187. int i;
  1188. unsigned long page;
  1189. unsigned long size;
  1190. *where = 0;
  1191. if (!data)
  1192. return 0;
  1193. if (!(page = __get_free_page(GFP_KERNEL)))
  1194. return -ENOMEM;
  1195. /* We only care that *some* data at the address the user
  1196. * gave us is valid. Just in case, we'll zero
  1197. * the remainder of the page.
  1198. */
  1199. /* copy_from_user cannot cross TASK_SIZE ! */
  1200. size = TASK_SIZE - (unsigned long)data;
  1201. if (size > PAGE_SIZE)
  1202. size = PAGE_SIZE;
  1203. i = size - exact_copy_from_user((void *)page, data, size);
  1204. if (!i) {
  1205. free_page(page);
  1206. return -EFAULT;
  1207. }
  1208. if (i != PAGE_SIZE)
  1209. memset((char *)page + i, 0, PAGE_SIZE - i);
  1210. *where = page;
  1211. return 0;
  1212. }
  1213. /*
  1214. * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
  1215. * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
  1216. *
  1217. * data is a (void *) that can point to any structure up to
  1218. * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
  1219. * information (or be NULL).
  1220. *
  1221. * Pre-0.97 versions of mount() didn't have a flags word.
  1222. * When the flags word was introduced its top half was required
  1223. * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
  1224. * Therefore, if this magic number is present, it carries no information
  1225. * and must be discarded.
  1226. */
  1227. long do_mount(char *dev_name, char *dir_name, char *type_page,
  1228. unsigned long flags, void *data_page)
  1229. {
  1230. struct nameidata nd;
  1231. int retval = 0;
  1232. int mnt_flags = 0;
  1233. /* Discard magic */
  1234. if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
  1235. flags &= ~MS_MGC_MSK;
  1236. /* Basic sanity checks */
  1237. if (!dir_name || !*dir_name || !memchr(dir_name, 0, PAGE_SIZE))
  1238. return -EINVAL;
  1239. if (dev_name && !memchr(dev_name, 0, PAGE_SIZE))
  1240. return -EINVAL;
  1241. if (data_page)
  1242. ((char *)data_page)[PAGE_SIZE - 1] = 0;
  1243. /* Separate the per-mountpoint flags */
  1244. if (flags & MS_NOSUID)
  1245. mnt_flags |= MNT_NOSUID;
  1246. if (flags & MS_NODEV)
  1247. mnt_flags |= MNT_NODEV;
  1248. if (flags & MS_NOEXEC)
  1249. mnt_flags |= MNT_NOEXEC;
  1250. if (flags & MS_NOATIME)
  1251. mnt_flags |= MNT_NOATIME;
  1252. if (flags & MS_NODIRATIME)
  1253. mnt_flags |= MNT_NODIRATIME;
  1254. if (flags & MS_RELATIME)
  1255. mnt_flags |= MNT_RELATIME;
  1256. flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE |
  1257. MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT);
  1258. /* ... and get the mountpoint */
  1259. retval = path_lookup(dir_name, LOOKUP_FOLLOW, &nd);
  1260. if (retval)
  1261. return retval;
  1262. retval = security_sb_mount(dev_name, &nd, type_page, flags, data_page);
  1263. if (retval)
  1264. goto dput_out;
  1265. if (flags & MS_REMOUNT)
  1266. retval = do_remount(&nd, flags & ~MS_REMOUNT, mnt_flags,
  1267. data_page);
  1268. else if (flags & MS_BIND)
  1269. retval = do_loopback(&nd, dev_name, flags & MS_REC);
  1270. else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
  1271. retval = do_change_type(&nd, flags);
  1272. else if (flags & MS_MOVE)
  1273. retval = do_move_mount(&nd, dev_name);
  1274. else
  1275. retval = do_new_mount(&nd, type_page, flags, mnt_flags,
  1276. dev_name, data_page);
  1277. dput_out:
  1278. path_release(&nd);
  1279. return retval;
  1280. }
  1281. /*
  1282. * Allocate a new namespace structure and populate it with contents
  1283. * copied from the namespace of the passed in task structure.
  1284. */
  1285. static struct mnt_namespace *dup_mnt_ns(struct mnt_namespace *mnt_ns,
  1286. struct fs_struct *fs)
  1287. {
  1288. struct mnt_namespace *new_ns;
  1289. struct vfsmount *rootmnt = NULL, *pwdmnt = NULL, *altrootmnt = NULL;
  1290. struct vfsmount *p, *q;
  1291. new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
  1292. if (!new_ns)
  1293. return ERR_PTR(-ENOMEM);
  1294. atomic_set(&new_ns->count, 1);
  1295. INIT_LIST_HEAD(&new_ns->list);
  1296. init_waitqueue_head(&new_ns->poll);
  1297. new_ns->event = 0;
  1298. down_write(&namespace_sem);
  1299. /* First pass: copy the tree topology */
  1300. new_ns->root = copy_tree(mnt_ns->root, mnt_ns->root->mnt_root,
  1301. CL_COPY_ALL | CL_EXPIRE);
  1302. if (!new_ns->root) {
  1303. up_write(&namespace_sem);
  1304. kfree(new_ns);
  1305. return ERR_PTR(-ENOMEM);;
  1306. }
  1307. spin_lock(&vfsmount_lock);
  1308. list_add_tail(&new_ns->list, &new_ns->root->mnt_list);
  1309. spin_unlock(&vfsmount_lock);
  1310. /*
  1311. * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
  1312. * as belonging to new namespace. We have already acquired a private
  1313. * fs_struct, so tsk->fs->lock is not needed.
  1314. */
  1315. p = mnt_ns->root;
  1316. q = new_ns->root;
  1317. while (p) {
  1318. q->mnt_ns = new_ns;
  1319. if (fs) {
  1320. if (p == fs->rootmnt) {
  1321. rootmnt = p;
  1322. fs->rootmnt = mntget(q);
  1323. }
  1324. if (p == fs->pwdmnt) {
  1325. pwdmnt = p;
  1326. fs->pwdmnt = mntget(q);
  1327. }
  1328. if (p == fs->altrootmnt) {
  1329. altrootmnt = p;
  1330. fs->altrootmnt = mntget(q);
  1331. }
  1332. }
  1333. p = next_mnt(p, mnt_ns->root);
  1334. q = next_mnt(q, new_ns->root);
  1335. }
  1336. up_write(&namespace_sem);
  1337. if (rootmnt)
  1338. mntput(rootmnt);
  1339. if (pwdmnt)
  1340. mntput(pwdmnt);
  1341. if (altrootmnt)
  1342. mntput(altrootmnt);
  1343. return new_ns;
  1344. }
  1345. struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
  1346. struct fs_struct *new_fs)
  1347. {
  1348. struct mnt_namespace *new_ns;
  1349. BUG_ON(!ns);
  1350. get_mnt_ns(ns);
  1351. if (!(flags & CLONE_NEWNS))
  1352. return ns;
  1353. new_ns = dup_mnt_ns(ns, new_fs);
  1354. put_mnt_ns(ns);
  1355. return new_ns;
  1356. }
  1357. asmlinkage long sys_mount(char __user * dev_name, char __user * dir_name,
  1358. char __user * type, unsigned long flags,
  1359. void __user * data)
  1360. {
  1361. int retval;
  1362. unsigned long data_page;
  1363. unsigned long type_page;
  1364. unsigned long dev_page;
  1365. char *dir_page;
  1366. retval = copy_mount_options(type, &type_page);
  1367. if (retval < 0)
  1368. return retval;
  1369. dir_page = getname(dir_name);
  1370. retval = PTR_ERR(dir_page);
  1371. if (IS_ERR(dir_page))
  1372. goto out1;
  1373. retval = copy_mount_options(dev_name, &dev_page);
  1374. if (retval < 0)
  1375. goto out2;
  1376. retval = copy_mount_options(data, &data_page);
  1377. if (retval < 0)
  1378. goto out3;
  1379. lock_kernel();
  1380. retval = do_mount((char *)dev_page, dir_page, (char *)type_page,
  1381. flags, (void *)data_page);
  1382. unlock_kernel();
  1383. free_page(data_page);
  1384. out3:
  1385. free_page(dev_page);
  1386. out2:
  1387. putname(dir_page);
  1388. out1:
  1389. free_page(type_page);
  1390. return retval;
  1391. }
  1392. /*
  1393. * Replace the fs->{rootmnt,root} with {mnt,dentry}. Put the old values.
  1394. * It can block. Requires the big lock held.
  1395. */
  1396. void set_fs_root(struct fs_struct *fs, struct vfsmount *mnt,
  1397. struct dentry *dentry)
  1398. {
  1399. struct dentry *old_root;
  1400. struct vfsmount *old_rootmnt;
  1401. write_lock(&fs->lock);
  1402. old_root = fs->root;
  1403. old_rootmnt = fs->rootmnt;
  1404. fs->rootmnt = mntget(mnt);
  1405. fs->root = dget(dentry);
  1406. write_unlock(&fs->lock);
  1407. if (old_root) {
  1408. dput(old_root);
  1409. mntput(old_rootmnt);
  1410. }
  1411. }
  1412. /*
  1413. * Replace the fs->{pwdmnt,pwd} with {mnt,dentry}. Put the old values.
  1414. * It can block. Requires the big lock held.
  1415. */
  1416. void set_fs_pwd(struct fs_struct *fs, struct vfsmount *mnt,
  1417. struct dentry *dentry)
  1418. {
  1419. struct dentry *old_pwd;
  1420. struct vfsmount *old_pwdmnt;
  1421. write_lock(&fs->lock);
  1422. old_pwd = fs->pwd;
  1423. old_pwdmnt = fs->pwdmnt;
  1424. fs->pwdmnt = mntget(mnt);
  1425. fs->pwd = dget(dentry);
  1426. write_unlock(&fs->lock);
  1427. if (old_pwd) {
  1428. dput(old_pwd);
  1429. mntput(old_pwdmnt);
  1430. }
  1431. }
  1432. static void chroot_fs_refs(struct nameidata *old_nd, struct nameidata *new_nd)
  1433. {
  1434. struct task_struct *g, *p;
  1435. struct fs_struct *fs;
  1436. read_lock(&tasklist_lock);
  1437. do_each_thread(g, p) {
  1438. task_lock(p);
  1439. fs = p->fs;
  1440. if (fs) {
  1441. atomic_inc(&fs->count);
  1442. task_unlock(p);
  1443. if (fs->root == old_nd->dentry
  1444. && fs->rootmnt == old_nd->mnt)
  1445. set_fs_root(fs, new_nd->mnt, new_nd->dentry);
  1446. if (fs->pwd == old_nd->dentry
  1447. && fs->pwdmnt == old_nd->mnt)
  1448. set_fs_pwd(fs, new_nd->mnt, new_nd->dentry);
  1449. put_fs_struct(fs);
  1450. } else
  1451. task_unlock(p);
  1452. } while_each_thread(g, p);
  1453. read_unlock(&tasklist_lock);
  1454. }
  1455. /*
  1456. * pivot_root Semantics:
  1457. * Moves the root file system of the current process to the directory put_old,
  1458. * makes new_root as the new root file system of the current process, and sets
  1459. * root/cwd of all processes which had them on the current root to new_root.
  1460. *
  1461. * Restrictions:
  1462. * The new_root and put_old must be directories, and must not be on the
  1463. * same file system as the current process root. The put_old must be
  1464. * underneath new_root, i.e. adding a non-zero number of /.. to the string
  1465. * pointed to by put_old must yield the same directory as new_root. No other
  1466. * file system may be mounted on put_old. After all, new_root is a mountpoint.
  1467. *
  1468. * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
  1469. * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
  1470. * in this situation.
  1471. *
  1472. * Notes:
  1473. * - we don't move root/cwd if they are not at the root (reason: if something
  1474. * cared enough to change them, it's probably wrong to force them elsewhere)
  1475. * - it's okay to pick a root that isn't the root of a file system, e.g.
  1476. * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
  1477. * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
  1478. * first.
  1479. */
  1480. asmlinkage long sys_pivot_root(const char __user * new_root,
  1481. const char __user * put_old)
  1482. {
  1483. struct vfsmount *tmp;
  1484. struct nameidata new_nd, old_nd, parent_nd, root_parent, user_nd;
  1485. int error;
  1486. if (!capable(CAP_SYS_ADMIN))
  1487. return -EPERM;
  1488. lock_kernel();
  1489. error = __user_walk(new_root, LOOKUP_FOLLOW | LOOKUP_DIRECTORY,
  1490. &new_nd);
  1491. if (error)
  1492. goto out0;
  1493. error = -EINVAL;
  1494. if (!check_mnt(new_nd.mnt))
  1495. goto out1;
  1496. error = __user_walk(put_old, LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &old_nd);
  1497. if (error)
  1498. goto out1;
  1499. error = security_sb_pivotroot(&old_nd, &new_nd);
  1500. if (error) {
  1501. path_release(&old_nd);
  1502. goto out1;
  1503. }
  1504. read_lock(&current->fs->lock);
  1505. user_nd.mnt = mntget(current->fs->rootmnt);
  1506. user_nd.dentry = dget(current->fs->root);
  1507. read_unlock(&current->fs->lock);
  1508. down_write(&namespace_sem);
  1509. mutex_lock(&old_nd.dentry->d_inode->i_mutex);
  1510. error = -EINVAL;
  1511. if (IS_MNT_SHARED(old_nd.mnt) ||
  1512. IS_MNT_SHARED(new_nd.mnt->mnt_parent) ||
  1513. IS_MNT_SHARED(user_nd.mnt->mnt_parent))
  1514. goto out2;
  1515. if (!check_mnt(user_nd.mnt))
  1516. goto out2;
  1517. error = -ENOENT;
  1518. if (IS_DEADDIR(new_nd.dentry->d_inode))
  1519. goto out2;
  1520. if (d_unhashed(new_nd.dentry) && !IS_ROOT(new_nd.dentry))
  1521. goto out2;
  1522. if (d_unhashed(old_nd.dentry) && !IS_ROOT(old_nd.dentry))
  1523. goto out2;
  1524. error = -EBUSY;
  1525. if (new_nd.mnt == user_nd.mnt || old_nd.mnt == user_nd.mnt)
  1526. goto out2; /* loop, on the same file system */
  1527. error = -EINVAL;
  1528. if (user_nd.mnt->mnt_root != user_nd.dentry)
  1529. goto out2; /* not a mountpoint */
  1530. if (user_nd.mnt->mnt_parent == user_nd.mnt)
  1531. goto out2; /* not attached */
  1532. if (new_nd.mnt->mnt_root != new_nd.dentry)
  1533. goto out2; /* not a mountpoint */
  1534. if (new_nd.mnt->mnt_parent == new_nd.mnt)
  1535. goto out2; /* not attached */
  1536. tmp = old_nd.mnt; /* make sure we can reach put_old from new_root */
  1537. spin_lock(&vfsmount_lock);
  1538. if (tmp != new_nd.mnt) {
  1539. for (;;) {
  1540. if (tmp->mnt_parent == tmp)
  1541. goto out3; /* already mounted on put_old */
  1542. if (tmp->mnt_parent == new_nd.mnt)
  1543. break;
  1544. tmp = tmp->mnt_parent;
  1545. }
  1546. if (!is_subdir(tmp->mnt_mountpoint, new_nd.dentry))
  1547. goto out3;
  1548. } else if (!is_subdir(old_nd.dentry, new_nd.dentry))
  1549. goto out3;
  1550. detach_mnt(new_nd.mnt, &parent_nd);
  1551. detach_mnt(user_nd.mnt, &root_parent);
  1552. attach_mnt(user_nd.mnt, &old_nd); /* mount old root on put_old */
  1553. attach_mnt(new_nd.mnt, &root_parent); /* mount new_root on / */
  1554. touch_mnt_namespace(current->nsproxy->mnt_ns);
  1555. spin_unlock(&vfsmount_lock);
  1556. chroot_fs_refs(&user_nd, &new_nd);
  1557. security_sb_post_pivotroot(&user_nd, &new_nd);
  1558. error = 0;
  1559. path_release(&root_parent);
  1560. path_release(&parent_nd);
  1561. out2:
  1562. mutex_unlock(&old_nd.dentry->d_inode->i_mutex);
  1563. up_write(&namespace_sem);
  1564. path_release(&user_nd);
  1565. path_release(&old_nd);
  1566. out1:
  1567. path_release(&new_nd);
  1568. out0:
  1569. unlock_kernel();
  1570. return error;
  1571. out3:
  1572. spin_unlock(&vfsmount_lock);
  1573. goto out2;
  1574. }
  1575. static void __init init_mount_tree(void)
  1576. {
  1577. struct vfsmount *mnt;
  1578. struct mnt_namespace *ns;
  1579. mnt = do_kern_mount("rootfs", 0, "rootfs", NULL);
  1580. if (IS_ERR(mnt))
  1581. panic("Can't create rootfs");
  1582. ns = kmalloc(sizeof(*ns), GFP_KERNEL);
  1583. if (!ns)
  1584. panic("Can't allocate initial namespace");
  1585. atomic_set(&ns->count, 1);
  1586. INIT_LIST_HEAD(&ns->list);
  1587. init_waitqueue_head(&ns->poll);
  1588. ns->event = 0;
  1589. list_add(&mnt->mnt_list, &ns->list);
  1590. ns->root = mnt;
  1591. mnt->mnt_ns = ns;
  1592. init_task.nsproxy->mnt_ns = ns;
  1593. get_mnt_ns(ns);
  1594. set_fs_pwd(current->fs, ns->root, ns->root->mnt_root);
  1595. set_fs_root(current->fs, ns->root, ns->root->mnt_root);
  1596. }
  1597. void __init mnt_init(void)
  1598. {
  1599. unsigned u;
  1600. int err;
  1601. init_rwsem(&namespace_sem);
  1602. mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct vfsmount),
  1603. 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
  1604. mount_hashtable = (struct list_head *)__get_free_page(GFP_ATOMIC);
  1605. if (!mount_hashtable)
  1606. panic("Failed to allocate mount hash table\n");
  1607. printk("Mount-cache hash table entries: %lu\n", HASH_SIZE);
  1608. for (u = 0; u < HASH_SIZE; u++)
  1609. INIT_LIST_HEAD(&mount_hashtable[u]);
  1610. err = sysfs_init();
  1611. if (err)
  1612. printk(KERN_WARNING "%s: sysfs_init error: %d\n",
  1613. __FUNCTION__, err);
  1614. fs_kobj = kobject_create_and_add("fs", NULL);
  1615. if (!fs_kobj)
  1616. printk(KERN_WARNING "%s: kobj create error\n", __FUNCTION__);
  1617. init_rootfs();
  1618. init_mount_tree();
  1619. }
  1620. void __put_mnt_ns(struct mnt_namespace *ns)
  1621. {
  1622. struct vfsmount *root = ns->root;
  1623. LIST_HEAD(umount_list);
  1624. ns->root = NULL;
  1625. spin_unlock(&vfsmount_lock);
  1626. down_write(&namespace_sem);
  1627. spin_lock(&vfsmount_lock);
  1628. umount_tree(root, 0, &umount_list);
  1629. spin_unlock(&vfsmount_lock);
  1630. up_write(&namespace_sem);
  1631. release_mounts(&umount_list);
  1632. kfree(ns);
  1633. }