intel_display.c 275 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695869686978698869987008701870287038704870587068707870887098710871187128713871487158716871787188719872087218722872387248725872687278728872987308731873287338734873587368737873887398740874187428743874487458746874787488749875087518752875387548755875687578758875987608761876287638764876587668767876887698770877187728773877487758776877787788779878087818782878387848785878687878788878987908791879287938794879587968797879887998800880188028803880488058806880788088809881088118812881388148815881688178818881988208821882288238824882588268827882888298830883188328833883488358836883788388839884088418842884388448845884688478848884988508851885288538854885588568857885888598860886188628863886488658866886788688869887088718872887388748875887688778878887988808881888288838884888588868887888888898890889188928893889488958896889788988899890089018902890389048905890689078908890989108911891289138914891589168917891889198920892189228923892489258926892789288929893089318932893389348935893689378938893989408941894289438944894589468947894889498950895189528953895489558956895789588959896089618962896389648965896689678968896989708971897289738974897589768977897889798980898189828983898489858986898789888989899089918992899389948995899689978998899990009001900290039004900590069007900890099010901190129013901490159016901790189019902090219022902390249025902690279028902990309031903290339034903590369037903890399040904190429043904490459046904790489049905090519052905390549055905690579058905990609061906290639064906590669067906890699070907190729073907490759076907790789079908090819082908390849085908690879088908990909091909290939094909590969097909890999100910191029103910491059106910791089109911091119112911391149115911691179118911991209121912291239124912591269127912891299130913191329133913491359136913791389139914091419142914391449145914691479148914991509151915291539154915591569157915891599160916191629163916491659166916791689169917091719172917391749175917691779178917991809181918291839184918591869187918891899190919191929193919491959196919791989199920092019202920392049205920692079208920992109211921292139214921592169217921892199220922192229223922492259226922792289229923092319232923392349235923692379238923992409241924292439244924592469247924892499250925192529253925492559256925792589259926092619262926392649265926692679268926992709271927292739274927592769277927892799280928192829283928492859286928792889289929092919292929392949295929692979298929993009301930293039304930593069307930893099310931193129313931493159316931793189319932093219322932393249325932693279328932993309331933293339334933593369337933893399340934193429343934493459346934793489349935093519352935393549355935693579358935993609361936293639364936593669367936893699370937193729373937493759376937793789379938093819382938393849385938693879388938993909391939293939394939593969397939893999400940194029403940494059406940794089409941094119412941394149415941694179418941994209421942294239424942594269427942894299430943194329433943494359436943794389439944094419442944394449445944694479448944994509451945294539454945594569457945894599460946194629463946494659466946794689469947094719472947394749475947694779478947994809481948294839484948594869487948894899490949194929493949494959496949794989499950095019502950395049505950695079508950995109511951295139514951595169517951895199520952195229523952495259526952795289529953095319532953395349535953695379538953995409541954295439544954595469547954895499550955195529553955495559556955795589559956095619562956395649565956695679568956995709571957295739574957595769577957895799580958195829583958495859586958795889589959095919592959395949595959695979598959996009601960296039604960596069607960896099610961196129613961496159616961796189619962096219622962396249625962696279628962996309631963296339634963596369637963896399640964196429643964496459646964796489649965096519652965396549655965696579658965996609661966296639664966596669667966896699670967196729673967496759676967796789679968096819682968396849685968696879688968996909691969296939694969596969697969896999700970197029703970497059706970797089709971097119712971397149715971697179718971997209721972297239724972597269727972897299730973197329733973497359736973797389739974097419742974397449745974697479748974997509751975297539754975597569757975897599760976197629763976497659766976797689769977097719772977397749775977697779778977997809781978297839784978597869787978897899790979197929793979497959796979797989799980098019802980398049805980698079808980998109811981298139814981598169817981898199820982198229823982498259826982798289829983098319832983398349835983698379838983998409841984298439844984598469847984898499850985198529853985498559856985798589859986098619862986398649865986698679868986998709871987298739874987598769877987898799880988198829883988498859886988798889889989098919892989398949895989698979898989999009901990299039904990599069907990899099910991199129913991499159916991799189919992099219922992399249925992699279928992999309931993299339934993599369937993899399940994199429943994499459946994799489949995099519952995399549955995699579958995999609961996299639964996599669967996899699970997199729973997499759976997799789979998099819982998399849985998699879988998999909991999299939994999599969997999899991000010001100021000310004100051000610007100081000910010100111001210013100141001510016100171001810019100201002110022100231002410025100261002710028100291003010031100321003310034100351003610037100381003910040100411004210043100441004510046100471004810049100501005110052100531005410055100561005710058100591006010061100621006310064100651006610067100681006910070100711007210073100741007510076100771007810079100801008110082100831008410085100861008710088100891009010091100921009310094100951009610097100981009910100101011010210103101041010510106101071010810109101101011110112101131011410115101161011710118101191012010121101221012310124101251012610127101281012910130101311013210133101341013510136101371013810139101401014110142101431014410145101461014710148101491015010151
  1. /*
  2. * Copyright © 2006-2007 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
  21. * DEALINGS IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eric Anholt <eric@anholt.net>
  25. */
  26. #include <linux/dmi.h>
  27. #include <linux/module.h>
  28. #include <linux/input.h>
  29. #include <linux/i2c.h>
  30. #include <linux/kernel.h>
  31. #include <linux/slab.h>
  32. #include <linux/vgaarb.h>
  33. #include <drm/drm_edid.h>
  34. #include <drm/drmP.h>
  35. #include "intel_drv.h"
  36. #include <drm/i915_drm.h>
  37. #include "i915_drv.h"
  38. #include "i915_trace.h"
  39. #include <drm/drm_dp_helper.h>
  40. #include <drm/drm_crtc_helper.h>
  41. #include <linux/dma_remapping.h>
  42. bool intel_pipe_has_type(struct drm_crtc *crtc, int type);
  43. static void intel_increase_pllclock(struct drm_crtc *crtc);
  44. static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
  45. typedef struct {
  46. int min, max;
  47. } intel_range_t;
  48. typedef struct {
  49. int dot_limit;
  50. int p2_slow, p2_fast;
  51. } intel_p2_t;
  52. #define INTEL_P2_NUM 2
  53. typedef struct intel_limit intel_limit_t;
  54. struct intel_limit {
  55. intel_range_t dot, vco, n, m, m1, m2, p, p1;
  56. intel_p2_t p2;
  57. };
  58. /* FDI */
  59. #define IRONLAKE_FDI_FREQ 2700000 /* in kHz for mode->clock */
  60. int
  61. intel_pch_rawclk(struct drm_device *dev)
  62. {
  63. struct drm_i915_private *dev_priv = dev->dev_private;
  64. WARN_ON(!HAS_PCH_SPLIT(dev));
  65. return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
  66. }
  67. static inline u32 /* units of 100MHz */
  68. intel_fdi_link_freq(struct drm_device *dev)
  69. {
  70. if (IS_GEN5(dev)) {
  71. struct drm_i915_private *dev_priv = dev->dev_private;
  72. return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
  73. } else
  74. return 27;
  75. }
  76. static const intel_limit_t intel_limits_i8xx_dvo = {
  77. .dot = { .min = 25000, .max = 350000 },
  78. .vco = { .min = 930000, .max = 1400000 },
  79. .n = { .min = 3, .max = 16 },
  80. .m = { .min = 96, .max = 140 },
  81. .m1 = { .min = 18, .max = 26 },
  82. .m2 = { .min = 6, .max = 16 },
  83. .p = { .min = 4, .max = 128 },
  84. .p1 = { .min = 2, .max = 33 },
  85. .p2 = { .dot_limit = 165000,
  86. .p2_slow = 4, .p2_fast = 2 },
  87. };
  88. static const intel_limit_t intel_limits_i8xx_lvds = {
  89. .dot = { .min = 25000, .max = 350000 },
  90. .vco = { .min = 930000, .max = 1400000 },
  91. .n = { .min = 3, .max = 16 },
  92. .m = { .min = 96, .max = 140 },
  93. .m1 = { .min = 18, .max = 26 },
  94. .m2 = { .min = 6, .max = 16 },
  95. .p = { .min = 4, .max = 128 },
  96. .p1 = { .min = 1, .max = 6 },
  97. .p2 = { .dot_limit = 165000,
  98. .p2_slow = 14, .p2_fast = 7 },
  99. };
  100. static const intel_limit_t intel_limits_i9xx_sdvo = {
  101. .dot = { .min = 20000, .max = 400000 },
  102. .vco = { .min = 1400000, .max = 2800000 },
  103. .n = { .min = 1, .max = 6 },
  104. .m = { .min = 70, .max = 120 },
  105. .m1 = { .min = 8, .max = 18 },
  106. .m2 = { .min = 3, .max = 7 },
  107. .p = { .min = 5, .max = 80 },
  108. .p1 = { .min = 1, .max = 8 },
  109. .p2 = { .dot_limit = 200000,
  110. .p2_slow = 10, .p2_fast = 5 },
  111. };
  112. static const intel_limit_t intel_limits_i9xx_lvds = {
  113. .dot = { .min = 20000, .max = 400000 },
  114. .vco = { .min = 1400000, .max = 2800000 },
  115. .n = { .min = 1, .max = 6 },
  116. .m = { .min = 70, .max = 120 },
  117. .m1 = { .min = 8, .max = 18 },
  118. .m2 = { .min = 3, .max = 7 },
  119. .p = { .min = 7, .max = 98 },
  120. .p1 = { .min = 1, .max = 8 },
  121. .p2 = { .dot_limit = 112000,
  122. .p2_slow = 14, .p2_fast = 7 },
  123. };
  124. static const intel_limit_t intel_limits_g4x_sdvo = {
  125. .dot = { .min = 25000, .max = 270000 },
  126. .vco = { .min = 1750000, .max = 3500000},
  127. .n = { .min = 1, .max = 4 },
  128. .m = { .min = 104, .max = 138 },
  129. .m1 = { .min = 17, .max = 23 },
  130. .m2 = { .min = 5, .max = 11 },
  131. .p = { .min = 10, .max = 30 },
  132. .p1 = { .min = 1, .max = 3},
  133. .p2 = { .dot_limit = 270000,
  134. .p2_slow = 10,
  135. .p2_fast = 10
  136. },
  137. };
  138. static const intel_limit_t intel_limits_g4x_hdmi = {
  139. .dot = { .min = 22000, .max = 400000 },
  140. .vco = { .min = 1750000, .max = 3500000},
  141. .n = { .min = 1, .max = 4 },
  142. .m = { .min = 104, .max = 138 },
  143. .m1 = { .min = 16, .max = 23 },
  144. .m2 = { .min = 5, .max = 11 },
  145. .p = { .min = 5, .max = 80 },
  146. .p1 = { .min = 1, .max = 8},
  147. .p2 = { .dot_limit = 165000,
  148. .p2_slow = 10, .p2_fast = 5 },
  149. };
  150. static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
  151. .dot = { .min = 20000, .max = 115000 },
  152. .vco = { .min = 1750000, .max = 3500000 },
  153. .n = { .min = 1, .max = 3 },
  154. .m = { .min = 104, .max = 138 },
  155. .m1 = { .min = 17, .max = 23 },
  156. .m2 = { .min = 5, .max = 11 },
  157. .p = { .min = 28, .max = 112 },
  158. .p1 = { .min = 2, .max = 8 },
  159. .p2 = { .dot_limit = 0,
  160. .p2_slow = 14, .p2_fast = 14
  161. },
  162. };
  163. static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
  164. .dot = { .min = 80000, .max = 224000 },
  165. .vco = { .min = 1750000, .max = 3500000 },
  166. .n = { .min = 1, .max = 3 },
  167. .m = { .min = 104, .max = 138 },
  168. .m1 = { .min = 17, .max = 23 },
  169. .m2 = { .min = 5, .max = 11 },
  170. .p = { .min = 14, .max = 42 },
  171. .p1 = { .min = 2, .max = 6 },
  172. .p2 = { .dot_limit = 0,
  173. .p2_slow = 7, .p2_fast = 7
  174. },
  175. };
  176. static const intel_limit_t intel_limits_pineview_sdvo = {
  177. .dot = { .min = 20000, .max = 400000},
  178. .vco = { .min = 1700000, .max = 3500000 },
  179. /* Pineview's Ncounter is a ring counter */
  180. .n = { .min = 3, .max = 6 },
  181. .m = { .min = 2, .max = 256 },
  182. /* Pineview only has one combined m divider, which we treat as m2. */
  183. .m1 = { .min = 0, .max = 0 },
  184. .m2 = { .min = 0, .max = 254 },
  185. .p = { .min = 5, .max = 80 },
  186. .p1 = { .min = 1, .max = 8 },
  187. .p2 = { .dot_limit = 200000,
  188. .p2_slow = 10, .p2_fast = 5 },
  189. };
  190. static const intel_limit_t intel_limits_pineview_lvds = {
  191. .dot = { .min = 20000, .max = 400000 },
  192. .vco = { .min = 1700000, .max = 3500000 },
  193. .n = { .min = 3, .max = 6 },
  194. .m = { .min = 2, .max = 256 },
  195. .m1 = { .min = 0, .max = 0 },
  196. .m2 = { .min = 0, .max = 254 },
  197. .p = { .min = 7, .max = 112 },
  198. .p1 = { .min = 1, .max = 8 },
  199. .p2 = { .dot_limit = 112000,
  200. .p2_slow = 14, .p2_fast = 14 },
  201. };
  202. /* Ironlake / Sandybridge
  203. *
  204. * We calculate clock using (register_value + 2) for N/M1/M2, so here
  205. * the range value for them is (actual_value - 2).
  206. */
  207. static const intel_limit_t intel_limits_ironlake_dac = {
  208. .dot = { .min = 25000, .max = 350000 },
  209. .vco = { .min = 1760000, .max = 3510000 },
  210. .n = { .min = 1, .max = 5 },
  211. .m = { .min = 79, .max = 127 },
  212. .m1 = { .min = 12, .max = 22 },
  213. .m2 = { .min = 5, .max = 9 },
  214. .p = { .min = 5, .max = 80 },
  215. .p1 = { .min = 1, .max = 8 },
  216. .p2 = { .dot_limit = 225000,
  217. .p2_slow = 10, .p2_fast = 5 },
  218. };
  219. static const intel_limit_t intel_limits_ironlake_single_lvds = {
  220. .dot = { .min = 25000, .max = 350000 },
  221. .vco = { .min = 1760000, .max = 3510000 },
  222. .n = { .min = 1, .max = 3 },
  223. .m = { .min = 79, .max = 118 },
  224. .m1 = { .min = 12, .max = 22 },
  225. .m2 = { .min = 5, .max = 9 },
  226. .p = { .min = 28, .max = 112 },
  227. .p1 = { .min = 2, .max = 8 },
  228. .p2 = { .dot_limit = 225000,
  229. .p2_slow = 14, .p2_fast = 14 },
  230. };
  231. static const intel_limit_t intel_limits_ironlake_dual_lvds = {
  232. .dot = { .min = 25000, .max = 350000 },
  233. .vco = { .min = 1760000, .max = 3510000 },
  234. .n = { .min = 1, .max = 3 },
  235. .m = { .min = 79, .max = 127 },
  236. .m1 = { .min = 12, .max = 22 },
  237. .m2 = { .min = 5, .max = 9 },
  238. .p = { .min = 14, .max = 56 },
  239. .p1 = { .min = 2, .max = 8 },
  240. .p2 = { .dot_limit = 225000,
  241. .p2_slow = 7, .p2_fast = 7 },
  242. };
  243. /* LVDS 100mhz refclk limits. */
  244. static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
  245. .dot = { .min = 25000, .max = 350000 },
  246. .vco = { .min = 1760000, .max = 3510000 },
  247. .n = { .min = 1, .max = 2 },
  248. .m = { .min = 79, .max = 126 },
  249. .m1 = { .min = 12, .max = 22 },
  250. .m2 = { .min = 5, .max = 9 },
  251. .p = { .min = 28, .max = 112 },
  252. .p1 = { .min = 2, .max = 8 },
  253. .p2 = { .dot_limit = 225000,
  254. .p2_slow = 14, .p2_fast = 14 },
  255. };
  256. static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
  257. .dot = { .min = 25000, .max = 350000 },
  258. .vco = { .min = 1760000, .max = 3510000 },
  259. .n = { .min = 1, .max = 3 },
  260. .m = { .min = 79, .max = 126 },
  261. .m1 = { .min = 12, .max = 22 },
  262. .m2 = { .min = 5, .max = 9 },
  263. .p = { .min = 14, .max = 42 },
  264. .p1 = { .min = 2, .max = 6 },
  265. .p2 = { .dot_limit = 225000,
  266. .p2_slow = 7, .p2_fast = 7 },
  267. };
  268. static const intel_limit_t intel_limits_vlv_dac = {
  269. .dot = { .min = 25000, .max = 270000 },
  270. .vco = { .min = 4000000, .max = 6000000 },
  271. .n = { .min = 1, .max = 7 },
  272. .m = { .min = 22, .max = 450 }, /* guess */
  273. .m1 = { .min = 2, .max = 3 },
  274. .m2 = { .min = 11, .max = 156 },
  275. .p = { .min = 10, .max = 30 },
  276. .p1 = { .min = 1, .max = 3 },
  277. .p2 = { .dot_limit = 270000,
  278. .p2_slow = 2, .p2_fast = 20 },
  279. };
  280. static const intel_limit_t intel_limits_vlv_hdmi = {
  281. .dot = { .min = 25000, .max = 270000 },
  282. .vco = { .min = 4000000, .max = 6000000 },
  283. .n = { .min = 1, .max = 7 },
  284. .m = { .min = 60, .max = 300 }, /* guess */
  285. .m1 = { .min = 2, .max = 3 },
  286. .m2 = { .min = 11, .max = 156 },
  287. .p = { .min = 10, .max = 30 },
  288. .p1 = { .min = 2, .max = 3 },
  289. .p2 = { .dot_limit = 270000,
  290. .p2_slow = 2, .p2_fast = 20 },
  291. };
  292. static const intel_limit_t intel_limits_vlv_dp = {
  293. .dot = { .min = 25000, .max = 270000 },
  294. .vco = { .min = 4000000, .max = 6000000 },
  295. .n = { .min = 1, .max = 7 },
  296. .m = { .min = 22, .max = 450 },
  297. .m1 = { .min = 2, .max = 3 },
  298. .m2 = { .min = 11, .max = 156 },
  299. .p = { .min = 10, .max = 30 },
  300. .p1 = { .min = 1, .max = 3 },
  301. .p2 = { .dot_limit = 270000,
  302. .p2_slow = 2, .p2_fast = 20 },
  303. };
  304. static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc,
  305. int refclk)
  306. {
  307. struct drm_device *dev = crtc->dev;
  308. const intel_limit_t *limit;
  309. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  310. if (intel_is_dual_link_lvds(dev)) {
  311. if (refclk == 100000)
  312. limit = &intel_limits_ironlake_dual_lvds_100m;
  313. else
  314. limit = &intel_limits_ironlake_dual_lvds;
  315. } else {
  316. if (refclk == 100000)
  317. limit = &intel_limits_ironlake_single_lvds_100m;
  318. else
  319. limit = &intel_limits_ironlake_single_lvds;
  320. }
  321. } else
  322. limit = &intel_limits_ironlake_dac;
  323. return limit;
  324. }
  325. static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
  326. {
  327. struct drm_device *dev = crtc->dev;
  328. const intel_limit_t *limit;
  329. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  330. if (intel_is_dual_link_lvds(dev))
  331. limit = &intel_limits_g4x_dual_channel_lvds;
  332. else
  333. limit = &intel_limits_g4x_single_channel_lvds;
  334. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
  335. intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
  336. limit = &intel_limits_g4x_hdmi;
  337. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
  338. limit = &intel_limits_g4x_sdvo;
  339. } else /* The option is for other outputs */
  340. limit = &intel_limits_i9xx_sdvo;
  341. return limit;
  342. }
  343. static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk)
  344. {
  345. struct drm_device *dev = crtc->dev;
  346. const intel_limit_t *limit;
  347. if (HAS_PCH_SPLIT(dev))
  348. limit = intel_ironlake_limit(crtc, refclk);
  349. else if (IS_G4X(dev)) {
  350. limit = intel_g4x_limit(crtc);
  351. } else if (IS_PINEVIEW(dev)) {
  352. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
  353. limit = &intel_limits_pineview_lvds;
  354. else
  355. limit = &intel_limits_pineview_sdvo;
  356. } else if (IS_VALLEYVIEW(dev)) {
  357. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG))
  358. limit = &intel_limits_vlv_dac;
  359. else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
  360. limit = &intel_limits_vlv_hdmi;
  361. else
  362. limit = &intel_limits_vlv_dp;
  363. } else if (!IS_GEN2(dev)) {
  364. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
  365. limit = &intel_limits_i9xx_lvds;
  366. else
  367. limit = &intel_limits_i9xx_sdvo;
  368. } else {
  369. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
  370. limit = &intel_limits_i8xx_lvds;
  371. else
  372. limit = &intel_limits_i8xx_dvo;
  373. }
  374. return limit;
  375. }
  376. /* m1 is reserved as 0 in Pineview, n is a ring counter */
  377. static void pineview_clock(int refclk, intel_clock_t *clock)
  378. {
  379. clock->m = clock->m2 + 2;
  380. clock->p = clock->p1 * clock->p2;
  381. clock->vco = refclk * clock->m / clock->n;
  382. clock->dot = clock->vco / clock->p;
  383. }
  384. static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
  385. {
  386. return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
  387. }
  388. static void i9xx_clock(int refclk, intel_clock_t *clock)
  389. {
  390. clock->m = i9xx_dpll_compute_m(clock);
  391. clock->p = clock->p1 * clock->p2;
  392. clock->vco = refclk * clock->m / (clock->n + 2);
  393. clock->dot = clock->vco / clock->p;
  394. }
  395. /**
  396. * Returns whether any output on the specified pipe is of the specified type
  397. */
  398. bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
  399. {
  400. struct drm_device *dev = crtc->dev;
  401. struct intel_encoder *encoder;
  402. for_each_encoder_on_crtc(dev, crtc, encoder)
  403. if (encoder->type == type)
  404. return true;
  405. return false;
  406. }
  407. #define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
  408. /**
  409. * Returns whether the given set of divisors are valid for a given refclk with
  410. * the given connectors.
  411. */
  412. static bool intel_PLL_is_valid(struct drm_device *dev,
  413. const intel_limit_t *limit,
  414. const intel_clock_t *clock)
  415. {
  416. if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
  417. INTELPllInvalid("p1 out of range\n");
  418. if (clock->p < limit->p.min || limit->p.max < clock->p)
  419. INTELPllInvalid("p out of range\n");
  420. if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
  421. INTELPllInvalid("m2 out of range\n");
  422. if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
  423. INTELPllInvalid("m1 out of range\n");
  424. if (clock->m1 <= clock->m2 && !IS_PINEVIEW(dev))
  425. INTELPllInvalid("m1 <= m2\n");
  426. if (clock->m < limit->m.min || limit->m.max < clock->m)
  427. INTELPllInvalid("m out of range\n");
  428. if (clock->n < limit->n.min || limit->n.max < clock->n)
  429. INTELPllInvalid("n out of range\n");
  430. if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
  431. INTELPllInvalid("vco out of range\n");
  432. /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
  433. * connector, etc., rather than just a single range.
  434. */
  435. if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
  436. INTELPllInvalid("dot out of range\n");
  437. return true;
  438. }
  439. static bool
  440. i9xx_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
  441. int target, int refclk, intel_clock_t *match_clock,
  442. intel_clock_t *best_clock)
  443. {
  444. struct drm_device *dev = crtc->dev;
  445. intel_clock_t clock;
  446. int err = target;
  447. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  448. /*
  449. * For LVDS just rely on its current settings for dual-channel.
  450. * We haven't figured out how to reliably set up different
  451. * single/dual channel state, if we even can.
  452. */
  453. if (intel_is_dual_link_lvds(dev))
  454. clock.p2 = limit->p2.p2_fast;
  455. else
  456. clock.p2 = limit->p2.p2_slow;
  457. } else {
  458. if (target < limit->p2.dot_limit)
  459. clock.p2 = limit->p2.p2_slow;
  460. else
  461. clock.p2 = limit->p2.p2_fast;
  462. }
  463. memset(best_clock, 0, sizeof(*best_clock));
  464. for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
  465. clock.m1++) {
  466. for (clock.m2 = limit->m2.min;
  467. clock.m2 <= limit->m2.max; clock.m2++) {
  468. if (clock.m2 >= clock.m1)
  469. break;
  470. for (clock.n = limit->n.min;
  471. clock.n <= limit->n.max; clock.n++) {
  472. for (clock.p1 = limit->p1.min;
  473. clock.p1 <= limit->p1.max; clock.p1++) {
  474. int this_err;
  475. i9xx_clock(refclk, &clock);
  476. if (!intel_PLL_is_valid(dev, limit,
  477. &clock))
  478. continue;
  479. if (match_clock &&
  480. clock.p != match_clock->p)
  481. continue;
  482. this_err = abs(clock.dot - target);
  483. if (this_err < err) {
  484. *best_clock = clock;
  485. err = this_err;
  486. }
  487. }
  488. }
  489. }
  490. }
  491. return (err != target);
  492. }
  493. static bool
  494. pnv_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
  495. int target, int refclk, intel_clock_t *match_clock,
  496. intel_clock_t *best_clock)
  497. {
  498. struct drm_device *dev = crtc->dev;
  499. intel_clock_t clock;
  500. int err = target;
  501. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  502. /*
  503. * For LVDS just rely on its current settings for dual-channel.
  504. * We haven't figured out how to reliably set up different
  505. * single/dual channel state, if we even can.
  506. */
  507. if (intel_is_dual_link_lvds(dev))
  508. clock.p2 = limit->p2.p2_fast;
  509. else
  510. clock.p2 = limit->p2.p2_slow;
  511. } else {
  512. if (target < limit->p2.dot_limit)
  513. clock.p2 = limit->p2.p2_slow;
  514. else
  515. clock.p2 = limit->p2.p2_fast;
  516. }
  517. memset(best_clock, 0, sizeof(*best_clock));
  518. for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
  519. clock.m1++) {
  520. for (clock.m2 = limit->m2.min;
  521. clock.m2 <= limit->m2.max; clock.m2++) {
  522. for (clock.n = limit->n.min;
  523. clock.n <= limit->n.max; clock.n++) {
  524. for (clock.p1 = limit->p1.min;
  525. clock.p1 <= limit->p1.max; clock.p1++) {
  526. int this_err;
  527. pineview_clock(refclk, &clock);
  528. if (!intel_PLL_is_valid(dev, limit,
  529. &clock))
  530. continue;
  531. if (match_clock &&
  532. clock.p != match_clock->p)
  533. continue;
  534. this_err = abs(clock.dot - target);
  535. if (this_err < err) {
  536. *best_clock = clock;
  537. err = this_err;
  538. }
  539. }
  540. }
  541. }
  542. }
  543. return (err != target);
  544. }
  545. static bool
  546. g4x_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
  547. int target, int refclk, intel_clock_t *match_clock,
  548. intel_clock_t *best_clock)
  549. {
  550. struct drm_device *dev = crtc->dev;
  551. intel_clock_t clock;
  552. int max_n;
  553. bool found;
  554. /* approximately equals target * 0.00585 */
  555. int err_most = (target >> 8) + (target >> 9);
  556. found = false;
  557. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  558. if (intel_is_dual_link_lvds(dev))
  559. clock.p2 = limit->p2.p2_fast;
  560. else
  561. clock.p2 = limit->p2.p2_slow;
  562. } else {
  563. if (target < limit->p2.dot_limit)
  564. clock.p2 = limit->p2.p2_slow;
  565. else
  566. clock.p2 = limit->p2.p2_fast;
  567. }
  568. memset(best_clock, 0, sizeof(*best_clock));
  569. max_n = limit->n.max;
  570. /* based on hardware requirement, prefer smaller n to precision */
  571. for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
  572. /* based on hardware requirement, prefere larger m1,m2 */
  573. for (clock.m1 = limit->m1.max;
  574. clock.m1 >= limit->m1.min; clock.m1--) {
  575. for (clock.m2 = limit->m2.max;
  576. clock.m2 >= limit->m2.min; clock.m2--) {
  577. for (clock.p1 = limit->p1.max;
  578. clock.p1 >= limit->p1.min; clock.p1--) {
  579. int this_err;
  580. i9xx_clock(refclk, &clock);
  581. if (!intel_PLL_is_valid(dev, limit,
  582. &clock))
  583. continue;
  584. this_err = abs(clock.dot - target);
  585. if (this_err < err_most) {
  586. *best_clock = clock;
  587. err_most = this_err;
  588. max_n = clock.n;
  589. found = true;
  590. }
  591. }
  592. }
  593. }
  594. }
  595. return found;
  596. }
  597. static bool
  598. vlv_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
  599. int target, int refclk, intel_clock_t *match_clock,
  600. intel_clock_t *best_clock)
  601. {
  602. u32 p1, p2, m1, m2, vco, bestn, bestm1, bestm2, bestp1, bestp2;
  603. u32 m, n, fastclk;
  604. u32 updrate, minupdate, fracbits, p;
  605. unsigned long bestppm, ppm, absppm;
  606. int dotclk, flag;
  607. flag = 0;
  608. dotclk = target * 1000;
  609. bestppm = 1000000;
  610. ppm = absppm = 0;
  611. fastclk = dotclk / (2*100);
  612. updrate = 0;
  613. minupdate = 19200;
  614. fracbits = 1;
  615. n = p = p1 = p2 = m = m1 = m2 = vco = bestn = 0;
  616. bestm1 = bestm2 = bestp1 = bestp2 = 0;
  617. /* based on hardware requirement, prefer smaller n to precision */
  618. for (n = limit->n.min; n <= ((refclk) / minupdate); n++) {
  619. updrate = refclk / n;
  620. for (p1 = limit->p1.max; p1 > limit->p1.min; p1--) {
  621. for (p2 = limit->p2.p2_fast+1; p2 > 0; p2--) {
  622. if (p2 > 10)
  623. p2 = p2 - 1;
  624. p = p1 * p2;
  625. /* based on hardware requirement, prefer bigger m1,m2 values */
  626. for (m1 = limit->m1.min; m1 <= limit->m1.max; m1++) {
  627. m2 = (((2*(fastclk * p * n / m1 )) +
  628. refclk) / (2*refclk));
  629. m = m1 * m2;
  630. vco = updrate * m;
  631. if (vco >= limit->vco.min && vco < limit->vco.max) {
  632. ppm = 1000000 * ((vco / p) - fastclk) / fastclk;
  633. absppm = (ppm > 0) ? ppm : (-ppm);
  634. if (absppm < 100 && ((p1 * p2) > (bestp1 * bestp2))) {
  635. bestppm = 0;
  636. flag = 1;
  637. }
  638. if (absppm < bestppm - 10) {
  639. bestppm = absppm;
  640. flag = 1;
  641. }
  642. if (flag) {
  643. bestn = n;
  644. bestm1 = m1;
  645. bestm2 = m2;
  646. bestp1 = p1;
  647. bestp2 = p2;
  648. flag = 0;
  649. }
  650. }
  651. }
  652. }
  653. }
  654. }
  655. best_clock->n = bestn;
  656. best_clock->m1 = bestm1;
  657. best_clock->m2 = bestm2;
  658. best_clock->p1 = bestp1;
  659. best_clock->p2 = bestp2;
  660. return true;
  661. }
  662. enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
  663. enum pipe pipe)
  664. {
  665. struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
  666. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  667. return intel_crtc->config.cpu_transcoder;
  668. }
  669. static void ironlake_wait_for_vblank(struct drm_device *dev, int pipe)
  670. {
  671. struct drm_i915_private *dev_priv = dev->dev_private;
  672. u32 frame, frame_reg = PIPEFRAME(pipe);
  673. frame = I915_READ(frame_reg);
  674. if (wait_for(I915_READ_NOTRACE(frame_reg) != frame, 50))
  675. DRM_DEBUG_KMS("vblank wait timed out\n");
  676. }
  677. /**
  678. * intel_wait_for_vblank - wait for vblank on a given pipe
  679. * @dev: drm device
  680. * @pipe: pipe to wait for
  681. *
  682. * Wait for vblank to occur on a given pipe. Needed for various bits of
  683. * mode setting code.
  684. */
  685. void intel_wait_for_vblank(struct drm_device *dev, int pipe)
  686. {
  687. struct drm_i915_private *dev_priv = dev->dev_private;
  688. int pipestat_reg = PIPESTAT(pipe);
  689. if (INTEL_INFO(dev)->gen >= 5) {
  690. ironlake_wait_for_vblank(dev, pipe);
  691. return;
  692. }
  693. /* Clear existing vblank status. Note this will clear any other
  694. * sticky status fields as well.
  695. *
  696. * This races with i915_driver_irq_handler() with the result
  697. * that either function could miss a vblank event. Here it is not
  698. * fatal, as we will either wait upon the next vblank interrupt or
  699. * timeout. Generally speaking intel_wait_for_vblank() is only
  700. * called during modeset at which time the GPU should be idle and
  701. * should *not* be performing page flips and thus not waiting on
  702. * vblanks...
  703. * Currently, the result of us stealing a vblank from the irq
  704. * handler is that a single frame will be skipped during swapbuffers.
  705. */
  706. I915_WRITE(pipestat_reg,
  707. I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
  708. /* Wait for vblank interrupt bit to set */
  709. if (wait_for(I915_READ(pipestat_reg) &
  710. PIPE_VBLANK_INTERRUPT_STATUS,
  711. 50))
  712. DRM_DEBUG_KMS("vblank wait timed out\n");
  713. }
  714. /*
  715. * intel_wait_for_pipe_off - wait for pipe to turn off
  716. * @dev: drm device
  717. * @pipe: pipe to wait for
  718. *
  719. * After disabling a pipe, we can't wait for vblank in the usual way,
  720. * spinning on the vblank interrupt status bit, since we won't actually
  721. * see an interrupt when the pipe is disabled.
  722. *
  723. * On Gen4 and above:
  724. * wait for the pipe register state bit to turn off
  725. *
  726. * Otherwise:
  727. * wait for the display line value to settle (it usually
  728. * ends up stopping at the start of the next frame).
  729. *
  730. */
  731. void intel_wait_for_pipe_off(struct drm_device *dev, int pipe)
  732. {
  733. struct drm_i915_private *dev_priv = dev->dev_private;
  734. enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
  735. pipe);
  736. if (INTEL_INFO(dev)->gen >= 4) {
  737. int reg = PIPECONF(cpu_transcoder);
  738. /* Wait for the Pipe State to go off */
  739. if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
  740. 100))
  741. WARN(1, "pipe_off wait timed out\n");
  742. } else {
  743. u32 last_line, line_mask;
  744. int reg = PIPEDSL(pipe);
  745. unsigned long timeout = jiffies + msecs_to_jiffies(100);
  746. if (IS_GEN2(dev))
  747. line_mask = DSL_LINEMASK_GEN2;
  748. else
  749. line_mask = DSL_LINEMASK_GEN3;
  750. /* Wait for the display line to settle */
  751. do {
  752. last_line = I915_READ(reg) & line_mask;
  753. mdelay(5);
  754. } while (((I915_READ(reg) & line_mask) != last_line) &&
  755. time_after(timeout, jiffies));
  756. if (time_after(jiffies, timeout))
  757. WARN(1, "pipe_off wait timed out\n");
  758. }
  759. }
  760. /*
  761. * ibx_digital_port_connected - is the specified port connected?
  762. * @dev_priv: i915 private structure
  763. * @port: the port to test
  764. *
  765. * Returns true if @port is connected, false otherwise.
  766. */
  767. bool ibx_digital_port_connected(struct drm_i915_private *dev_priv,
  768. struct intel_digital_port *port)
  769. {
  770. u32 bit;
  771. if (HAS_PCH_IBX(dev_priv->dev)) {
  772. switch(port->port) {
  773. case PORT_B:
  774. bit = SDE_PORTB_HOTPLUG;
  775. break;
  776. case PORT_C:
  777. bit = SDE_PORTC_HOTPLUG;
  778. break;
  779. case PORT_D:
  780. bit = SDE_PORTD_HOTPLUG;
  781. break;
  782. default:
  783. return true;
  784. }
  785. } else {
  786. switch(port->port) {
  787. case PORT_B:
  788. bit = SDE_PORTB_HOTPLUG_CPT;
  789. break;
  790. case PORT_C:
  791. bit = SDE_PORTC_HOTPLUG_CPT;
  792. break;
  793. case PORT_D:
  794. bit = SDE_PORTD_HOTPLUG_CPT;
  795. break;
  796. default:
  797. return true;
  798. }
  799. }
  800. return I915_READ(SDEISR) & bit;
  801. }
  802. static const char *state_string(bool enabled)
  803. {
  804. return enabled ? "on" : "off";
  805. }
  806. /* Only for pre-ILK configs */
  807. static void assert_pll(struct drm_i915_private *dev_priv,
  808. enum pipe pipe, bool state)
  809. {
  810. int reg;
  811. u32 val;
  812. bool cur_state;
  813. reg = DPLL(pipe);
  814. val = I915_READ(reg);
  815. cur_state = !!(val & DPLL_VCO_ENABLE);
  816. WARN(cur_state != state,
  817. "PLL state assertion failure (expected %s, current %s)\n",
  818. state_string(state), state_string(cur_state));
  819. }
  820. #define assert_pll_enabled(d, p) assert_pll(d, p, true)
  821. #define assert_pll_disabled(d, p) assert_pll(d, p, false)
  822. static struct intel_shared_dpll *
  823. intel_crtc_to_shared_dpll(struct intel_crtc *crtc)
  824. {
  825. struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
  826. if (crtc->config.shared_dpll < 0)
  827. return NULL;
  828. return &dev_priv->shared_dplls[crtc->config.shared_dpll];
  829. }
  830. /* For ILK+ */
  831. static void assert_shared_dpll(struct drm_i915_private *dev_priv,
  832. struct intel_shared_dpll *pll,
  833. bool state)
  834. {
  835. bool cur_state;
  836. struct intel_dpll_hw_state hw_state;
  837. if (HAS_PCH_LPT(dev_priv->dev)) {
  838. DRM_DEBUG_DRIVER("LPT detected: skipping PCH PLL test\n");
  839. return;
  840. }
  841. if (WARN (!pll,
  842. "asserting DPLL %s with no DPLL\n", state_string(state)))
  843. return;
  844. cur_state = pll->get_hw_state(dev_priv, pll, &hw_state);
  845. WARN(cur_state != state,
  846. "%s assertion failure (expected %s, current %s)\n",
  847. pll->name, state_string(state), state_string(cur_state));
  848. }
  849. #define assert_shared_dpll_enabled(d, p) assert_shared_dpll(d, p, true)
  850. #define assert_shared_dpll_disabled(d, p) assert_shared_dpll(d, p, false)
  851. static void assert_fdi_tx(struct drm_i915_private *dev_priv,
  852. enum pipe pipe, bool state)
  853. {
  854. int reg;
  855. u32 val;
  856. bool cur_state;
  857. enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
  858. pipe);
  859. if (HAS_DDI(dev_priv->dev)) {
  860. /* DDI does not have a specific FDI_TX register */
  861. reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
  862. val = I915_READ(reg);
  863. cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
  864. } else {
  865. reg = FDI_TX_CTL(pipe);
  866. val = I915_READ(reg);
  867. cur_state = !!(val & FDI_TX_ENABLE);
  868. }
  869. WARN(cur_state != state,
  870. "FDI TX state assertion failure (expected %s, current %s)\n",
  871. state_string(state), state_string(cur_state));
  872. }
  873. #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
  874. #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
  875. static void assert_fdi_rx(struct drm_i915_private *dev_priv,
  876. enum pipe pipe, bool state)
  877. {
  878. int reg;
  879. u32 val;
  880. bool cur_state;
  881. reg = FDI_RX_CTL(pipe);
  882. val = I915_READ(reg);
  883. cur_state = !!(val & FDI_RX_ENABLE);
  884. WARN(cur_state != state,
  885. "FDI RX state assertion failure (expected %s, current %s)\n",
  886. state_string(state), state_string(cur_state));
  887. }
  888. #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
  889. #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
  890. static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
  891. enum pipe pipe)
  892. {
  893. int reg;
  894. u32 val;
  895. /* ILK FDI PLL is always enabled */
  896. if (dev_priv->info->gen == 5)
  897. return;
  898. /* On Haswell, DDI ports are responsible for the FDI PLL setup */
  899. if (HAS_DDI(dev_priv->dev))
  900. return;
  901. reg = FDI_TX_CTL(pipe);
  902. val = I915_READ(reg);
  903. WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
  904. }
  905. static void assert_fdi_rx_pll_enabled(struct drm_i915_private *dev_priv,
  906. enum pipe pipe)
  907. {
  908. int reg;
  909. u32 val;
  910. reg = FDI_RX_CTL(pipe);
  911. val = I915_READ(reg);
  912. WARN(!(val & FDI_RX_PLL_ENABLE), "FDI RX PLL assertion failure, should be active but is disabled\n");
  913. }
  914. static void assert_panel_unlocked(struct drm_i915_private *dev_priv,
  915. enum pipe pipe)
  916. {
  917. int pp_reg, lvds_reg;
  918. u32 val;
  919. enum pipe panel_pipe = PIPE_A;
  920. bool locked = true;
  921. if (HAS_PCH_SPLIT(dev_priv->dev)) {
  922. pp_reg = PCH_PP_CONTROL;
  923. lvds_reg = PCH_LVDS;
  924. } else {
  925. pp_reg = PP_CONTROL;
  926. lvds_reg = LVDS;
  927. }
  928. val = I915_READ(pp_reg);
  929. if (!(val & PANEL_POWER_ON) ||
  930. ((val & PANEL_UNLOCK_REGS) == PANEL_UNLOCK_REGS))
  931. locked = false;
  932. if (I915_READ(lvds_reg) & LVDS_PIPEB_SELECT)
  933. panel_pipe = PIPE_B;
  934. WARN(panel_pipe == pipe && locked,
  935. "panel assertion failure, pipe %c regs locked\n",
  936. pipe_name(pipe));
  937. }
  938. void assert_pipe(struct drm_i915_private *dev_priv,
  939. enum pipe pipe, bool state)
  940. {
  941. int reg;
  942. u32 val;
  943. bool cur_state;
  944. enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
  945. pipe);
  946. /* if we need the pipe A quirk it must be always on */
  947. if (pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
  948. state = true;
  949. if (!intel_display_power_enabled(dev_priv->dev,
  950. POWER_DOMAIN_TRANSCODER(cpu_transcoder))) {
  951. cur_state = false;
  952. } else {
  953. reg = PIPECONF(cpu_transcoder);
  954. val = I915_READ(reg);
  955. cur_state = !!(val & PIPECONF_ENABLE);
  956. }
  957. WARN(cur_state != state,
  958. "pipe %c assertion failure (expected %s, current %s)\n",
  959. pipe_name(pipe), state_string(state), state_string(cur_state));
  960. }
  961. static void assert_plane(struct drm_i915_private *dev_priv,
  962. enum plane plane, bool state)
  963. {
  964. int reg;
  965. u32 val;
  966. bool cur_state;
  967. reg = DSPCNTR(plane);
  968. val = I915_READ(reg);
  969. cur_state = !!(val & DISPLAY_PLANE_ENABLE);
  970. WARN(cur_state != state,
  971. "plane %c assertion failure (expected %s, current %s)\n",
  972. plane_name(plane), state_string(state), state_string(cur_state));
  973. }
  974. #define assert_plane_enabled(d, p) assert_plane(d, p, true)
  975. #define assert_plane_disabled(d, p) assert_plane(d, p, false)
  976. static void assert_planes_disabled(struct drm_i915_private *dev_priv,
  977. enum pipe pipe)
  978. {
  979. struct drm_device *dev = dev_priv->dev;
  980. int reg, i;
  981. u32 val;
  982. int cur_pipe;
  983. /* Primary planes are fixed to pipes on gen4+ */
  984. if (INTEL_INFO(dev)->gen >= 4) {
  985. reg = DSPCNTR(pipe);
  986. val = I915_READ(reg);
  987. WARN((val & DISPLAY_PLANE_ENABLE),
  988. "plane %c assertion failure, should be disabled but not\n",
  989. plane_name(pipe));
  990. return;
  991. }
  992. /* Need to check both planes against the pipe */
  993. for (i = 0; i < INTEL_INFO(dev)->num_pipes; i++) {
  994. reg = DSPCNTR(i);
  995. val = I915_READ(reg);
  996. cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
  997. DISPPLANE_SEL_PIPE_SHIFT;
  998. WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
  999. "plane %c assertion failure, should be off on pipe %c but is still active\n",
  1000. plane_name(i), pipe_name(pipe));
  1001. }
  1002. }
  1003. static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
  1004. enum pipe pipe)
  1005. {
  1006. struct drm_device *dev = dev_priv->dev;
  1007. int reg, i;
  1008. u32 val;
  1009. if (IS_VALLEYVIEW(dev)) {
  1010. for (i = 0; i < dev_priv->num_plane; i++) {
  1011. reg = SPCNTR(pipe, i);
  1012. val = I915_READ(reg);
  1013. WARN((val & SP_ENABLE),
  1014. "sprite %c assertion failure, should be off on pipe %c but is still active\n",
  1015. sprite_name(pipe, i), pipe_name(pipe));
  1016. }
  1017. } else if (INTEL_INFO(dev)->gen >= 7) {
  1018. reg = SPRCTL(pipe);
  1019. val = I915_READ(reg);
  1020. WARN((val & SPRITE_ENABLE),
  1021. "sprite %c assertion failure, should be off on pipe %c but is still active\n",
  1022. plane_name(pipe), pipe_name(pipe));
  1023. } else if (INTEL_INFO(dev)->gen >= 5) {
  1024. reg = DVSCNTR(pipe);
  1025. val = I915_READ(reg);
  1026. WARN((val & DVS_ENABLE),
  1027. "sprite %c assertion failure, should be off on pipe %c but is still active\n",
  1028. plane_name(pipe), pipe_name(pipe));
  1029. }
  1030. }
  1031. static void assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
  1032. {
  1033. u32 val;
  1034. bool enabled;
  1035. if (HAS_PCH_LPT(dev_priv->dev)) {
  1036. DRM_DEBUG_DRIVER("LPT does not has PCH refclk, skipping check\n");
  1037. return;
  1038. }
  1039. val = I915_READ(PCH_DREF_CONTROL);
  1040. enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
  1041. DREF_SUPERSPREAD_SOURCE_MASK));
  1042. WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
  1043. }
  1044. static void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
  1045. enum pipe pipe)
  1046. {
  1047. int reg;
  1048. u32 val;
  1049. bool enabled;
  1050. reg = PCH_TRANSCONF(pipe);
  1051. val = I915_READ(reg);
  1052. enabled = !!(val & TRANS_ENABLE);
  1053. WARN(enabled,
  1054. "transcoder assertion failed, should be off on pipe %c but is still active\n",
  1055. pipe_name(pipe));
  1056. }
  1057. static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
  1058. enum pipe pipe, u32 port_sel, u32 val)
  1059. {
  1060. if ((val & DP_PORT_EN) == 0)
  1061. return false;
  1062. if (HAS_PCH_CPT(dev_priv->dev)) {
  1063. u32 trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
  1064. u32 trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
  1065. if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
  1066. return false;
  1067. } else {
  1068. if ((val & DP_PIPE_MASK) != (pipe << 30))
  1069. return false;
  1070. }
  1071. return true;
  1072. }
  1073. static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
  1074. enum pipe pipe, u32 val)
  1075. {
  1076. if ((val & SDVO_ENABLE) == 0)
  1077. return false;
  1078. if (HAS_PCH_CPT(dev_priv->dev)) {
  1079. if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
  1080. return false;
  1081. } else {
  1082. if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
  1083. return false;
  1084. }
  1085. return true;
  1086. }
  1087. static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
  1088. enum pipe pipe, u32 val)
  1089. {
  1090. if ((val & LVDS_PORT_EN) == 0)
  1091. return false;
  1092. if (HAS_PCH_CPT(dev_priv->dev)) {
  1093. if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
  1094. return false;
  1095. } else {
  1096. if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
  1097. return false;
  1098. }
  1099. return true;
  1100. }
  1101. static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
  1102. enum pipe pipe, u32 val)
  1103. {
  1104. if ((val & ADPA_DAC_ENABLE) == 0)
  1105. return false;
  1106. if (HAS_PCH_CPT(dev_priv->dev)) {
  1107. if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
  1108. return false;
  1109. } else {
  1110. if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
  1111. return false;
  1112. }
  1113. return true;
  1114. }
  1115. static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
  1116. enum pipe pipe, int reg, u32 port_sel)
  1117. {
  1118. u32 val = I915_READ(reg);
  1119. WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
  1120. "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
  1121. reg, pipe_name(pipe));
  1122. WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
  1123. && (val & DP_PIPEB_SELECT),
  1124. "IBX PCH dp port still using transcoder B\n");
  1125. }
  1126. static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
  1127. enum pipe pipe, int reg)
  1128. {
  1129. u32 val = I915_READ(reg);
  1130. WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
  1131. "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
  1132. reg, pipe_name(pipe));
  1133. WARN(HAS_PCH_IBX(dev_priv->dev) && (val & SDVO_ENABLE) == 0
  1134. && (val & SDVO_PIPE_B_SELECT),
  1135. "IBX PCH hdmi port still using transcoder B\n");
  1136. }
  1137. static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
  1138. enum pipe pipe)
  1139. {
  1140. int reg;
  1141. u32 val;
  1142. assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
  1143. assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
  1144. assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
  1145. reg = PCH_ADPA;
  1146. val = I915_READ(reg);
  1147. WARN(adpa_pipe_enabled(dev_priv, pipe, val),
  1148. "PCH VGA enabled on transcoder %c, should be disabled\n",
  1149. pipe_name(pipe));
  1150. reg = PCH_LVDS;
  1151. val = I915_READ(reg);
  1152. WARN(lvds_pipe_enabled(dev_priv, pipe, val),
  1153. "PCH LVDS enabled on transcoder %c, should be disabled\n",
  1154. pipe_name(pipe));
  1155. assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
  1156. assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
  1157. assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
  1158. }
  1159. /**
  1160. * intel_enable_pll - enable a PLL
  1161. * @dev_priv: i915 private structure
  1162. * @pipe: pipe PLL to enable
  1163. *
  1164. * Enable @pipe's PLL so we can start pumping pixels from a plane. Check to
  1165. * make sure the PLL reg is writable first though, since the panel write
  1166. * protect mechanism may be enabled.
  1167. *
  1168. * Note! This is for pre-ILK only.
  1169. *
  1170. * Unfortunately needed by dvo_ns2501 since the dvo depends on it running.
  1171. */
  1172. static void intel_enable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
  1173. {
  1174. int reg;
  1175. u32 val;
  1176. assert_pipe_disabled(dev_priv, pipe);
  1177. /* No really, not for ILK+ */
  1178. BUG_ON(!IS_VALLEYVIEW(dev_priv->dev) && dev_priv->info->gen >= 5);
  1179. /* PLL is protected by panel, make sure we can write it */
  1180. if (IS_MOBILE(dev_priv->dev) && !IS_I830(dev_priv->dev))
  1181. assert_panel_unlocked(dev_priv, pipe);
  1182. reg = DPLL(pipe);
  1183. val = I915_READ(reg);
  1184. val |= DPLL_VCO_ENABLE;
  1185. /* We do this three times for luck */
  1186. I915_WRITE(reg, val);
  1187. POSTING_READ(reg);
  1188. udelay(150); /* wait for warmup */
  1189. I915_WRITE(reg, val);
  1190. POSTING_READ(reg);
  1191. udelay(150); /* wait for warmup */
  1192. I915_WRITE(reg, val);
  1193. POSTING_READ(reg);
  1194. udelay(150); /* wait for warmup */
  1195. }
  1196. /**
  1197. * intel_disable_pll - disable a PLL
  1198. * @dev_priv: i915 private structure
  1199. * @pipe: pipe PLL to disable
  1200. *
  1201. * Disable the PLL for @pipe, making sure the pipe is off first.
  1202. *
  1203. * Note! This is for pre-ILK only.
  1204. */
  1205. static void intel_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
  1206. {
  1207. int reg;
  1208. u32 val;
  1209. /* Don't disable pipe A or pipe A PLLs if needed */
  1210. if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
  1211. return;
  1212. /* Make sure the pipe isn't still relying on us */
  1213. assert_pipe_disabled(dev_priv, pipe);
  1214. reg = DPLL(pipe);
  1215. val = I915_READ(reg);
  1216. val &= ~DPLL_VCO_ENABLE;
  1217. I915_WRITE(reg, val);
  1218. POSTING_READ(reg);
  1219. }
  1220. void vlv_wait_port_ready(struct drm_i915_private *dev_priv, int port)
  1221. {
  1222. u32 port_mask;
  1223. if (!port)
  1224. port_mask = DPLL_PORTB_READY_MASK;
  1225. else
  1226. port_mask = DPLL_PORTC_READY_MASK;
  1227. if (wait_for((I915_READ(DPLL(0)) & port_mask) == 0, 1000))
  1228. WARN(1, "timed out waiting for port %c ready: 0x%08x\n",
  1229. 'B' + port, I915_READ(DPLL(0)));
  1230. }
  1231. /**
  1232. * ironlake_enable_shared_dpll - enable PCH PLL
  1233. * @dev_priv: i915 private structure
  1234. * @pipe: pipe PLL to enable
  1235. *
  1236. * The PCH PLL needs to be enabled before the PCH transcoder, since it
  1237. * drives the transcoder clock.
  1238. */
  1239. static void ironlake_enable_shared_dpll(struct intel_crtc *crtc)
  1240. {
  1241. struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
  1242. struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
  1243. /* PCH PLLs only available on ILK, SNB and IVB */
  1244. BUG_ON(dev_priv->info->gen < 5);
  1245. if (WARN_ON(pll == NULL))
  1246. return;
  1247. if (WARN_ON(pll->refcount == 0))
  1248. return;
  1249. DRM_DEBUG_KMS("enable %s (active %d, on? %d)for crtc %d\n",
  1250. pll->name, pll->active, pll->on,
  1251. crtc->base.base.id);
  1252. if (pll->active++) {
  1253. WARN_ON(!pll->on);
  1254. assert_shared_dpll_enabled(dev_priv, pll);
  1255. return;
  1256. }
  1257. WARN_ON(pll->on);
  1258. DRM_DEBUG_KMS("enabling %s\n", pll->name);
  1259. pll->enable(dev_priv, pll);
  1260. pll->on = true;
  1261. }
  1262. static void intel_disable_shared_dpll(struct intel_crtc *crtc)
  1263. {
  1264. struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
  1265. struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
  1266. /* PCH only available on ILK+ */
  1267. BUG_ON(dev_priv->info->gen < 5);
  1268. if (WARN_ON(pll == NULL))
  1269. return;
  1270. if (WARN_ON(pll->refcount == 0))
  1271. return;
  1272. DRM_DEBUG_KMS("disable %s (active %d, on? %d) for crtc %d\n",
  1273. pll->name, pll->active, pll->on,
  1274. crtc->base.base.id);
  1275. if (WARN_ON(pll->active == 0)) {
  1276. assert_shared_dpll_disabled(dev_priv, pll);
  1277. return;
  1278. }
  1279. assert_shared_dpll_enabled(dev_priv, pll);
  1280. WARN_ON(!pll->on);
  1281. if (--pll->active)
  1282. return;
  1283. DRM_DEBUG_KMS("disabling %s\n", pll->name);
  1284. pll->disable(dev_priv, pll);
  1285. pll->on = false;
  1286. }
  1287. static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
  1288. enum pipe pipe)
  1289. {
  1290. struct drm_device *dev = dev_priv->dev;
  1291. struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
  1292. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1293. uint32_t reg, val, pipeconf_val;
  1294. /* PCH only available on ILK+ */
  1295. BUG_ON(dev_priv->info->gen < 5);
  1296. /* Make sure PCH DPLL is enabled */
  1297. assert_shared_dpll_enabled(dev_priv,
  1298. intel_crtc_to_shared_dpll(intel_crtc));
  1299. /* FDI must be feeding us bits for PCH ports */
  1300. assert_fdi_tx_enabled(dev_priv, pipe);
  1301. assert_fdi_rx_enabled(dev_priv, pipe);
  1302. if (HAS_PCH_CPT(dev)) {
  1303. /* Workaround: Set the timing override bit before enabling the
  1304. * pch transcoder. */
  1305. reg = TRANS_CHICKEN2(pipe);
  1306. val = I915_READ(reg);
  1307. val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
  1308. I915_WRITE(reg, val);
  1309. }
  1310. reg = PCH_TRANSCONF(pipe);
  1311. val = I915_READ(reg);
  1312. pipeconf_val = I915_READ(PIPECONF(pipe));
  1313. if (HAS_PCH_IBX(dev_priv->dev)) {
  1314. /*
  1315. * make the BPC in transcoder be consistent with
  1316. * that in pipeconf reg.
  1317. */
  1318. val &= ~PIPECONF_BPC_MASK;
  1319. val |= pipeconf_val & PIPECONF_BPC_MASK;
  1320. }
  1321. val &= ~TRANS_INTERLACE_MASK;
  1322. if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
  1323. if (HAS_PCH_IBX(dev_priv->dev) &&
  1324. intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO))
  1325. val |= TRANS_LEGACY_INTERLACED_ILK;
  1326. else
  1327. val |= TRANS_INTERLACED;
  1328. else
  1329. val |= TRANS_PROGRESSIVE;
  1330. I915_WRITE(reg, val | TRANS_ENABLE);
  1331. if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
  1332. DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
  1333. }
  1334. static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
  1335. enum transcoder cpu_transcoder)
  1336. {
  1337. u32 val, pipeconf_val;
  1338. /* PCH only available on ILK+ */
  1339. BUG_ON(dev_priv->info->gen < 5);
  1340. /* FDI must be feeding us bits for PCH ports */
  1341. assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
  1342. assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
  1343. /* Workaround: set timing override bit. */
  1344. val = I915_READ(_TRANSA_CHICKEN2);
  1345. val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
  1346. I915_WRITE(_TRANSA_CHICKEN2, val);
  1347. val = TRANS_ENABLE;
  1348. pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
  1349. if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
  1350. PIPECONF_INTERLACED_ILK)
  1351. val |= TRANS_INTERLACED;
  1352. else
  1353. val |= TRANS_PROGRESSIVE;
  1354. I915_WRITE(LPT_TRANSCONF, val);
  1355. if (wait_for(I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE, 100))
  1356. DRM_ERROR("Failed to enable PCH transcoder\n");
  1357. }
  1358. static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
  1359. enum pipe pipe)
  1360. {
  1361. struct drm_device *dev = dev_priv->dev;
  1362. uint32_t reg, val;
  1363. /* FDI relies on the transcoder */
  1364. assert_fdi_tx_disabled(dev_priv, pipe);
  1365. assert_fdi_rx_disabled(dev_priv, pipe);
  1366. /* Ports must be off as well */
  1367. assert_pch_ports_disabled(dev_priv, pipe);
  1368. reg = PCH_TRANSCONF(pipe);
  1369. val = I915_READ(reg);
  1370. val &= ~TRANS_ENABLE;
  1371. I915_WRITE(reg, val);
  1372. /* wait for PCH transcoder off, transcoder state */
  1373. if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
  1374. DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
  1375. if (!HAS_PCH_IBX(dev)) {
  1376. /* Workaround: Clear the timing override chicken bit again. */
  1377. reg = TRANS_CHICKEN2(pipe);
  1378. val = I915_READ(reg);
  1379. val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
  1380. I915_WRITE(reg, val);
  1381. }
  1382. }
  1383. static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
  1384. {
  1385. u32 val;
  1386. val = I915_READ(LPT_TRANSCONF);
  1387. val &= ~TRANS_ENABLE;
  1388. I915_WRITE(LPT_TRANSCONF, val);
  1389. /* wait for PCH transcoder off, transcoder state */
  1390. if (wait_for((I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE) == 0, 50))
  1391. DRM_ERROR("Failed to disable PCH transcoder\n");
  1392. /* Workaround: clear timing override bit. */
  1393. val = I915_READ(_TRANSA_CHICKEN2);
  1394. val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
  1395. I915_WRITE(_TRANSA_CHICKEN2, val);
  1396. }
  1397. /**
  1398. * intel_enable_pipe - enable a pipe, asserting requirements
  1399. * @dev_priv: i915 private structure
  1400. * @pipe: pipe to enable
  1401. * @pch_port: on ILK+, is this pipe driving a PCH port or not
  1402. *
  1403. * Enable @pipe, making sure that various hardware specific requirements
  1404. * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
  1405. *
  1406. * @pipe should be %PIPE_A or %PIPE_B.
  1407. *
  1408. * Will wait until the pipe is actually running (i.e. first vblank) before
  1409. * returning.
  1410. */
  1411. static void intel_enable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe,
  1412. bool pch_port)
  1413. {
  1414. enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
  1415. pipe);
  1416. enum pipe pch_transcoder;
  1417. int reg;
  1418. u32 val;
  1419. assert_planes_disabled(dev_priv, pipe);
  1420. assert_sprites_disabled(dev_priv, pipe);
  1421. if (HAS_PCH_LPT(dev_priv->dev))
  1422. pch_transcoder = TRANSCODER_A;
  1423. else
  1424. pch_transcoder = pipe;
  1425. /*
  1426. * A pipe without a PLL won't actually be able to drive bits from
  1427. * a plane. On ILK+ the pipe PLLs are integrated, so we don't
  1428. * need the check.
  1429. */
  1430. if (!HAS_PCH_SPLIT(dev_priv->dev))
  1431. assert_pll_enabled(dev_priv, pipe);
  1432. else {
  1433. if (pch_port) {
  1434. /* if driving the PCH, we need FDI enabled */
  1435. assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
  1436. assert_fdi_tx_pll_enabled(dev_priv,
  1437. (enum pipe) cpu_transcoder);
  1438. }
  1439. /* FIXME: assert CPU port conditions for SNB+ */
  1440. }
  1441. reg = PIPECONF(cpu_transcoder);
  1442. val = I915_READ(reg);
  1443. if (val & PIPECONF_ENABLE)
  1444. return;
  1445. I915_WRITE(reg, val | PIPECONF_ENABLE);
  1446. intel_wait_for_vblank(dev_priv->dev, pipe);
  1447. }
  1448. /**
  1449. * intel_disable_pipe - disable a pipe, asserting requirements
  1450. * @dev_priv: i915 private structure
  1451. * @pipe: pipe to disable
  1452. *
  1453. * Disable @pipe, making sure that various hardware specific requirements
  1454. * are met, if applicable, e.g. plane disabled, panel fitter off, etc.
  1455. *
  1456. * @pipe should be %PIPE_A or %PIPE_B.
  1457. *
  1458. * Will wait until the pipe has shut down before returning.
  1459. */
  1460. static void intel_disable_pipe(struct drm_i915_private *dev_priv,
  1461. enum pipe pipe)
  1462. {
  1463. enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
  1464. pipe);
  1465. int reg;
  1466. u32 val;
  1467. /*
  1468. * Make sure planes won't keep trying to pump pixels to us,
  1469. * or we might hang the display.
  1470. */
  1471. assert_planes_disabled(dev_priv, pipe);
  1472. assert_sprites_disabled(dev_priv, pipe);
  1473. /* Don't disable pipe A or pipe A PLLs if needed */
  1474. if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
  1475. return;
  1476. reg = PIPECONF(cpu_transcoder);
  1477. val = I915_READ(reg);
  1478. if ((val & PIPECONF_ENABLE) == 0)
  1479. return;
  1480. I915_WRITE(reg, val & ~PIPECONF_ENABLE);
  1481. intel_wait_for_pipe_off(dev_priv->dev, pipe);
  1482. }
  1483. /*
  1484. * Plane regs are double buffered, going from enabled->disabled needs a
  1485. * trigger in order to latch. The display address reg provides this.
  1486. */
  1487. void intel_flush_display_plane(struct drm_i915_private *dev_priv,
  1488. enum plane plane)
  1489. {
  1490. if (dev_priv->info->gen >= 4)
  1491. I915_WRITE(DSPSURF(plane), I915_READ(DSPSURF(plane)));
  1492. else
  1493. I915_WRITE(DSPADDR(plane), I915_READ(DSPADDR(plane)));
  1494. }
  1495. /**
  1496. * intel_enable_plane - enable a display plane on a given pipe
  1497. * @dev_priv: i915 private structure
  1498. * @plane: plane to enable
  1499. * @pipe: pipe being fed
  1500. *
  1501. * Enable @plane on @pipe, making sure that @pipe is running first.
  1502. */
  1503. static void intel_enable_plane(struct drm_i915_private *dev_priv,
  1504. enum plane plane, enum pipe pipe)
  1505. {
  1506. int reg;
  1507. u32 val;
  1508. /* If the pipe isn't enabled, we can't pump pixels and may hang */
  1509. assert_pipe_enabled(dev_priv, pipe);
  1510. reg = DSPCNTR(plane);
  1511. val = I915_READ(reg);
  1512. if (val & DISPLAY_PLANE_ENABLE)
  1513. return;
  1514. I915_WRITE(reg, val | DISPLAY_PLANE_ENABLE);
  1515. intel_flush_display_plane(dev_priv, plane);
  1516. intel_wait_for_vblank(dev_priv->dev, pipe);
  1517. }
  1518. /**
  1519. * intel_disable_plane - disable a display plane
  1520. * @dev_priv: i915 private structure
  1521. * @plane: plane to disable
  1522. * @pipe: pipe consuming the data
  1523. *
  1524. * Disable @plane; should be an independent operation.
  1525. */
  1526. static void intel_disable_plane(struct drm_i915_private *dev_priv,
  1527. enum plane plane, enum pipe pipe)
  1528. {
  1529. int reg;
  1530. u32 val;
  1531. reg = DSPCNTR(plane);
  1532. val = I915_READ(reg);
  1533. if ((val & DISPLAY_PLANE_ENABLE) == 0)
  1534. return;
  1535. I915_WRITE(reg, val & ~DISPLAY_PLANE_ENABLE);
  1536. intel_flush_display_plane(dev_priv, plane);
  1537. intel_wait_for_vblank(dev_priv->dev, pipe);
  1538. }
  1539. static bool need_vtd_wa(struct drm_device *dev)
  1540. {
  1541. #ifdef CONFIG_INTEL_IOMMU
  1542. if (INTEL_INFO(dev)->gen >= 6 && intel_iommu_gfx_mapped)
  1543. return true;
  1544. #endif
  1545. return false;
  1546. }
  1547. int
  1548. intel_pin_and_fence_fb_obj(struct drm_device *dev,
  1549. struct drm_i915_gem_object *obj,
  1550. struct intel_ring_buffer *pipelined)
  1551. {
  1552. struct drm_i915_private *dev_priv = dev->dev_private;
  1553. u32 alignment;
  1554. int ret;
  1555. switch (obj->tiling_mode) {
  1556. case I915_TILING_NONE:
  1557. if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
  1558. alignment = 128 * 1024;
  1559. else if (INTEL_INFO(dev)->gen >= 4)
  1560. alignment = 4 * 1024;
  1561. else
  1562. alignment = 64 * 1024;
  1563. break;
  1564. case I915_TILING_X:
  1565. /* pin() will align the object as required by fence */
  1566. alignment = 0;
  1567. break;
  1568. case I915_TILING_Y:
  1569. /* Despite that we check this in framebuffer_init userspace can
  1570. * screw us over and change the tiling after the fact. Only
  1571. * pinned buffers can't change their tiling. */
  1572. DRM_DEBUG_DRIVER("Y tiled not allowed for scan out buffers\n");
  1573. return -EINVAL;
  1574. default:
  1575. BUG();
  1576. }
  1577. /* Note that the w/a also requires 64 PTE of padding following the
  1578. * bo. We currently fill all unused PTE with the shadow page and so
  1579. * we should always have valid PTE following the scanout preventing
  1580. * the VT-d warning.
  1581. */
  1582. if (need_vtd_wa(dev) && alignment < 256 * 1024)
  1583. alignment = 256 * 1024;
  1584. dev_priv->mm.interruptible = false;
  1585. ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
  1586. if (ret)
  1587. goto err_interruptible;
  1588. /* Install a fence for tiled scan-out. Pre-i965 always needs a
  1589. * fence, whereas 965+ only requires a fence if using
  1590. * framebuffer compression. For simplicity, we always install
  1591. * a fence as the cost is not that onerous.
  1592. */
  1593. ret = i915_gem_object_get_fence(obj);
  1594. if (ret)
  1595. goto err_unpin;
  1596. i915_gem_object_pin_fence(obj);
  1597. dev_priv->mm.interruptible = true;
  1598. return 0;
  1599. err_unpin:
  1600. i915_gem_object_unpin(obj);
  1601. err_interruptible:
  1602. dev_priv->mm.interruptible = true;
  1603. return ret;
  1604. }
  1605. void intel_unpin_fb_obj(struct drm_i915_gem_object *obj)
  1606. {
  1607. i915_gem_object_unpin_fence(obj);
  1608. i915_gem_object_unpin(obj);
  1609. }
  1610. /* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
  1611. * is assumed to be a power-of-two. */
  1612. unsigned long intel_gen4_compute_page_offset(int *x, int *y,
  1613. unsigned int tiling_mode,
  1614. unsigned int cpp,
  1615. unsigned int pitch)
  1616. {
  1617. if (tiling_mode != I915_TILING_NONE) {
  1618. unsigned int tile_rows, tiles;
  1619. tile_rows = *y / 8;
  1620. *y %= 8;
  1621. tiles = *x / (512/cpp);
  1622. *x %= 512/cpp;
  1623. return tile_rows * pitch * 8 + tiles * 4096;
  1624. } else {
  1625. unsigned int offset;
  1626. offset = *y * pitch + *x * cpp;
  1627. *y = 0;
  1628. *x = (offset & 4095) / cpp;
  1629. return offset & -4096;
  1630. }
  1631. }
  1632. static int i9xx_update_plane(struct drm_crtc *crtc, struct drm_framebuffer *fb,
  1633. int x, int y)
  1634. {
  1635. struct drm_device *dev = crtc->dev;
  1636. struct drm_i915_private *dev_priv = dev->dev_private;
  1637. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1638. struct intel_framebuffer *intel_fb;
  1639. struct drm_i915_gem_object *obj;
  1640. int plane = intel_crtc->plane;
  1641. unsigned long linear_offset;
  1642. u32 dspcntr;
  1643. u32 reg;
  1644. switch (plane) {
  1645. case 0:
  1646. case 1:
  1647. break;
  1648. default:
  1649. DRM_ERROR("Can't update plane %c in SAREA\n", plane_name(plane));
  1650. return -EINVAL;
  1651. }
  1652. intel_fb = to_intel_framebuffer(fb);
  1653. obj = intel_fb->obj;
  1654. reg = DSPCNTR(plane);
  1655. dspcntr = I915_READ(reg);
  1656. /* Mask out pixel format bits in case we change it */
  1657. dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
  1658. switch (fb->pixel_format) {
  1659. case DRM_FORMAT_C8:
  1660. dspcntr |= DISPPLANE_8BPP;
  1661. break;
  1662. case DRM_FORMAT_XRGB1555:
  1663. case DRM_FORMAT_ARGB1555:
  1664. dspcntr |= DISPPLANE_BGRX555;
  1665. break;
  1666. case DRM_FORMAT_RGB565:
  1667. dspcntr |= DISPPLANE_BGRX565;
  1668. break;
  1669. case DRM_FORMAT_XRGB8888:
  1670. case DRM_FORMAT_ARGB8888:
  1671. dspcntr |= DISPPLANE_BGRX888;
  1672. break;
  1673. case DRM_FORMAT_XBGR8888:
  1674. case DRM_FORMAT_ABGR8888:
  1675. dspcntr |= DISPPLANE_RGBX888;
  1676. break;
  1677. case DRM_FORMAT_XRGB2101010:
  1678. case DRM_FORMAT_ARGB2101010:
  1679. dspcntr |= DISPPLANE_BGRX101010;
  1680. break;
  1681. case DRM_FORMAT_XBGR2101010:
  1682. case DRM_FORMAT_ABGR2101010:
  1683. dspcntr |= DISPPLANE_RGBX101010;
  1684. break;
  1685. default:
  1686. BUG();
  1687. }
  1688. if (INTEL_INFO(dev)->gen >= 4) {
  1689. if (obj->tiling_mode != I915_TILING_NONE)
  1690. dspcntr |= DISPPLANE_TILED;
  1691. else
  1692. dspcntr &= ~DISPPLANE_TILED;
  1693. }
  1694. if (IS_G4X(dev))
  1695. dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
  1696. I915_WRITE(reg, dspcntr);
  1697. linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
  1698. if (INTEL_INFO(dev)->gen >= 4) {
  1699. intel_crtc->dspaddr_offset =
  1700. intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
  1701. fb->bits_per_pixel / 8,
  1702. fb->pitches[0]);
  1703. linear_offset -= intel_crtc->dspaddr_offset;
  1704. } else {
  1705. intel_crtc->dspaddr_offset = linear_offset;
  1706. }
  1707. DRM_DEBUG_KMS("Writing base %08X %08lX %d %d %d\n",
  1708. obj->gtt_offset, linear_offset, x, y, fb->pitches[0]);
  1709. I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
  1710. if (INTEL_INFO(dev)->gen >= 4) {
  1711. I915_MODIFY_DISPBASE(DSPSURF(plane),
  1712. obj->gtt_offset + intel_crtc->dspaddr_offset);
  1713. I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
  1714. I915_WRITE(DSPLINOFF(plane), linear_offset);
  1715. } else
  1716. I915_WRITE(DSPADDR(plane), obj->gtt_offset + linear_offset);
  1717. POSTING_READ(reg);
  1718. return 0;
  1719. }
  1720. static int ironlake_update_plane(struct drm_crtc *crtc,
  1721. struct drm_framebuffer *fb, int x, int y)
  1722. {
  1723. struct drm_device *dev = crtc->dev;
  1724. struct drm_i915_private *dev_priv = dev->dev_private;
  1725. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1726. struct intel_framebuffer *intel_fb;
  1727. struct drm_i915_gem_object *obj;
  1728. int plane = intel_crtc->plane;
  1729. unsigned long linear_offset;
  1730. u32 dspcntr;
  1731. u32 reg;
  1732. switch (plane) {
  1733. case 0:
  1734. case 1:
  1735. case 2:
  1736. break;
  1737. default:
  1738. DRM_ERROR("Can't update plane %c in SAREA\n", plane_name(plane));
  1739. return -EINVAL;
  1740. }
  1741. intel_fb = to_intel_framebuffer(fb);
  1742. obj = intel_fb->obj;
  1743. reg = DSPCNTR(plane);
  1744. dspcntr = I915_READ(reg);
  1745. /* Mask out pixel format bits in case we change it */
  1746. dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
  1747. switch (fb->pixel_format) {
  1748. case DRM_FORMAT_C8:
  1749. dspcntr |= DISPPLANE_8BPP;
  1750. break;
  1751. case DRM_FORMAT_RGB565:
  1752. dspcntr |= DISPPLANE_BGRX565;
  1753. break;
  1754. case DRM_FORMAT_XRGB8888:
  1755. case DRM_FORMAT_ARGB8888:
  1756. dspcntr |= DISPPLANE_BGRX888;
  1757. break;
  1758. case DRM_FORMAT_XBGR8888:
  1759. case DRM_FORMAT_ABGR8888:
  1760. dspcntr |= DISPPLANE_RGBX888;
  1761. break;
  1762. case DRM_FORMAT_XRGB2101010:
  1763. case DRM_FORMAT_ARGB2101010:
  1764. dspcntr |= DISPPLANE_BGRX101010;
  1765. break;
  1766. case DRM_FORMAT_XBGR2101010:
  1767. case DRM_FORMAT_ABGR2101010:
  1768. dspcntr |= DISPPLANE_RGBX101010;
  1769. break;
  1770. default:
  1771. BUG();
  1772. }
  1773. if (obj->tiling_mode != I915_TILING_NONE)
  1774. dspcntr |= DISPPLANE_TILED;
  1775. else
  1776. dspcntr &= ~DISPPLANE_TILED;
  1777. /* must disable */
  1778. dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
  1779. I915_WRITE(reg, dspcntr);
  1780. linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
  1781. intel_crtc->dspaddr_offset =
  1782. intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
  1783. fb->bits_per_pixel / 8,
  1784. fb->pitches[0]);
  1785. linear_offset -= intel_crtc->dspaddr_offset;
  1786. DRM_DEBUG_KMS("Writing base %08X %08lX %d %d %d\n",
  1787. obj->gtt_offset, linear_offset, x, y, fb->pitches[0]);
  1788. I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
  1789. I915_MODIFY_DISPBASE(DSPSURF(plane),
  1790. obj->gtt_offset + intel_crtc->dspaddr_offset);
  1791. if (IS_HASWELL(dev)) {
  1792. I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
  1793. } else {
  1794. I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
  1795. I915_WRITE(DSPLINOFF(plane), linear_offset);
  1796. }
  1797. POSTING_READ(reg);
  1798. return 0;
  1799. }
  1800. /* Assume fb object is pinned & idle & fenced and just update base pointers */
  1801. static int
  1802. intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
  1803. int x, int y, enum mode_set_atomic state)
  1804. {
  1805. struct drm_device *dev = crtc->dev;
  1806. struct drm_i915_private *dev_priv = dev->dev_private;
  1807. if (dev_priv->display.disable_fbc)
  1808. dev_priv->display.disable_fbc(dev);
  1809. intel_increase_pllclock(crtc);
  1810. return dev_priv->display.update_plane(crtc, fb, x, y);
  1811. }
  1812. void intel_display_handle_reset(struct drm_device *dev)
  1813. {
  1814. struct drm_i915_private *dev_priv = dev->dev_private;
  1815. struct drm_crtc *crtc;
  1816. /*
  1817. * Flips in the rings have been nuked by the reset,
  1818. * so complete all pending flips so that user space
  1819. * will get its events and not get stuck.
  1820. *
  1821. * Also update the base address of all primary
  1822. * planes to the the last fb to make sure we're
  1823. * showing the correct fb after a reset.
  1824. *
  1825. * Need to make two loops over the crtcs so that we
  1826. * don't try to grab a crtc mutex before the
  1827. * pending_flip_queue really got woken up.
  1828. */
  1829. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  1830. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1831. enum plane plane = intel_crtc->plane;
  1832. intel_prepare_page_flip(dev, plane);
  1833. intel_finish_page_flip_plane(dev, plane);
  1834. }
  1835. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  1836. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1837. mutex_lock(&crtc->mutex);
  1838. if (intel_crtc->active)
  1839. dev_priv->display.update_plane(crtc, crtc->fb,
  1840. crtc->x, crtc->y);
  1841. mutex_unlock(&crtc->mutex);
  1842. }
  1843. }
  1844. static int
  1845. intel_finish_fb(struct drm_framebuffer *old_fb)
  1846. {
  1847. struct drm_i915_gem_object *obj = to_intel_framebuffer(old_fb)->obj;
  1848. struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
  1849. bool was_interruptible = dev_priv->mm.interruptible;
  1850. int ret;
  1851. /* Big Hammer, we also need to ensure that any pending
  1852. * MI_WAIT_FOR_EVENT inside a user batch buffer on the
  1853. * current scanout is retired before unpinning the old
  1854. * framebuffer.
  1855. *
  1856. * This should only fail upon a hung GPU, in which case we
  1857. * can safely continue.
  1858. */
  1859. dev_priv->mm.interruptible = false;
  1860. ret = i915_gem_object_finish_gpu(obj);
  1861. dev_priv->mm.interruptible = was_interruptible;
  1862. return ret;
  1863. }
  1864. static void intel_crtc_update_sarea_pos(struct drm_crtc *crtc, int x, int y)
  1865. {
  1866. struct drm_device *dev = crtc->dev;
  1867. struct drm_i915_master_private *master_priv;
  1868. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1869. if (!dev->primary->master)
  1870. return;
  1871. master_priv = dev->primary->master->driver_priv;
  1872. if (!master_priv->sarea_priv)
  1873. return;
  1874. switch (intel_crtc->pipe) {
  1875. case 0:
  1876. master_priv->sarea_priv->pipeA_x = x;
  1877. master_priv->sarea_priv->pipeA_y = y;
  1878. break;
  1879. case 1:
  1880. master_priv->sarea_priv->pipeB_x = x;
  1881. master_priv->sarea_priv->pipeB_y = y;
  1882. break;
  1883. default:
  1884. break;
  1885. }
  1886. }
  1887. static int
  1888. intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
  1889. struct drm_framebuffer *fb)
  1890. {
  1891. struct drm_device *dev = crtc->dev;
  1892. struct drm_i915_private *dev_priv = dev->dev_private;
  1893. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1894. struct drm_framebuffer *old_fb;
  1895. int ret;
  1896. /* no fb bound */
  1897. if (!fb) {
  1898. DRM_ERROR("No FB bound\n");
  1899. return 0;
  1900. }
  1901. if (intel_crtc->plane > INTEL_INFO(dev)->num_pipes) {
  1902. DRM_ERROR("no plane for crtc: plane %c, num_pipes %d\n",
  1903. plane_name(intel_crtc->plane),
  1904. INTEL_INFO(dev)->num_pipes);
  1905. return -EINVAL;
  1906. }
  1907. mutex_lock(&dev->struct_mutex);
  1908. ret = intel_pin_and_fence_fb_obj(dev,
  1909. to_intel_framebuffer(fb)->obj,
  1910. NULL);
  1911. if (ret != 0) {
  1912. mutex_unlock(&dev->struct_mutex);
  1913. DRM_ERROR("pin & fence failed\n");
  1914. return ret;
  1915. }
  1916. ret = dev_priv->display.update_plane(crtc, fb, x, y);
  1917. if (ret) {
  1918. intel_unpin_fb_obj(to_intel_framebuffer(fb)->obj);
  1919. mutex_unlock(&dev->struct_mutex);
  1920. DRM_ERROR("failed to update base address\n");
  1921. return ret;
  1922. }
  1923. old_fb = crtc->fb;
  1924. crtc->fb = fb;
  1925. crtc->x = x;
  1926. crtc->y = y;
  1927. if (old_fb) {
  1928. if (intel_crtc->active && old_fb != fb)
  1929. intel_wait_for_vblank(dev, intel_crtc->pipe);
  1930. intel_unpin_fb_obj(to_intel_framebuffer(old_fb)->obj);
  1931. }
  1932. intel_update_fbc(dev);
  1933. mutex_unlock(&dev->struct_mutex);
  1934. intel_crtc_update_sarea_pos(crtc, x, y);
  1935. return 0;
  1936. }
  1937. static void intel_fdi_normal_train(struct drm_crtc *crtc)
  1938. {
  1939. struct drm_device *dev = crtc->dev;
  1940. struct drm_i915_private *dev_priv = dev->dev_private;
  1941. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1942. int pipe = intel_crtc->pipe;
  1943. u32 reg, temp;
  1944. /* enable normal train */
  1945. reg = FDI_TX_CTL(pipe);
  1946. temp = I915_READ(reg);
  1947. if (IS_IVYBRIDGE(dev)) {
  1948. temp &= ~FDI_LINK_TRAIN_NONE_IVB;
  1949. temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
  1950. } else {
  1951. temp &= ~FDI_LINK_TRAIN_NONE;
  1952. temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
  1953. }
  1954. I915_WRITE(reg, temp);
  1955. reg = FDI_RX_CTL(pipe);
  1956. temp = I915_READ(reg);
  1957. if (HAS_PCH_CPT(dev)) {
  1958. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  1959. temp |= FDI_LINK_TRAIN_NORMAL_CPT;
  1960. } else {
  1961. temp &= ~FDI_LINK_TRAIN_NONE;
  1962. temp |= FDI_LINK_TRAIN_NONE;
  1963. }
  1964. I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
  1965. /* wait one idle pattern time */
  1966. POSTING_READ(reg);
  1967. udelay(1000);
  1968. /* IVB wants error correction enabled */
  1969. if (IS_IVYBRIDGE(dev))
  1970. I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
  1971. FDI_FE_ERRC_ENABLE);
  1972. }
  1973. static bool pipe_has_enabled_pch(struct intel_crtc *intel_crtc)
  1974. {
  1975. return intel_crtc->base.enabled && intel_crtc->config.has_pch_encoder;
  1976. }
  1977. static void ivb_modeset_global_resources(struct drm_device *dev)
  1978. {
  1979. struct drm_i915_private *dev_priv = dev->dev_private;
  1980. struct intel_crtc *pipe_B_crtc =
  1981. to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
  1982. struct intel_crtc *pipe_C_crtc =
  1983. to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_C]);
  1984. uint32_t temp;
  1985. /*
  1986. * When everything is off disable fdi C so that we could enable fdi B
  1987. * with all lanes. Note that we don't care about enabled pipes without
  1988. * an enabled pch encoder.
  1989. */
  1990. if (!pipe_has_enabled_pch(pipe_B_crtc) &&
  1991. !pipe_has_enabled_pch(pipe_C_crtc)) {
  1992. WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
  1993. WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
  1994. temp = I915_READ(SOUTH_CHICKEN1);
  1995. temp &= ~FDI_BC_BIFURCATION_SELECT;
  1996. DRM_DEBUG_KMS("disabling fdi C rx\n");
  1997. I915_WRITE(SOUTH_CHICKEN1, temp);
  1998. }
  1999. }
  2000. /* The FDI link training functions for ILK/Ibexpeak. */
  2001. static void ironlake_fdi_link_train(struct drm_crtc *crtc)
  2002. {
  2003. struct drm_device *dev = crtc->dev;
  2004. struct drm_i915_private *dev_priv = dev->dev_private;
  2005. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2006. int pipe = intel_crtc->pipe;
  2007. int plane = intel_crtc->plane;
  2008. u32 reg, temp, tries;
  2009. /* FDI needs bits from pipe & plane first */
  2010. assert_pipe_enabled(dev_priv, pipe);
  2011. assert_plane_enabled(dev_priv, plane);
  2012. /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
  2013. for train result */
  2014. reg = FDI_RX_IMR(pipe);
  2015. temp = I915_READ(reg);
  2016. temp &= ~FDI_RX_SYMBOL_LOCK;
  2017. temp &= ~FDI_RX_BIT_LOCK;
  2018. I915_WRITE(reg, temp);
  2019. I915_READ(reg);
  2020. udelay(150);
  2021. /* enable CPU FDI TX and PCH FDI RX */
  2022. reg = FDI_TX_CTL(pipe);
  2023. temp = I915_READ(reg);
  2024. temp &= ~FDI_DP_PORT_WIDTH_MASK;
  2025. temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
  2026. temp &= ~FDI_LINK_TRAIN_NONE;
  2027. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2028. I915_WRITE(reg, temp | FDI_TX_ENABLE);
  2029. reg = FDI_RX_CTL(pipe);
  2030. temp = I915_READ(reg);
  2031. temp &= ~FDI_LINK_TRAIN_NONE;
  2032. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2033. I915_WRITE(reg, temp | FDI_RX_ENABLE);
  2034. POSTING_READ(reg);
  2035. udelay(150);
  2036. /* Ironlake workaround, enable clock pointer after FDI enable*/
  2037. I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
  2038. I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
  2039. FDI_RX_PHASE_SYNC_POINTER_EN);
  2040. reg = FDI_RX_IIR(pipe);
  2041. for (tries = 0; tries < 5; tries++) {
  2042. temp = I915_READ(reg);
  2043. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2044. if ((temp & FDI_RX_BIT_LOCK)) {
  2045. DRM_DEBUG_KMS("FDI train 1 done.\n");
  2046. I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
  2047. break;
  2048. }
  2049. }
  2050. if (tries == 5)
  2051. DRM_ERROR("FDI train 1 fail!\n");
  2052. /* Train 2 */
  2053. reg = FDI_TX_CTL(pipe);
  2054. temp = I915_READ(reg);
  2055. temp &= ~FDI_LINK_TRAIN_NONE;
  2056. temp |= FDI_LINK_TRAIN_PATTERN_2;
  2057. I915_WRITE(reg, temp);
  2058. reg = FDI_RX_CTL(pipe);
  2059. temp = I915_READ(reg);
  2060. temp &= ~FDI_LINK_TRAIN_NONE;
  2061. temp |= FDI_LINK_TRAIN_PATTERN_2;
  2062. I915_WRITE(reg, temp);
  2063. POSTING_READ(reg);
  2064. udelay(150);
  2065. reg = FDI_RX_IIR(pipe);
  2066. for (tries = 0; tries < 5; tries++) {
  2067. temp = I915_READ(reg);
  2068. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2069. if (temp & FDI_RX_SYMBOL_LOCK) {
  2070. I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
  2071. DRM_DEBUG_KMS("FDI train 2 done.\n");
  2072. break;
  2073. }
  2074. }
  2075. if (tries == 5)
  2076. DRM_ERROR("FDI train 2 fail!\n");
  2077. DRM_DEBUG_KMS("FDI train done\n");
  2078. }
  2079. static const int snb_b_fdi_train_param[] = {
  2080. FDI_LINK_TRAIN_400MV_0DB_SNB_B,
  2081. FDI_LINK_TRAIN_400MV_6DB_SNB_B,
  2082. FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
  2083. FDI_LINK_TRAIN_800MV_0DB_SNB_B,
  2084. };
  2085. /* The FDI link training functions for SNB/Cougarpoint. */
  2086. static void gen6_fdi_link_train(struct drm_crtc *crtc)
  2087. {
  2088. struct drm_device *dev = crtc->dev;
  2089. struct drm_i915_private *dev_priv = dev->dev_private;
  2090. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2091. int pipe = intel_crtc->pipe;
  2092. u32 reg, temp, i, retry;
  2093. /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
  2094. for train result */
  2095. reg = FDI_RX_IMR(pipe);
  2096. temp = I915_READ(reg);
  2097. temp &= ~FDI_RX_SYMBOL_LOCK;
  2098. temp &= ~FDI_RX_BIT_LOCK;
  2099. I915_WRITE(reg, temp);
  2100. POSTING_READ(reg);
  2101. udelay(150);
  2102. /* enable CPU FDI TX and PCH FDI RX */
  2103. reg = FDI_TX_CTL(pipe);
  2104. temp = I915_READ(reg);
  2105. temp &= ~FDI_DP_PORT_WIDTH_MASK;
  2106. temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
  2107. temp &= ~FDI_LINK_TRAIN_NONE;
  2108. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2109. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2110. /* SNB-B */
  2111. temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
  2112. I915_WRITE(reg, temp | FDI_TX_ENABLE);
  2113. I915_WRITE(FDI_RX_MISC(pipe),
  2114. FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
  2115. reg = FDI_RX_CTL(pipe);
  2116. temp = I915_READ(reg);
  2117. if (HAS_PCH_CPT(dev)) {
  2118. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2119. temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
  2120. } else {
  2121. temp &= ~FDI_LINK_TRAIN_NONE;
  2122. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2123. }
  2124. I915_WRITE(reg, temp | FDI_RX_ENABLE);
  2125. POSTING_READ(reg);
  2126. udelay(150);
  2127. for (i = 0; i < 4; i++) {
  2128. reg = FDI_TX_CTL(pipe);
  2129. temp = I915_READ(reg);
  2130. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2131. temp |= snb_b_fdi_train_param[i];
  2132. I915_WRITE(reg, temp);
  2133. POSTING_READ(reg);
  2134. udelay(500);
  2135. for (retry = 0; retry < 5; retry++) {
  2136. reg = FDI_RX_IIR(pipe);
  2137. temp = I915_READ(reg);
  2138. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2139. if (temp & FDI_RX_BIT_LOCK) {
  2140. I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
  2141. DRM_DEBUG_KMS("FDI train 1 done.\n");
  2142. break;
  2143. }
  2144. udelay(50);
  2145. }
  2146. if (retry < 5)
  2147. break;
  2148. }
  2149. if (i == 4)
  2150. DRM_ERROR("FDI train 1 fail!\n");
  2151. /* Train 2 */
  2152. reg = FDI_TX_CTL(pipe);
  2153. temp = I915_READ(reg);
  2154. temp &= ~FDI_LINK_TRAIN_NONE;
  2155. temp |= FDI_LINK_TRAIN_PATTERN_2;
  2156. if (IS_GEN6(dev)) {
  2157. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2158. /* SNB-B */
  2159. temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
  2160. }
  2161. I915_WRITE(reg, temp);
  2162. reg = FDI_RX_CTL(pipe);
  2163. temp = I915_READ(reg);
  2164. if (HAS_PCH_CPT(dev)) {
  2165. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2166. temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
  2167. } else {
  2168. temp &= ~FDI_LINK_TRAIN_NONE;
  2169. temp |= FDI_LINK_TRAIN_PATTERN_2;
  2170. }
  2171. I915_WRITE(reg, temp);
  2172. POSTING_READ(reg);
  2173. udelay(150);
  2174. for (i = 0; i < 4; i++) {
  2175. reg = FDI_TX_CTL(pipe);
  2176. temp = I915_READ(reg);
  2177. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2178. temp |= snb_b_fdi_train_param[i];
  2179. I915_WRITE(reg, temp);
  2180. POSTING_READ(reg);
  2181. udelay(500);
  2182. for (retry = 0; retry < 5; retry++) {
  2183. reg = FDI_RX_IIR(pipe);
  2184. temp = I915_READ(reg);
  2185. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2186. if (temp & FDI_RX_SYMBOL_LOCK) {
  2187. I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
  2188. DRM_DEBUG_KMS("FDI train 2 done.\n");
  2189. break;
  2190. }
  2191. udelay(50);
  2192. }
  2193. if (retry < 5)
  2194. break;
  2195. }
  2196. if (i == 4)
  2197. DRM_ERROR("FDI train 2 fail!\n");
  2198. DRM_DEBUG_KMS("FDI train done.\n");
  2199. }
  2200. /* Manual link training for Ivy Bridge A0 parts */
  2201. static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
  2202. {
  2203. struct drm_device *dev = crtc->dev;
  2204. struct drm_i915_private *dev_priv = dev->dev_private;
  2205. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2206. int pipe = intel_crtc->pipe;
  2207. u32 reg, temp, i;
  2208. /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
  2209. for train result */
  2210. reg = FDI_RX_IMR(pipe);
  2211. temp = I915_READ(reg);
  2212. temp &= ~FDI_RX_SYMBOL_LOCK;
  2213. temp &= ~FDI_RX_BIT_LOCK;
  2214. I915_WRITE(reg, temp);
  2215. POSTING_READ(reg);
  2216. udelay(150);
  2217. DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
  2218. I915_READ(FDI_RX_IIR(pipe)));
  2219. /* enable CPU FDI TX and PCH FDI RX */
  2220. reg = FDI_TX_CTL(pipe);
  2221. temp = I915_READ(reg);
  2222. temp &= ~FDI_DP_PORT_WIDTH_MASK;
  2223. temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
  2224. temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
  2225. temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
  2226. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2227. temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
  2228. temp |= FDI_COMPOSITE_SYNC;
  2229. I915_WRITE(reg, temp | FDI_TX_ENABLE);
  2230. I915_WRITE(FDI_RX_MISC(pipe),
  2231. FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
  2232. reg = FDI_RX_CTL(pipe);
  2233. temp = I915_READ(reg);
  2234. temp &= ~FDI_LINK_TRAIN_AUTO;
  2235. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2236. temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
  2237. temp |= FDI_COMPOSITE_SYNC;
  2238. I915_WRITE(reg, temp | FDI_RX_ENABLE);
  2239. POSTING_READ(reg);
  2240. udelay(150);
  2241. for (i = 0; i < 4; i++) {
  2242. reg = FDI_TX_CTL(pipe);
  2243. temp = I915_READ(reg);
  2244. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2245. temp |= snb_b_fdi_train_param[i];
  2246. I915_WRITE(reg, temp);
  2247. POSTING_READ(reg);
  2248. udelay(500);
  2249. reg = FDI_RX_IIR(pipe);
  2250. temp = I915_READ(reg);
  2251. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2252. if (temp & FDI_RX_BIT_LOCK ||
  2253. (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
  2254. I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
  2255. DRM_DEBUG_KMS("FDI train 1 done, level %i.\n", i);
  2256. break;
  2257. }
  2258. }
  2259. if (i == 4)
  2260. DRM_ERROR("FDI train 1 fail!\n");
  2261. /* Train 2 */
  2262. reg = FDI_TX_CTL(pipe);
  2263. temp = I915_READ(reg);
  2264. temp &= ~FDI_LINK_TRAIN_NONE_IVB;
  2265. temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
  2266. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2267. temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
  2268. I915_WRITE(reg, temp);
  2269. reg = FDI_RX_CTL(pipe);
  2270. temp = I915_READ(reg);
  2271. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2272. temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
  2273. I915_WRITE(reg, temp);
  2274. POSTING_READ(reg);
  2275. udelay(150);
  2276. for (i = 0; i < 4; i++) {
  2277. reg = FDI_TX_CTL(pipe);
  2278. temp = I915_READ(reg);
  2279. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2280. temp |= snb_b_fdi_train_param[i];
  2281. I915_WRITE(reg, temp);
  2282. POSTING_READ(reg);
  2283. udelay(500);
  2284. reg = FDI_RX_IIR(pipe);
  2285. temp = I915_READ(reg);
  2286. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2287. if (temp & FDI_RX_SYMBOL_LOCK) {
  2288. I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
  2289. DRM_DEBUG_KMS("FDI train 2 done, level %i.\n", i);
  2290. break;
  2291. }
  2292. }
  2293. if (i == 4)
  2294. DRM_ERROR("FDI train 2 fail!\n");
  2295. DRM_DEBUG_KMS("FDI train done.\n");
  2296. }
  2297. static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
  2298. {
  2299. struct drm_device *dev = intel_crtc->base.dev;
  2300. struct drm_i915_private *dev_priv = dev->dev_private;
  2301. int pipe = intel_crtc->pipe;
  2302. u32 reg, temp;
  2303. /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
  2304. reg = FDI_RX_CTL(pipe);
  2305. temp = I915_READ(reg);
  2306. temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
  2307. temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
  2308. temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
  2309. I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
  2310. POSTING_READ(reg);
  2311. udelay(200);
  2312. /* Switch from Rawclk to PCDclk */
  2313. temp = I915_READ(reg);
  2314. I915_WRITE(reg, temp | FDI_PCDCLK);
  2315. POSTING_READ(reg);
  2316. udelay(200);
  2317. /* Enable CPU FDI TX PLL, always on for Ironlake */
  2318. reg = FDI_TX_CTL(pipe);
  2319. temp = I915_READ(reg);
  2320. if ((temp & FDI_TX_PLL_ENABLE) == 0) {
  2321. I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
  2322. POSTING_READ(reg);
  2323. udelay(100);
  2324. }
  2325. }
  2326. static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
  2327. {
  2328. struct drm_device *dev = intel_crtc->base.dev;
  2329. struct drm_i915_private *dev_priv = dev->dev_private;
  2330. int pipe = intel_crtc->pipe;
  2331. u32 reg, temp;
  2332. /* Switch from PCDclk to Rawclk */
  2333. reg = FDI_RX_CTL(pipe);
  2334. temp = I915_READ(reg);
  2335. I915_WRITE(reg, temp & ~FDI_PCDCLK);
  2336. /* Disable CPU FDI TX PLL */
  2337. reg = FDI_TX_CTL(pipe);
  2338. temp = I915_READ(reg);
  2339. I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
  2340. POSTING_READ(reg);
  2341. udelay(100);
  2342. reg = FDI_RX_CTL(pipe);
  2343. temp = I915_READ(reg);
  2344. I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
  2345. /* Wait for the clocks to turn off. */
  2346. POSTING_READ(reg);
  2347. udelay(100);
  2348. }
  2349. static void ironlake_fdi_disable(struct drm_crtc *crtc)
  2350. {
  2351. struct drm_device *dev = crtc->dev;
  2352. struct drm_i915_private *dev_priv = dev->dev_private;
  2353. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2354. int pipe = intel_crtc->pipe;
  2355. u32 reg, temp;
  2356. /* disable CPU FDI tx and PCH FDI rx */
  2357. reg = FDI_TX_CTL(pipe);
  2358. temp = I915_READ(reg);
  2359. I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
  2360. POSTING_READ(reg);
  2361. reg = FDI_RX_CTL(pipe);
  2362. temp = I915_READ(reg);
  2363. temp &= ~(0x7 << 16);
  2364. temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
  2365. I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
  2366. POSTING_READ(reg);
  2367. udelay(100);
  2368. /* Ironlake workaround, disable clock pointer after downing FDI */
  2369. if (HAS_PCH_IBX(dev)) {
  2370. I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
  2371. }
  2372. /* still set train pattern 1 */
  2373. reg = FDI_TX_CTL(pipe);
  2374. temp = I915_READ(reg);
  2375. temp &= ~FDI_LINK_TRAIN_NONE;
  2376. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2377. I915_WRITE(reg, temp);
  2378. reg = FDI_RX_CTL(pipe);
  2379. temp = I915_READ(reg);
  2380. if (HAS_PCH_CPT(dev)) {
  2381. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2382. temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
  2383. } else {
  2384. temp &= ~FDI_LINK_TRAIN_NONE;
  2385. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2386. }
  2387. /* BPC in FDI rx is consistent with that in PIPECONF */
  2388. temp &= ~(0x07 << 16);
  2389. temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
  2390. I915_WRITE(reg, temp);
  2391. POSTING_READ(reg);
  2392. udelay(100);
  2393. }
  2394. static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
  2395. {
  2396. struct drm_device *dev = crtc->dev;
  2397. struct drm_i915_private *dev_priv = dev->dev_private;
  2398. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2399. unsigned long flags;
  2400. bool pending;
  2401. if (i915_reset_in_progress(&dev_priv->gpu_error) ||
  2402. intel_crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
  2403. return false;
  2404. spin_lock_irqsave(&dev->event_lock, flags);
  2405. pending = to_intel_crtc(crtc)->unpin_work != NULL;
  2406. spin_unlock_irqrestore(&dev->event_lock, flags);
  2407. return pending;
  2408. }
  2409. static void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
  2410. {
  2411. struct drm_device *dev = crtc->dev;
  2412. struct drm_i915_private *dev_priv = dev->dev_private;
  2413. if (crtc->fb == NULL)
  2414. return;
  2415. WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
  2416. wait_event(dev_priv->pending_flip_queue,
  2417. !intel_crtc_has_pending_flip(crtc));
  2418. mutex_lock(&dev->struct_mutex);
  2419. intel_finish_fb(crtc->fb);
  2420. mutex_unlock(&dev->struct_mutex);
  2421. }
  2422. /* Program iCLKIP clock to the desired frequency */
  2423. static void lpt_program_iclkip(struct drm_crtc *crtc)
  2424. {
  2425. struct drm_device *dev = crtc->dev;
  2426. struct drm_i915_private *dev_priv = dev->dev_private;
  2427. u32 divsel, phaseinc, auxdiv, phasedir = 0;
  2428. u32 temp;
  2429. mutex_lock(&dev_priv->dpio_lock);
  2430. /* It is necessary to ungate the pixclk gate prior to programming
  2431. * the divisors, and gate it back when it is done.
  2432. */
  2433. I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
  2434. /* Disable SSCCTL */
  2435. intel_sbi_write(dev_priv, SBI_SSCCTL6,
  2436. intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK) |
  2437. SBI_SSCCTL_DISABLE,
  2438. SBI_ICLK);
  2439. /* 20MHz is a corner case which is out of range for the 7-bit divisor */
  2440. if (crtc->mode.clock == 20000) {
  2441. auxdiv = 1;
  2442. divsel = 0x41;
  2443. phaseinc = 0x20;
  2444. } else {
  2445. /* The iCLK virtual clock root frequency is in MHz,
  2446. * but the crtc->mode.clock in in KHz. To get the divisors,
  2447. * it is necessary to divide one by another, so we
  2448. * convert the virtual clock precision to KHz here for higher
  2449. * precision.
  2450. */
  2451. u32 iclk_virtual_root_freq = 172800 * 1000;
  2452. u32 iclk_pi_range = 64;
  2453. u32 desired_divisor, msb_divisor_value, pi_value;
  2454. desired_divisor = (iclk_virtual_root_freq / crtc->mode.clock);
  2455. msb_divisor_value = desired_divisor / iclk_pi_range;
  2456. pi_value = desired_divisor % iclk_pi_range;
  2457. auxdiv = 0;
  2458. divsel = msb_divisor_value - 2;
  2459. phaseinc = pi_value;
  2460. }
  2461. /* This should not happen with any sane values */
  2462. WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
  2463. ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
  2464. WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
  2465. ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
  2466. DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
  2467. crtc->mode.clock,
  2468. auxdiv,
  2469. divsel,
  2470. phasedir,
  2471. phaseinc);
  2472. /* Program SSCDIVINTPHASE6 */
  2473. temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
  2474. temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
  2475. temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
  2476. temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
  2477. temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
  2478. temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
  2479. temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
  2480. intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
  2481. /* Program SSCAUXDIV */
  2482. temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
  2483. temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
  2484. temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
  2485. intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
  2486. /* Enable modulator and associated divider */
  2487. temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
  2488. temp &= ~SBI_SSCCTL_DISABLE;
  2489. intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
  2490. /* Wait for initialization time */
  2491. udelay(24);
  2492. I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
  2493. mutex_unlock(&dev_priv->dpio_lock);
  2494. }
  2495. static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
  2496. enum pipe pch_transcoder)
  2497. {
  2498. struct drm_device *dev = crtc->base.dev;
  2499. struct drm_i915_private *dev_priv = dev->dev_private;
  2500. enum transcoder cpu_transcoder = crtc->config.cpu_transcoder;
  2501. I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
  2502. I915_READ(HTOTAL(cpu_transcoder)));
  2503. I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
  2504. I915_READ(HBLANK(cpu_transcoder)));
  2505. I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
  2506. I915_READ(HSYNC(cpu_transcoder)));
  2507. I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
  2508. I915_READ(VTOTAL(cpu_transcoder)));
  2509. I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
  2510. I915_READ(VBLANK(cpu_transcoder)));
  2511. I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
  2512. I915_READ(VSYNC(cpu_transcoder)));
  2513. I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
  2514. I915_READ(VSYNCSHIFT(cpu_transcoder)));
  2515. }
  2516. /*
  2517. * Enable PCH resources required for PCH ports:
  2518. * - PCH PLLs
  2519. * - FDI training & RX/TX
  2520. * - update transcoder timings
  2521. * - DP transcoding bits
  2522. * - transcoder
  2523. */
  2524. static void ironlake_pch_enable(struct drm_crtc *crtc)
  2525. {
  2526. struct drm_device *dev = crtc->dev;
  2527. struct drm_i915_private *dev_priv = dev->dev_private;
  2528. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2529. int pipe = intel_crtc->pipe;
  2530. u32 reg, temp;
  2531. assert_pch_transcoder_disabled(dev_priv, pipe);
  2532. /* Write the TU size bits before fdi link training, so that error
  2533. * detection works. */
  2534. I915_WRITE(FDI_RX_TUSIZE1(pipe),
  2535. I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
  2536. /* For PCH output, training FDI link */
  2537. dev_priv->display.fdi_link_train(crtc);
  2538. /* XXX: pch pll's can be enabled any time before we enable the PCH
  2539. * transcoder, and we actually should do this to not upset any PCH
  2540. * transcoder that already use the clock when we share it.
  2541. *
  2542. * Note that enable_shared_dpll tries to do the right thing, but
  2543. * get_shared_dpll unconditionally resets the pll - we need that to have
  2544. * the right LVDS enable sequence. */
  2545. ironlake_enable_shared_dpll(intel_crtc);
  2546. if (HAS_PCH_CPT(dev)) {
  2547. u32 sel;
  2548. temp = I915_READ(PCH_DPLL_SEL);
  2549. temp |= TRANS_DPLL_ENABLE(pipe);
  2550. sel = TRANS_DPLLB_SEL(pipe);
  2551. if (intel_crtc->config.shared_dpll == DPLL_ID_PCH_PLL_B)
  2552. temp |= sel;
  2553. else
  2554. temp &= ~sel;
  2555. I915_WRITE(PCH_DPLL_SEL, temp);
  2556. }
  2557. /* set transcoder timing, panel must allow it */
  2558. assert_panel_unlocked(dev_priv, pipe);
  2559. ironlake_pch_transcoder_set_timings(intel_crtc, pipe);
  2560. intel_fdi_normal_train(crtc);
  2561. /* For PCH DP, enable TRANS_DP_CTL */
  2562. if (HAS_PCH_CPT(dev) &&
  2563. (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
  2564. intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
  2565. u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
  2566. reg = TRANS_DP_CTL(pipe);
  2567. temp = I915_READ(reg);
  2568. temp &= ~(TRANS_DP_PORT_SEL_MASK |
  2569. TRANS_DP_SYNC_MASK |
  2570. TRANS_DP_BPC_MASK);
  2571. temp |= (TRANS_DP_OUTPUT_ENABLE |
  2572. TRANS_DP_ENH_FRAMING);
  2573. temp |= bpc << 9; /* same format but at 11:9 */
  2574. if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
  2575. temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
  2576. if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
  2577. temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
  2578. switch (intel_trans_dp_port_sel(crtc)) {
  2579. case PCH_DP_B:
  2580. temp |= TRANS_DP_PORT_SEL_B;
  2581. break;
  2582. case PCH_DP_C:
  2583. temp |= TRANS_DP_PORT_SEL_C;
  2584. break;
  2585. case PCH_DP_D:
  2586. temp |= TRANS_DP_PORT_SEL_D;
  2587. break;
  2588. default:
  2589. BUG();
  2590. }
  2591. I915_WRITE(reg, temp);
  2592. }
  2593. ironlake_enable_pch_transcoder(dev_priv, pipe);
  2594. }
  2595. static void lpt_pch_enable(struct drm_crtc *crtc)
  2596. {
  2597. struct drm_device *dev = crtc->dev;
  2598. struct drm_i915_private *dev_priv = dev->dev_private;
  2599. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2600. enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
  2601. assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A);
  2602. lpt_program_iclkip(crtc);
  2603. /* Set transcoder timing. */
  2604. ironlake_pch_transcoder_set_timings(intel_crtc, PIPE_A);
  2605. lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
  2606. }
  2607. static void intel_put_shared_dpll(struct intel_crtc *crtc)
  2608. {
  2609. struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
  2610. if (pll == NULL)
  2611. return;
  2612. if (pll->refcount == 0) {
  2613. WARN(1, "bad %s refcount\n", pll->name);
  2614. return;
  2615. }
  2616. if (--pll->refcount == 0) {
  2617. WARN_ON(pll->on);
  2618. WARN_ON(pll->active);
  2619. }
  2620. crtc->config.shared_dpll = DPLL_ID_PRIVATE;
  2621. }
  2622. static struct intel_shared_dpll *intel_get_shared_dpll(struct intel_crtc *crtc, u32 dpll, u32 fp)
  2623. {
  2624. struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
  2625. struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
  2626. enum intel_dpll_id i;
  2627. if (pll) {
  2628. DRM_DEBUG_KMS("CRTC:%d dropping existing %s\n",
  2629. crtc->base.base.id, pll->name);
  2630. intel_put_shared_dpll(crtc);
  2631. }
  2632. if (HAS_PCH_IBX(dev_priv->dev)) {
  2633. /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
  2634. i = crtc->pipe;
  2635. pll = &dev_priv->shared_dplls[i];
  2636. DRM_DEBUG_KMS("CRTC:%d using pre-allocated %s\n",
  2637. crtc->base.base.id, pll->name);
  2638. goto found;
  2639. }
  2640. for (i = 0; i < dev_priv->num_shared_dpll; i++) {
  2641. pll = &dev_priv->shared_dplls[i];
  2642. /* Only want to check enabled timings first */
  2643. if (pll->refcount == 0)
  2644. continue;
  2645. if (dpll == (I915_READ(PCH_DPLL(pll->id)) & 0x7fffffff) &&
  2646. fp == I915_READ(PCH_FP0(pll->id))) {
  2647. DRM_DEBUG_KMS("CRTC:%d sharing existing %s (refcount %d, ative %d)\n",
  2648. crtc->base.base.id,
  2649. pll->name, pll->refcount, pll->active);
  2650. goto found;
  2651. }
  2652. }
  2653. /* Ok no matching timings, maybe there's a free one? */
  2654. for (i = 0; i < dev_priv->num_shared_dpll; i++) {
  2655. pll = &dev_priv->shared_dplls[i];
  2656. if (pll->refcount == 0) {
  2657. DRM_DEBUG_KMS("CRTC:%d allocated %s\n",
  2658. crtc->base.base.id, pll->name);
  2659. goto found;
  2660. }
  2661. }
  2662. return NULL;
  2663. found:
  2664. crtc->config.shared_dpll = i;
  2665. DRM_DEBUG_DRIVER("using %s for pipe %c\n", pll->name,
  2666. pipe_name(crtc->pipe));
  2667. if (pll->active == 0) {
  2668. memcpy(&pll->hw_state, &crtc->config.dpll_hw_state,
  2669. sizeof(pll->hw_state));
  2670. DRM_DEBUG_DRIVER("setting up %s\n", pll->name);
  2671. WARN_ON(pll->on);
  2672. assert_shared_dpll_disabled(dev_priv, pll);
  2673. /* Wait for the clocks to stabilize before rewriting the regs */
  2674. I915_WRITE(PCH_DPLL(pll->id), dpll & ~DPLL_VCO_ENABLE);
  2675. POSTING_READ(PCH_DPLL(pll->id));
  2676. udelay(150);
  2677. I915_WRITE(PCH_FP0(pll->id), fp);
  2678. I915_WRITE(PCH_DPLL(pll->id), dpll & ~DPLL_VCO_ENABLE);
  2679. }
  2680. pll->refcount++;
  2681. return pll;
  2682. }
  2683. static void cpt_verify_modeset(struct drm_device *dev, int pipe)
  2684. {
  2685. struct drm_i915_private *dev_priv = dev->dev_private;
  2686. int dslreg = PIPEDSL(pipe);
  2687. u32 temp;
  2688. temp = I915_READ(dslreg);
  2689. udelay(500);
  2690. if (wait_for(I915_READ(dslreg) != temp, 5)) {
  2691. if (wait_for(I915_READ(dslreg) != temp, 5))
  2692. DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
  2693. }
  2694. }
  2695. static void ironlake_pfit_enable(struct intel_crtc *crtc)
  2696. {
  2697. struct drm_device *dev = crtc->base.dev;
  2698. struct drm_i915_private *dev_priv = dev->dev_private;
  2699. int pipe = crtc->pipe;
  2700. if (crtc->config.pch_pfit.size) {
  2701. /* Force use of hard-coded filter coefficients
  2702. * as some pre-programmed values are broken,
  2703. * e.g. x201.
  2704. */
  2705. if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
  2706. I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
  2707. PF_PIPE_SEL_IVB(pipe));
  2708. else
  2709. I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
  2710. I915_WRITE(PF_WIN_POS(pipe), crtc->config.pch_pfit.pos);
  2711. I915_WRITE(PF_WIN_SZ(pipe), crtc->config.pch_pfit.size);
  2712. }
  2713. }
  2714. static void intel_enable_planes(struct drm_crtc *crtc)
  2715. {
  2716. struct drm_device *dev = crtc->dev;
  2717. enum pipe pipe = to_intel_crtc(crtc)->pipe;
  2718. struct intel_plane *intel_plane;
  2719. list_for_each_entry(intel_plane, &dev->mode_config.plane_list, base.head)
  2720. if (intel_plane->pipe == pipe)
  2721. intel_plane_restore(&intel_plane->base);
  2722. }
  2723. static void intel_disable_planes(struct drm_crtc *crtc)
  2724. {
  2725. struct drm_device *dev = crtc->dev;
  2726. enum pipe pipe = to_intel_crtc(crtc)->pipe;
  2727. struct intel_plane *intel_plane;
  2728. list_for_each_entry(intel_plane, &dev->mode_config.plane_list, base.head)
  2729. if (intel_plane->pipe == pipe)
  2730. intel_plane_disable(&intel_plane->base);
  2731. }
  2732. static void ironlake_crtc_enable(struct drm_crtc *crtc)
  2733. {
  2734. struct drm_device *dev = crtc->dev;
  2735. struct drm_i915_private *dev_priv = dev->dev_private;
  2736. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2737. struct intel_encoder *encoder;
  2738. int pipe = intel_crtc->pipe;
  2739. int plane = intel_crtc->plane;
  2740. u32 temp;
  2741. WARN_ON(!crtc->enabled);
  2742. if (intel_crtc->active)
  2743. return;
  2744. intel_crtc->active = true;
  2745. intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
  2746. intel_set_pch_fifo_underrun_reporting(dev, pipe, true);
  2747. intel_update_watermarks(dev);
  2748. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  2749. temp = I915_READ(PCH_LVDS);
  2750. if ((temp & LVDS_PORT_EN) == 0)
  2751. I915_WRITE(PCH_LVDS, temp | LVDS_PORT_EN);
  2752. }
  2753. if (intel_crtc->config.has_pch_encoder) {
  2754. /* Note: FDI PLL enabling _must_ be done before we enable the
  2755. * cpu pipes, hence this is separate from all the other fdi/pch
  2756. * enabling. */
  2757. ironlake_fdi_pll_enable(intel_crtc);
  2758. } else {
  2759. assert_fdi_tx_disabled(dev_priv, pipe);
  2760. assert_fdi_rx_disabled(dev_priv, pipe);
  2761. }
  2762. for_each_encoder_on_crtc(dev, crtc, encoder)
  2763. if (encoder->pre_enable)
  2764. encoder->pre_enable(encoder);
  2765. ironlake_pfit_enable(intel_crtc);
  2766. /*
  2767. * On ILK+ LUT must be loaded before the pipe is running but with
  2768. * clocks enabled
  2769. */
  2770. intel_crtc_load_lut(crtc);
  2771. intel_enable_pipe(dev_priv, pipe,
  2772. intel_crtc->config.has_pch_encoder);
  2773. intel_enable_plane(dev_priv, plane, pipe);
  2774. intel_enable_planes(crtc);
  2775. intel_crtc_update_cursor(crtc, true);
  2776. if (intel_crtc->config.has_pch_encoder)
  2777. ironlake_pch_enable(crtc);
  2778. mutex_lock(&dev->struct_mutex);
  2779. intel_update_fbc(dev);
  2780. mutex_unlock(&dev->struct_mutex);
  2781. for_each_encoder_on_crtc(dev, crtc, encoder)
  2782. encoder->enable(encoder);
  2783. if (HAS_PCH_CPT(dev))
  2784. cpt_verify_modeset(dev, intel_crtc->pipe);
  2785. /*
  2786. * There seems to be a race in PCH platform hw (at least on some
  2787. * outputs) where an enabled pipe still completes any pageflip right
  2788. * away (as if the pipe is off) instead of waiting for vblank. As soon
  2789. * as the first vblank happend, everything works as expected. Hence just
  2790. * wait for one vblank before returning to avoid strange things
  2791. * happening.
  2792. */
  2793. intel_wait_for_vblank(dev, intel_crtc->pipe);
  2794. }
  2795. /* IPS only exists on ULT machines and is tied to pipe A. */
  2796. static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
  2797. {
  2798. return HAS_IPS(crtc->base.dev) && crtc->pipe == PIPE_A;
  2799. }
  2800. static void hsw_enable_ips(struct intel_crtc *crtc)
  2801. {
  2802. struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
  2803. if (!crtc->config.ips_enabled)
  2804. return;
  2805. /* We can only enable IPS after we enable a plane and wait for a vblank.
  2806. * We guarantee that the plane is enabled by calling intel_enable_ips
  2807. * only after intel_enable_plane. And intel_enable_plane already waits
  2808. * for a vblank, so all we need to do here is to enable the IPS bit. */
  2809. assert_plane_enabled(dev_priv, crtc->plane);
  2810. I915_WRITE(IPS_CTL, IPS_ENABLE);
  2811. }
  2812. static void hsw_disable_ips(struct intel_crtc *crtc)
  2813. {
  2814. struct drm_device *dev = crtc->base.dev;
  2815. struct drm_i915_private *dev_priv = dev->dev_private;
  2816. if (!crtc->config.ips_enabled)
  2817. return;
  2818. assert_plane_enabled(dev_priv, crtc->plane);
  2819. I915_WRITE(IPS_CTL, 0);
  2820. /* We need to wait for a vblank before we can disable the plane. */
  2821. intel_wait_for_vblank(dev, crtc->pipe);
  2822. }
  2823. static void haswell_crtc_enable(struct drm_crtc *crtc)
  2824. {
  2825. struct drm_device *dev = crtc->dev;
  2826. struct drm_i915_private *dev_priv = dev->dev_private;
  2827. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2828. struct intel_encoder *encoder;
  2829. int pipe = intel_crtc->pipe;
  2830. int plane = intel_crtc->plane;
  2831. WARN_ON(!crtc->enabled);
  2832. if (intel_crtc->active)
  2833. return;
  2834. intel_crtc->active = true;
  2835. intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
  2836. if (intel_crtc->config.has_pch_encoder)
  2837. intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, true);
  2838. intel_update_watermarks(dev);
  2839. if (intel_crtc->config.has_pch_encoder)
  2840. dev_priv->display.fdi_link_train(crtc);
  2841. for_each_encoder_on_crtc(dev, crtc, encoder)
  2842. if (encoder->pre_enable)
  2843. encoder->pre_enable(encoder);
  2844. intel_ddi_enable_pipe_clock(intel_crtc);
  2845. ironlake_pfit_enable(intel_crtc);
  2846. /*
  2847. * On ILK+ LUT must be loaded before the pipe is running but with
  2848. * clocks enabled
  2849. */
  2850. intel_crtc_load_lut(crtc);
  2851. intel_ddi_set_pipe_settings(crtc);
  2852. intel_ddi_enable_transcoder_func(crtc);
  2853. intel_enable_pipe(dev_priv, pipe,
  2854. intel_crtc->config.has_pch_encoder);
  2855. intel_enable_plane(dev_priv, plane, pipe);
  2856. intel_enable_planes(crtc);
  2857. intel_crtc_update_cursor(crtc, true);
  2858. hsw_enable_ips(intel_crtc);
  2859. if (intel_crtc->config.has_pch_encoder)
  2860. lpt_pch_enable(crtc);
  2861. mutex_lock(&dev->struct_mutex);
  2862. intel_update_fbc(dev);
  2863. mutex_unlock(&dev->struct_mutex);
  2864. for_each_encoder_on_crtc(dev, crtc, encoder)
  2865. encoder->enable(encoder);
  2866. /*
  2867. * There seems to be a race in PCH platform hw (at least on some
  2868. * outputs) where an enabled pipe still completes any pageflip right
  2869. * away (as if the pipe is off) instead of waiting for vblank. As soon
  2870. * as the first vblank happend, everything works as expected. Hence just
  2871. * wait for one vblank before returning to avoid strange things
  2872. * happening.
  2873. */
  2874. intel_wait_for_vblank(dev, intel_crtc->pipe);
  2875. }
  2876. static void ironlake_pfit_disable(struct intel_crtc *crtc)
  2877. {
  2878. struct drm_device *dev = crtc->base.dev;
  2879. struct drm_i915_private *dev_priv = dev->dev_private;
  2880. int pipe = crtc->pipe;
  2881. /* To avoid upsetting the power well on haswell only disable the pfit if
  2882. * it's in use. The hw state code will make sure we get this right. */
  2883. if (crtc->config.pch_pfit.size) {
  2884. I915_WRITE(PF_CTL(pipe), 0);
  2885. I915_WRITE(PF_WIN_POS(pipe), 0);
  2886. I915_WRITE(PF_WIN_SZ(pipe), 0);
  2887. }
  2888. }
  2889. static void ironlake_crtc_disable(struct drm_crtc *crtc)
  2890. {
  2891. struct drm_device *dev = crtc->dev;
  2892. struct drm_i915_private *dev_priv = dev->dev_private;
  2893. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2894. struct intel_encoder *encoder;
  2895. int pipe = intel_crtc->pipe;
  2896. int plane = intel_crtc->plane;
  2897. u32 reg, temp;
  2898. if (!intel_crtc->active)
  2899. return;
  2900. for_each_encoder_on_crtc(dev, crtc, encoder)
  2901. encoder->disable(encoder);
  2902. intel_crtc_wait_for_pending_flips(crtc);
  2903. drm_vblank_off(dev, pipe);
  2904. if (dev_priv->cfb_plane == plane)
  2905. intel_disable_fbc(dev);
  2906. intel_crtc_update_cursor(crtc, false);
  2907. intel_disable_planes(crtc);
  2908. intel_disable_plane(dev_priv, plane, pipe);
  2909. if (intel_crtc->config.has_pch_encoder)
  2910. intel_set_pch_fifo_underrun_reporting(dev, pipe, false);
  2911. intel_disable_pipe(dev_priv, pipe);
  2912. ironlake_pfit_disable(intel_crtc);
  2913. for_each_encoder_on_crtc(dev, crtc, encoder)
  2914. if (encoder->post_disable)
  2915. encoder->post_disable(encoder);
  2916. if (intel_crtc->config.has_pch_encoder) {
  2917. ironlake_fdi_disable(crtc);
  2918. ironlake_disable_pch_transcoder(dev_priv, pipe);
  2919. intel_set_pch_fifo_underrun_reporting(dev, pipe, true);
  2920. if (HAS_PCH_CPT(dev)) {
  2921. /* disable TRANS_DP_CTL */
  2922. reg = TRANS_DP_CTL(pipe);
  2923. temp = I915_READ(reg);
  2924. temp &= ~(TRANS_DP_OUTPUT_ENABLE |
  2925. TRANS_DP_PORT_SEL_MASK);
  2926. temp |= TRANS_DP_PORT_SEL_NONE;
  2927. I915_WRITE(reg, temp);
  2928. /* disable DPLL_SEL */
  2929. temp = I915_READ(PCH_DPLL_SEL);
  2930. temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
  2931. I915_WRITE(PCH_DPLL_SEL, temp);
  2932. }
  2933. /* disable PCH DPLL */
  2934. intel_disable_shared_dpll(intel_crtc);
  2935. ironlake_fdi_pll_disable(intel_crtc);
  2936. }
  2937. intel_crtc->active = false;
  2938. intel_update_watermarks(dev);
  2939. mutex_lock(&dev->struct_mutex);
  2940. intel_update_fbc(dev);
  2941. mutex_unlock(&dev->struct_mutex);
  2942. }
  2943. static void haswell_crtc_disable(struct drm_crtc *crtc)
  2944. {
  2945. struct drm_device *dev = crtc->dev;
  2946. struct drm_i915_private *dev_priv = dev->dev_private;
  2947. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2948. struct intel_encoder *encoder;
  2949. int pipe = intel_crtc->pipe;
  2950. int plane = intel_crtc->plane;
  2951. enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
  2952. if (!intel_crtc->active)
  2953. return;
  2954. for_each_encoder_on_crtc(dev, crtc, encoder)
  2955. encoder->disable(encoder);
  2956. intel_crtc_wait_for_pending_flips(crtc);
  2957. drm_vblank_off(dev, pipe);
  2958. /* FBC must be disabled before disabling the plane on HSW. */
  2959. if (dev_priv->cfb_plane == plane)
  2960. intel_disable_fbc(dev);
  2961. hsw_disable_ips(intel_crtc);
  2962. intel_crtc_update_cursor(crtc, false);
  2963. intel_disable_planes(crtc);
  2964. intel_disable_plane(dev_priv, plane, pipe);
  2965. if (intel_crtc->config.has_pch_encoder)
  2966. intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, false);
  2967. intel_disable_pipe(dev_priv, pipe);
  2968. intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
  2969. ironlake_pfit_disable(intel_crtc);
  2970. intel_ddi_disable_pipe_clock(intel_crtc);
  2971. for_each_encoder_on_crtc(dev, crtc, encoder)
  2972. if (encoder->post_disable)
  2973. encoder->post_disable(encoder);
  2974. if (intel_crtc->config.has_pch_encoder) {
  2975. lpt_disable_pch_transcoder(dev_priv);
  2976. intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, true);
  2977. intel_ddi_fdi_disable(crtc);
  2978. }
  2979. intel_crtc->active = false;
  2980. intel_update_watermarks(dev);
  2981. mutex_lock(&dev->struct_mutex);
  2982. intel_update_fbc(dev);
  2983. mutex_unlock(&dev->struct_mutex);
  2984. }
  2985. static void ironlake_crtc_off(struct drm_crtc *crtc)
  2986. {
  2987. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2988. intel_put_shared_dpll(intel_crtc);
  2989. }
  2990. static void haswell_crtc_off(struct drm_crtc *crtc)
  2991. {
  2992. intel_ddi_put_crtc_pll(crtc);
  2993. }
  2994. static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
  2995. {
  2996. if (!enable && intel_crtc->overlay) {
  2997. struct drm_device *dev = intel_crtc->base.dev;
  2998. struct drm_i915_private *dev_priv = dev->dev_private;
  2999. mutex_lock(&dev->struct_mutex);
  3000. dev_priv->mm.interruptible = false;
  3001. (void) intel_overlay_switch_off(intel_crtc->overlay);
  3002. dev_priv->mm.interruptible = true;
  3003. mutex_unlock(&dev->struct_mutex);
  3004. }
  3005. /* Let userspace switch the overlay on again. In most cases userspace
  3006. * has to recompute where to put it anyway.
  3007. */
  3008. }
  3009. /**
  3010. * i9xx_fixup_plane - ugly workaround for G45 to fire up the hardware
  3011. * cursor plane briefly if not already running after enabling the display
  3012. * plane.
  3013. * This workaround avoids occasional blank screens when self refresh is
  3014. * enabled.
  3015. */
  3016. static void
  3017. g4x_fixup_plane(struct drm_i915_private *dev_priv, enum pipe pipe)
  3018. {
  3019. u32 cntl = I915_READ(CURCNTR(pipe));
  3020. if ((cntl & CURSOR_MODE) == 0) {
  3021. u32 fw_bcl_self = I915_READ(FW_BLC_SELF);
  3022. I915_WRITE(FW_BLC_SELF, fw_bcl_self & ~FW_BLC_SELF_EN);
  3023. I915_WRITE(CURCNTR(pipe), CURSOR_MODE_64_ARGB_AX);
  3024. intel_wait_for_vblank(dev_priv->dev, pipe);
  3025. I915_WRITE(CURCNTR(pipe), cntl);
  3026. I915_WRITE(CURBASE(pipe), I915_READ(CURBASE(pipe)));
  3027. I915_WRITE(FW_BLC_SELF, fw_bcl_self);
  3028. }
  3029. }
  3030. static void i9xx_pfit_enable(struct intel_crtc *crtc)
  3031. {
  3032. struct drm_device *dev = crtc->base.dev;
  3033. struct drm_i915_private *dev_priv = dev->dev_private;
  3034. struct intel_crtc_config *pipe_config = &crtc->config;
  3035. if (!crtc->config.gmch_pfit.control)
  3036. return;
  3037. /*
  3038. * The panel fitter should only be adjusted whilst the pipe is disabled,
  3039. * according to register description and PRM.
  3040. */
  3041. WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
  3042. assert_pipe_disabled(dev_priv, crtc->pipe);
  3043. I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
  3044. I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
  3045. /* Border color in case we don't scale up to the full screen. Black by
  3046. * default, change to something else for debugging. */
  3047. I915_WRITE(BCLRPAT(crtc->pipe), 0);
  3048. }
  3049. static void valleyview_crtc_enable(struct drm_crtc *crtc)
  3050. {
  3051. struct drm_device *dev = crtc->dev;
  3052. struct drm_i915_private *dev_priv = dev->dev_private;
  3053. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3054. struct intel_encoder *encoder;
  3055. int pipe = intel_crtc->pipe;
  3056. int plane = intel_crtc->plane;
  3057. WARN_ON(!crtc->enabled);
  3058. if (intel_crtc->active)
  3059. return;
  3060. intel_crtc->active = true;
  3061. intel_update_watermarks(dev);
  3062. mutex_lock(&dev_priv->dpio_lock);
  3063. for_each_encoder_on_crtc(dev, crtc, encoder)
  3064. if (encoder->pre_pll_enable)
  3065. encoder->pre_pll_enable(encoder);
  3066. intel_enable_pll(dev_priv, pipe);
  3067. for_each_encoder_on_crtc(dev, crtc, encoder)
  3068. if (encoder->pre_enable)
  3069. encoder->pre_enable(encoder);
  3070. /* VLV wants encoder enabling _before_ the pipe is up. */
  3071. for_each_encoder_on_crtc(dev, crtc, encoder)
  3072. encoder->enable(encoder);
  3073. i9xx_pfit_enable(intel_crtc);
  3074. intel_crtc_load_lut(crtc);
  3075. intel_enable_pipe(dev_priv, pipe, false);
  3076. intel_enable_plane(dev_priv, plane, pipe);
  3077. intel_enable_planes(crtc);
  3078. intel_crtc_update_cursor(crtc, true);
  3079. intel_update_fbc(dev);
  3080. mutex_unlock(&dev_priv->dpio_lock);
  3081. }
  3082. static void i9xx_crtc_enable(struct drm_crtc *crtc)
  3083. {
  3084. struct drm_device *dev = crtc->dev;
  3085. struct drm_i915_private *dev_priv = dev->dev_private;
  3086. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3087. struct intel_encoder *encoder;
  3088. int pipe = intel_crtc->pipe;
  3089. int plane = intel_crtc->plane;
  3090. WARN_ON(!crtc->enabled);
  3091. if (intel_crtc->active)
  3092. return;
  3093. intel_crtc->active = true;
  3094. intel_update_watermarks(dev);
  3095. intel_enable_pll(dev_priv, pipe);
  3096. for_each_encoder_on_crtc(dev, crtc, encoder)
  3097. if (encoder->pre_enable)
  3098. encoder->pre_enable(encoder);
  3099. i9xx_pfit_enable(intel_crtc);
  3100. intel_crtc_load_lut(crtc);
  3101. intel_enable_pipe(dev_priv, pipe, false);
  3102. intel_enable_plane(dev_priv, plane, pipe);
  3103. intel_enable_planes(crtc);
  3104. /* The fixup needs to happen before cursor is enabled */
  3105. if (IS_G4X(dev))
  3106. g4x_fixup_plane(dev_priv, pipe);
  3107. intel_crtc_update_cursor(crtc, true);
  3108. /* Give the overlay scaler a chance to enable if it's on this pipe */
  3109. intel_crtc_dpms_overlay(intel_crtc, true);
  3110. intel_update_fbc(dev);
  3111. for_each_encoder_on_crtc(dev, crtc, encoder)
  3112. encoder->enable(encoder);
  3113. }
  3114. static void i9xx_pfit_disable(struct intel_crtc *crtc)
  3115. {
  3116. struct drm_device *dev = crtc->base.dev;
  3117. struct drm_i915_private *dev_priv = dev->dev_private;
  3118. if (!crtc->config.gmch_pfit.control)
  3119. return;
  3120. assert_pipe_disabled(dev_priv, crtc->pipe);
  3121. DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n",
  3122. I915_READ(PFIT_CONTROL));
  3123. I915_WRITE(PFIT_CONTROL, 0);
  3124. }
  3125. static void i9xx_crtc_disable(struct drm_crtc *crtc)
  3126. {
  3127. struct drm_device *dev = crtc->dev;
  3128. struct drm_i915_private *dev_priv = dev->dev_private;
  3129. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3130. struct intel_encoder *encoder;
  3131. int pipe = intel_crtc->pipe;
  3132. int plane = intel_crtc->plane;
  3133. if (!intel_crtc->active)
  3134. return;
  3135. for_each_encoder_on_crtc(dev, crtc, encoder)
  3136. encoder->disable(encoder);
  3137. /* Give the overlay scaler a chance to disable if it's on this pipe */
  3138. intel_crtc_wait_for_pending_flips(crtc);
  3139. drm_vblank_off(dev, pipe);
  3140. if (dev_priv->cfb_plane == plane)
  3141. intel_disable_fbc(dev);
  3142. intel_crtc_dpms_overlay(intel_crtc, false);
  3143. intel_crtc_update_cursor(crtc, false);
  3144. intel_disable_planes(crtc);
  3145. intel_disable_plane(dev_priv, plane, pipe);
  3146. intel_disable_pipe(dev_priv, pipe);
  3147. i9xx_pfit_disable(intel_crtc);
  3148. for_each_encoder_on_crtc(dev, crtc, encoder)
  3149. if (encoder->post_disable)
  3150. encoder->post_disable(encoder);
  3151. intel_disable_pll(dev_priv, pipe);
  3152. intel_crtc->active = false;
  3153. intel_update_fbc(dev);
  3154. intel_update_watermarks(dev);
  3155. }
  3156. static void i9xx_crtc_off(struct drm_crtc *crtc)
  3157. {
  3158. }
  3159. static void intel_crtc_update_sarea(struct drm_crtc *crtc,
  3160. bool enabled)
  3161. {
  3162. struct drm_device *dev = crtc->dev;
  3163. struct drm_i915_master_private *master_priv;
  3164. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3165. int pipe = intel_crtc->pipe;
  3166. if (!dev->primary->master)
  3167. return;
  3168. master_priv = dev->primary->master->driver_priv;
  3169. if (!master_priv->sarea_priv)
  3170. return;
  3171. switch (pipe) {
  3172. case 0:
  3173. master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
  3174. master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
  3175. break;
  3176. case 1:
  3177. master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
  3178. master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
  3179. break;
  3180. default:
  3181. DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
  3182. break;
  3183. }
  3184. }
  3185. /**
  3186. * Sets the power management mode of the pipe and plane.
  3187. */
  3188. void intel_crtc_update_dpms(struct drm_crtc *crtc)
  3189. {
  3190. struct drm_device *dev = crtc->dev;
  3191. struct drm_i915_private *dev_priv = dev->dev_private;
  3192. struct intel_encoder *intel_encoder;
  3193. bool enable = false;
  3194. for_each_encoder_on_crtc(dev, crtc, intel_encoder)
  3195. enable |= intel_encoder->connectors_active;
  3196. if (enable)
  3197. dev_priv->display.crtc_enable(crtc);
  3198. else
  3199. dev_priv->display.crtc_disable(crtc);
  3200. intel_crtc_update_sarea(crtc, enable);
  3201. }
  3202. static void intel_crtc_disable(struct drm_crtc *crtc)
  3203. {
  3204. struct drm_device *dev = crtc->dev;
  3205. struct drm_connector *connector;
  3206. struct drm_i915_private *dev_priv = dev->dev_private;
  3207. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3208. /* crtc should still be enabled when we disable it. */
  3209. WARN_ON(!crtc->enabled);
  3210. dev_priv->display.crtc_disable(crtc);
  3211. intel_crtc->eld_vld = false;
  3212. intel_crtc_update_sarea(crtc, false);
  3213. dev_priv->display.off(crtc);
  3214. assert_plane_disabled(dev->dev_private, to_intel_crtc(crtc)->plane);
  3215. assert_pipe_disabled(dev->dev_private, to_intel_crtc(crtc)->pipe);
  3216. if (crtc->fb) {
  3217. mutex_lock(&dev->struct_mutex);
  3218. intel_unpin_fb_obj(to_intel_framebuffer(crtc->fb)->obj);
  3219. mutex_unlock(&dev->struct_mutex);
  3220. crtc->fb = NULL;
  3221. }
  3222. /* Update computed state. */
  3223. list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
  3224. if (!connector->encoder || !connector->encoder->crtc)
  3225. continue;
  3226. if (connector->encoder->crtc != crtc)
  3227. continue;
  3228. connector->dpms = DRM_MODE_DPMS_OFF;
  3229. to_intel_encoder(connector->encoder)->connectors_active = false;
  3230. }
  3231. }
  3232. void intel_modeset_disable(struct drm_device *dev)
  3233. {
  3234. struct drm_crtc *crtc;
  3235. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  3236. if (crtc->enabled)
  3237. intel_crtc_disable(crtc);
  3238. }
  3239. }
  3240. void intel_encoder_destroy(struct drm_encoder *encoder)
  3241. {
  3242. struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
  3243. drm_encoder_cleanup(encoder);
  3244. kfree(intel_encoder);
  3245. }
  3246. /* Simple dpms helper for encodres with just one connector, no cloning and only
  3247. * one kind of off state. It clamps all !ON modes to fully OFF and changes the
  3248. * state of the entire output pipe. */
  3249. void intel_encoder_dpms(struct intel_encoder *encoder, int mode)
  3250. {
  3251. if (mode == DRM_MODE_DPMS_ON) {
  3252. encoder->connectors_active = true;
  3253. intel_crtc_update_dpms(encoder->base.crtc);
  3254. } else {
  3255. encoder->connectors_active = false;
  3256. intel_crtc_update_dpms(encoder->base.crtc);
  3257. }
  3258. }
  3259. /* Cross check the actual hw state with our own modeset state tracking (and it's
  3260. * internal consistency). */
  3261. static void intel_connector_check_state(struct intel_connector *connector)
  3262. {
  3263. if (connector->get_hw_state(connector)) {
  3264. struct intel_encoder *encoder = connector->encoder;
  3265. struct drm_crtc *crtc;
  3266. bool encoder_enabled;
  3267. enum pipe pipe;
  3268. DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
  3269. connector->base.base.id,
  3270. drm_get_connector_name(&connector->base));
  3271. WARN(connector->base.dpms == DRM_MODE_DPMS_OFF,
  3272. "wrong connector dpms state\n");
  3273. WARN(connector->base.encoder != &encoder->base,
  3274. "active connector not linked to encoder\n");
  3275. WARN(!encoder->connectors_active,
  3276. "encoder->connectors_active not set\n");
  3277. encoder_enabled = encoder->get_hw_state(encoder, &pipe);
  3278. WARN(!encoder_enabled, "encoder not enabled\n");
  3279. if (WARN_ON(!encoder->base.crtc))
  3280. return;
  3281. crtc = encoder->base.crtc;
  3282. WARN(!crtc->enabled, "crtc not enabled\n");
  3283. WARN(!to_intel_crtc(crtc)->active, "crtc not active\n");
  3284. WARN(pipe != to_intel_crtc(crtc)->pipe,
  3285. "encoder active on the wrong pipe\n");
  3286. }
  3287. }
  3288. /* Even simpler default implementation, if there's really no special case to
  3289. * consider. */
  3290. void intel_connector_dpms(struct drm_connector *connector, int mode)
  3291. {
  3292. struct intel_encoder *encoder = intel_attached_encoder(connector);
  3293. /* All the simple cases only support two dpms states. */
  3294. if (mode != DRM_MODE_DPMS_ON)
  3295. mode = DRM_MODE_DPMS_OFF;
  3296. if (mode == connector->dpms)
  3297. return;
  3298. connector->dpms = mode;
  3299. /* Only need to change hw state when actually enabled */
  3300. if (encoder->base.crtc)
  3301. intel_encoder_dpms(encoder, mode);
  3302. else
  3303. WARN_ON(encoder->connectors_active != false);
  3304. intel_modeset_check_state(connector->dev);
  3305. }
  3306. /* Simple connector->get_hw_state implementation for encoders that support only
  3307. * one connector and no cloning and hence the encoder state determines the state
  3308. * of the connector. */
  3309. bool intel_connector_get_hw_state(struct intel_connector *connector)
  3310. {
  3311. enum pipe pipe = 0;
  3312. struct intel_encoder *encoder = connector->encoder;
  3313. return encoder->get_hw_state(encoder, &pipe);
  3314. }
  3315. static bool ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
  3316. struct intel_crtc_config *pipe_config)
  3317. {
  3318. struct drm_i915_private *dev_priv = dev->dev_private;
  3319. struct intel_crtc *pipe_B_crtc =
  3320. to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
  3321. DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
  3322. pipe_name(pipe), pipe_config->fdi_lanes);
  3323. if (pipe_config->fdi_lanes > 4) {
  3324. DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
  3325. pipe_name(pipe), pipe_config->fdi_lanes);
  3326. return false;
  3327. }
  3328. if (IS_HASWELL(dev)) {
  3329. if (pipe_config->fdi_lanes > 2) {
  3330. DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
  3331. pipe_config->fdi_lanes);
  3332. return false;
  3333. } else {
  3334. return true;
  3335. }
  3336. }
  3337. if (INTEL_INFO(dev)->num_pipes == 2)
  3338. return true;
  3339. /* Ivybridge 3 pipe is really complicated */
  3340. switch (pipe) {
  3341. case PIPE_A:
  3342. return true;
  3343. case PIPE_B:
  3344. if (dev_priv->pipe_to_crtc_mapping[PIPE_C]->enabled &&
  3345. pipe_config->fdi_lanes > 2) {
  3346. DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
  3347. pipe_name(pipe), pipe_config->fdi_lanes);
  3348. return false;
  3349. }
  3350. return true;
  3351. case PIPE_C:
  3352. if (!pipe_has_enabled_pch(pipe_B_crtc) ||
  3353. pipe_B_crtc->config.fdi_lanes <= 2) {
  3354. if (pipe_config->fdi_lanes > 2) {
  3355. DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
  3356. pipe_name(pipe), pipe_config->fdi_lanes);
  3357. return false;
  3358. }
  3359. } else {
  3360. DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
  3361. return false;
  3362. }
  3363. return true;
  3364. default:
  3365. BUG();
  3366. }
  3367. }
  3368. #define RETRY 1
  3369. static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
  3370. struct intel_crtc_config *pipe_config)
  3371. {
  3372. struct drm_device *dev = intel_crtc->base.dev;
  3373. struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
  3374. int lane, link_bw, fdi_dotclock;
  3375. bool setup_ok, needs_recompute = false;
  3376. retry:
  3377. /* FDI is a binary signal running at ~2.7GHz, encoding
  3378. * each output octet as 10 bits. The actual frequency
  3379. * is stored as a divider into a 100MHz clock, and the
  3380. * mode pixel clock is stored in units of 1KHz.
  3381. * Hence the bw of each lane in terms of the mode signal
  3382. * is:
  3383. */
  3384. link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
  3385. fdi_dotclock = adjusted_mode->clock;
  3386. fdi_dotclock /= pipe_config->pixel_multiplier;
  3387. lane = ironlake_get_lanes_required(fdi_dotclock, link_bw,
  3388. pipe_config->pipe_bpp);
  3389. pipe_config->fdi_lanes = lane;
  3390. intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
  3391. link_bw, &pipe_config->fdi_m_n);
  3392. setup_ok = ironlake_check_fdi_lanes(intel_crtc->base.dev,
  3393. intel_crtc->pipe, pipe_config);
  3394. if (!setup_ok && pipe_config->pipe_bpp > 6*3) {
  3395. pipe_config->pipe_bpp -= 2*3;
  3396. DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
  3397. pipe_config->pipe_bpp);
  3398. needs_recompute = true;
  3399. pipe_config->bw_constrained = true;
  3400. goto retry;
  3401. }
  3402. if (needs_recompute)
  3403. return RETRY;
  3404. return setup_ok ? 0 : -EINVAL;
  3405. }
  3406. static void hsw_compute_ips_config(struct intel_crtc *crtc,
  3407. struct intel_crtc_config *pipe_config)
  3408. {
  3409. pipe_config->ips_enabled = i915_enable_ips &&
  3410. hsw_crtc_supports_ips(crtc) &&
  3411. pipe_config->pipe_bpp == 24;
  3412. }
  3413. static int intel_crtc_compute_config(struct intel_crtc *crtc,
  3414. struct intel_crtc_config *pipe_config)
  3415. {
  3416. struct drm_device *dev = crtc->base.dev;
  3417. struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
  3418. if (HAS_PCH_SPLIT(dev)) {
  3419. /* FDI link clock is fixed at 2.7G */
  3420. if (pipe_config->requested_mode.clock * 3
  3421. > IRONLAKE_FDI_FREQ * 4)
  3422. return -EINVAL;
  3423. }
  3424. /* All interlaced capable intel hw wants timings in frames. Note though
  3425. * that intel_lvds_mode_fixup does some funny tricks with the crtc
  3426. * timings, so we need to be careful not to clobber these.*/
  3427. if (!pipe_config->timings_set)
  3428. drm_mode_set_crtcinfo(adjusted_mode, 0);
  3429. /* Cantiga+ cannot handle modes with a hsync front porch of 0.
  3430. * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
  3431. */
  3432. if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
  3433. adjusted_mode->hsync_start == adjusted_mode->hdisplay)
  3434. return -EINVAL;
  3435. if ((IS_G4X(dev) || IS_VALLEYVIEW(dev)) && pipe_config->pipe_bpp > 10*3) {
  3436. pipe_config->pipe_bpp = 10*3; /* 12bpc is gen5+ */
  3437. } else if (INTEL_INFO(dev)->gen <= 4 && pipe_config->pipe_bpp > 8*3) {
  3438. /* only a 8bpc pipe, with 6bpc dither through the panel fitter
  3439. * for lvds. */
  3440. pipe_config->pipe_bpp = 8*3;
  3441. }
  3442. if (HAS_IPS(dev))
  3443. hsw_compute_ips_config(crtc, pipe_config);
  3444. /* XXX: PCH clock sharing is done in ->mode_set, so make sure the old
  3445. * clock survives for now. */
  3446. if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
  3447. pipe_config->shared_dpll = crtc->config.shared_dpll;
  3448. if (pipe_config->has_pch_encoder)
  3449. return ironlake_fdi_compute_config(crtc, pipe_config);
  3450. return 0;
  3451. }
  3452. static int valleyview_get_display_clock_speed(struct drm_device *dev)
  3453. {
  3454. return 400000; /* FIXME */
  3455. }
  3456. static int i945_get_display_clock_speed(struct drm_device *dev)
  3457. {
  3458. return 400000;
  3459. }
  3460. static int i915_get_display_clock_speed(struct drm_device *dev)
  3461. {
  3462. return 333000;
  3463. }
  3464. static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
  3465. {
  3466. return 200000;
  3467. }
  3468. static int i915gm_get_display_clock_speed(struct drm_device *dev)
  3469. {
  3470. u16 gcfgc = 0;
  3471. pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
  3472. if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
  3473. return 133000;
  3474. else {
  3475. switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
  3476. case GC_DISPLAY_CLOCK_333_MHZ:
  3477. return 333000;
  3478. default:
  3479. case GC_DISPLAY_CLOCK_190_200_MHZ:
  3480. return 190000;
  3481. }
  3482. }
  3483. }
  3484. static int i865_get_display_clock_speed(struct drm_device *dev)
  3485. {
  3486. return 266000;
  3487. }
  3488. static int i855_get_display_clock_speed(struct drm_device *dev)
  3489. {
  3490. u16 hpllcc = 0;
  3491. /* Assume that the hardware is in the high speed state. This
  3492. * should be the default.
  3493. */
  3494. switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
  3495. case GC_CLOCK_133_200:
  3496. case GC_CLOCK_100_200:
  3497. return 200000;
  3498. case GC_CLOCK_166_250:
  3499. return 250000;
  3500. case GC_CLOCK_100_133:
  3501. return 133000;
  3502. }
  3503. /* Shouldn't happen */
  3504. return 0;
  3505. }
  3506. static int i830_get_display_clock_speed(struct drm_device *dev)
  3507. {
  3508. return 133000;
  3509. }
  3510. static void
  3511. intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
  3512. {
  3513. while (*num > DATA_LINK_M_N_MASK ||
  3514. *den > DATA_LINK_M_N_MASK) {
  3515. *num >>= 1;
  3516. *den >>= 1;
  3517. }
  3518. }
  3519. static void compute_m_n(unsigned int m, unsigned int n,
  3520. uint32_t *ret_m, uint32_t *ret_n)
  3521. {
  3522. *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
  3523. *ret_m = div_u64((uint64_t) m * *ret_n, n);
  3524. intel_reduce_m_n_ratio(ret_m, ret_n);
  3525. }
  3526. void
  3527. intel_link_compute_m_n(int bits_per_pixel, int nlanes,
  3528. int pixel_clock, int link_clock,
  3529. struct intel_link_m_n *m_n)
  3530. {
  3531. m_n->tu = 64;
  3532. compute_m_n(bits_per_pixel * pixel_clock,
  3533. link_clock * nlanes * 8,
  3534. &m_n->gmch_m, &m_n->gmch_n);
  3535. compute_m_n(pixel_clock, link_clock,
  3536. &m_n->link_m, &m_n->link_n);
  3537. }
  3538. static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
  3539. {
  3540. if (i915_panel_use_ssc >= 0)
  3541. return i915_panel_use_ssc != 0;
  3542. return dev_priv->vbt.lvds_use_ssc
  3543. && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
  3544. }
  3545. static int vlv_get_refclk(struct drm_crtc *crtc)
  3546. {
  3547. struct drm_device *dev = crtc->dev;
  3548. struct drm_i915_private *dev_priv = dev->dev_private;
  3549. int refclk = 27000; /* for DP & HDMI */
  3550. return 100000; /* only one validated so far */
  3551. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
  3552. refclk = 96000;
  3553. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  3554. if (intel_panel_use_ssc(dev_priv))
  3555. refclk = 100000;
  3556. else
  3557. refclk = 96000;
  3558. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP)) {
  3559. refclk = 100000;
  3560. }
  3561. return refclk;
  3562. }
  3563. static int i9xx_get_refclk(struct drm_crtc *crtc, int num_connectors)
  3564. {
  3565. struct drm_device *dev = crtc->dev;
  3566. struct drm_i915_private *dev_priv = dev->dev_private;
  3567. int refclk;
  3568. if (IS_VALLEYVIEW(dev)) {
  3569. refclk = vlv_get_refclk(crtc);
  3570. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
  3571. intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
  3572. refclk = dev_priv->vbt.lvds_ssc_freq * 1000;
  3573. DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
  3574. refclk / 1000);
  3575. } else if (!IS_GEN2(dev)) {
  3576. refclk = 96000;
  3577. } else {
  3578. refclk = 48000;
  3579. }
  3580. return refclk;
  3581. }
  3582. static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
  3583. {
  3584. return (1 << dpll->n) << 16 | dpll->m2;
  3585. }
  3586. static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
  3587. {
  3588. return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
  3589. }
  3590. static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
  3591. intel_clock_t *reduced_clock)
  3592. {
  3593. struct drm_device *dev = crtc->base.dev;
  3594. struct drm_i915_private *dev_priv = dev->dev_private;
  3595. int pipe = crtc->pipe;
  3596. u32 fp, fp2 = 0;
  3597. if (IS_PINEVIEW(dev)) {
  3598. fp = pnv_dpll_compute_fp(&crtc->config.dpll);
  3599. if (reduced_clock)
  3600. fp2 = pnv_dpll_compute_fp(reduced_clock);
  3601. } else {
  3602. fp = i9xx_dpll_compute_fp(&crtc->config.dpll);
  3603. if (reduced_clock)
  3604. fp2 = i9xx_dpll_compute_fp(reduced_clock);
  3605. }
  3606. I915_WRITE(FP0(pipe), fp);
  3607. crtc->lowfreq_avail = false;
  3608. if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
  3609. reduced_clock && i915_powersave) {
  3610. I915_WRITE(FP1(pipe), fp2);
  3611. crtc->lowfreq_avail = true;
  3612. } else {
  3613. I915_WRITE(FP1(pipe), fp);
  3614. }
  3615. }
  3616. static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv)
  3617. {
  3618. u32 reg_val;
  3619. /*
  3620. * PLLB opamp always calibrates to max value of 0x3f, force enable it
  3621. * and set it to a reasonable value instead.
  3622. */
  3623. reg_val = vlv_dpio_read(dev_priv, DPIO_IREF(1));
  3624. reg_val &= 0xffffff00;
  3625. reg_val |= 0x00000030;
  3626. vlv_dpio_write(dev_priv, DPIO_IREF(1), reg_val);
  3627. reg_val = vlv_dpio_read(dev_priv, DPIO_CALIBRATION);
  3628. reg_val &= 0x8cffffff;
  3629. reg_val = 0x8c000000;
  3630. vlv_dpio_write(dev_priv, DPIO_CALIBRATION, reg_val);
  3631. reg_val = vlv_dpio_read(dev_priv, DPIO_IREF(1));
  3632. reg_val &= 0xffffff00;
  3633. vlv_dpio_write(dev_priv, DPIO_IREF(1), reg_val);
  3634. reg_val = vlv_dpio_read(dev_priv, DPIO_CALIBRATION);
  3635. reg_val &= 0x00ffffff;
  3636. reg_val |= 0xb0000000;
  3637. vlv_dpio_write(dev_priv, DPIO_CALIBRATION, reg_val);
  3638. }
  3639. static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
  3640. struct intel_link_m_n *m_n)
  3641. {
  3642. struct drm_device *dev = crtc->base.dev;
  3643. struct drm_i915_private *dev_priv = dev->dev_private;
  3644. int pipe = crtc->pipe;
  3645. I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
  3646. I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
  3647. I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
  3648. I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
  3649. }
  3650. static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
  3651. struct intel_link_m_n *m_n)
  3652. {
  3653. struct drm_device *dev = crtc->base.dev;
  3654. struct drm_i915_private *dev_priv = dev->dev_private;
  3655. int pipe = crtc->pipe;
  3656. enum transcoder transcoder = crtc->config.cpu_transcoder;
  3657. if (INTEL_INFO(dev)->gen >= 5) {
  3658. I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
  3659. I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
  3660. I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
  3661. I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
  3662. } else {
  3663. I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
  3664. I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
  3665. I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
  3666. I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
  3667. }
  3668. }
  3669. static void intel_dp_set_m_n(struct intel_crtc *crtc)
  3670. {
  3671. if (crtc->config.has_pch_encoder)
  3672. intel_pch_transcoder_set_m_n(crtc, &crtc->config.dp_m_n);
  3673. else
  3674. intel_cpu_transcoder_set_m_n(crtc, &crtc->config.dp_m_n);
  3675. }
  3676. static void vlv_update_pll(struct intel_crtc *crtc)
  3677. {
  3678. struct drm_device *dev = crtc->base.dev;
  3679. struct drm_i915_private *dev_priv = dev->dev_private;
  3680. struct intel_encoder *encoder;
  3681. int pipe = crtc->pipe;
  3682. u32 dpll, mdiv;
  3683. u32 bestn, bestm1, bestm2, bestp1, bestp2;
  3684. bool is_hdmi;
  3685. u32 coreclk, reg_val, dpll_md;
  3686. mutex_lock(&dev_priv->dpio_lock);
  3687. is_hdmi = intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI);
  3688. bestn = crtc->config.dpll.n;
  3689. bestm1 = crtc->config.dpll.m1;
  3690. bestm2 = crtc->config.dpll.m2;
  3691. bestp1 = crtc->config.dpll.p1;
  3692. bestp2 = crtc->config.dpll.p2;
  3693. /* See eDP HDMI DPIO driver vbios notes doc */
  3694. /* PLL B needs special handling */
  3695. if (pipe)
  3696. vlv_pllb_recal_opamp(dev_priv);
  3697. /* Set up Tx target for periodic Rcomp update */
  3698. vlv_dpio_write(dev_priv, DPIO_IREF_BCAST, 0x0100000f);
  3699. /* Disable target IRef on PLL */
  3700. reg_val = vlv_dpio_read(dev_priv, DPIO_IREF_CTL(pipe));
  3701. reg_val &= 0x00ffffff;
  3702. vlv_dpio_write(dev_priv, DPIO_IREF_CTL(pipe), reg_val);
  3703. /* Disable fast lock */
  3704. vlv_dpio_write(dev_priv, DPIO_FASTCLK_DISABLE, 0x610);
  3705. /* Set idtafcrecal before PLL is enabled */
  3706. mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
  3707. mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
  3708. mdiv |= ((bestn << DPIO_N_SHIFT));
  3709. mdiv |= (1 << DPIO_K_SHIFT);
  3710. /*
  3711. * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
  3712. * but we don't support that).
  3713. * Note: don't use the DAC post divider as it seems unstable.
  3714. */
  3715. mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
  3716. vlv_dpio_write(dev_priv, DPIO_DIV(pipe), mdiv);
  3717. mdiv |= DPIO_ENABLE_CALIBRATION;
  3718. vlv_dpio_write(dev_priv, DPIO_DIV(pipe), mdiv);
  3719. /* Set HBR and RBR LPF coefficients */
  3720. if (crtc->config.port_clock == 162000 ||
  3721. intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_ANALOG) ||
  3722. intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI))
  3723. vlv_dpio_write(dev_priv, DPIO_LPF_COEFF(pipe),
  3724. 0x005f0021);
  3725. else
  3726. vlv_dpio_write(dev_priv, DPIO_LPF_COEFF(pipe),
  3727. 0x00d0000f);
  3728. if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP) ||
  3729. intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT)) {
  3730. /* Use SSC source */
  3731. if (!pipe)
  3732. vlv_dpio_write(dev_priv, DPIO_REFSFR(pipe),
  3733. 0x0df40000);
  3734. else
  3735. vlv_dpio_write(dev_priv, DPIO_REFSFR(pipe),
  3736. 0x0df70000);
  3737. } else { /* HDMI or VGA */
  3738. /* Use bend source */
  3739. if (!pipe)
  3740. vlv_dpio_write(dev_priv, DPIO_REFSFR(pipe),
  3741. 0x0df70000);
  3742. else
  3743. vlv_dpio_write(dev_priv, DPIO_REFSFR(pipe),
  3744. 0x0df40000);
  3745. }
  3746. coreclk = vlv_dpio_read(dev_priv, DPIO_CORE_CLK(pipe));
  3747. coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
  3748. if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT) ||
  3749. intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP))
  3750. coreclk |= 0x01000000;
  3751. vlv_dpio_write(dev_priv, DPIO_CORE_CLK(pipe), coreclk);
  3752. vlv_dpio_write(dev_priv, DPIO_PLL_CML(pipe), 0x87871000);
  3753. for_each_encoder_on_crtc(dev, &crtc->base, encoder)
  3754. if (encoder->pre_pll_enable)
  3755. encoder->pre_pll_enable(encoder);
  3756. /* Enable DPIO clock input */
  3757. dpll = DPLL_EXT_BUFFER_ENABLE_VLV | DPLL_REFA_CLK_ENABLE_VLV |
  3758. DPLL_VGA_MODE_DIS | DPLL_INTEGRATED_CLOCK_VLV;
  3759. if (pipe)
  3760. dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
  3761. dpll |= DPLL_VCO_ENABLE;
  3762. I915_WRITE(DPLL(pipe), dpll);
  3763. POSTING_READ(DPLL(pipe));
  3764. udelay(150);
  3765. if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
  3766. DRM_ERROR("DPLL %d failed to lock\n", pipe);
  3767. dpll_md = (crtc->config.pixel_multiplier - 1)
  3768. << DPLL_MD_UDI_MULTIPLIER_SHIFT;
  3769. I915_WRITE(DPLL_MD(pipe), dpll_md);
  3770. POSTING_READ(DPLL_MD(pipe));
  3771. if (crtc->config.has_dp_encoder)
  3772. intel_dp_set_m_n(crtc);
  3773. mutex_unlock(&dev_priv->dpio_lock);
  3774. }
  3775. static void i9xx_update_pll(struct intel_crtc *crtc,
  3776. intel_clock_t *reduced_clock,
  3777. int num_connectors)
  3778. {
  3779. struct drm_device *dev = crtc->base.dev;
  3780. struct drm_i915_private *dev_priv = dev->dev_private;
  3781. struct intel_encoder *encoder;
  3782. int pipe = crtc->pipe;
  3783. u32 dpll;
  3784. bool is_sdvo;
  3785. struct dpll *clock = &crtc->config.dpll;
  3786. i9xx_update_pll_dividers(crtc, reduced_clock);
  3787. is_sdvo = intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_SDVO) ||
  3788. intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI);
  3789. dpll = DPLL_VGA_MODE_DIS;
  3790. if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS))
  3791. dpll |= DPLLB_MODE_LVDS;
  3792. else
  3793. dpll |= DPLLB_MODE_DAC_SERIAL;
  3794. if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
  3795. dpll |= (crtc->config.pixel_multiplier - 1)
  3796. << SDVO_MULTIPLIER_SHIFT_HIRES;
  3797. }
  3798. if (is_sdvo)
  3799. dpll |= DPLL_DVO_HIGH_SPEED;
  3800. if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT))
  3801. dpll |= DPLL_DVO_HIGH_SPEED;
  3802. /* compute bitmask from p1 value */
  3803. if (IS_PINEVIEW(dev))
  3804. dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
  3805. else {
  3806. dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
  3807. if (IS_G4X(dev) && reduced_clock)
  3808. dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
  3809. }
  3810. switch (clock->p2) {
  3811. case 5:
  3812. dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
  3813. break;
  3814. case 7:
  3815. dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
  3816. break;
  3817. case 10:
  3818. dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
  3819. break;
  3820. case 14:
  3821. dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
  3822. break;
  3823. }
  3824. if (INTEL_INFO(dev)->gen >= 4)
  3825. dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
  3826. if (crtc->config.sdvo_tv_clock)
  3827. dpll |= PLL_REF_INPUT_TVCLKINBC;
  3828. else if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
  3829. intel_panel_use_ssc(dev_priv) && num_connectors < 2)
  3830. dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
  3831. else
  3832. dpll |= PLL_REF_INPUT_DREFCLK;
  3833. dpll |= DPLL_VCO_ENABLE;
  3834. I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
  3835. POSTING_READ(DPLL(pipe));
  3836. udelay(150);
  3837. for_each_encoder_on_crtc(dev, &crtc->base, encoder)
  3838. if (encoder->pre_pll_enable)
  3839. encoder->pre_pll_enable(encoder);
  3840. if (crtc->config.has_dp_encoder)
  3841. intel_dp_set_m_n(crtc);
  3842. I915_WRITE(DPLL(pipe), dpll);
  3843. /* Wait for the clocks to stabilize. */
  3844. POSTING_READ(DPLL(pipe));
  3845. udelay(150);
  3846. if (INTEL_INFO(dev)->gen >= 4) {
  3847. u32 dpll_md = (crtc->config.pixel_multiplier - 1)
  3848. << DPLL_MD_UDI_MULTIPLIER_SHIFT;
  3849. I915_WRITE(DPLL_MD(pipe), dpll_md);
  3850. } else {
  3851. /* The pixel multiplier can only be updated once the
  3852. * DPLL is enabled and the clocks are stable.
  3853. *
  3854. * So write it again.
  3855. */
  3856. I915_WRITE(DPLL(pipe), dpll);
  3857. }
  3858. }
  3859. static void i8xx_update_pll(struct intel_crtc *crtc,
  3860. intel_clock_t *reduced_clock,
  3861. int num_connectors)
  3862. {
  3863. struct drm_device *dev = crtc->base.dev;
  3864. struct drm_i915_private *dev_priv = dev->dev_private;
  3865. struct intel_encoder *encoder;
  3866. int pipe = crtc->pipe;
  3867. u32 dpll;
  3868. struct dpll *clock = &crtc->config.dpll;
  3869. i9xx_update_pll_dividers(crtc, reduced_clock);
  3870. dpll = DPLL_VGA_MODE_DIS;
  3871. if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS)) {
  3872. dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
  3873. } else {
  3874. if (clock->p1 == 2)
  3875. dpll |= PLL_P1_DIVIDE_BY_TWO;
  3876. else
  3877. dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
  3878. if (clock->p2 == 4)
  3879. dpll |= PLL_P2_DIVIDE_BY_4;
  3880. }
  3881. if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
  3882. intel_panel_use_ssc(dev_priv) && num_connectors < 2)
  3883. dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
  3884. else
  3885. dpll |= PLL_REF_INPUT_DREFCLK;
  3886. dpll |= DPLL_VCO_ENABLE;
  3887. I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
  3888. POSTING_READ(DPLL(pipe));
  3889. udelay(150);
  3890. for_each_encoder_on_crtc(dev, &crtc->base, encoder)
  3891. if (encoder->pre_pll_enable)
  3892. encoder->pre_pll_enable(encoder);
  3893. I915_WRITE(DPLL(pipe), dpll);
  3894. /* Wait for the clocks to stabilize. */
  3895. POSTING_READ(DPLL(pipe));
  3896. udelay(150);
  3897. /* The pixel multiplier can only be updated once the
  3898. * DPLL is enabled and the clocks are stable.
  3899. *
  3900. * So write it again.
  3901. */
  3902. I915_WRITE(DPLL(pipe), dpll);
  3903. }
  3904. static void intel_set_pipe_timings(struct intel_crtc *intel_crtc)
  3905. {
  3906. struct drm_device *dev = intel_crtc->base.dev;
  3907. struct drm_i915_private *dev_priv = dev->dev_private;
  3908. enum pipe pipe = intel_crtc->pipe;
  3909. enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
  3910. struct drm_display_mode *adjusted_mode =
  3911. &intel_crtc->config.adjusted_mode;
  3912. struct drm_display_mode *mode = &intel_crtc->config.requested_mode;
  3913. uint32_t vsyncshift, crtc_vtotal, crtc_vblank_end;
  3914. /* We need to be careful not to changed the adjusted mode, for otherwise
  3915. * the hw state checker will get angry at the mismatch. */
  3916. crtc_vtotal = adjusted_mode->crtc_vtotal;
  3917. crtc_vblank_end = adjusted_mode->crtc_vblank_end;
  3918. if (!IS_GEN2(dev) && adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
  3919. /* the chip adds 2 halflines automatically */
  3920. crtc_vtotal -= 1;
  3921. crtc_vblank_end -= 1;
  3922. vsyncshift = adjusted_mode->crtc_hsync_start
  3923. - adjusted_mode->crtc_htotal / 2;
  3924. } else {
  3925. vsyncshift = 0;
  3926. }
  3927. if (INTEL_INFO(dev)->gen > 3)
  3928. I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
  3929. I915_WRITE(HTOTAL(cpu_transcoder),
  3930. (adjusted_mode->crtc_hdisplay - 1) |
  3931. ((adjusted_mode->crtc_htotal - 1) << 16));
  3932. I915_WRITE(HBLANK(cpu_transcoder),
  3933. (adjusted_mode->crtc_hblank_start - 1) |
  3934. ((adjusted_mode->crtc_hblank_end - 1) << 16));
  3935. I915_WRITE(HSYNC(cpu_transcoder),
  3936. (adjusted_mode->crtc_hsync_start - 1) |
  3937. ((adjusted_mode->crtc_hsync_end - 1) << 16));
  3938. I915_WRITE(VTOTAL(cpu_transcoder),
  3939. (adjusted_mode->crtc_vdisplay - 1) |
  3940. ((crtc_vtotal - 1) << 16));
  3941. I915_WRITE(VBLANK(cpu_transcoder),
  3942. (adjusted_mode->crtc_vblank_start - 1) |
  3943. ((crtc_vblank_end - 1) << 16));
  3944. I915_WRITE(VSYNC(cpu_transcoder),
  3945. (adjusted_mode->crtc_vsync_start - 1) |
  3946. ((adjusted_mode->crtc_vsync_end - 1) << 16));
  3947. /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
  3948. * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
  3949. * documented on the DDI_FUNC_CTL register description, EDP Input Select
  3950. * bits. */
  3951. if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
  3952. (pipe == PIPE_B || pipe == PIPE_C))
  3953. I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
  3954. /* pipesrc controls the size that is scaled from, which should
  3955. * always be the user's requested size.
  3956. */
  3957. I915_WRITE(PIPESRC(pipe),
  3958. ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
  3959. }
  3960. static void intel_get_pipe_timings(struct intel_crtc *crtc,
  3961. struct intel_crtc_config *pipe_config)
  3962. {
  3963. struct drm_device *dev = crtc->base.dev;
  3964. struct drm_i915_private *dev_priv = dev->dev_private;
  3965. enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
  3966. uint32_t tmp;
  3967. tmp = I915_READ(HTOTAL(cpu_transcoder));
  3968. pipe_config->adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
  3969. pipe_config->adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
  3970. tmp = I915_READ(HBLANK(cpu_transcoder));
  3971. pipe_config->adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
  3972. pipe_config->adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
  3973. tmp = I915_READ(HSYNC(cpu_transcoder));
  3974. pipe_config->adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
  3975. pipe_config->adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
  3976. tmp = I915_READ(VTOTAL(cpu_transcoder));
  3977. pipe_config->adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
  3978. pipe_config->adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
  3979. tmp = I915_READ(VBLANK(cpu_transcoder));
  3980. pipe_config->adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
  3981. pipe_config->adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
  3982. tmp = I915_READ(VSYNC(cpu_transcoder));
  3983. pipe_config->adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
  3984. pipe_config->adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
  3985. if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
  3986. pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
  3987. pipe_config->adjusted_mode.crtc_vtotal += 1;
  3988. pipe_config->adjusted_mode.crtc_vblank_end += 1;
  3989. }
  3990. tmp = I915_READ(PIPESRC(crtc->pipe));
  3991. pipe_config->requested_mode.vdisplay = (tmp & 0xffff) + 1;
  3992. pipe_config->requested_mode.hdisplay = ((tmp >> 16) & 0xffff) + 1;
  3993. }
  3994. static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
  3995. {
  3996. struct drm_device *dev = intel_crtc->base.dev;
  3997. struct drm_i915_private *dev_priv = dev->dev_private;
  3998. uint32_t pipeconf;
  3999. pipeconf = 0;
  4000. if (intel_crtc->pipe == 0 && INTEL_INFO(dev)->gen < 4) {
  4001. /* Enable pixel doubling when the dot clock is > 90% of the (display)
  4002. * core speed.
  4003. *
  4004. * XXX: No double-wide on 915GM pipe B. Is that the only reason for the
  4005. * pipe == 0 check?
  4006. */
  4007. if (intel_crtc->config.requested_mode.clock >
  4008. dev_priv->display.get_display_clock_speed(dev) * 9 / 10)
  4009. pipeconf |= PIPECONF_DOUBLE_WIDE;
  4010. }
  4011. /* only g4x and later have fancy bpc/dither controls */
  4012. if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
  4013. /* Bspec claims that we can't use dithering for 30bpp pipes. */
  4014. if (intel_crtc->config.dither && intel_crtc->config.pipe_bpp != 30)
  4015. pipeconf |= PIPECONF_DITHER_EN |
  4016. PIPECONF_DITHER_TYPE_SP;
  4017. switch (intel_crtc->config.pipe_bpp) {
  4018. case 18:
  4019. pipeconf |= PIPECONF_6BPC;
  4020. break;
  4021. case 24:
  4022. pipeconf |= PIPECONF_8BPC;
  4023. break;
  4024. case 30:
  4025. pipeconf |= PIPECONF_10BPC;
  4026. break;
  4027. default:
  4028. /* Case prevented by intel_choose_pipe_bpp_dither. */
  4029. BUG();
  4030. }
  4031. }
  4032. if (HAS_PIPE_CXSR(dev)) {
  4033. if (intel_crtc->lowfreq_avail) {
  4034. DRM_DEBUG_KMS("enabling CxSR downclocking\n");
  4035. pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
  4036. } else {
  4037. DRM_DEBUG_KMS("disabling CxSR downclocking\n");
  4038. }
  4039. }
  4040. if (!IS_GEN2(dev) &&
  4041. intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
  4042. pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
  4043. else
  4044. pipeconf |= PIPECONF_PROGRESSIVE;
  4045. if (IS_VALLEYVIEW(dev) && intel_crtc->config.limited_color_range)
  4046. pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
  4047. I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
  4048. POSTING_READ(PIPECONF(intel_crtc->pipe));
  4049. }
  4050. static int i9xx_crtc_mode_set(struct drm_crtc *crtc,
  4051. int x, int y,
  4052. struct drm_framebuffer *fb)
  4053. {
  4054. struct drm_device *dev = crtc->dev;
  4055. struct drm_i915_private *dev_priv = dev->dev_private;
  4056. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4057. struct drm_display_mode *mode = &intel_crtc->config.requested_mode;
  4058. int pipe = intel_crtc->pipe;
  4059. int plane = intel_crtc->plane;
  4060. int refclk, num_connectors = 0;
  4061. intel_clock_t clock, reduced_clock;
  4062. u32 dspcntr;
  4063. bool ok, has_reduced_clock = false;
  4064. bool is_lvds = false;
  4065. struct intel_encoder *encoder;
  4066. const intel_limit_t *limit;
  4067. int ret;
  4068. for_each_encoder_on_crtc(dev, crtc, encoder) {
  4069. switch (encoder->type) {
  4070. case INTEL_OUTPUT_LVDS:
  4071. is_lvds = true;
  4072. break;
  4073. }
  4074. num_connectors++;
  4075. }
  4076. refclk = i9xx_get_refclk(crtc, num_connectors);
  4077. /*
  4078. * Returns a set of divisors for the desired target clock with the given
  4079. * refclk, or FALSE. The returned values represent the clock equation:
  4080. * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
  4081. */
  4082. limit = intel_limit(crtc, refclk);
  4083. ok = dev_priv->display.find_dpll(limit, crtc,
  4084. intel_crtc->config.port_clock,
  4085. refclk, NULL, &clock);
  4086. if (!ok && !intel_crtc->config.clock_set) {
  4087. DRM_ERROR("Couldn't find PLL settings for mode!\n");
  4088. return -EINVAL;
  4089. }
  4090. /* Ensure that the cursor is valid for the new mode before changing... */
  4091. intel_crtc_update_cursor(crtc, true);
  4092. if (is_lvds && dev_priv->lvds_downclock_avail) {
  4093. /*
  4094. * Ensure we match the reduced clock's P to the target clock.
  4095. * If the clocks don't match, we can't switch the display clock
  4096. * by using the FP0/FP1. In such case we will disable the LVDS
  4097. * downclock feature.
  4098. */
  4099. has_reduced_clock =
  4100. dev_priv->display.find_dpll(limit, crtc,
  4101. dev_priv->lvds_downclock,
  4102. refclk, &clock,
  4103. &reduced_clock);
  4104. }
  4105. /* Compat-code for transition, will disappear. */
  4106. if (!intel_crtc->config.clock_set) {
  4107. intel_crtc->config.dpll.n = clock.n;
  4108. intel_crtc->config.dpll.m1 = clock.m1;
  4109. intel_crtc->config.dpll.m2 = clock.m2;
  4110. intel_crtc->config.dpll.p1 = clock.p1;
  4111. intel_crtc->config.dpll.p2 = clock.p2;
  4112. }
  4113. if (IS_GEN2(dev))
  4114. i8xx_update_pll(intel_crtc,
  4115. has_reduced_clock ? &reduced_clock : NULL,
  4116. num_connectors);
  4117. else if (IS_VALLEYVIEW(dev))
  4118. vlv_update_pll(intel_crtc);
  4119. else
  4120. i9xx_update_pll(intel_crtc,
  4121. has_reduced_clock ? &reduced_clock : NULL,
  4122. num_connectors);
  4123. /* Set up the display plane register */
  4124. dspcntr = DISPPLANE_GAMMA_ENABLE;
  4125. if (!IS_VALLEYVIEW(dev)) {
  4126. if (pipe == 0)
  4127. dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
  4128. else
  4129. dspcntr |= DISPPLANE_SEL_PIPE_B;
  4130. }
  4131. intel_set_pipe_timings(intel_crtc);
  4132. /* pipesrc and dspsize control the size that is scaled from,
  4133. * which should always be the user's requested size.
  4134. */
  4135. I915_WRITE(DSPSIZE(plane),
  4136. ((mode->vdisplay - 1) << 16) |
  4137. (mode->hdisplay - 1));
  4138. I915_WRITE(DSPPOS(plane), 0);
  4139. i9xx_set_pipeconf(intel_crtc);
  4140. I915_WRITE(DSPCNTR(plane), dspcntr);
  4141. POSTING_READ(DSPCNTR(plane));
  4142. ret = intel_pipe_set_base(crtc, x, y, fb);
  4143. intel_update_watermarks(dev);
  4144. return ret;
  4145. }
  4146. static void i9xx_get_pfit_config(struct intel_crtc *crtc,
  4147. struct intel_crtc_config *pipe_config)
  4148. {
  4149. struct drm_device *dev = crtc->base.dev;
  4150. struct drm_i915_private *dev_priv = dev->dev_private;
  4151. uint32_t tmp;
  4152. tmp = I915_READ(PFIT_CONTROL);
  4153. if (INTEL_INFO(dev)->gen < 4) {
  4154. if (crtc->pipe != PIPE_B)
  4155. return;
  4156. /* gen2/3 store dither state in pfit control, needs to match */
  4157. pipe_config->gmch_pfit.control = tmp & PANEL_8TO6_DITHER_ENABLE;
  4158. } else {
  4159. if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
  4160. return;
  4161. }
  4162. if (!(tmp & PFIT_ENABLE))
  4163. return;
  4164. pipe_config->gmch_pfit.control = I915_READ(PFIT_CONTROL);
  4165. pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
  4166. if (INTEL_INFO(dev)->gen < 5)
  4167. pipe_config->gmch_pfit.lvds_border_bits =
  4168. I915_READ(LVDS) & LVDS_BORDER_ENABLE;
  4169. }
  4170. static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
  4171. struct intel_crtc_config *pipe_config)
  4172. {
  4173. struct drm_device *dev = crtc->base.dev;
  4174. struct drm_i915_private *dev_priv = dev->dev_private;
  4175. uint32_t tmp;
  4176. pipe_config->cpu_transcoder = crtc->pipe;
  4177. pipe_config->shared_dpll = DPLL_ID_PRIVATE;
  4178. tmp = I915_READ(PIPECONF(crtc->pipe));
  4179. if (!(tmp & PIPECONF_ENABLE))
  4180. return false;
  4181. intel_get_pipe_timings(crtc, pipe_config);
  4182. i9xx_get_pfit_config(crtc, pipe_config);
  4183. if (INTEL_INFO(dev)->gen >= 4) {
  4184. tmp = I915_READ(DPLL_MD(crtc->pipe));
  4185. pipe_config->pixel_multiplier =
  4186. ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
  4187. >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
  4188. } else if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
  4189. tmp = I915_READ(DPLL(crtc->pipe));
  4190. pipe_config->pixel_multiplier =
  4191. ((tmp & SDVO_MULTIPLIER_MASK)
  4192. >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
  4193. } else {
  4194. /* Note that on i915G/GM the pixel multiplier is in the sdvo
  4195. * port and will be fixed up in the encoder->get_config
  4196. * function. */
  4197. pipe_config->pixel_multiplier = 1;
  4198. }
  4199. return true;
  4200. }
  4201. static void ironlake_init_pch_refclk(struct drm_device *dev)
  4202. {
  4203. struct drm_i915_private *dev_priv = dev->dev_private;
  4204. struct drm_mode_config *mode_config = &dev->mode_config;
  4205. struct intel_encoder *encoder;
  4206. u32 val, final;
  4207. bool has_lvds = false;
  4208. bool has_cpu_edp = false;
  4209. bool has_panel = false;
  4210. bool has_ck505 = false;
  4211. bool can_ssc = false;
  4212. /* We need to take the global config into account */
  4213. list_for_each_entry(encoder, &mode_config->encoder_list,
  4214. base.head) {
  4215. switch (encoder->type) {
  4216. case INTEL_OUTPUT_LVDS:
  4217. has_panel = true;
  4218. has_lvds = true;
  4219. break;
  4220. case INTEL_OUTPUT_EDP:
  4221. has_panel = true;
  4222. if (enc_to_dig_port(&encoder->base)->port == PORT_A)
  4223. has_cpu_edp = true;
  4224. break;
  4225. }
  4226. }
  4227. if (HAS_PCH_IBX(dev)) {
  4228. has_ck505 = dev_priv->vbt.display_clock_mode;
  4229. can_ssc = has_ck505;
  4230. } else {
  4231. has_ck505 = false;
  4232. can_ssc = true;
  4233. }
  4234. DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d\n",
  4235. has_panel, has_lvds, has_ck505);
  4236. /* Ironlake: try to setup display ref clock before DPLL
  4237. * enabling. This is only under driver's control after
  4238. * PCH B stepping, previous chipset stepping should be
  4239. * ignoring this setting.
  4240. */
  4241. val = I915_READ(PCH_DREF_CONTROL);
  4242. /* As we must carefully and slowly disable/enable each source in turn,
  4243. * compute the final state we want first and check if we need to
  4244. * make any changes at all.
  4245. */
  4246. final = val;
  4247. final &= ~DREF_NONSPREAD_SOURCE_MASK;
  4248. if (has_ck505)
  4249. final |= DREF_NONSPREAD_CK505_ENABLE;
  4250. else
  4251. final |= DREF_NONSPREAD_SOURCE_ENABLE;
  4252. final &= ~DREF_SSC_SOURCE_MASK;
  4253. final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
  4254. final &= ~DREF_SSC1_ENABLE;
  4255. if (has_panel) {
  4256. final |= DREF_SSC_SOURCE_ENABLE;
  4257. if (intel_panel_use_ssc(dev_priv) && can_ssc)
  4258. final |= DREF_SSC1_ENABLE;
  4259. if (has_cpu_edp) {
  4260. if (intel_panel_use_ssc(dev_priv) && can_ssc)
  4261. final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
  4262. else
  4263. final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
  4264. } else
  4265. final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
  4266. } else {
  4267. final |= DREF_SSC_SOURCE_DISABLE;
  4268. final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
  4269. }
  4270. if (final == val)
  4271. return;
  4272. /* Always enable nonspread source */
  4273. val &= ~DREF_NONSPREAD_SOURCE_MASK;
  4274. if (has_ck505)
  4275. val |= DREF_NONSPREAD_CK505_ENABLE;
  4276. else
  4277. val |= DREF_NONSPREAD_SOURCE_ENABLE;
  4278. if (has_panel) {
  4279. val &= ~DREF_SSC_SOURCE_MASK;
  4280. val |= DREF_SSC_SOURCE_ENABLE;
  4281. /* SSC must be turned on before enabling the CPU output */
  4282. if (intel_panel_use_ssc(dev_priv) && can_ssc) {
  4283. DRM_DEBUG_KMS("Using SSC on panel\n");
  4284. val |= DREF_SSC1_ENABLE;
  4285. } else
  4286. val &= ~DREF_SSC1_ENABLE;
  4287. /* Get SSC going before enabling the outputs */
  4288. I915_WRITE(PCH_DREF_CONTROL, val);
  4289. POSTING_READ(PCH_DREF_CONTROL);
  4290. udelay(200);
  4291. val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
  4292. /* Enable CPU source on CPU attached eDP */
  4293. if (has_cpu_edp) {
  4294. if (intel_panel_use_ssc(dev_priv) && can_ssc) {
  4295. DRM_DEBUG_KMS("Using SSC on eDP\n");
  4296. val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
  4297. }
  4298. else
  4299. val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
  4300. } else
  4301. val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
  4302. I915_WRITE(PCH_DREF_CONTROL, val);
  4303. POSTING_READ(PCH_DREF_CONTROL);
  4304. udelay(200);
  4305. } else {
  4306. DRM_DEBUG_KMS("Disabling SSC entirely\n");
  4307. val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
  4308. /* Turn off CPU output */
  4309. val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
  4310. I915_WRITE(PCH_DREF_CONTROL, val);
  4311. POSTING_READ(PCH_DREF_CONTROL);
  4312. udelay(200);
  4313. /* Turn off the SSC source */
  4314. val &= ~DREF_SSC_SOURCE_MASK;
  4315. val |= DREF_SSC_SOURCE_DISABLE;
  4316. /* Turn off SSC1 */
  4317. val &= ~DREF_SSC1_ENABLE;
  4318. I915_WRITE(PCH_DREF_CONTROL, val);
  4319. POSTING_READ(PCH_DREF_CONTROL);
  4320. udelay(200);
  4321. }
  4322. BUG_ON(val != final);
  4323. }
  4324. /* Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O. */
  4325. static void lpt_init_pch_refclk(struct drm_device *dev)
  4326. {
  4327. struct drm_i915_private *dev_priv = dev->dev_private;
  4328. struct drm_mode_config *mode_config = &dev->mode_config;
  4329. struct intel_encoder *encoder;
  4330. bool has_vga = false;
  4331. bool is_sdv = false;
  4332. u32 tmp;
  4333. list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
  4334. switch (encoder->type) {
  4335. case INTEL_OUTPUT_ANALOG:
  4336. has_vga = true;
  4337. break;
  4338. }
  4339. }
  4340. if (!has_vga)
  4341. return;
  4342. mutex_lock(&dev_priv->dpio_lock);
  4343. /* XXX: Rip out SDV support once Haswell ships for real. */
  4344. if (IS_HASWELL(dev) && (dev->pci_device & 0xFF00) == 0x0C00)
  4345. is_sdv = true;
  4346. tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
  4347. tmp &= ~SBI_SSCCTL_DISABLE;
  4348. tmp |= SBI_SSCCTL_PATHALT;
  4349. intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
  4350. udelay(24);
  4351. tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
  4352. tmp &= ~SBI_SSCCTL_PATHALT;
  4353. intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
  4354. if (!is_sdv) {
  4355. tmp = I915_READ(SOUTH_CHICKEN2);
  4356. tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
  4357. I915_WRITE(SOUTH_CHICKEN2, tmp);
  4358. if (wait_for_atomic_us(I915_READ(SOUTH_CHICKEN2) &
  4359. FDI_MPHY_IOSFSB_RESET_STATUS, 100))
  4360. DRM_ERROR("FDI mPHY reset assert timeout\n");
  4361. tmp = I915_READ(SOUTH_CHICKEN2);
  4362. tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
  4363. I915_WRITE(SOUTH_CHICKEN2, tmp);
  4364. if (wait_for_atomic_us((I915_READ(SOUTH_CHICKEN2) &
  4365. FDI_MPHY_IOSFSB_RESET_STATUS) == 0,
  4366. 100))
  4367. DRM_ERROR("FDI mPHY reset de-assert timeout\n");
  4368. }
  4369. tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
  4370. tmp &= ~(0xFF << 24);
  4371. tmp |= (0x12 << 24);
  4372. intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
  4373. if (is_sdv) {
  4374. tmp = intel_sbi_read(dev_priv, 0x800C, SBI_MPHY);
  4375. tmp |= 0x7FFF;
  4376. intel_sbi_write(dev_priv, 0x800C, tmp, SBI_MPHY);
  4377. }
  4378. tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
  4379. tmp |= (1 << 11);
  4380. intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
  4381. tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
  4382. tmp |= (1 << 11);
  4383. intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
  4384. if (is_sdv) {
  4385. tmp = intel_sbi_read(dev_priv, 0x2038, SBI_MPHY);
  4386. tmp |= (0x3F << 24) | (0xF << 20) | (0xF << 16);
  4387. intel_sbi_write(dev_priv, 0x2038, tmp, SBI_MPHY);
  4388. tmp = intel_sbi_read(dev_priv, 0x2138, SBI_MPHY);
  4389. tmp |= (0x3F << 24) | (0xF << 20) | (0xF << 16);
  4390. intel_sbi_write(dev_priv, 0x2138, tmp, SBI_MPHY);
  4391. tmp = intel_sbi_read(dev_priv, 0x203C, SBI_MPHY);
  4392. tmp |= (0x3F << 8);
  4393. intel_sbi_write(dev_priv, 0x203C, tmp, SBI_MPHY);
  4394. tmp = intel_sbi_read(dev_priv, 0x213C, SBI_MPHY);
  4395. tmp |= (0x3F << 8);
  4396. intel_sbi_write(dev_priv, 0x213C, tmp, SBI_MPHY);
  4397. }
  4398. tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
  4399. tmp |= (1 << 24) | (1 << 21) | (1 << 18);
  4400. intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
  4401. tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
  4402. tmp |= (1 << 24) | (1 << 21) | (1 << 18);
  4403. intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
  4404. if (!is_sdv) {
  4405. tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
  4406. tmp &= ~(7 << 13);
  4407. tmp |= (5 << 13);
  4408. intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
  4409. tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
  4410. tmp &= ~(7 << 13);
  4411. tmp |= (5 << 13);
  4412. intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
  4413. }
  4414. tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
  4415. tmp &= ~0xFF;
  4416. tmp |= 0x1C;
  4417. intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
  4418. tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
  4419. tmp &= ~0xFF;
  4420. tmp |= 0x1C;
  4421. intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
  4422. tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
  4423. tmp &= ~(0xFF << 16);
  4424. tmp |= (0x1C << 16);
  4425. intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
  4426. tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
  4427. tmp &= ~(0xFF << 16);
  4428. tmp |= (0x1C << 16);
  4429. intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
  4430. if (!is_sdv) {
  4431. tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
  4432. tmp |= (1 << 27);
  4433. intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
  4434. tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
  4435. tmp |= (1 << 27);
  4436. intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
  4437. tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
  4438. tmp &= ~(0xF << 28);
  4439. tmp |= (4 << 28);
  4440. intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
  4441. tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
  4442. tmp &= ~(0xF << 28);
  4443. tmp |= (4 << 28);
  4444. intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
  4445. }
  4446. /* ULT uses SBI_GEN0, but ULT doesn't have VGA, so we don't care. */
  4447. tmp = intel_sbi_read(dev_priv, SBI_DBUFF0, SBI_ICLK);
  4448. tmp |= SBI_DBUFF0_ENABLE;
  4449. intel_sbi_write(dev_priv, SBI_DBUFF0, tmp, SBI_ICLK);
  4450. mutex_unlock(&dev_priv->dpio_lock);
  4451. }
  4452. /*
  4453. * Initialize reference clocks when the driver loads
  4454. */
  4455. void intel_init_pch_refclk(struct drm_device *dev)
  4456. {
  4457. if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
  4458. ironlake_init_pch_refclk(dev);
  4459. else if (HAS_PCH_LPT(dev))
  4460. lpt_init_pch_refclk(dev);
  4461. }
  4462. static int ironlake_get_refclk(struct drm_crtc *crtc)
  4463. {
  4464. struct drm_device *dev = crtc->dev;
  4465. struct drm_i915_private *dev_priv = dev->dev_private;
  4466. struct intel_encoder *encoder;
  4467. int num_connectors = 0;
  4468. bool is_lvds = false;
  4469. for_each_encoder_on_crtc(dev, crtc, encoder) {
  4470. switch (encoder->type) {
  4471. case INTEL_OUTPUT_LVDS:
  4472. is_lvds = true;
  4473. break;
  4474. }
  4475. num_connectors++;
  4476. }
  4477. if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
  4478. DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
  4479. dev_priv->vbt.lvds_ssc_freq);
  4480. return dev_priv->vbt.lvds_ssc_freq * 1000;
  4481. }
  4482. return 120000;
  4483. }
  4484. static void ironlake_set_pipeconf(struct drm_crtc *crtc)
  4485. {
  4486. struct drm_i915_private *dev_priv = crtc->dev->dev_private;
  4487. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4488. int pipe = intel_crtc->pipe;
  4489. uint32_t val;
  4490. val = 0;
  4491. switch (intel_crtc->config.pipe_bpp) {
  4492. case 18:
  4493. val |= PIPECONF_6BPC;
  4494. break;
  4495. case 24:
  4496. val |= PIPECONF_8BPC;
  4497. break;
  4498. case 30:
  4499. val |= PIPECONF_10BPC;
  4500. break;
  4501. case 36:
  4502. val |= PIPECONF_12BPC;
  4503. break;
  4504. default:
  4505. /* Case prevented by intel_choose_pipe_bpp_dither. */
  4506. BUG();
  4507. }
  4508. if (intel_crtc->config.dither)
  4509. val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
  4510. if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
  4511. val |= PIPECONF_INTERLACED_ILK;
  4512. else
  4513. val |= PIPECONF_PROGRESSIVE;
  4514. if (intel_crtc->config.limited_color_range)
  4515. val |= PIPECONF_COLOR_RANGE_SELECT;
  4516. I915_WRITE(PIPECONF(pipe), val);
  4517. POSTING_READ(PIPECONF(pipe));
  4518. }
  4519. /*
  4520. * Set up the pipe CSC unit.
  4521. *
  4522. * Currently only full range RGB to limited range RGB conversion
  4523. * is supported, but eventually this should handle various
  4524. * RGB<->YCbCr scenarios as well.
  4525. */
  4526. static void intel_set_pipe_csc(struct drm_crtc *crtc)
  4527. {
  4528. struct drm_device *dev = crtc->dev;
  4529. struct drm_i915_private *dev_priv = dev->dev_private;
  4530. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4531. int pipe = intel_crtc->pipe;
  4532. uint16_t coeff = 0x7800; /* 1.0 */
  4533. /*
  4534. * TODO: Check what kind of values actually come out of the pipe
  4535. * with these coeff/postoff values and adjust to get the best
  4536. * accuracy. Perhaps we even need to take the bpc value into
  4537. * consideration.
  4538. */
  4539. if (intel_crtc->config.limited_color_range)
  4540. coeff = ((235 - 16) * (1 << 12) / 255) & 0xff8; /* 0.xxx... */
  4541. /*
  4542. * GY/GU and RY/RU should be the other way around according
  4543. * to BSpec, but reality doesn't agree. Just set them up in
  4544. * a way that results in the correct picture.
  4545. */
  4546. I915_WRITE(PIPE_CSC_COEFF_RY_GY(pipe), coeff << 16);
  4547. I915_WRITE(PIPE_CSC_COEFF_BY(pipe), 0);
  4548. I915_WRITE(PIPE_CSC_COEFF_RU_GU(pipe), coeff);
  4549. I915_WRITE(PIPE_CSC_COEFF_BU(pipe), 0);
  4550. I915_WRITE(PIPE_CSC_COEFF_RV_GV(pipe), 0);
  4551. I915_WRITE(PIPE_CSC_COEFF_BV(pipe), coeff << 16);
  4552. I915_WRITE(PIPE_CSC_PREOFF_HI(pipe), 0);
  4553. I915_WRITE(PIPE_CSC_PREOFF_ME(pipe), 0);
  4554. I915_WRITE(PIPE_CSC_PREOFF_LO(pipe), 0);
  4555. if (INTEL_INFO(dev)->gen > 6) {
  4556. uint16_t postoff = 0;
  4557. if (intel_crtc->config.limited_color_range)
  4558. postoff = (16 * (1 << 13) / 255) & 0x1fff;
  4559. I915_WRITE(PIPE_CSC_POSTOFF_HI(pipe), postoff);
  4560. I915_WRITE(PIPE_CSC_POSTOFF_ME(pipe), postoff);
  4561. I915_WRITE(PIPE_CSC_POSTOFF_LO(pipe), postoff);
  4562. I915_WRITE(PIPE_CSC_MODE(pipe), 0);
  4563. } else {
  4564. uint32_t mode = CSC_MODE_YUV_TO_RGB;
  4565. if (intel_crtc->config.limited_color_range)
  4566. mode |= CSC_BLACK_SCREEN_OFFSET;
  4567. I915_WRITE(PIPE_CSC_MODE(pipe), mode);
  4568. }
  4569. }
  4570. static void haswell_set_pipeconf(struct drm_crtc *crtc)
  4571. {
  4572. struct drm_i915_private *dev_priv = crtc->dev->dev_private;
  4573. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4574. enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
  4575. uint32_t val;
  4576. val = 0;
  4577. if (intel_crtc->config.dither)
  4578. val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
  4579. if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
  4580. val |= PIPECONF_INTERLACED_ILK;
  4581. else
  4582. val |= PIPECONF_PROGRESSIVE;
  4583. I915_WRITE(PIPECONF(cpu_transcoder), val);
  4584. POSTING_READ(PIPECONF(cpu_transcoder));
  4585. I915_WRITE(GAMMA_MODE(intel_crtc->pipe), GAMMA_MODE_MODE_8BIT);
  4586. POSTING_READ(GAMMA_MODE(intel_crtc->pipe));
  4587. }
  4588. static bool ironlake_compute_clocks(struct drm_crtc *crtc,
  4589. intel_clock_t *clock,
  4590. bool *has_reduced_clock,
  4591. intel_clock_t *reduced_clock)
  4592. {
  4593. struct drm_device *dev = crtc->dev;
  4594. struct drm_i915_private *dev_priv = dev->dev_private;
  4595. struct intel_encoder *intel_encoder;
  4596. int refclk;
  4597. const intel_limit_t *limit;
  4598. bool ret, is_lvds = false;
  4599. for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
  4600. switch (intel_encoder->type) {
  4601. case INTEL_OUTPUT_LVDS:
  4602. is_lvds = true;
  4603. break;
  4604. }
  4605. }
  4606. refclk = ironlake_get_refclk(crtc);
  4607. /*
  4608. * Returns a set of divisors for the desired target clock with the given
  4609. * refclk, or FALSE. The returned values represent the clock equation:
  4610. * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
  4611. */
  4612. limit = intel_limit(crtc, refclk);
  4613. ret = dev_priv->display.find_dpll(limit, crtc,
  4614. to_intel_crtc(crtc)->config.port_clock,
  4615. refclk, NULL, clock);
  4616. if (!ret)
  4617. return false;
  4618. if (is_lvds && dev_priv->lvds_downclock_avail) {
  4619. /*
  4620. * Ensure we match the reduced clock's P to the target clock.
  4621. * If the clocks don't match, we can't switch the display clock
  4622. * by using the FP0/FP1. In such case we will disable the LVDS
  4623. * downclock feature.
  4624. */
  4625. *has_reduced_clock =
  4626. dev_priv->display.find_dpll(limit, crtc,
  4627. dev_priv->lvds_downclock,
  4628. refclk, clock,
  4629. reduced_clock);
  4630. }
  4631. return true;
  4632. }
  4633. static void cpt_enable_fdi_bc_bifurcation(struct drm_device *dev)
  4634. {
  4635. struct drm_i915_private *dev_priv = dev->dev_private;
  4636. uint32_t temp;
  4637. temp = I915_READ(SOUTH_CHICKEN1);
  4638. if (temp & FDI_BC_BIFURCATION_SELECT)
  4639. return;
  4640. WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
  4641. WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
  4642. temp |= FDI_BC_BIFURCATION_SELECT;
  4643. DRM_DEBUG_KMS("enabling fdi C rx\n");
  4644. I915_WRITE(SOUTH_CHICKEN1, temp);
  4645. POSTING_READ(SOUTH_CHICKEN1);
  4646. }
  4647. static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
  4648. {
  4649. struct drm_device *dev = intel_crtc->base.dev;
  4650. struct drm_i915_private *dev_priv = dev->dev_private;
  4651. switch (intel_crtc->pipe) {
  4652. case PIPE_A:
  4653. break;
  4654. case PIPE_B:
  4655. if (intel_crtc->config.fdi_lanes > 2)
  4656. WARN_ON(I915_READ(SOUTH_CHICKEN1) & FDI_BC_BIFURCATION_SELECT);
  4657. else
  4658. cpt_enable_fdi_bc_bifurcation(dev);
  4659. break;
  4660. case PIPE_C:
  4661. cpt_enable_fdi_bc_bifurcation(dev);
  4662. break;
  4663. default:
  4664. BUG();
  4665. }
  4666. }
  4667. int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
  4668. {
  4669. /*
  4670. * Account for spread spectrum to avoid
  4671. * oversubscribing the link. Max center spread
  4672. * is 2.5%; use 5% for safety's sake.
  4673. */
  4674. u32 bps = target_clock * bpp * 21 / 20;
  4675. return bps / (link_bw * 8) + 1;
  4676. }
  4677. static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
  4678. {
  4679. return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
  4680. }
  4681. static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
  4682. u32 *fp,
  4683. intel_clock_t *reduced_clock, u32 *fp2)
  4684. {
  4685. struct drm_crtc *crtc = &intel_crtc->base;
  4686. struct drm_device *dev = crtc->dev;
  4687. struct drm_i915_private *dev_priv = dev->dev_private;
  4688. struct intel_encoder *intel_encoder;
  4689. uint32_t dpll;
  4690. int factor, num_connectors = 0;
  4691. bool is_lvds = false, is_sdvo = false;
  4692. for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
  4693. switch (intel_encoder->type) {
  4694. case INTEL_OUTPUT_LVDS:
  4695. is_lvds = true;
  4696. break;
  4697. case INTEL_OUTPUT_SDVO:
  4698. case INTEL_OUTPUT_HDMI:
  4699. is_sdvo = true;
  4700. break;
  4701. }
  4702. num_connectors++;
  4703. }
  4704. /* Enable autotuning of the PLL clock (if permissible) */
  4705. factor = 21;
  4706. if (is_lvds) {
  4707. if ((intel_panel_use_ssc(dev_priv) &&
  4708. dev_priv->vbt.lvds_ssc_freq == 100) ||
  4709. (HAS_PCH_IBX(dev) && intel_is_dual_link_lvds(dev)))
  4710. factor = 25;
  4711. } else if (intel_crtc->config.sdvo_tv_clock)
  4712. factor = 20;
  4713. if (ironlake_needs_fb_cb_tune(&intel_crtc->config.dpll, factor))
  4714. *fp |= FP_CB_TUNE;
  4715. if (fp2 && (reduced_clock->m < factor * reduced_clock->n))
  4716. *fp2 |= FP_CB_TUNE;
  4717. dpll = 0;
  4718. if (is_lvds)
  4719. dpll |= DPLLB_MODE_LVDS;
  4720. else
  4721. dpll |= DPLLB_MODE_DAC_SERIAL;
  4722. dpll |= (intel_crtc->config.pixel_multiplier - 1)
  4723. << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
  4724. if (is_sdvo)
  4725. dpll |= DPLL_DVO_HIGH_SPEED;
  4726. if (intel_crtc->config.has_dp_encoder)
  4727. dpll |= DPLL_DVO_HIGH_SPEED;
  4728. /* compute bitmask from p1 value */
  4729. dpll |= (1 << (intel_crtc->config.dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
  4730. /* also FPA1 */
  4731. dpll |= (1 << (intel_crtc->config.dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
  4732. switch (intel_crtc->config.dpll.p2) {
  4733. case 5:
  4734. dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
  4735. break;
  4736. case 7:
  4737. dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
  4738. break;
  4739. case 10:
  4740. dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
  4741. break;
  4742. case 14:
  4743. dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
  4744. break;
  4745. }
  4746. if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
  4747. dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
  4748. else
  4749. dpll |= PLL_REF_INPUT_DREFCLK;
  4750. return dpll | DPLL_VCO_ENABLE;
  4751. }
  4752. static int ironlake_crtc_mode_set(struct drm_crtc *crtc,
  4753. int x, int y,
  4754. struct drm_framebuffer *fb)
  4755. {
  4756. struct drm_device *dev = crtc->dev;
  4757. struct drm_i915_private *dev_priv = dev->dev_private;
  4758. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4759. int pipe = intel_crtc->pipe;
  4760. int plane = intel_crtc->plane;
  4761. int num_connectors = 0;
  4762. intel_clock_t clock, reduced_clock;
  4763. u32 dpll = 0, fp = 0, fp2 = 0;
  4764. bool ok, has_reduced_clock = false;
  4765. bool is_lvds = false;
  4766. struct intel_encoder *encoder;
  4767. struct intel_shared_dpll *pll;
  4768. int ret;
  4769. for_each_encoder_on_crtc(dev, crtc, encoder) {
  4770. switch (encoder->type) {
  4771. case INTEL_OUTPUT_LVDS:
  4772. is_lvds = true;
  4773. break;
  4774. }
  4775. num_connectors++;
  4776. }
  4777. WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
  4778. "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
  4779. ok = ironlake_compute_clocks(crtc, &clock,
  4780. &has_reduced_clock, &reduced_clock);
  4781. if (!ok && !intel_crtc->config.clock_set) {
  4782. DRM_ERROR("Couldn't find PLL settings for mode!\n");
  4783. return -EINVAL;
  4784. }
  4785. /* Compat-code for transition, will disappear. */
  4786. if (!intel_crtc->config.clock_set) {
  4787. intel_crtc->config.dpll.n = clock.n;
  4788. intel_crtc->config.dpll.m1 = clock.m1;
  4789. intel_crtc->config.dpll.m2 = clock.m2;
  4790. intel_crtc->config.dpll.p1 = clock.p1;
  4791. intel_crtc->config.dpll.p2 = clock.p2;
  4792. }
  4793. /* Ensure that the cursor is valid for the new mode before changing... */
  4794. intel_crtc_update_cursor(crtc, true);
  4795. /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
  4796. if (intel_crtc->config.has_pch_encoder) {
  4797. fp = i9xx_dpll_compute_fp(&intel_crtc->config.dpll);
  4798. if (has_reduced_clock)
  4799. fp2 = i9xx_dpll_compute_fp(&reduced_clock);
  4800. dpll = ironlake_compute_dpll(intel_crtc,
  4801. &fp, &reduced_clock,
  4802. has_reduced_clock ? &fp2 : NULL);
  4803. intel_crtc->config.dpll_hw_state.dpll = dpll;
  4804. intel_crtc->config.dpll_hw_state.fp0 = fp;
  4805. if (has_reduced_clock)
  4806. intel_crtc->config.dpll_hw_state.fp1 = fp2;
  4807. else
  4808. intel_crtc->config.dpll_hw_state.fp1 = fp;
  4809. pll = intel_get_shared_dpll(intel_crtc, dpll, fp);
  4810. if (pll == NULL) {
  4811. DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
  4812. pipe_name(pipe));
  4813. return -EINVAL;
  4814. }
  4815. } else
  4816. intel_put_shared_dpll(intel_crtc);
  4817. if (intel_crtc->config.has_dp_encoder)
  4818. intel_dp_set_m_n(intel_crtc);
  4819. for_each_encoder_on_crtc(dev, crtc, encoder)
  4820. if (encoder->pre_pll_enable)
  4821. encoder->pre_pll_enable(encoder);
  4822. if (is_lvds && has_reduced_clock && i915_powersave)
  4823. intel_crtc->lowfreq_avail = true;
  4824. else
  4825. intel_crtc->lowfreq_avail = false;
  4826. if (intel_crtc->config.has_pch_encoder) {
  4827. pll = intel_crtc_to_shared_dpll(intel_crtc);
  4828. I915_WRITE(PCH_DPLL(pll->id), dpll);
  4829. /* Wait for the clocks to stabilize. */
  4830. POSTING_READ(PCH_DPLL(pll->id));
  4831. udelay(150);
  4832. /* The pixel multiplier can only be updated once the
  4833. * DPLL is enabled and the clocks are stable.
  4834. *
  4835. * So write it again.
  4836. */
  4837. I915_WRITE(PCH_DPLL(pll->id), dpll);
  4838. if (has_reduced_clock)
  4839. I915_WRITE(PCH_FP1(pll->id), fp2);
  4840. else
  4841. I915_WRITE(PCH_FP1(pll->id), fp);
  4842. }
  4843. intel_set_pipe_timings(intel_crtc);
  4844. if (intel_crtc->config.has_pch_encoder) {
  4845. intel_cpu_transcoder_set_m_n(intel_crtc,
  4846. &intel_crtc->config.fdi_m_n);
  4847. }
  4848. if (IS_IVYBRIDGE(dev))
  4849. ivybridge_update_fdi_bc_bifurcation(intel_crtc);
  4850. ironlake_set_pipeconf(crtc);
  4851. /* Set up the display plane register */
  4852. I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE);
  4853. POSTING_READ(DSPCNTR(plane));
  4854. ret = intel_pipe_set_base(crtc, x, y, fb);
  4855. intel_update_watermarks(dev);
  4856. return ret;
  4857. }
  4858. static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
  4859. struct intel_crtc_config *pipe_config)
  4860. {
  4861. struct drm_device *dev = crtc->base.dev;
  4862. struct drm_i915_private *dev_priv = dev->dev_private;
  4863. enum transcoder transcoder = pipe_config->cpu_transcoder;
  4864. pipe_config->fdi_m_n.link_m = I915_READ(PIPE_LINK_M1(transcoder));
  4865. pipe_config->fdi_m_n.link_n = I915_READ(PIPE_LINK_N1(transcoder));
  4866. pipe_config->fdi_m_n.gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
  4867. & ~TU_SIZE_MASK;
  4868. pipe_config->fdi_m_n.gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
  4869. pipe_config->fdi_m_n.tu = ((I915_READ(PIPE_DATA_M1(transcoder))
  4870. & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
  4871. }
  4872. static void ironlake_get_pfit_config(struct intel_crtc *crtc,
  4873. struct intel_crtc_config *pipe_config)
  4874. {
  4875. struct drm_device *dev = crtc->base.dev;
  4876. struct drm_i915_private *dev_priv = dev->dev_private;
  4877. uint32_t tmp;
  4878. tmp = I915_READ(PF_CTL(crtc->pipe));
  4879. if (tmp & PF_ENABLE) {
  4880. pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
  4881. pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
  4882. /* We currently do not free assignements of panel fitters on
  4883. * ivb/hsw (since we don't use the higher upscaling modes which
  4884. * differentiates them) so just WARN about this case for now. */
  4885. if (IS_GEN7(dev)) {
  4886. WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) !=
  4887. PF_PIPE_SEL_IVB(crtc->pipe));
  4888. }
  4889. }
  4890. }
  4891. static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
  4892. struct intel_crtc_config *pipe_config)
  4893. {
  4894. struct drm_device *dev = crtc->base.dev;
  4895. struct drm_i915_private *dev_priv = dev->dev_private;
  4896. uint32_t tmp;
  4897. pipe_config->cpu_transcoder = crtc->pipe;
  4898. pipe_config->shared_dpll = DPLL_ID_PRIVATE;
  4899. tmp = I915_READ(PIPECONF(crtc->pipe));
  4900. if (!(tmp & PIPECONF_ENABLE))
  4901. return false;
  4902. if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
  4903. struct intel_shared_dpll *pll;
  4904. pipe_config->has_pch_encoder = true;
  4905. tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
  4906. pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
  4907. FDI_DP_PORT_WIDTH_SHIFT) + 1;
  4908. ironlake_get_fdi_m_n_config(crtc, pipe_config);
  4909. /* XXX: Can't properly read out the pch dpll pixel multiplier
  4910. * since we don't have state tracking for pch clocks yet. */
  4911. pipe_config->pixel_multiplier = 1;
  4912. if (HAS_PCH_IBX(dev_priv->dev)) {
  4913. pipe_config->shared_dpll = crtc->pipe;
  4914. } else {
  4915. tmp = I915_READ(PCH_DPLL_SEL);
  4916. if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
  4917. pipe_config->shared_dpll = DPLL_ID_PCH_PLL_B;
  4918. else
  4919. pipe_config->shared_dpll = DPLL_ID_PCH_PLL_A;
  4920. }
  4921. pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
  4922. WARN_ON(!pll->get_hw_state(dev_priv, pll,
  4923. &pipe_config->dpll_hw_state));
  4924. } else {
  4925. pipe_config->pixel_multiplier = 1;
  4926. }
  4927. intel_get_pipe_timings(crtc, pipe_config);
  4928. ironlake_get_pfit_config(crtc, pipe_config);
  4929. return true;
  4930. }
  4931. static void haswell_modeset_global_resources(struct drm_device *dev)
  4932. {
  4933. bool enable = false;
  4934. struct intel_crtc *crtc;
  4935. list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) {
  4936. if (!crtc->base.enabled)
  4937. continue;
  4938. if (crtc->pipe != PIPE_A || crtc->config.pch_pfit.size ||
  4939. crtc->config.cpu_transcoder != TRANSCODER_EDP)
  4940. enable = true;
  4941. }
  4942. intel_set_power_well(dev, enable);
  4943. }
  4944. static int haswell_crtc_mode_set(struct drm_crtc *crtc,
  4945. int x, int y,
  4946. struct drm_framebuffer *fb)
  4947. {
  4948. struct drm_device *dev = crtc->dev;
  4949. struct drm_i915_private *dev_priv = dev->dev_private;
  4950. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4951. int plane = intel_crtc->plane;
  4952. int ret;
  4953. if (!intel_ddi_pll_mode_set(crtc))
  4954. return -EINVAL;
  4955. /* Ensure that the cursor is valid for the new mode before changing... */
  4956. intel_crtc_update_cursor(crtc, true);
  4957. if (intel_crtc->config.has_dp_encoder)
  4958. intel_dp_set_m_n(intel_crtc);
  4959. intel_crtc->lowfreq_avail = false;
  4960. intel_set_pipe_timings(intel_crtc);
  4961. if (intel_crtc->config.has_pch_encoder) {
  4962. intel_cpu_transcoder_set_m_n(intel_crtc,
  4963. &intel_crtc->config.fdi_m_n);
  4964. }
  4965. haswell_set_pipeconf(crtc);
  4966. intel_set_pipe_csc(crtc);
  4967. /* Set up the display plane register */
  4968. I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE | DISPPLANE_PIPE_CSC_ENABLE);
  4969. POSTING_READ(DSPCNTR(plane));
  4970. ret = intel_pipe_set_base(crtc, x, y, fb);
  4971. intel_update_watermarks(dev);
  4972. return ret;
  4973. }
  4974. static bool haswell_get_pipe_config(struct intel_crtc *crtc,
  4975. struct intel_crtc_config *pipe_config)
  4976. {
  4977. struct drm_device *dev = crtc->base.dev;
  4978. struct drm_i915_private *dev_priv = dev->dev_private;
  4979. enum intel_display_power_domain pfit_domain;
  4980. uint32_t tmp;
  4981. pipe_config->cpu_transcoder = crtc->pipe;
  4982. pipe_config->shared_dpll = DPLL_ID_PRIVATE;
  4983. tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
  4984. if (tmp & TRANS_DDI_FUNC_ENABLE) {
  4985. enum pipe trans_edp_pipe;
  4986. switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
  4987. default:
  4988. WARN(1, "unknown pipe linked to edp transcoder\n");
  4989. case TRANS_DDI_EDP_INPUT_A_ONOFF:
  4990. case TRANS_DDI_EDP_INPUT_A_ON:
  4991. trans_edp_pipe = PIPE_A;
  4992. break;
  4993. case TRANS_DDI_EDP_INPUT_B_ONOFF:
  4994. trans_edp_pipe = PIPE_B;
  4995. break;
  4996. case TRANS_DDI_EDP_INPUT_C_ONOFF:
  4997. trans_edp_pipe = PIPE_C;
  4998. break;
  4999. }
  5000. if (trans_edp_pipe == crtc->pipe)
  5001. pipe_config->cpu_transcoder = TRANSCODER_EDP;
  5002. }
  5003. if (!intel_display_power_enabled(dev,
  5004. POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder)))
  5005. return false;
  5006. tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
  5007. if (!(tmp & PIPECONF_ENABLE))
  5008. return false;
  5009. /*
  5010. * Haswell has only FDI/PCH transcoder A. It is which is connected to
  5011. * DDI E. So just check whether this pipe is wired to DDI E and whether
  5012. * the PCH transcoder is on.
  5013. */
  5014. tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
  5015. if ((tmp & TRANS_DDI_PORT_MASK) == TRANS_DDI_SELECT_PORT(PORT_E) &&
  5016. I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
  5017. pipe_config->has_pch_encoder = true;
  5018. tmp = I915_READ(FDI_RX_CTL(PIPE_A));
  5019. pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
  5020. FDI_DP_PORT_WIDTH_SHIFT) + 1;
  5021. ironlake_get_fdi_m_n_config(crtc, pipe_config);
  5022. }
  5023. intel_get_pipe_timings(crtc, pipe_config);
  5024. pfit_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
  5025. if (intel_display_power_enabled(dev, pfit_domain))
  5026. ironlake_get_pfit_config(crtc, pipe_config);
  5027. pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) &&
  5028. (I915_READ(IPS_CTL) & IPS_ENABLE);
  5029. pipe_config->pixel_multiplier = 1;
  5030. return true;
  5031. }
  5032. static int intel_crtc_mode_set(struct drm_crtc *crtc,
  5033. int x, int y,
  5034. struct drm_framebuffer *fb)
  5035. {
  5036. struct drm_device *dev = crtc->dev;
  5037. struct drm_i915_private *dev_priv = dev->dev_private;
  5038. struct drm_encoder_helper_funcs *encoder_funcs;
  5039. struct intel_encoder *encoder;
  5040. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5041. struct drm_display_mode *adjusted_mode =
  5042. &intel_crtc->config.adjusted_mode;
  5043. struct drm_display_mode *mode = &intel_crtc->config.requested_mode;
  5044. int pipe = intel_crtc->pipe;
  5045. int ret;
  5046. drm_vblank_pre_modeset(dev, pipe);
  5047. ret = dev_priv->display.crtc_mode_set(crtc, x, y, fb);
  5048. drm_vblank_post_modeset(dev, pipe);
  5049. if (ret != 0)
  5050. return ret;
  5051. for_each_encoder_on_crtc(dev, crtc, encoder) {
  5052. DRM_DEBUG_KMS("[ENCODER:%d:%s] set [MODE:%d:%s]\n",
  5053. encoder->base.base.id,
  5054. drm_get_encoder_name(&encoder->base),
  5055. mode->base.id, mode->name);
  5056. if (encoder->mode_set) {
  5057. encoder->mode_set(encoder);
  5058. } else {
  5059. encoder_funcs = encoder->base.helper_private;
  5060. encoder_funcs->mode_set(&encoder->base, mode, adjusted_mode);
  5061. }
  5062. }
  5063. return 0;
  5064. }
  5065. static bool intel_eld_uptodate(struct drm_connector *connector,
  5066. int reg_eldv, uint32_t bits_eldv,
  5067. int reg_elda, uint32_t bits_elda,
  5068. int reg_edid)
  5069. {
  5070. struct drm_i915_private *dev_priv = connector->dev->dev_private;
  5071. uint8_t *eld = connector->eld;
  5072. uint32_t i;
  5073. i = I915_READ(reg_eldv);
  5074. i &= bits_eldv;
  5075. if (!eld[0])
  5076. return !i;
  5077. if (!i)
  5078. return false;
  5079. i = I915_READ(reg_elda);
  5080. i &= ~bits_elda;
  5081. I915_WRITE(reg_elda, i);
  5082. for (i = 0; i < eld[2]; i++)
  5083. if (I915_READ(reg_edid) != *((uint32_t *)eld + i))
  5084. return false;
  5085. return true;
  5086. }
  5087. static void g4x_write_eld(struct drm_connector *connector,
  5088. struct drm_crtc *crtc)
  5089. {
  5090. struct drm_i915_private *dev_priv = connector->dev->dev_private;
  5091. uint8_t *eld = connector->eld;
  5092. uint32_t eldv;
  5093. uint32_t len;
  5094. uint32_t i;
  5095. i = I915_READ(G4X_AUD_VID_DID);
  5096. if (i == INTEL_AUDIO_DEVBLC || i == INTEL_AUDIO_DEVCL)
  5097. eldv = G4X_ELDV_DEVCL_DEVBLC;
  5098. else
  5099. eldv = G4X_ELDV_DEVCTG;
  5100. if (intel_eld_uptodate(connector,
  5101. G4X_AUD_CNTL_ST, eldv,
  5102. G4X_AUD_CNTL_ST, G4X_ELD_ADDR,
  5103. G4X_HDMIW_HDMIEDID))
  5104. return;
  5105. i = I915_READ(G4X_AUD_CNTL_ST);
  5106. i &= ~(eldv | G4X_ELD_ADDR);
  5107. len = (i >> 9) & 0x1f; /* ELD buffer size */
  5108. I915_WRITE(G4X_AUD_CNTL_ST, i);
  5109. if (!eld[0])
  5110. return;
  5111. len = min_t(uint8_t, eld[2], len);
  5112. DRM_DEBUG_DRIVER("ELD size %d\n", len);
  5113. for (i = 0; i < len; i++)
  5114. I915_WRITE(G4X_HDMIW_HDMIEDID, *((uint32_t *)eld + i));
  5115. i = I915_READ(G4X_AUD_CNTL_ST);
  5116. i |= eldv;
  5117. I915_WRITE(G4X_AUD_CNTL_ST, i);
  5118. }
  5119. static void haswell_write_eld(struct drm_connector *connector,
  5120. struct drm_crtc *crtc)
  5121. {
  5122. struct drm_i915_private *dev_priv = connector->dev->dev_private;
  5123. uint8_t *eld = connector->eld;
  5124. struct drm_device *dev = crtc->dev;
  5125. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5126. uint32_t eldv;
  5127. uint32_t i;
  5128. int len;
  5129. int pipe = to_intel_crtc(crtc)->pipe;
  5130. int tmp;
  5131. int hdmiw_hdmiedid = HSW_AUD_EDID_DATA(pipe);
  5132. int aud_cntl_st = HSW_AUD_DIP_ELD_CTRL(pipe);
  5133. int aud_config = HSW_AUD_CFG(pipe);
  5134. int aud_cntrl_st2 = HSW_AUD_PIN_ELD_CP_VLD;
  5135. DRM_DEBUG_DRIVER("HDMI: Haswell Audio initialize....\n");
  5136. /* Audio output enable */
  5137. DRM_DEBUG_DRIVER("HDMI audio: enable codec\n");
  5138. tmp = I915_READ(aud_cntrl_st2);
  5139. tmp |= (AUDIO_OUTPUT_ENABLE_A << (pipe * 4));
  5140. I915_WRITE(aud_cntrl_st2, tmp);
  5141. /* Wait for 1 vertical blank */
  5142. intel_wait_for_vblank(dev, pipe);
  5143. /* Set ELD valid state */
  5144. tmp = I915_READ(aud_cntrl_st2);
  5145. DRM_DEBUG_DRIVER("HDMI audio: pin eld vld status=0x%8x\n", tmp);
  5146. tmp |= (AUDIO_ELD_VALID_A << (pipe * 4));
  5147. I915_WRITE(aud_cntrl_st2, tmp);
  5148. tmp = I915_READ(aud_cntrl_st2);
  5149. DRM_DEBUG_DRIVER("HDMI audio: eld vld status=0x%8x\n", tmp);
  5150. /* Enable HDMI mode */
  5151. tmp = I915_READ(aud_config);
  5152. DRM_DEBUG_DRIVER("HDMI audio: audio conf: 0x%8x\n", tmp);
  5153. /* clear N_programing_enable and N_value_index */
  5154. tmp &= ~(AUD_CONFIG_N_VALUE_INDEX | AUD_CONFIG_N_PROG_ENABLE);
  5155. I915_WRITE(aud_config, tmp);
  5156. DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
  5157. eldv = AUDIO_ELD_VALID_A << (pipe * 4);
  5158. intel_crtc->eld_vld = true;
  5159. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
  5160. DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
  5161. eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */
  5162. I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
  5163. } else
  5164. I915_WRITE(aud_config, 0);
  5165. if (intel_eld_uptodate(connector,
  5166. aud_cntrl_st2, eldv,
  5167. aud_cntl_st, IBX_ELD_ADDRESS,
  5168. hdmiw_hdmiedid))
  5169. return;
  5170. i = I915_READ(aud_cntrl_st2);
  5171. i &= ~eldv;
  5172. I915_WRITE(aud_cntrl_st2, i);
  5173. if (!eld[0])
  5174. return;
  5175. i = I915_READ(aud_cntl_st);
  5176. i &= ~IBX_ELD_ADDRESS;
  5177. I915_WRITE(aud_cntl_st, i);
  5178. i = (i >> 29) & DIP_PORT_SEL_MASK; /* DIP_Port_Select, 0x1 = PortB */
  5179. DRM_DEBUG_DRIVER("port num:%d\n", i);
  5180. len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */
  5181. DRM_DEBUG_DRIVER("ELD size %d\n", len);
  5182. for (i = 0; i < len; i++)
  5183. I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
  5184. i = I915_READ(aud_cntrl_st2);
  5185. i |= eldv;
  5186. I915_WRITE(aud_cntrl_st2, i);
  5187. }
  5188. static void ironlake_write_eld(struct drm_connector *connector,
  5189. struct drm_crtc *crtc)
  5190. {
  5191. struct drm_i915_private *dev_priv = connector->dev->dev_private;
  5192. uint8_t *eld = connector->eld;
  5193. uint32_t eldv;
  5194. uint32_t i;
  5195. int len;
  5196. int hdmiw_hdmiedid;
  5197. int aud_config;
  5198. int aud_cntl_st;
  5199. int aud_cntrl_st2;
  5200. int pipe = to_intel_crtc(crtc)->pipe;
  5201. if (HAS_PCH_IBX(connector->dev)) {
  5202. hdmiw_hdmiedid = IBX_HDMIW_HDMIEDID(pipe);
  5203. aud_config = IBX_AUD_CFG(pipe);
  5204. aud_cntl_st = IBX_AUD_CNTL_ST(pipe);
  5205. aud_cntrl_st2 = IBX_AUD_CNTL_ST2;
  5206. } else {
  5207. hdmiw_hdmiedid = CPT_HDMIW_HDMIEDID(pipe);
  5208. aud_config = CPT_AUD_CFG(pipe);
  5209. aud_cntl_st = CPT_AUD_CNTL_ST(pipe);
  5210. aud_cntrl_st2 = CPT_AUD_CNTRL_ST2;
  5211. }
  5212. DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
  5213. i = I915_READ(aud_cntl_st);
  5214. i = (i >> 29) & DIP_PORT_SEL_MASK; /* DIP_Port_Select, 0x1 = PortB */
  5215. if (!i) {
  5216. DRM_DEBUG_DRIVER("Audio directed to unknown port\n");
  5217. /* operate blindly on all ports */
  5218. eldv = IBX_ELD_VALIDB;
  5219. eldv |= IBX_ELD_VALIDB << 4;
  5220. eldv |= IBX_ELD_VALIDB << 8;
  5221. } else {
  5222. DRM_DEBUG_DRIVER("ELD on port %c\n", port_name(i));
  5223. eldv = IBX_ELD_VALIDB << ((i - 1) * 4);
  5224. }
  5225. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
  5226. DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
  5227. eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */
  5228. I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
  5229. } else
  5230. I915_WRITE(aud_config, 0);
  5231. if (intel_eld_uptodate(connector,
  5232. aud_cntrl_st2, eldv,
  5233. aud_cntl_st, IBX_ELD_ADDRESS,
  5234. hdmiw_hdmiedid))
  5235. return;
  5236. i = I915_READ(aud_cntrl_st2);
  5237. i &= ~eldv;
  5238. I915_WRITE(aud_cntrl_st2, i);
  5239. if (!eld[0])
  5240. return;
  5241. i = I915_READ(aud_cntl_st);
  5242. i &= ~IBX_ELD_ADDRESS;
  5243. I915_WRITE(aud_cntl_st, i);
  5244. len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */
  5245. DRM_DEBUG_DRIVER("ELD size %d\n", len);
  5246. for (i = 0; i < len; i++)
  5247. I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
  5248. i = I915_READ(aud_cntrl_st2);
  5249. i |= eldv;
  5250. I915_WRITE(aud_cntrl_st2, i);
  5251. }
  5252. void intel_write_eld(struct drm_encoder *encoder,
  5253. struct drm_display_mode *mode)
  5254. {
  5255. struct drm_crtc *crtc = encoder->crtc;
  5256. struct drm_connector *connector;
  5257. struct drm_device *dev = encoder->dev;
  5258. struct drm_i915_private *dev_priv = dev->dev_private;
  5259. connector = drm_select_eld(encoder, mode);
  5260. if (!connector)
  5261. return;
  5262. DRM_DEBUG_DRIVER("ELD on [CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
  5263. connector->base.id,
  5264. drm_get_connector_name(connector),
  5265. connector->encoder->base.id,
  5266. drm_get_encoder_name(connector->encoder));
  5267. connector->eld[6] = drm_av_sync_delay(connector, mode) / 2;
  5268. if (dev_priv->display.write_eld)
  5269. dev_priv->display.write_eld(connector, crtc);
  5270. }
  5271. /** Loads the palette/gamma unit for the CRTC with the prepared values */
  5272. void intel_crtc_load_lut(struct drm_crtc *crtc)
  5273. {
  5274. struct drm_device *dev = crtc->dev;
  5275. struct drm_i915_private *dev_priv = dev->dev_private;
  5276. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5277. enum pipe pipe = intel_crtc->pipe;
  5278. int palreg = PALETTE(pipe);
  5279. int i;
  5280. bool reenable_ips = false;
  5281. /* The clocks have to be on to load the palette. */
  5282. if (!crtc->enabled || !intel_crtc->active)
  5283. return;
  5284. if (!HAS_PCH_SPLIT(dev_priv->dev))
  5285. assert_pll_enabled(dev_priv, pipe);
  5286. /* use legacy palette for Ironlake */
  5287. if (HAS_PCH_SPLIT(dev))
  5288. palreg = LGC_PALETTE(pipe);
  5289. /* Workaround : Do not read or write the pipe palette/gamma data while
  5290. * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled.
  5291. */
  5292. if (intel_crtc->config.ips_enabled &&
  5293. ((I915_READ(GAMMA_MODE(pipe)) & GAMMA_MODE_MODE_MASK) ==
  5294. GAMMA_MODE_MODE_SPLIT)) {
  5295. hsw_disable_ips(intel_crtc);
  5296. reenable_ips = true;
  5297. }
  5298. for (i = 0; i < 256; i++) {
  5299. I915_WRITE(palreg + 4 * i,
  5300. (intel_crtc->lut_r[i] << 16) |
  5301. (intel_crtc->lut_g[i] << 8) |
  5302. intel_crtc->lut_b[i]);
  5303. }
  5304. if (reenable_ips)
  5305. hsw_enable_ips(intel_crtc);
  5306. }
  5307. static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
  5308. {
  5309. struct drm_device *dev = crtc->dev;
  5310. struct drm_i915_private *dev_priv = dev->dev_private;
  5311. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5312. bool visible = base != 0;
  5313. u32 cntl;
  5314. if (intel_crtc->cursor_visible == visible)
  5315. return;
  5316. cntl = I915_READ(_CURACNTR);
  5317. if (visible) {
  5318. /* On these chipsets we can only modify the base whilst
  5319. * the cursor is disabled.
  5320. */
  5321. I915_WRITE(_CURABASE, base);
  5322. cntl &= ~(CURSOR_FORMAT_MASK);
  5323. /* XXX width must be 64, stride 256 => 0x00 << 28 */
  5324. cntl |= CURSOR_ENABLE |
  5325. CURSOR_GAMMA_ENABLE |
  5326. CURSOR_FORMAT_ARGB;
  5327. } else
  5328. cntl &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
  5329. I915_WRITE(_CURACNTR, cntl);
  5330. intel_crtc->cursor_visible = visible;
  5331. }
  5332. static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
  5333. {
  5334. struct drm_device *dev = crtc->dev;
  5335. struct drm_i915_private *dev_priv = dev->dev_private;
  5336. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5337. int pipe = intel_crtc->pipe;
  5338. bool visible = base != 0;
  5339. if (intel_crtc->cursor_visible != visible) {
  5340. uint32_t cntl = I915_READ(CURCNTR(pipe));
  5341. if (base) {
  5342. cntl &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
  5343. cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
  5344. cntl |= pipe << 28; /* Connect to correct pipe */
  5345. } else {
  5346. cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
  5347. cntl |= CURSOR_MODE_DISABLE;
  5348. }
  5349. I915_WRITE(CURCNTR(pipe), cntl);
  5350. intel_crtc->cursor_visible = visible;
  5351. }
  5352. /* and commit changes on next vblank */
  5353. I915_WRITE(CURBASE(pipe), base);
  5354. }
  5355. static void ivb_update_cursor(struct drm_crtc *crtc, u32 base)
  5356. {
  5357. struct drm_device *dev = crtc->dev;
  5358. struct drm_i915_private *dev_priv = dev->dev_private;
  5359. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5360. int pipe = intel_crtc->pipe;
  5361. bool visible = base != 0;
  5362. if (intel_crtc->cursor_visible != visible) {
  5363. uint32_t cntl = I915_READ(CURCNTR_IVB(pipe));
  5364. if (base) {
  5365. cntl &= ~CURSOR_MODE;
  5366. cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
  5367. } else {
  5368. cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
  5369. cntl |= CURSOR_MODE_DISABLE;
  5370. }
  5371. if (IS_HASWELL(dev))
  5372. cntl |= CURSOR_PIPE_CSC_ENABLE;
  5373. I915_WRITE(CURCNTR_IVB(pipe), cntl);
  5374. intel_crtc->cursor_visible = visible;
  5375. }
  5376. /* and commit changes on next vblank */
  5377. I915_WRITE(CURBASE_IVB(pipe), base);
  5378. }
  5379. /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
  5380. static void intel_crtc_update_cursor(struct drm_crtc *crtc,
  5381. bool on)
  5382. {
  5383. struct drm_device *dev = crtc->dev;
  5384. struct drm_i915_private *dev_priv = dev->dev_private;
  5385. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5386. int pipe = intel_crtc->pipe;
  5387. int x = intel_crtc->cursor_x;
  5388. int y = intel_crtc->cursor_y;
  5389. u32 base, pos;
  5390. bool visible;
  5391. pos = 0;
  5392. if (on && crtc->enabled && crtc->fb) {
  5393. base = intel_crtc->cursor_addr;
  5394. if (x > (int) crtc->fb->width)
  5395. base = 0;
  5396. if (y > (int) crtc->fb->height)
  5397. base = 0;
  5398. } else
  5399. base = 0;
  5400. if (x < 0) {
  5401. if (x + intel_crtc->cursor_width < 0)
  5402. base = 0;
  5403. pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
  5404. x = -x;
  5405. }
  5406. pos |= x << CURSOR_X_SHIFT;
  5407. if (y < 0) {
  5408. if (y + intel_crtc->cursor_height < 0)
  5409. base = 0;
  5410. pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
  5411. y = -y;
  5412. }
  5413. pos |= y << CURSOR_Y_SHIFT;
  5414. visible = base != 0;
  5415. if (!visible && !intel_crtc->cursor_visible)
  5416. return;
  5417. if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
  5418. I915_WRITE(CURPOS_IVB(pipe), pos);
  5419. ivb_update_cursor(crtc, base);
  5420. } else {
  5421. I915_WRITE(CURPOS(pipe), pos);
  5422. if (IS_845G(dev) || IS_I865G(dev))
  5423. i845_update_cursor(crtc, base);
  5424. else
  5425. i9xx_update_cursor(crtc, base);
  5426. }
  5427. }
  5428. static int intel_crtc_cursor_set(struct drm_crtc *crtc,
  5429. struct drm_file *file,
  5430. uint32_t handle,
  5431. uint32_t width, uint32_t height)
  5432. {
  5433. struct drm_device *dev = crtc->dev;
  5434. struct drm_i915_private *dev_priv = dev->dev_private;
  5435. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5436. struct drm_i915_gem_object *obj;
  5437. uint32_t addr;
  5438. int ret;
  5439. /* if we want to turn off the cursor ignore width and height */
  5440. if (!handle) {
  5441. DRM_DEBUG_KMS("cursor off\n");
  5442. addr = 0;
  5443. obj = NULL;
  5444. mutex_lock(&dev->struct_mutex);
  5445. goto finish;
  5446. }
  5447. /* Currently we only support 64x64 cursors */
  5448. if (width != 64 || height != 64) {
  5449. DRM_ERROR("we currently only support 64x64 cursors\n");
  5450. return -EINVAL;
  5451. }
  5452. obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
  5453. if (&obj->base == NULL)
  5454. return -ENOENT;
  5455. if (obj->base.size < width * height * 4) {
  5456. DRM_ERROR("buffer is to small\n");
  5457. ret = -ENOMEM;
  5458. goto fail;
  5459. }
  5460. /* we only need to pin inside GTT if cursor is non-phy */
  5461. mutex_lock(&dev->struct_mutex);
  5462. if (!dev_priv->info->cursor_needs_physical) {
  5463. unsigned alignment;
  5464. if (obj->tiling_mode) {
  5465. DRM_ERROR("cursor cannot be tiled\n");
  5466. ret = -EINVAL;
  5467. goto fail_locked;
  5468. }
  5469. /* Note that the w/a also requires 2 PTE of padding following
  5470. * the bo. We currently fill all unused PTE with the shadow
  5471. * page and so we should always have valid PTE following the
  5472. * cursor preventing the VT-d warning.
  5473. */
  5474. alignment = 0;
  5475. if (need_vtd_wa(dev))
  5476. alignment = 64*1024;
  5477. ret = i915_gem_object_pin_to_display_plane(obj, alignment, NULL);
  5478. if (ret) {
  5479. DRM_ERROR("failed to move cursor bo into the GTT\n");
  5480. goto fail_locked;
  5481. }
  5482. ret = i915_gem_object_put_fence(obj);
  5483. if (ret) {
  5484. DRM_ERROR("failed to release fence for cursor");
  5485. goto fail_unpin;
  5486. }
  5487. addr = obj->gtt_offset;
  5488. } else {
  5489. int align = IS_I830(dev) ? 16 * 1024 : 256;
  5490. ret = i915_gem_attach_phys_object(dev, obj,
  5491. (intel_crtc->pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1,
  5492. align);
  5493. if (ret) {
  5494. DRM_ERROR("failed to attach phys object\n");
  5495. goto fail_locked;
  5496. }
  5497. addr = obj->phys_obj->handle->busaddr;
  5498. }
  5499. if (IS_GEN2(dev))
  5500. I915_WRITE(CURSIZE, (height << 12) | width);
  5501. finish:
  5502. if (intel_crtc->cursor_bo) {
  5503. if (dev_priv->info->cursor_needs_physical) {
  5504. if (intel_crtc->cursor_bo != obj)
  5505. i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
  5506. } else
  5507. i915_gem_object_unpin(intel_crtc->cursor_bo);
  5508. drm_gem_object_unreference(&intel_crtc->cursor_bo->base);
  5509. }
  5510. mutex_unlock(&dev->struct_mutex);
  5511. intel_crtc->cursor_addr = addr;
  5512. intel_crtc->cursor_bo = obj;
  5513. intel_crtc->cursor_width = width;
  5514. intel_crtc->cursor_height = height;
  5515. intel_crtc_update_cursor(crtc, intel_crtc->cursor_bo != NULL);
  5516. return 0;
  5517. fail_unpin:
  5518. i915_gem_object_unpin(obj);
  5519. fail_locked:
  5520. mutex_unlock(&dev->struct_mutex);
  5521. fail:
  5522. drm_gem_object_unreference_unlocked(&obj->base);
  5523. return ret;
  5524. }
  5525. static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
  5526. {
  5527. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5528. intel_crtc->cursor_x = x;
  5529. intel_crtc->cursor_y = y;
  5530. intel_crtc_update_cursor(crtc, intel_crtc->cursor_bo != NULL);
  5531. return 0;
  5532. }
  5533. /** Sets the color ramps on behalf of RandR */
  5534. void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
  5535. u16 blue, int regno)
  5536. {
  5537. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5538. intel_crtc->lut_r[regno] = red >> 8;
  5539. intel_crtc->lut_g[regno] = green >> 8;
  5540. intel_crtc->lut_b[regno] = blue >> 8;
  5541. }
  5542. void intel_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green,
  5543. u16 *blue, int regno)
  5544. {
  5545. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5546. *red = intel_crtc->lut_r[regno] << 8;
  5547. *green = intel_crtc->lut_g[regno] << 8;
  5548. *blue = intel_crtc->lut_b[regno] << 8;
  5549. }
  5550. static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
  5551. u16 *blue, uint32_t start, uint32_t size)
  5552. {
  5553. int end = (start + size > 256) ? 256 : start + size, i;
  5554. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5555. for (i = start; i < end; i++) {
  5556. intel_crtc->lut_r[i] = red[i] >> 8;
  5557. intel_crtc->lut_g[i] = green[i] >> 8;
  5558. intel_crtc->lut_b[i] = blue[i] >> 8;
  5559. }
  5560. intel_crtc_load_lut(crtc);
  5561. }
  5562. /* VESA 640x480x72Hz mode to set on the pipe */
  5563. static struct drm_display_mode load_detect_mode = {
  5564. DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
  5565. 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
  5566. };
  5567. static struct drm_framebuffer *
  5568. intel_framebuffer_create(struct drm_device *dev,
  5569. struct drm_mode_fb_cmd2 *mode_cmd,
  5570. struct drm_i915_gem_object *obj)
  5571. {
  5572. struct intel_framebuffer *intel_fb;
  5573. int ret;
  5574. intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
  5575. if (!intel_fb) {
  5576. drm_gem_object_unreference_unlocked(&obj->base);
  5577. return ERR_PTR(-ENOMEM);
  5578. }
  5579. ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
  5580. if (ret) {
  5581. drm_gem_object_unreference_unlocked(&obj->base);
  5582. kfree(intel_fb);
  5583. return ERR_PTR(ret);
  5584. }
  5585. return &intel_fb->base;
  5586. }
  5587. static u32
  5588. intel_framebuffer_pitch_for_width(int width, int bpp)
  5589. {
  5590. u32 pitch = DIV_ROUND_UP(width * bpp, 8);
  5591. return ALIGN(pitch, 64);
  5592. }
  5593. static u32
  5594. intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
  5595. {
  5596. u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
  5597. return ALIGN(pitch * mode->vdisplay, PAGE_SIZE);
  5598. }
  5599. static struct drm_framebuffer *
  5600. intel_framebuffer_create_for_mode(struct drm_device *dev,
  5601. struct drm_display_mode *mode,
  5602. int depth, int bpp)
  5603. {
  5604. struct drm_i915_gem_object *obj;
  5605. struct drm_mode_fb_cmd2 mode_cmd = { 0 };
  5606. obj = i915_gem_alloc_object(dev,
  5607. intel_framebuffer_size_for_mode(mode, bpp));
  5608. if (obj == NULL)
  5609. return ERR_PTR(-ENOMEM);
  5610. mode_cmd.width = mode->hdisplay;
  5611. mode_cmd.height = mode->vdisplay;
  5612. mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
  5613. bpp);
  5614. mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
  5615. return intel_framebuffer_create(dev, &mode_cmd, obj);
  5616. }
  5617. static struct drm_framebuffer *
  5618. mode_fits_in_fbdev(struct drm_device *dev,
  5619. struct drm_display_mode *mode)
  5620. {
  5621. struct drm_i915_private *dev_priv = dev->dev_private;
  5622. struct drm_i915_gem_object *obj;
  5623. struct drm_framebuffer *fb;
  5624. if (dev_priv->fbdev == NULL)
  5625. return NULL;
  5626. obj = dev_priv->fbdev->ifb.obj;
  5627. if (obj == NULL)
  5628. return NULL;
  5629. fb = &dev_priv->fbdev->ifb.base;
  5630. if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
  5631. fb->bits_per_pixel))
  5632. return NULL;
  5633. if (obj->base.size < mode->vdisplay * fb->pitches[0])
  5634. return NULL;
  5635. return fb;
  5636. }
  5637. bool intel_get_load_detect_pipe(struct drm_connector *connector,
  5638. struct drm_display_mode *mode,
  5639. struct intel_load_detect_pipe *old)
  5640. {
  5641. struct intel_crtc *intel_crtc;
  5642. struct intel_encoder *intel_encoder =
  5643. intel_attached_encoder(connector);
  5644. struct drm_crtc *possible_crtc;
  5645. struct drm_encoder *encoder = &intel_encoder->base;
  5646. struct drm_crtc *crtc = NULL;
  5647. struct drm_device *dev = encoder->dev;
  5648. struct drm_framebuffer *fb;
  5649. int i = -1;
  5650. DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
  5651. connector->base.id, drm_get_connector_name(connector),
  5652. encoder->base.id, drm_get_encoder_name(encoder));
  5653. /*
  5654. * Algorithm gets a little messy:
  5655. *
  5656. * - if the connector already has an assigned crtc, use it (but make
  5657. * sure it's on first)
  5658. *
  5659. * - try to find the first unused crtc that can drive this connector,
  5660. * and use that if we find one
  5661. */
  5662. /* See if we already have a CRTC for this connector */
  5663. if (encoder->crtc) {
  5664. crtc = encoder->crtc;
  5665. mutex_lock(&crtc->mutex);
  5666. old->dpms_mode = connector->dpms;
  5667. old->load_detect_temp = false;
  5668. /* Make sure the crtc and connector are running */
  5669. if (connector->dpms != DRM_MODE_DPMS_ON)
  5670. connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
  5671. return true;
  5672. }
  5673. /* Find an unused one (if possible) */
  5674. list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
  5675. i++;
  5676. if (!(encoder->possible_crtcs & (1 << i)))
  5677. continue;
  5678. if (!possible_crtc->enabled) {
  5679. crtc = possible_crtc;
  5680. break;
  5681. }
  5682. }
  5683. /*
  5684. * If we didn't find an unused CRTC, don't use any.
  5685. */
  5686. if (!crtc) {
  5687. DRM_DEBUG_KMS("no pipe available for load-detect\n");
  5688. return false;
  5689. }
  5690. mutex_lock(&crtc->mutex);
  5691. intel_encoder->new_crtc = to_intel_crtc(crtc);
  5692. to_intel_connector(connector)->new_encoder = intel_encoder;
  5693. intel_crtc = to_intel_crtc(crtc);
  5694. old->dpms_mode = connector->dpms;
  5695. old->load_detect_temp = true;
  5696. old->release_fb = NULL;
  5697. if (!mode)
  5698. mode = &load_detect_mode;
  5699. /* We need a framebuffer large enough to accommodate all accesses
  5700. * that the plane may generate whilst we perform load detection.
  5701. * We can not rely on the fbcon either being present (we get called
  5702. * during its initialisation to detect all boot displays, or it may
  5703. * not even exist) or that it is large enough to satisfy the
  5704. * requested mode.
  5705. */
  5706. fb = mode_fits_in_fbdev(dev, mode);
  5707. if (fb == NULL) {
  5708. DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
  5709. fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
  5710. old->release_fb = fb;
  5711. } else
  5712. DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
  5713. if (IS_ERR(fb)) {
  5714. DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
  5715. mutex_unlock(&crtc->mutex);
  5716. return false;
  5717. }
  5718. if (intel_set_mode(crtc, mode, 0, 0, fb)) {
  5719. DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
  5720. if (old->release_fb)
  5721. old->release_fb->funcs->destroy(old->release_fb);
  5722. mutex_unlock(&crtc->mutex);
  5723. return false;
  5724. }
  5725. /* let the connector get through one full cycle before testing */
  5726. intel_wait_for_vblank(dev, intel_crtc->pipe);
  5727. return true;
  5728. }
  5729. void intel_release_load_detect_pipe(struct drm_connector *connector,
  5730. struct intel_load_detect_pipe *old)
  5731. {
  5732. struct intel_encoder *intel_encoder =
  5733. intel_attached_encoder(connector);
  5734. struct drm_encoder *encoder = &intel_encoder->base;
  5735. struct drm_crtc *crtc = encoder->crtc;
  5736. DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
  5737. connector->base.id, drm_get_connector_name(connector),
  5738. encoder->base.id, drm_get_encoder_name(encoder));
  5739. if (old->load_detect_temp) {
  5740. to_intel_connector(connector)->new_encoder = NULL;
  5741. intel_encoder->new_crtc = NULL;
  5742. intel_set_mode(crtc, NULL, 0, 0, NULL);
  5743. if (old->release_fb) {
  5744. drm_framebuffer_unregister_private(old->release_fb);
  5745. drm_framebuffer_unreference(old->release_fb);
  5746. }
  5747. mutex_unlock(&crtc->mutex);
  5748. return;
  5749. }
  5750. /* Switch crtc and encoder back off if necessary */
  5751. if (old->dpms_mode != DRM_MODE_DPMS_ON)
  5752. connector->funcs->dpms(connector, old->dpms_mode);
  5753. mutex_unlock(&crtc->mutex);
  5754. }
  5755. /* Returns the clock of the currently programmed mode of the given pipe. */
  5756. static int intel_crtc_clock_get(struct drm_device *dev, struct drm_crtc *crtc)
  5757. {
  5758. struct drm_i915_private *dev_priv = dev->dev_private;
  5759. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5760. int pipe = intel_crtc->pipe;
  5761. u32 dpll = I915_READ(DPLL(pipe));
  5762. u32 fp;
  5763. intel_clock_t clock;
  5764. if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
  5765. fp = I915_READ(FP0(pipe));
  5766. else
  5767. fp = I915_READ(FP1(pipe));
  5768. clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
  5769. if (IS_PINEVIEW(dev)) {
  5770. clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
  5771. clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
  5772. } else {
  5773. clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
  5774. clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
  5775. }
  5776. if (!IS_GEN2(dev)) {
  5777. if (IS_PINEVIEW(dev))
  5778. clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
  5779. DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
  5780. else
  5781. clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
  5782. DPLL_FPA01_P1_POST_DIV_SHIFT);
  5783. switch (dpll & DPLL_MODE_MASK) {
  5784. case DPLLB_MODE_DAC_SERIAL:
  5785. clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
  5786. 5 : 10;
  5787. break;
  5788. case DPLLB_MODE_LVDS:
  5789. clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
  5790. 7 : 14;
  5791. break;
  5792. default:
  5793. DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
  5794. "mode\n", (int)(dpll & DPLL_MODE_MASK));
  5795. return 0;
  5796. }
  5797. if (IS_PINEVIEW(dev))
  5798. pineview_clock(96000, &clock);
  5799. else
  5800. i9xx_clock(96000, &clock);
  5801. } else {
  5802. bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
  5803. if (is_lvds) {
  5804. clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
  5805. DPLL_FPA01_P1_POST_DIV_SHIFT);
  5806. clock.p2 = 14;
  5807. if ((dpll & PLL_REF_INPUT_MASK) ==
  5808. PLLB_REF_INPUT_SPREADSPECTRUMIN) {
  5809. /* XXX: might not be 66MHz */
  5810. i9xx_clock(66000, &clock);
  5811. } else
  5812. i9xx_clock(48000, &clock);
  5813. } else {
  5814. if (dpll & PLL_P1_DIVIDE_BY_TWO)
  5815. clock.p1 = 2;
  5816. else {
  5817. clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
  5818. DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
  5819. }
  5820. if (dpll & PLL_P2_DIVIDE_BY_4)
  5821. clock.p2 = 4;
  5822. else
  5823. clock.p2 = 2;
  5824. i9xx_clock(48000, &clock);
  5825. }
  5826. }
  5827. /* XXX: It would be nice to validate the clocks, but we can't reuse
  5828. * i830PllIsValid() because it relies on the xf86_config connector
  5829. * configuration being accurate, which it isn't necessarily.
  5830. */
  5831. return clock.dot;
  5832. }
  5833. /** Returns the currently programmed mode of the given pipe. */
  5834. struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
  5835. struct drm_crtc *crtc)
  5836. {
  5837. struct drm_i915_private *dev_priv = dev->dev_private;
  5838. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5839. enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
  5840. struct drm_display_mode *mode;
  5841. int htot = I915_READ(HTOTAL(cpu_transcoder));
  5842. int hsync = I915_READ(HSYNC(cpu_transcoder));
  5843. int vtot = I915_READ(VTOTAL(cpu_transcoder));
  5844. int vsync = I915_READ(VSYNC(cpu_transcoder));
  5845. mode = kzalloc(sizeof(*mode), GFP_KERNEL);
  5846. if (!mode)
  5847. return NULL;
  5848. mode->clock = intel_crtc_clock_get(dev, crtc);
  5849. mode->hdisplay = (htot & 0xffff) + 1;
  5850. mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
  5851. mode->hsync_start = (hsync & 0xffff) + 1;
  5852. mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
  5853. mode->vdisplay = (vtot & 0xffff) + 1;
  5854. mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
  5855. mode->vsync_start = (vsync & 0xffff) + 1;
  5856. mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
  5857. drm_mode_set_name(mode);
  5858. return mode;
  5859. }
  5860. static void intel_increase_pllclock(struct drm_crtc *crtc)
  5861. {
  5862. struct drm_device *dev = crtc->dev;
  5863. drm_i915_private_t *dev_priv = dev->dev_private;
  5864. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5865. int pipe = intel_crtc->pipe;
  5866. int dpll_reg = DPLL(pipe);
  5867. int dpll;
  5868. if (HAS_PCH_SPLIT(dev))
  5869. return;
  5870. if (!dev_priv->lvds_downclock_avail)
  5871. return;
  5872. dpll = I915_READ(dpll_reg);
  5873. if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
  5874. DRM_DEBUG_DRIVER("upclocking LVDS\n");
  5875. assert_panel_unlocked(dev_priv, pipe);
  5876. dpll &= ~DISPLAY_RATE_SELECT_FPA1;
  5877. I915_WRITE(dpll_reg, dpll);
  5878. intel_wait_for_vblank(dev, pipe);
  5879. dpll = I915_READ(dpll_reg);
  5880. if (dpll & DISPLAY_RATE_SELECT_FPA1)
  5881. DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
  5882. }
  5883. }
  5884. static void intel_decrease_pllclock(struct drm_crtc *crtc)
  5885. {
  5886. struct drm_device *dev = crtc->dev;
  5887. drm_i915_private_t *dev_priv = dev->dev_private;
  5888. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5889. if (HAS_PCH_SPLIT(dev))
  5890. return;
  5891. if (!dev_priv->lvds_downclock_avail)
  5892. return;
  5893. /*
  5894. * Since this is called by a timer, we should never get here in
  5895. * the manual case.
  5896. */
  5897. if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
  5898. int pipe = intel_crtc->pipe;
  5899. int dpll_reg = DPLL(pipe);
  5900. int dpll;
  5901. DRM_DEBUG_DRIVER("downclocking LVDS\n");
  5902. assert_panel_unlocked(dev_priv, pipe);
  5903. dpll = I915_READ(dpll_reg);
  5904. dpll |= DISPLAY_RATE_SELECT_FPA1;
  5905. I915_WRITE(dpll_reg, dpll);
  5906. intel_wait_for_vblank(dev, pipe);
  5907. dpll = I915_READ(dpll_reg);
  5908. if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
  5909. DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
  5910. }
  5911. }
  5912. void intel_mark_busy(struct drm_device *dev)
  5913. {
  5914. i915_update_gfx_val(dev->dev_private);
  5915. }
  5916. void intel_mark_idle(struct drm_device *dev)
  5917. {
  5918. struct drm_crtc *crtc;
  5919. if (!i915_powersave)
  5920. return;
  5921. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  5922. if (!crtc->fb)
  5923. continue;
  5924. intel_decrease_pllclock(crtc);
  5925. }
  5926. }
  5927. void intel_mark_fb_busy(struct drm_i915_gem_object *obj,
  5928. struct intel_ring_buffer *ring)
  5929. {
  5930. struct drm_device *dev = obj->base.dev;
  5931. struct drm_crtc *crtc;
  5932. if (!i915_powersave)
  5933. return;
  5934. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  5935. if (!crtc->fb)
  5936. continue;
  5937. if (to_intel_framebuffer(crtc->fb)->obj != obj)
  5938. continue;
  5939. intel_increase_pllclock(crtc);
  5940. if (ring && intel_fbc_enabled(dev))
  5941. ring->fbc_dirty = true;
  5942. }
  5943. }
  5944. static void intel_crtc_destroy(struct drm_crtc *crtc)
  5945. {
  5946. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5947. struct drm_device *dev = crtc->dev;
  5948. struct intel_unpin_work *work;
  5949. unsigned long flags;
  5950. spin_lock_irqsave(&dev->event_lock, flags);
  5951. work = intel_crtc->unpin_work;
  5952. intel_crtc->unpin_work = NULL;
  5953. spin_unlock_irqrestore(&dev->event_lock, flags);
  5954. if (work) {
  5955. cancel_work_sync(&work->work);
  5956. kfree(work);
  5957. }
  5958. intel_crtc_cursor_set(crtc, NULL, 0, 0, 0);
  5959. drm_crtc_cleanup(crtc);
  5960. kfree(intel_crtc);
  5961. }
  5962. static void intel_unpin_work_fn(struct work_struct *__work)
  5963. {
  5964. struct intel_unpin_work *work =
  5965. container_of(__work, struct intel_unpin_work, work);
  5966. struct drm_device *dev = work->crtc->dev;
  5967. mutex_lock(&dev->struct_mutex);
  5968. intel_unpin_fb_obj(work->old_fb_obj);
  5969. drm_gem_object_unreference(&work->pending_flip_obj->base);
  5970. drm_gem_object_unreference(&work->old_fb_obj->base);
  5971. intel_update_fbc(dev);
  5972. mutex_unlock(&dev->struct_mutex);
  5973. BUG_ON(atomic_read(&to_intel_crtc(work->crtc)->unpin_work_count) == 0);
  5974. atomic_dec(&to_intel_crtc(work->crtc)->unpin_work_count);
  5975. kfree(work);
  5976. }
  5977. static void do_intel_finish_page_flip(struct drm_device *dev,
  5978. struct drm_crtc *crtc)
  5979. {
  5980. drm_i915_private_t *dev_priv = dev->dev_private;
  5981. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5982. struct intel_unpin_work *work;
  5983. unsigned long flags;
  5984. /* Ignore early vblank irqs */
  5985. if (intel_crtc == NULL)
  5986. return;
  5987. spin_lock_irqsave(&dev->event_lock, flags);
  5988. work = intel_crtc->unpin_work;
  5989. /* Ensure we don't miss a work->pending update ... */
  5990. smp_rmb();
  5991. if (work == NULL || atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
  5992. spin_unlock_irqrestore(&dev->event_lock, flags);
  5993. return;
  5994. }
  5995. /* and that the unpin work is consistent wrt ->pending. */
  5996. smp_rmb();
  5997. intel_crtc->unpin_work = NULL;
  5998. if (work->event)
  5999. drm_send_vblank_event(dev, intel_crtc->pipe, work->event);
  6000. drm_vblank_put(dev, intel_crtc->pipe);
  6001. spin_unlock_irqrestore(&dev->event_lock, flags);
  6002. wake_up_all(&dev_priv->pending_flip_queue);
  6003. queue_work(dev_priv->wq, &work->work);
  6004. trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
  6005. }
  6006. void intel_finish_page_flip(struct drm_device *dev, int pipe)
  6007. {
  6008. drm_i915_private_t *dev_priv = dev->dev_private;
  6009. struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
  6010. do_intel_finish_page_flip(dev, crtc);
  6011. }
  6012. void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
  6013. {
  6014. drm_i915_private_t *dev_priv = dev->dev_private;
  6015. struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
  6016. do_intel_finish_page_flip(dev, crtc);
  6017. }
  6018. void intel_prepare_page_flip(struct drm_device *dev, int plane)
  6019. {
  6020. drm_i915_private_t *dev_priv = dev->dev_private;
  6021. struct intel_crtc *intel_crtc =
  6022. to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
  6023. unsigned long flags;
  6024. /* NB: An MMIO update of the plane base pointer will also
  6025. * generate a page-flip completion irq, i.e. every modeset
  6026. * is also accompanied by a spurious intel_prepare_page_flip().
  6027. */
  6028. spin_lock_irqsave(&dev->event_lock, flags);
  6029. if (intel_crtc->unpin_work)
  6030. atomic_inc_not_zero(&intel_crtc->unpin_work->pending);
  6031. spin_unlock_irqrestore(&dev->event_lock, flags);
  6032. }
  6033. inline static void intel_mark_page_flip_active(struct intel_crtc *intel_crtc)
  6034. {
  6035. /* Ensure that the work item is consistent when activating it ... */
  6036. smp_wmb();
  6037. atomic_set(&intel_crtc->unpin_work->pending, INTEL_FLIP_PENDING);
  6038. /* and that it is marked active as soon as the irq could fire. */
  6039. smp_wmb();
  6040. }
  6041. static int intel_gen2_queue_flip(struct drm_device *dev,
  6042. struct drm_crtc *crtc,
  6043. struct drm_framebuffer *fb,
  6044. struct drm_i915_gem_object *obj)
  6045. {
  6046. struct drm_i915_private *dev_priv = dev->dev_private;
  6047. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6048. u32 flip_mask;
  6049. struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
  6050. int ret;
  6051. ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
  6052. if (ret)
  6053. goto err;
  6054. ret = intel_ring_begin(ring, 6);
  6055. if (ret)
  6056. goto err_unpin;
  6057. /* Can't queue multiple flips, so wait for the previous
  6058. * one to finish before executing the next.
  6059. */
  6060. if (intel_crtc->plane)
  6061. flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
  6062. else
  6063. flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
  6064. intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
  6065. intel_ring_emit(ring, MI_NOOP);
  6066. intel_ring_emit(ring, MI_DISPLAY_FLIP |
  6067. MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
  6068. intel_ring_emit(ring, fb->pitches[0]);
  6069. intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
  6070. intel_ring_emit(ring, 0); /* aux display base address, unused */
  6071. intel_mark_page_flip_active(intel_crtc);
  6072. intel_ring_advance(ring);
  6073. return 0;
  6074. err_unpin:
  6075. intel_unpin_fb_obj(obj);
  6076. err:
  6077. return ret;
  6078. }
  6079. static int intel_gen3_queue_flip(struct drm_device *dev,
  6080. struct drm_crtc *crtc,
  6081. struct drm_framebuffer *fb,
  6082. struct drm_i915_gem_object *obj)
  6083. {
  6084. struct drm_i915_private *dev_priv = dev->dev_private;
  6085. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6086. u32 flip_mask;
  6087. struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
  6088. int ret;
  6089. ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
  6090. if (ret)
  6091. goto err;
  6092. ret = intel_ring_begin(ring, 6);
  6093. if (ret)
  6094. goto err_unpin;
  6095. if (intel_crtc->plane)
  6096. flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
  6097. else
  6098. flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
  6099. intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
  6100. intel_ring_emit(ring, MI_NOOP);
  6101. intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
  6102. MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
  6103. intel_ring_emit(ring, fb->pitches[0]);
  6104. intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
  6105. intel_ring_emit(ring, MI_NOOP);
  6106. intel_mark_page_flip_active(intel_crtc);
  6107. intel_ring_advance(ring);
  6108. return 0;
  6109. err_unpin:
  6110. intel_unpin_fb_obj(obj);
  6111. err:
  6112. return ret;
  6113. }
  6114. static int intel_gen4_queue_flip(struct drm_device *dev,
  6115. struct drm_crtc *crtc,
  6116. struct drm_framebuffer *fb,
  6117. struct drm_i915_gem_object *obj)
  6118. {
  6119. struct drm_i915_private *dev_priv = dev->dev_private;
  6120. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6121. uint32_t pf, pipesrc;
  6122. struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
  6123. int ret;
  6124. ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
  6125. if (ret)
  6126. goto err;
  6127. ret = intel_ring_begin(ring, 4);
  6128. if (ret)
  6129. goto err_unpin;
  6130. /* i965+ uses the linear or tiled offsets from the
  6131. * Display Registers (which do not change across a page-flip)
  6132. * so we need only reprogram the base address.
  6133. */
  6134. intel_ring_emit(ring, MI_DISPLAY_FLIP |
  6135. MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
  6136. intel_ring_emit(ring, fb->pitches[0]);
  6137. intel_ring_emit(ring,
  6138. (obj->gtt_offset + intel_crtc->dspaddr_offset) |
  6139. obj->tiling_mode);
  6140. /* XXX Enabling the panel-fitter across page-flip is so far
  6141. * untested on non-native modes, so ignore it for now.
  6142. * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
  6143. */
  6144. pf = 0;
  6145. pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
  6146. intel_ring_emit(ring, pf | pipesrc);
  6147. intel_mark_page_flip_active(intel_crtc);
  6148. intel_ring_advance(ring);
  6149. return 0;
  6150. err_unpin:
  6151. intel_unpin_fb_obj(obj);
  6152. err:
  6153. return ret;
  6154. }
  6155. static int intel_gen6_queue_flip(struct drm_device *dev,
  6156. struct drm_crtc *crtc,
  6157. struct drm_framebuffer *fb,
  6158. struct drm_i915_gem_object *obj)
  6159. {
  6160. struct drm_i915_private *dev_priv = dev->dev_private;
  6161. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6162. struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
  6163. uint32_t pf, pipesrc;
  6164. int ret;
  6165. ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
  6166. if (ret)
  6167. goto err;
  6168. ret = intel_ring_begin(ring, 4);
  6169. if (ret)
  6170. goto err_unpin;
  6171. intel_ring_emit(ring, MI_DISPLAY_FLIP |
  6172. MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
  6173. intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
  6174. intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
  6175. /* Contrary to the suggestions in the documentation,
  6176. * "Enable Panel Fitter" does not seem to be required when page
  6177. * flipping with a non-native mode, and worse causes a normal
  6178. * modeset to fail.
  6179. * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
  6180. */
  6181. pf = 0;
  6182. pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
  6183. intel_ring_emit(ring, pf | pipesrc);
  6184. intel_mark_page_flip_active(intel_crtc);
  6185. intel_ring_advance(ring);
  6186. return 0;
  6187. err_unpin:
  6188. intel_unpin_fb_obj(obj);
  6189. err:
  6190. return ret;
  6191. }
  6192. /*
  6193. * On gen7 we currently use the blit ring because (in early silicon at least)
  6194. * the render ring doesn't give us interrpts for page flip completion, which
  6195. * means clients will hang after the first flip is queued. Fortunately the
  6196. * blit ring generates interrupts properly, so use it instead.
  6197. */
  6198. static int intel_gen7_queue_flip(struct drm_device *dev,
  6199. struct drm_crtc *crtc,
  6200. struct drm_framebuffer *fb,
  6201. struct drm_i915_gem_object *obj)
  6202. {
  6203. struct drm_i915_private *dev_priv = dev->dev_private;
  6204. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6205. struct intel_ring_buffer *ring = &dev_priv->ring[BCS];
  6206. uint32_t plane_bit = 0;
  6207. int ret;
  6208. ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
  6209. if (ret)
  6210. goto err;
  6211. switch(intel_crtc->plane) {
  6212. case PLANE_A:
  6213. plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
  6214. break;
  6215. case PLANE_B:
  6216. plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
  6217. break;
  6218. case PLANE_C:
  6219. plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
  6220. break;
  6221. default:
  6222. WARN_ONCE(1, "unknown plane in flip command\n");
  6223. ret = -ENODEV;
  6224. goto err_unpin;
  6225. }
  6226. ret = intel_ring_begin(ring, 4);
  6227. if (ret)
  6228. goto err_unpin;
  6229. intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
  6230. intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
  6231. intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
  6232. intel_ring_emit(ring, (MI_NOOP));
  6233. intel_mark_page_flip_active(intel_crtc);
  6234. intel_ring_advance(ring);
  6235. return 0;
  6236. err_unpin:
  6237. intel_unpin_fb_obj(obj);
  6238. err:
  6239. return ret;
  6240. }
  6241. static int intel_default_queue_flip(struct drm_device *dev,
  6242. struct drm_crtc *crtc,
  6243. struct drm_framebuffer *fb,
  6244. struct drm_i915_gem_object *obj)
  6245. {
  6246. return -ENODEV;
  6247. }
  6248. static int intel_crtc_page_flip(struct drm_crtc *crtc,
  6249. struct drm_framebuffer *fb,
  6250. struct drm_pending_vblank_event *event)
  6251. {
  6252. struct drm_device *dev = crtc->dev;
  6253. struct drm_i915_private *dev_priv = dev->dev_private;
  6254. struct drm_framebuffer *old_fb = crtc->fb;
  6255. struct drm_i915_gem_object *obj = to_intel_framebuffer(fb)->obj;
  6256. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6257. struct intel_unpin_work *work;
  6258. unsigned long flags;
  6259. int ret;
  6260. /* Can't change pixel format via MI display flips. */
  6261. if (fb->pixel_format != crtc->fb->pixel_format)
  6262. return -EINVAL;
  6263. /*
  6264. * TILEOFF/LINOFF registers can't be changed via MI display flips.
  6265. * Note that pitch changes could also affect these register.
  6266. */
  6267. if (INTEL_INFO(dev)->gen > 3 &&
  6268. (fb->offsets[0] != crtc->fb->offsets[0] ||
  6269. fb->pitches[0] != crtc->fb->pitches[0]))
  6270. return -EINVAL;
  6271. work = kzalloc(sizeof *work, GFP_KERNEL);
  6272. if (work == NULL)
  6273. return -ENOMEM;
  6274. work->event = event;
  6275. work->crtc = crtc;
  6276. work->old_fb_obj = to_intel_framebuffer(old_fb)->obj;
  6277. INIT_WORK(&work->work, intel_unpin_work_fn);
  6278. ret = drm_vblank_get(dev, intel_crtc->pipe);
  6279. if (ret)
  6280. goto free_work;
  6281. /* We borrow the event spin lock for protecting unpin_work */
  6282. spin_lock_irqsave(&dev->event_lock, flags);
  6283. if (intel_crtc->unpin_work) {
  6284. spin_unlock_irqrestore(&dev->event_lock, flags);
  6285. kfree(work);
  6286. drm_vblank_put(dev, intel_crtc->pipe);
  6287. DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
  6288. return -EBUSY;
  6289. }
  6290. intel_crtc->unpin_work = work;
  6291. spin_unlock_irqrestore(&dev->event_lock, flags);
  6292. if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
  6293. flush_workqueue(dev_priv->wq);
  6294. ret = i915_mutex_lock_interruptible(dev);
  6295. if (ret)
  6296. goto cleanup;
  6297. /* Reference the objects for the scheduled work. */
  6298. drm_gem_object_reference(&work->old_fb_obj->base);
  6299. drm_gem_object_reference(&obj->base);
  6300. crtc->fb = fb;
  6301. work->pending_flip_obj = obj;
  6302. work->enable_stall_check = true;
  6303. atomic_inc(&intel_crtc->unpin_work_count);
  6304. intel_crtc->reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
  6305. ret = dev_priv->display.queue_flip(dev, crtc, fb, obj);
  6306. if (ret)
  6307. goto cleanup_pending;
  6308. intel_disable_fbc(dev);
  6309. intel_mark_fb_busy(obj, NULL);
  6310. mutex_unlock(&dev->struct_mutex);
  6311. trace_i915_flip_request(intel_crtc->plane, obj);
  6312. return 0;
  6313. cleanup_pending:
  6314. atomic_dec(&intel_crtc->unpin_work_count);
  6315. crtc->fb = old_fb;
  6316. drm_gem_object_unreference(&work->old_fb_obj->base);
  6317. drm_gem_object_unreference(&obj->base);
  6318. mutex_unlock(&dev->struct_mutex);
  6319. cleanup:
  6320. spin_lock_irqsave(&dev->event_lock, flags);
  6321. intel_crtc->unpin_work = NULL;
  6322. spin_unlock_irqrestore(&dev->event_lock, flags);
  6323. drm_vblank_put(dev, intel_crtc->pipe);
  6324. free_work:
  6325. kfree(work);
  6326. return ret;
  6327. }
  6328. static struct drm_crtc_helper_funcs intel_helper_funcs = {
  6329. .mode_set_base_atomic = intel_pipe_set_base_atomic,
  6330. .load_lut = intel_crtc_load_lut,
  6331. };
  6332. static bool intel_encoder_crtc_ok(struct drm_encoder *encoder,
  6333. struct drm_crtc *crtc)
  6334. {
  6335. struct drm_device *dev;
  6336. struct drm_crtc *tmp;
  6337. int crtc_mask = 1;
  6338. WARN(!crtc, "checking null crtc?\n");
  6339. dev = crtc->dev;
  6340. list_for_each_entry(tmp, &dev->mode_config.crtc_list, head) {
  6341. if (tmp == crtc)
  6342. break;
  6343. crtc_mask <<= 1;
  6344. }
  6345. if (encoder->possible_crtcs & crtc_mask)
  6346. return true;
  6347. return false;
  6348. }
  6349. /**
  6350. * intel_modeset_update_staged_output_state
  6351. *
  6352. * Updates the staged output configuration state, e.g. after we've read out the
  6353. * current hw state.
  6354. */
  6355. static void intel_modeset_update_staged_output_state(struct drm_device *dev)
  6356. {
  6357. struct intel_encoder *encoder;
  6358. struct intel_connector *connector;
  6359. list_for_each_entry(connector, &dev->mode_config.connector_list,
  6360. base.head) {
  6361. connector->new_encoder =
  6362. to_intel_encoder(connector->base.encoder);
  6363. }
  6364. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  6365. base.head) {
  6366. encoder->new_crtc =
  6367. to_intel_crtc(encoder->base.crtc);
  6368. }
  6369. }
  6370. /**
  6371. * intel_modeset_commit_output_state
  6372. *
  6373. * This function copies the stage display pipe configuration to the real one.
  6374. */
  6375. static void intel_modeset_commit_output_state(struct drm_device *dev)
  6376. {
  6377. struct intel_encoder *encoder;
  6378. struct intel_connector *connector;
  6379. list_for_each_entry(connector, &dev->mode_config.connector_list,
  6380. base.head) {
  6381. connector->base.encoder = &connector->new_encoder->base;
  6382. }
  6383. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  6384. base.head) {
  6385. encoder->base.crtc = &encoder->new_crtc->base;
  6386. }
  6387. }
  6388. static void
  6389. connected_sink_compute_bpp(struct intel_connector * connector,
  6390. struct intel_crtc_config *pipe_config)
  6391. {
  6392. int bpp = pipe_config->pipe_bpp;
  6393. DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n",
  6394. connector->base.base.id,
  6395. drm_get_connector_name(&connector->base));
  6396. /* Don't use an invalid EDID bpc value */
  6397. if (connector->base.display_info.bpc &&
  6398. connector->base.display_info.bpc * 3 < bpp) {
  6399. DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
  6400. bpp, connector->base.display_info.bpc*3);
  6401. pipe_config->pipe_bpp = connector->base.display_info.bpc*3;
  6402. }
  6403. /* Clamp bpp to 8 on screens without EDID 1.4 */
  6404. if (connector->base.display_info.bpc == 0 && bpp > 24) {
  6405. DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of 24\n",
  6406. bpp);
  6407. pipe_config->pipe_bpp = 24;
  6408. }
  6409. }
  6410. static int
  6411. compute_baseline_pipe_bpp(struct intel_crtc *crtc,
  6412. struct drm_framebuffer *fb,
  6413. struct intel_crtc_config *pipe_config)
  6414. {
  6415. struct drm_device *dev = crtc->base.dev;
  6416. struct intel_connector *connector;
  6417. int bpp;
  6418. switch (fb->pixel_format) {
  6419. case DRM_FORMAT_C8:
  6420. bpp = 8*3; /* since we go through a colormap */
  6421. break;
  6422. case DRM_FORMAT_XRGB1555:
  6423. case DRM_FORMAT_ARGB1555:
  6424. /* checked in intel_framebuffer_init already */
  6425. if (WARN_ON(INTEL_INFO(dev)->gen > 3))
  6426. return -EINVAL;
  6427. case DRM_FORMAT_RGB565:
  6428. bpp = 6*3; /* min is 18bpp */
  6429. break;
  6430. case DRM_FORMAT_XBGR8888:
  6431. case DRM_FORMAT_ABGR8888:
  6432. /* checked in intel_framebuffer_init already */
  6433. if (WARN_ON(INTEL_INFO(dev)->gen < 4))
  6434. return -EINVAL;
  6435. case DRM_FORMAT_XRGB8888:
  6436. case DRM_FORMAT_ARGB8888:
  6437. bpp = 8*3;
  6438. break;
  6439. case DRM_FORMAT_XRGB2101010:
  6440. case DRM_FORMAT_ARGB2101010:
  6441. case DRM_FORMAT_XBGR2101010:
  6442. case DRM_FORMAT_ABGR2101010:
  6443. /* checked in intel_framebuffer_init already */
  6444. if (WARN_ON(INTEL_INFO(dev)->gen < 4))
  6445. return -EINVAL;
  6446. bpp = 10*3;
  6447. break;
  6448. /* TODO: gen4+ supports 16 bpc floating point, too. */
  6449. default:
  6450. DRM_DEBUG_KMS("unsupported depth\n");
  6451. return -EINVAL;
  6452. }
  6453. pipe_config->pipe_bpp = bpp;
  6454. /* Clamp display bpp to EDID value */
  6455. list_for_each_entry(connector, &dev->mode_config.connector_list,
  6456. base.head) {
  6457. if (!connector->new_encoder ||
  6458. connector->new_encoder->new_crtc != crtc)
  6459. continue;
  6460. connected_sink_compute_bpp(connector, pipe_config);
  6461. }
  6462. return bpp;
  6463. }
  6464. static void intel_dump_pipe_config(struct intel_crtc *crtc,
  6465. struct intel_crtc_config *pipe_config,
  6466. const char *context)
  6467. {
  6468. DRM_DEBUG_KMS("[CRTC:%d]%s config for pipe %c\n", crtc->base.base.id,
  6469. context, pipe_name(crtc->pipe));
  6470. DRM_DEBUG_KMS("cpu_transcoder: %c\n", transcoder_name(pipe_config->cpu_transcoder));
  6471. DRM_DEBUG_KMS("pipe bpp: %i, dithering: %i\n",
  6472. pipe_config->pipe_bpp, pipe_config->dither);
  6473. DRM_DEBUG_KMS("fdi/pch: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
  6474. pipe_config->has_pch_encoder,
  6475. pipe_config->fdi_lanes,
  6476. pipe_config->fdi_m_n.gmch_m, pipe_config->fdi_m_n.gmch_n,
  6477. pipe_config->fdi_m_n.link_m, pipe_config->fdi_m_n.link_n,
  6478. pipe_config->fdi_m_n.tu);
  6479. DRM_DEBUG_KMS("requested mode:\n");
  6480. drm_mode_debug_printmodeline(&pipe_config->requested_mode);
  6481. DRM_DEBUG_KMS("adjusted mode:\n");
  6482. drm_mode_debug_printmodeline(&pipe_config->adjusted_mode);
  6483. DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
  6484. pipe_config->gmch_pfit.control,
  6485. pipe_config->gmch_pfit.pgm_ratios,
  6486. pipe_config->gmch_pfit.lvds_border_bits);
  6487. DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x\n",
  6488. pipe_config->pch_pfit.pos,
  6489. pipe_config->pch_pfit.size);
  6490. DRM_DEBUG_KMS("ips: %i\n", pipe_config->ips_enabled);
  6491. }
  6492. static bool check_encoder_cloning(struct drm_crtc *crtc)
  6493. {
  6494. int num_encoders = 0;
  6495. bool uncloneable_encoders = false;
  6496. struct intel_encoder *encoder;
  6497. list_for_each_entry(encoder, &crtc->dev->mode_config.encoder_list,
  6498. base.head) {
  6499. if (&encoder->new_crtc->base != crtc)
  6500. continue;
  6501. num_encoders++;
  6502. if (!encoder->cloneable)
  6503. uncloneable_encoders = true;
  6504. }
  6505. return !(num_encoders > 1 && uncloneable_encoders);
  6506. }
  6507. static struct intel_crtc_config *
  6508. intel_modeset_pipe_config(struct drm_crtc *crtc,
  6509. struct drm_framebuffer *fb,
  6510. struct drm_display_mode *mode)
  6511. {
  6512. struct drm_device *dev = crtc->dev;
  6513. struct drm_encoder_helper_funcs *encoder_funcs;
  6514. struct intel_encoder *encoder;
  6515. struct intel_crtc_config *pipe_config;
  6516. int plane_bpp, ret = -EINVAL;
  6517. bool retry = true;
  6518. if (!check_encoder_cloning(crtc)) {
  6519. DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
  6520. return ERR_PTR(-EINVAL);
  6521. }
  6522. pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
  6523. if (!pipe_config)
  6524. return ERR_PTR(-ENOMEM);
  6525. drm_mode_copy(&pipe_config->adjusted_mode, mode);
  6526. drm_mode_copy(&pipe_config->requested_mode, mode);
  6527. pipe_config->cpu_transcoder = to_intel_crtc(crtc)->pipe;
  6528. pipe_config->shared_dpll = DPLL_ID_PRIVATE;
  6529. /* Compute a starting value for pipe_config->pipe_bpp taking the source
  6530. * plane pixel format and any sink constraints into account. Returns the
  6531. * source plane bpp so that dithering can be selected on mismatches
  6532. * after encoders and crtc also have had their say. */
  6533. plane_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
  6534. fb, pipe_config);
  6535. if (plane_bpp < 0)
  6536. goto fail;
  6537. encoder_retry:
  6538. /* Ensure the port clock defaults are reset when retrying. */
  6539. pipe_config->port_clock = 0;
  6540. pipe_config->pixel_multiplier = 1;
  6541. /* Pass our mode to the connectors and the CRTC to give them a chance to
  6542. * adjust it according to limitations or connector properties, and also
  6543. * a chance to reject the mode entirely.
  6544. */
  6545. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  6546. base.head) {
  6547. if (&encoder->new_crtc->base != crtc)
  6548. continue;
  6549. if (encoder->compute_config) {
  6550. if (!(encoder->compute_config(encoder, pipe_config))) {
  6551. DRM_DEBUG_KMS("Encoder config failure\n");
  6552. goto fail;
  6553. }
  6554. continue;
  6555. }
  6556. encoder_funcs = encoder->base.helper_private;
  6557. if (!(encoder_funcs->mode_fixup(&encoder->base,
  6558. &pipe_config->requested_mode,
  6559. &pipe_config->adjusted_mode))) {
  6560. DRM_DEBUG_KMS("Encoder fixup failed\n");
  6561. goto fail;
  6562. }
  6563. }
  6564. /* Set default port clock if not overwritten by the encoder. Needs to be
  6565. * done afterwards in case the encoder adjusts the mode. */
  6566. if (!pipe_config->port_clock)
  6567. pipe_config->port_clock = pipe_config->adjusted_mode.clock;
  6568. ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
  6569. if (ret < 0) {
  6570. DRM_DEBUG_KMS("CRTC fixup failed\n");
  6571. goto fail;
  6572. }
  6573. if (ret == RETRY) {
  6574. if (WARN(!retry, "loop in pipe configuration computation\n")) {
  6575. ret = -EINVAL;
  6576. goto fail;
  6577. }
  6578. DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
  6579. retry = false;
  6580. goto encoder_retry;
  6581. }
  6582. pipe_config->dither = pipe_config->pipe_bpp != plane_bpp;
  6583. DRM_DEBUG_KMS("plane bpp: %i, pipe bpp: %i, dithering: %i\n",
  6584. plane_bpp, pipe_config->pipe_bpp, pipe_config->dither);
  6585. return pipe_config;
  6586. fail:
  6587. kfree(pipe_config);
  6588. return ERR_PTR(ret);
  6589. }
  6590. /* Computes which crtcs are affected and sets the relevant bits in the mask. For
  6591. * simplicity we use the crtc's pipe number (because it's easier to obtain). */
  6592. static void
  6593. intel_modeset_affected_pipes(struct drm_crtc *crtc, unsigned *modeset_pipes,
  6594. unsigned *prepare_pipes, unsigned *disable_pipes)
  6595. {
  6596. struct intel_crtc *intel_crtc;
  6597. struct drm_device *dev = crtc->dev;
  6598. struct intel_encoder *encoder;
  6599. struct intel_connector *connector;
  6600. struct drm_crtc *tmp_crtc;
  6601. *disable_pipes = *modeset_pipes = *prepare_pipes = 0;
  6602. /* Check which crtcs have changed outputs connected to them, these need
  6603. * to be part of the prepare_pipes mask. We don't (yet) support global
  6604. * modeset across multiple crtcs, so modeset_pipes will only have one
  6605. * bit set at most. */
  6606. list_for_each_entry(connector, &dev->mode_config.connector_list,
  6607. base.head) {
  6608. if (connector->base.encoder == &connector->new_encoder->base)
  6609. continue;
  6610. if (connector->base.encoder) {
  6611. tmp_crtc = connector->base.encoder->crtc;
  6612. *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
  6613. }
  6614. if (connector->new_encoder)
  6615. *prepare_pipes |=
  6616. 1 << connector->new_encoder->new_crtc->pipe;
  6617. }
  6618. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  6619. base.head) {
  6620. if (encoder->base.crtc == &encoder->new_crtc->base)
  6621. continue;
  6622. if (encoder->base.crtc) {
  6623. tmp_crtc = encoder->base.crtc;
  6624. *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
  6625. }
  6626. if (encoder->new_crtc)
  6627. *prepare_pipes |= 1 << encoder->new_crtc->pipe;
  6628. }
  6629. /* Check for any pipes that will be fully disabled ... */
  6630. list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
  6631. base.head) {
  6632. bool used = false;
  6633. /* Don't try to disable disabled crtcs. */
  6634. if (!intel_crtc->base.enabled)
  6635. continue;
  6636. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  6637. base.head) {
  6638. if (encoder->new_crtc == intel_crtc)
  6639. used = true;
  6640. }
  6641. if (!used)
  6642. *disable_pipes |= 1 << intel_crtc->pipe;
  6643. }
  6644. /* set_mode is also used to update properties on life display pipes. */
  6645. intel_crtc = to_intel_crtc(crtc);
  6646. if (crtc->enabled)
  6647. *prepare_pipes |= 1 << intel_crtc->pipe;
  6648. /*
  6649. * For simplicity do a full modeset on any pipe where the output routing
  6650. * changed. We could be more clever, but that would require us to be
  6651. * more careful with calling the relevant encoder->mode_set functions.
  6652. */
  6653. if (*prepare_pipes)
  6654. *modeset_pipes = *prepare_pipes;
  6655. /* ... and mask these out. */
  6656. *modeset_pipes &= ~(*disable_pipes);
  6657. *prepare_pipes &= ~(*disable_pipes);
  6658. /*
  6659. * HACK: We don't (yet) fully support global modesets. intel_set_config
  6660. * obies this rule, but the modeset restore mode of
  6661. * intel_modeset_setup_hw_state does not.
  6662. */
  6663. *modeset_pipes &= 1 << intel_crtc->pipe;
  6664. *prepare_pipes &= 1 << intel_crtc->pipe;
  6665. DRM_DEBUG_KMS("set mode pipe masks: modeset: %x, prepare: %x, disable: %x\n",
  6666. *modeset_pipes, *prepare_pipes, *disable_pipes);
  6667. }
  6668. static bool intel_crtc_in_use(struct drm_crtc *crtc)
  6669. {
  6670. struct drm_encoder *encoder;
  6671. struct drm_device *dev = crtc->dev;
  6672. list_for_each_entry(encoder, &dev->mode_config.encoder_list, head)
  6673. if (encoder->crtc == crtc)
  6674. return true;
  6675. return false;
  6676. }
  6677. static void
  6678. intel_modeset_update_state(struct drm_device *dev, unsigned prepare_pipes)
  6679. {
  6680. struct intel_encoder *intel_encoder;
  6681. struct intel_crtc *intel_crtc;
  6682. struct drm_connector *connector;
  6683. list_for_each_entry(intel_encoder, &dev->mode_config.encoder_list,
  6684. base.head) {
  6685. if (!intel_encoder->base.crtc)
  6686. continue;
  6687. intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
  6688. if (prepare_pipes & (1 << intel_crtc->pipe))
  6689. intel_encoder->connectors_active = false;
  6690. }
  6691. intel_modeset_commit_output_state(dev);
  6692. /* Update computed state. */
  6693. list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
  6694. base.head) {
  6695. intel_crtc->base.enabled = intel_crtc_in_use(&intel_crtc->base);
  6696. }
  6697. list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
  6698. if (!connector->encoder || !connector->encoder->crtc)
  6699. continue;
  6700. intel_crtc = to_intel_crtc(connector->encoder->crtc);
  6701. if (prepare_pipes & (1 << intel_crtc->pipe)) {
  6702. struct drm_property *dpms_property =
  6703. dev->mode_config.dpms_property;
  6704. connector->dpms = DRM_MODE_DPMS_ON;
  6705. drm_object_property_set_value(&connector->base,
  6706. dpms_property,
  6707. DRM_MODE_DPMS_ON);
  6708. intel_encoder = to_intel_encoder(connector->encoder);
  6709. intel_encoder->connectors_active = true;
  6710. }
  6711. }
  6712. }
  6713. #define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
  6714. list_for_each_entry((intel_crtc), \
  6715. &(dev)->mode_config.crtc_list, \
  6716. base.head) \
  6717. if (mask & (1 <<(intel_crtc)->pipe))
  6718. static bool
  6719. intel_pipe_config_compare(struct drm_device *dev,
  6720. struct intel_crtc_config *current_config,
  6721. struct intel_crtc_config *pipe_config)
  6722. {
  6723. #define PIPE_CONF_CHECK_X(name) \
  6724. if (current_config->name != pipe_config->name) { \
  6725. DRM_ERROR("mismatch in " #name " " \
  6726. "(expected 0x%08x, found 0x%08x)\n", \
  6727. current_config->name, \
  6728. pipe_config->name); \
  6729. return false; \
  6730. }
  6731. #define PIPE_CONF_CHECK_I(name) \
  6732. if (current_config->name != pipe_config->name) { \
  6733. DRM_ERROR("mismatch in " #name " " \
  6734. "(expected %i, found %i)\n", \
  6735. current_config->name, \
  6736. pipe_config->name); \
  6737. return false; \
  6738. }
  6739. #define PIPE_CONF_CHECK_FLAGS(name, mask) \
  6740. if ((current_config->name ^ pipe_config->name) & (mask)) { \
  6741. DRM_ERROR("mismatch in " #name " " \
  6742. "(expected %i, found %i)\n", \
  6743. current_config->name & (mask), \
  6744. pipe_config->name & (mask)); \
  6745. return false; \
  6746. }
  6747. #define PIPE_CONF_QUIRK(quirk) \
  6748. ((current_config->quirks | pipe_config->quirks) & (quirk))
  6749. PIPE_CONF_CHECK_I(cpu_transcoder);
  6750. PIPE_CONF_CHECK_I(has_pch_encoder);
  6751. PIPE_CONF_CHECK_I(fdi_lanes);
  6752. PIPE_CONF_CHECK_I(fdi_m_n.gmch_m);
  6753. PIPE_CONF_CHECK_I(fdi_m_n.gmch_n);
  6754. PIPE_CONF_CHECK_I(fdi_m_n.link_m);
  6755. PIPE_CONF_CHECK_I(fdi_m_n.link_n);
  6756. PIPE_CONF_CHECK_I(fdi_m_n.tu);
  6757. PIPE_CONF_CHECK_I(adjusted_mode.crtc_hdisplay);
  6758. PIPE_CONF_CHECK_I(adjusted_mode.crtc_htotal);
  6759. PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_start);
  6760. PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_end);
  6761. PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_start);
  6762. PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_end);
  6763. PIPE_CONF_CHECK_I(adjusted_mode.crtc_vdisplay);
  6764. PIPE_CONF_CHECK_I(adjusted_mode.crtc_vtotal);
  6765. PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_start);
  6766. PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_end);
  6767. PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_start);
  6768. PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_end);
  6769. if (!HAS_PCH_SPLIT(dev))
  6770. PIPE_CONF_CHECK_I(pixel_multiplier);
  6771. PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
  6772. DRM_MODE_FLAG_INTERLACE);
  6773. if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
  6774. PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
  6775. DRM_MODE_FLAG_PHSYNC);
  6776. PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
  6777. DRM_MODE_FLAG_NHSYNC);
  6778. PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
  6779. DRM_MODE_FLAG_PVSYNC);
  6780. PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
  6781. DRM_MODE_FLAG_NVSYNC);
  6782. }
  6783. PIPE_CONF_CHECK_I(requested_mode.hdisplay);
  6784. PIPE_CONF_CHECK_I(requested_mode.vdisplay);
  6785. PIPE_CONF_CHECK_I(gmch_pfit.control);
  6786. /* pfit ratios are autocomputed by the hw on gen4+ */
  6787. if (INTEL_INFO(dev)->gen < 4)
  6788. PIPE_CONF_CHECK_I(gmch_pfit.pgm_ratios);
  6789. PIPE_CONF_CHECK_I(gmch_pfit.lvds_border_bits);
  6790. PIPE_CONF_CHECK_I(pch_pfit.pos);
  6791. PIPE_CONF_CHECK_I(pch_pfit.size);
  6792. PIPE_CONF_CHECK_I(ips_enabled);
  6793. PIPE_CONF_CHECK_I(shared_dpll);
  6794. PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
  6795. PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
  6796. PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
  6797. #undef PIPE_CONF_CHECK_X
  6798. #undef PIPE_CONF_CHECK_I
  6799. #undef PIPE_CONF_CHECK_FLAGS
  6800. #undef PIPE_CONF_QUIRK
  6801. return true;
  6802. }
  6803. static void
  6804. check_connector_state(struct drm_device *dev)
  6805. {
  6806. struct intel_connector *connector;
  6807. list_for_each_entry(connector, &dev->mode_config.connector_list,
  6808. base.head) {
  6809. /* This also checks the encoder/connector hw state with the
  6810. * ->get_hw_state callbacks. */
  6811. intel_connector_check_state(connector);
  6812. WARN(&connector->new_encoder->base != connector->base.encoder,
  6813. "connector's staged encoder doesn't match current encoder\n");
  6814. }
  6815. }
  6816. static void
  6817. check_encoder_state(struct drm_device *dev)
  6818. {
  6819. struct intel_encoder *encoder;
  6820. struct intel_connector *connector;
  6821. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  6822. base.head) {
  6823. bool enabled = false;
  6824. bool active = false;
  6825. enum pipe pipe, tracked_pipe;
  6826. DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
  6827. encoder->base.base.id,
  6828. drm_get_encoder_name(&encoder->base));
  6829. WARN(&encoder->new_crtc->base != encoder->base.crtc,
  6830. "encoder's stage crtc doesn't match current crtc\n");
  6831. WARN(encoder->connectors_active && !encoder->base.crtc,
  6832. "encoder's active_connectors set, but no crtc\n");
  6833. list_for_each_entry(connector, &dev->mode_config.connector_list,
  6834. base.head) {
  6835. if (connector->base.encoder != &encoder->base)
  6836. continue;
  6837. enabled = true;
  6838. if (connector->base.dpms != DRM_MODE_DPMS_OFF)
  6839. active = true;
  6840. }
  6841. WARN(!!encoder->base.crtc != enabled,
  6842. "encoder's enabled state mismatch "
  6843. "(expected %i, found %i)\n",
  6844. !!encoder->base.crtc, enabled);
  6845. WARN(active && !encoder->base.crtc,
  6846. "active encoder with no crtc\n");
  6847. WARN(encoder->connectors_active != active,
  6848. "encoder's computed active state doesn't match tracked active state "
  6849. "(expected %i, found %i)\n", active, encoder->connectors_active);
  6850. active = encoder->get_hw_state(encoder, &pipe);
  6851. WARN(active != encoder->connectors_active,
  6852. "encoder's hw state doesn't match sw tracking "
  6853. "(expected %i, found %i)\n",
  6854. encoder->connectors_active, active);
  6855. if (!encoder->base.crtc)
  6856. continue;
  6857. tracked_pipe = to_intel_crtc(encoder->base.crtc)->pipe;
  6858. WARN(active && pipe != tracked_pipe,
  6859. "active encoder's pipe doesn't match"
  6860. "(expected %i, found %i)\n",
  6861. tracked_pipe, pipe);
  6862. }
  6863. }
  6864. static void
  6865. check_crtc_state(struct drm_device *dev)
  6866. {
  6867. drm_i915_private_t *dev_priv = dev->dev_private;
  6868. struct intel_crtc *crtc;
  6869. struct intel_encoder *encoder;
  6870. struct intel_crtc_config pipe_config;
  6871. list_for_each_entry(crtc, &dev->mode_config.crtc_list,
  6872. base.head) {
  6873. bool enabled = false;
  6874. bool active = false;
  6875. memset(&pipe_config, 0, sizeof(pipe_config));
  6876. DRM_DEBUG_KMS("[CRTC:%d]\n",
  6877. crtc->base.base.id);
  6878. WARN(crtc->active && !crtc->base.enabled,
  6879. "active crtc, but not enabled in sw tracking\n");
  6880. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  6881. base.head) {
  6882. if (encoder->base.crtc != &crtc->base)
  6883. continue;
  6884. enabled = true;
  6885. if (encoder->connectors_active)
  6886. active = true;
  6887. }
  6888. WARN(active != crtc->active,
  6889. "crtc's computed active state doesn't match tracked active state "
  6890. "(expected %i, found %i)\n", active, crtc->active);
  6891. WARN(enabled != crtc->base.enabled,
  6892. "crtc's computed enabled state doesn't match tracked enabled state "
  6893. "(expected %i, found %i)\n", enabled, crtc->base.enabled);
  6894. active = dev_priv->display.get_pipe_config(crtc,
  6895. &pipe_config);
  6896. /* hw state is inconsistent with the pipe A quirk */
  6897. if (crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
  6898. active = crtc->active;
  6899. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  6900. base.head) {
  6901. if (encoder->base.crtc != &crtc->base)
  6902. continue;
  6903. if (encoder->get_config)
  6904. encoder->get_config(encoder, &pipe_config);
  6905. }
  6906. WARN(crtc->active != active,
  6907. "crtc active state doesn't match with hw state "
  6908. "(expected %i, found %i)\n", crtc->active, active);
  6909. if (active &&
  6910. !intel_pipe_config_compare(dev, &crtc->config, &pipe_config)) {
  6911. WARN(1, "pipe state doesn't match!\n");
  6912. intel_dump_pipe_config(crtc, &pipe_config,
  6913. "[hw state]");
  6914. intel_dump_pipe_config(crtc, &crtc->config,
  6915. "[sw state]");
  6916. }
  6917. }
  6918. }
  6919. static void
  6920. check_shared_dpll_state(struct drm_device *dev)
  6921. {
  6922. drm_i915_private_t *dev_priv = dev->dev_private;
  6923. struct intel_crtc *crtc;
  6924. struct intel_dpll_hw_state dpll_hw_state;
  6925. int i;
  6926. for (i = 0; i < dev_priv->num_shared_dpll; i++) {
  6927. struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
  6928. int enabled_crtcs = 0, active_crtcs = 0;
  6929. bool active;
  6930. memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
  6931. DRM_DEBUG_KMS("%s\n", pll->name);
  6932. active = pll->get_hw_state(dev_priv, pll, &dpll_hw_state);
  6933. WARN(pll->active > pll->refcount,
  6934. "more active pll users than references: %i vs %i\n",
  6935. pll->active, pll->refcount);
  6936. WARN(pll->active && !pll->on,
  6937. "pll in active use but not on in sw tracking\n");
  6938. WARN(pll->on != active,
  6939. "pll on state mismatch (expected %i, found %i)\n",
  6940. pll->on, active);
  6941. list_for_each_entry(crtc, &dev->mode_config.crtc_list,
  6942. base.head) {
  6943. if (crtc->base.enabled && intel_crtc_to_shared_dpll(crtc) == pll)
  6944. enabled_crtcs++;
  6945. if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
  6946. active_crtcs++;
  6947. }
  6948. WARN(pll->active != active_crtcs,
  6949. "pll active crtcs mismatch (expected %i, found %i)\n",
  6950. pll->active, active_crtcs);
  6951. WARN(pll->refcount != enabled_crtcs,
  6952. "pll enabled crtcs mismatch (expected %i, found %i)\n",
  6953. pll->refcount, enabled_crtcs);
  6954. WARN(pll->on && memcmp(&pll->hw_state, &dpll_hw_state,
  6955. sizeof(dpll_hw_state)),
  6956. "pll hw state mismatch\n");
  6957. }
  6958. }
  6959. void
  6960. intel_modeset_check_state(struct drm_device *dev)
  6961. {
  6962. check_connector_state(dev);
  6963. check_encoder_state(dev);
  6964. check_crtc_state(dev);
  6965. check_shared_dpll_state(dev);
  6966. }
  6967. static int __intel_set_mode(struct drm_crtc *crtc,
  6968. struct drm_display_mode *mode,
  6969. int x, int y, struct drm_framebuffer *fb)
  6970. {
  6971. struct drm_device *dev = crtc->dev;
  6972. drm_i915_private_t *dev_priv = dev->dev_private;
  6973. struct drm_display_mode *saved_mode, *saved_hwmode;
  6974. struct intel_crtc_config *pipe_config = NULL;
  6975. struct intel_crtc *intel_crtc;
  6976. unsigned disable_pipes, prepare_pipes, modeset_pipes;
  6977. int ret = 0;
  6978. saved_mode = kmalloc(2 * sizeof(*saved_mode), GFP_KERNEL);
  6979. if (!saved_mode)
  6980. return -ENOMEM;
  6981. saved_hwmode = saved_mode + 1;
  6982. intel_modeset_affected_pipes(crtc, &modeset_pipes,
  6983. &prepare_pipes, &disable_pipes);
  6984. *saved_hwmode = crtc->hwmode;
  6985. *saved_mode = crtc->mode;
  6986. /* Hack: Because we don't (yet) support global modeset on multiple
  6987. * crtcs, we don't keep track of the new mode for more than one crtc.
  6988. * Hence simply check whether any bit is set in modeset_pipes in all the
  6989. * pieces of code that are not yet converted to deal with mutliple crtcs
  6990. * changing their mode at the same time. */
  6991. if (modeset_pipes) {
  6992. pipe_config = intel_modeset_pipe_config(crtc, fb, mode);
  6993. if (IS_ERR(pipe_config)) {
  6994. ret = PTR_ERR(pipe_config);
  6995. pipe_config = NULL;
  6996. goto out;
  6997. }
  6998. intel_dump_pipe_config(to_intel_crtc(crtc), pipe_config,
  6999. "[modeset]");
  7000. }
  7001. for_each_intel_crtc_masked(dev, disable_pipes, intel_crtc)
  7002. intel_crtc_disable(&intel_crtc->base);
  7003. for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
  7004. if (intel_crtc->base.enabled)
  7005. dev_priv->display.crtc_disable(&intel_crtc->base);
  7006. }
  7007. /* crtc->mode is already used by the ->mode_set callbacks, hence we need
  7008. * to set it here already despite that we pass it down the callchain.
  7009. */
  7010. if (modeset_pipes) {
  7011. crtc->mode = *mode;
  7012. /* mode_set/enable/disable functions rely on a correct pipe
  7013. * config. */
  7014. to_intel_crtc(crtc)->config = *pipe_config;
  7015. }
  7016. /* Only after disabling all output pipelines that will be changed can we
  7017. * update the the output configuration. */
  7018. intel_modeset_update_state(dev, prepare_pipes);
  7019. if (dev_priv->display.modeset_global_resources)
  7020. dev_priv->display.modeset_global_resources(dev);
  7021. /* Set up the DPLL and any encoders state that needs to adjust or depend
  7022. * on the DPLL.
  7023. */
  7024. for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
  7025. ret = intel_crtc_mode_set(&intel_crtc->base,
  7026. x, y, fb);
  7027. if (ret)
  7028. goto done;
  7029. }
  7030. /* Now enable the clocks, plane, pipe, and connectors that we set up. */
  7031. for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc)
  7032. dev_priv->display.crtc_enable(&intel_crtc->base);
  7033. if (modeset_pipes) {
  7034. /* Store real post-adjustment hardware mode. */
  7035. crtc->hwmode = pipe_config->adjusted_mode;
  7036. /* Calculate and store various constants which
  7037. * are later needed by vblank and swap-completion
  7038. * timestamping. They are derived from true hwmode.
  7039. */
  7040. drm_calc_timestamping_constants(crtc);
  7041. }
  7042. /* FIXME: add subpixel order */
  7043. done:
  7044. if (ret && crtc->enabled) {
  7045. crtc->hwmode = *saved_hwmode;
  7046. crtc->mode = *saved_mode;
  7047. }
  7048. out:
  7049. kfree(pipe_config);
  7050. kfree(saved_mode);
  7051. return ret;
  7052. }
  7053. int intel_set_mode(struct drm_crtc *crtc,
  7054. struct drm_display_mode *mode,
  7055. int x, int y, struct drm_framebuffer *fb)
  7056. {
  7057. int ret;
  7058. ret = __intel_set_mode(crtc, mode, x, y, fb);
  7059. if (ret == 0)
  7060. intel_modeset_check_state(crtc->dev);
  7061. return ret;
  7062. }
  7063. void intel_crtc_restore_mode(struct drm_crtc *crtc)
  7064. {
  7065. intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y, crtc->fb);
  7066. }
  7067. #undef for_each_intel_crtc_masked
  7068. static void intel_set_config_free(struct intel_set_config *config)
  7069. {
  7070. if (!config)
  7071. return;
  7072. kfree(config->save_connector_encoders);
  7073. kfree(config->save_encoder_crtcs);
  7074. kfree(config);
  7075. }
  7076. static int intel_set_config_save_state(struct drm_device *dev,
  7077. struct intel_set_config *config)
  7078. {
  7079. struct drm_encoder *encoder;
  7080. struct drm_connector *connector;
  7081. int count;
  7082. config->save_encoder_crtcs =
  7083. kcalloc(dev->mode_config.num_encoder,
  7084. sizeof(struct drm_crtc *), GFP_KERNEL);
  7085. if (!config->save_encoder_crtcs)
  7086. return -ENOMEM;
  7087. config->save_connector_encoders =
  7088. kcalloc(dev->mode_config.num_connector,
  7089. sizeof(struct drm_encoder *), GFP_KERNEL);
  7090. if (!config->save_connector_encoders)
  7091. return -ENOMEM;
  7092. /* Copy data. Note that driver private data is not affected.
  7093. * Should anything bad happen only the expected state is
  7094. * restored, not the drivers personal bookkeeping.
  7095. */
  7096. count = 0;
  7097. list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
  7098. config->save_encoder_crtcs[count++] = encoder->crtc;
  7099. }
  7100. count = 0;
  7101. list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
  7102. config->save_connector_encoders[count++] = connector->encoder;
  7103. }
  7104. return 0;
  7105. }
  7106. static void intel_set_config_restore_state(struct drm_device *dev,
  7107. struct intel_set_config *config)
  7108. {
  7109. struct intel_encoder *encoder;
  7110. struct intel_connector *connector;
  7111. int count;
  7112. count = 0;
  7113. list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
  7114. encoder->new_crtc =
  7115. to_intel_crtc(config->save_encoder_crtcs[count++]);
  7116. }
  7117. count = 0;
  7118. list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
  7119. connector->new_encoder =
  7120. to_intel_encoder(config->save_connector_encoders[count++]);
  7121. }
  7122. }
  7123. static bool
  7124. is_crtc_connector_off(struct drm_crtc *crtc, struct drm_connector *connectors,
  7125. int num_connectors)
  7126. {
  7127. int i;
  7128. for (i = 0; i < num_connectors; i++)
  7129. if (connectors[i].encoder &&
  7130. connectors[i].encoder->crtc == crtc &&
  7131. connectors[i].dpms != DRM_MODE_DPMS_ON)
  7132. return true;
  7133. return false;
  7134. }
  7135. static void
  7136. intel_set_config_compute_mode_changes(struct drm_mode_set *set,
  7137. struct intel_set_config *config)
  7138. {
  7139. /* We should be able to check here if the fb has the same properties
  7140. * and then just flip_or_move it */
  7141. if (set->connectors != NULL &&
  7142. is_crtc_connector_off(set->crtc, *set->connectors,
  7143. set->num_connectors)) {
  7144. config->mode_changed = true;
  7145. } else if (set->crtc->fb != set->fb) {
  7146. /* If we have no fb then treat it as a full mode set */
  7147. if (set->crtc->fb == NULL) {
  7148. DRM_DEBUG_KMS("crtc has no fb, full mode set\n");
  7149. config->mode_changed = true;
  7150. } else if (set->fb == NULL) {
  7151. config->mode_changed = true;
  7152. } else if (set->fb->pixel_format !=
  7153. set->crtc->fb->pixel_format) {
  7154. config->mode_changed = true;
  7155. } else {
  7156. config->fb_changed = true;
  7157. }
  7158. }
  7159. if (set->fb && (set->x != set->crtc->x || set->y != set->crtc->y))
  7160. config->fb_changed = true;
  7161. if (set->mode && !drm_mode_equal(set->mode, &set->crtc->mode)) {
  7162. DRM_DEBUG_KMS("modes are different, full mode set\n");
  7163. drm_mode_debug_printmodeline(&set->crtc->mode);
  7164. drm_mode_debug_printmodeline(set->mode);
  7165. config->mode_changed = true;
  7166. }
  7167. }
  7168. static int
  7169. intel_modeset_stage_output_state(struct drm_device *dev,
  7170. struct drm_mode_set *set,
  7171. struct intel_set_config *config)
  7172. {
  7173. struct drm_crtc *new_crtc;
  7174. struct intel_connector *connector;
  7175. struct intel_encoder *encoder;
  7176. int count, ro;
  7177. /* The upper layers ensure that we either disable a crtc or have a list
  7178. * of connectors. For paranoia, double-check this. */
  7179. WARN_ON(!set->fb && (set->num_connectors != 0));
  7180. WARN_ON(set->fb && (set->num_connectors == 0));
  7181. count = 0;
  7182. list_for_each_entry(connector, &dev->mode_config.connector_list,
  7183. base.head) {
  7184. /* Otherwise traverse passed in connector list and get encoders
  7185. * for them. */
  7186. for (ro = 0; ro < set->num_connectors; ro++) {
  7187. if (set->connectors[ro] == &connector->base) {
  7188. connector->new_encoder = connector->encoder;
  7189. break;
  7190. }
  7191. }
  7192. /* If we disable the crtc, disable all its connectors. Also, if
  7193. * the connector is on the changing crtc but not on the new
  7194. * connector list, disable it. */
  7195. if ((!set->fb || ro == set->num_connectors) &&
  7196. connector->base.encoder &&
  7197. connector->base.encoder->crtc == set->crtc) {
  7198. connector->new_encoder = NULL;
  7199. DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [NOCRTC]\n",
  7200. connector->base.base.id,
  7201. drm_get_connector_name(&connector->base));
  7202. }
  7203. if (&connector->new_encoder->base != connector->base.encoder) {
  7204. DRM_DEBUG_KMS("encoder changed, full mode switch\n");
  7205. config->mode_changed = true;
  7206. }
  7207. }
  7208. /* connector->new_encoder is now updated for all connectors. */
  7209. /* Update crtc of enabled connectors. */
  7210. count = 0;
  7211. list_for_each_entry(connector, &dev->mode_config.connector_list,
  7212. base.head) {
  7213. if (!connector->new_encoder)
  7214. continue;
  7215. new_crtc = connector->new_encoder->base.crtc;
  7216. for (ro = 0; ro < set->num_connectors; ro++) {
  7217. if (set->connectors[ro] == &connector->base)
  7218. new_crtc = set->crtc;
  7219. }
  7220. /* Make sure the new CRTC will work with the encoder */
  7221. if (!intel_encoder_crtc_ok(&connector->new_encoder->base,
  7222. new_crtc)) {
  7223. return -EINVAL;
  7224. }
  7225. connector->encoder->new_crtc = to_intel_crtc(new_crtc);
  7226. DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [CRTC:%d]\n",
  7227. connector->base.base.id,
  7228. drm_get_connector_name(&connector->base),
  7229. new_crtc->base.id);
  7230. }
  7231. /* Check for any encoders that needs to be disabled. */
  7232. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  7233. base.head) {
  7234. list_for_each_entry(connector,
  7235. &dev->mode_config.connector_list,
  7236. base.head) {
  7237. if (connector->new_encoder == encoder) {
  7238. WARN_ON(!connector->new_encoder->new_crtc);
  7239. goto next_encoder;
  7240. }
  7241. }
  7242. encoder->new_crtc = NULL;
  7243. next_encoder:
  7244. /* Only now check for crtc changes so we don't miss encoders
  7245. * that will be disabled. */
  7246. if (&encoder->new_crtc->base != encoder->base.crtc) {
  7247. DRM_DEBUG_KMS("crtc changed, full mode switch\n");
  7248. config->mode_changed = true;
  7249. }
  7250. }
  7251. /* Now we've also updated encoder->new_crtc for all encoders. */
  7252. return 0;
  7253. }
  7254. static int intel_crtc_set_config(struct drm_mode_set *set)
  7255. {
  7256. struct drm_device *dev;
  7257. struct drm_mode_set save_set;
  7258. struct intel_set_config *config;
  7259. int ret;
  7260. BUG_ON(!set);
  7261. BUG_ON(!set->crtc);
  7262. BUG_ON(!set->crtc->helper_private);
  7263. /* Enforce sane interface api - has been abused by the fb helper. */
  7264. BUG_ON(!set->mode && set->fb);
  7265. BUG_ON(set->fb && set->num_connectors == 0);
  7266. if (set->fb) {
  7267. DRM_DEBUG_KMS("[CRTC:%d] [FB:%d] #connectors=%d (x y) (%i %i)\n",
  7268. set->crtc->base.id, set->fb->base.id,
  7269. (int)set->num_connectors, set->x, set->y);
  7270. } else {
  7271. DRM_DEBUG_KMS("[CRTC:%d] [NOFB]\n", set->crtc->base.id);
  7272. }
  7273. dev = set->crtc->dev;
  7274. ret = -ENOMEM;
  7275. config = kzalloc(sizeof(*config), GFP_KERNEL);
  7276. if (!config)
  7277. goto out_config;
  7278. ret = intel_set_config_save_state(dev, config);
  7279. if (ret)
  7280. goto out_config;
  7281. save_set.crtc = set->crtc;
  7282. save_set.mode = &set->crtc->mode;
  7283. save_set.x = set->crtc->x;
  7284. save_set.y = set->crtc->y;
  7285. save_set.fb = set->crtc->fb;
  7286. /* Compute whether we need a full modeset, only an fb base update or no
  7287. * change at all. In the future we might also check whether only the
  7288. * mode changed, e.g. for LVDS where we only change the panel fitter in
  7289. * such cases. */
  7290. intel_set_config_compute_mode_changes(set, config);
  7291. ret = intel_modeset_stage_output_state(dev, set, config);
  7292. if (ret)
  7293. goto fail;
  7294. if (config->mode_changed) {
  7295. ret = intel_set_mode(set->crtc, set->mode,
  7296. set->x, set->y, set->fb);
  7297. } else if (config->fb_changed) {
  7298. intel_crtc_wait_for_pending_flips(set->crtc);
  7299. ret = intel_pipe_set_base(set->crtc,
  7300. set->x, set->y, set->fb);
  7301. }
  7302. if (ret) {
  7303. DRM_DEBUG_KMS("failed to set mode on [CRTC:%d], err = %d\n",
  7304. set->crtc->base.id, ret);
  7305. fail:
  7306. intel_set_config_restore_state(dev, config);
  7307. /* Try to restore the config */
  7308. if (config->mode_changed &&
  7309. intel_set_mode(save_set.crtc, save_set.mode,
  7310. save_set.x, save_set.y, save_set.fb))
  7311. DRM_ERROR("failed to restore config after modeset failure\n");
  7312. }
  7313. out_config:
  7314. intel_set_config_free(config);
  7315. return ret;
  7316. }
  7317. static const struct drm_crtc_funcs intel_crtc_funcs = {
  7318. .cursor_set = intel_crtc_cursor_set,
  7319. .cursor_move = intel_crtc_cursor_move,
  7320. .gamma_set = intel_crtc_gamma_set,
  7321. .set_config = intel_crtc_set_config,
  7322. .destroy = intel_crtc_destroy,
  7323. .page_flip = intel_crtc_page_flip,
  7324. };
  7325. static void intel_cpu_pll_init(struct drm_device *dev)
  7326. {
  7327. if (HAS_DDI(dev))
  7328. intel_ddi_pll_init(dev);
  7329. }
  7330. static bool ibx_pch_dpll_get_hw_state(struct drm_i915_private *dev_priv,
  7331. struct intel_shared_dpll *pll,
  7332. struct intel_dpll_hw_state *hw_state)
  7333. {
  7334. uint32_t val;
  7335. val = I915_READ(PCH_DPLL(pll->id));
  7336. hw_state->dpll = val;
  7337. hw_state->fp0 = I915_READ(PCH_FP0(pll->id));
  7338. hw_state->fp1 = I915_READ(PCH_FP1(pll->id));
  7339. return val & DPLL_VCO_ENABLE;
  7340. }
  7341. static void ibx_pch_dpll_enable(struct drm_i915_private *dev_priv,
  7342. struct intel_shared_dpll *pll)
  7343. {
  7344. uint32_t reg, val;
  7345. /* PCH refclock must be enabled first */
  7346. assert_pch_refclk_enabled(dev_priv);
  7347. reg = PCH_DPLL(pll->id);
  7348. val = I915_READ(reg);
  7349. val |= DPLL_VCO_ENABLE;
  7350. I915_WRITE(reg, val);
  7351. POSTING_READ(reg);
  7352. udelay(200);
  7353. }
  7354. static void ibx_pch_dpll_disable(struct drm_i915_private *dev_priv,
  7355. struct intel_shared_dpll *pll)
  7356. {
  7357. struct drm_device *dev = dev_priv->dev;
  7358. struct intel_crtc *crtc;
  7359. uint32_t reg, val;
  7360. /* Make sure no transcoder isn't still depending on us. */
  7361. list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) {
  7362. if (intel_crtc_to_shared_dpll(crtc) == pll)
  7363. assert_pch_transcoder_disabled(dev_priv, crtc->pipe);
  7364. }
  7365. reg = PCH_DPLL(pll->id);
  7366. val = I915_READ(reg);
  7367. val &= ~DPLL_VCO_ENABLE;
  7368. I915_WRITE(reg, val);
  7369. POSTING_READ(reg);
  7370. udelay(200);
  7371. }
  7372. static char *ibx_pch_dpll_names[] = {
  7373. "PCH DPLL A",
  7374. "PCH DPLL B",
  7375. };
  7376. static void ibx_pch_dpll_init(struct drm_device *dev)
  7377. {
  7378. struct drm_i915_private *dev_priv = dev->dev_private;
  7379. int i;
  7380. dev_priv->num_shared_dpll = 2;
  7381. for (i = 0; i < dev_priv->num_shared_dpll; i++) {
  7382. dev_priv->shared_dplls[i].id = i;
  7383. dev_priv->shared_dplls[i].name = ibx_pch_dpll_names[i];
  7384. dev_priv->shared_dplls[i].enable = ibx_pch_dpll_enable;
  7385. dev_priv->shared_dplls[i].disable = ibx_pch_dpll_disable;
  7386. dev_priv->shared_dplls[i].get_hw_state =
  7387. ibx_pch_dpll_get_hw_state;
  7388. }
  7389. }
  7390. static void intel_shared_dpll_init(struct drm_device *dev)
  7391. {
  7392. struct drm_i915_private *dev_priv = dev->dev_private;
  7393. if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
  7394. ibx_pch_dpll_init(dev);
  7395. else
  7396. dev_priv->num_shared_dpll = 0;
  7397. BUG_ON(dev_priv->num_shared_dpll > I915_NUM_PLLS);
  7398. DRM_DEBUG_KMS("%i shared PLLs initialized\n",
  7399. dev_priv->num_shared_dpll);
  7400. }
  7401. static void intel_crtc_init(struct drm_device *dev, int pipe)
  7402. {
  7403. drm_i915_private_t *dev_priv = dev->dev_private;
  7404. struct intel_crtc *intel_crtc;
  7405. int i;
  7406. intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
  7407. if (intel_crtc == NULL)
  7408. return;
  7409. drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
  7410. drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
  7411. for (i = 0; i < 256; i++) {
  7412. intel_crtc->lut_r[i] = i;
  7413. intel_crtc->lut_g[i] = i;
  7414. intel_crtc->lut_b[i] = i;
  7415. }
  7416. /* Swap pipes & planes for FBC on pre-965 */
  7417. intel_crtc->pipe = pipe;
  7418. intel_crtc->plane = pipe;
  7419. if (IS_MOBILE(dev) && IS_GEN3(dev)) {
  7420. DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
  7421. intel_crtc->plane = !pipe;
  7422. }
  7423. BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
  7424. dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
  7425. dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
  7426. dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
  7427. drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
  7428. }
  7429. int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
  7430. struct drm_file *file)
  7431. {
  7432. struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
  7433. struct drm_mode_object *drmmode_obj;
  7434. struct intel_crtc *crtc;
  7435. if (!drm_core_check_feature(dev, DRIVER_MODESET))
  7436. return -ENODEV;
  7437. drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
  7438. DRM_MODE_OBJECT_CRTC);
  7439. if (!drmmode_obj) {
  7440. DRM_ERROR("no such CRTC id\n");
  7441. return -EINVAL;
  7442. }
  7443. crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
  7444. pipe_from_crtc_id->pipe = crtc->pipe;
  7445. return 0;
  7446. }
  7447. static int intel_encoder_clones(struct intel_encoder *encoder)
  7448. {
  7449. struct drm_device *dev = encoder->base.dev;
  7450. struct intel_encoder *source_encoder;
  7451. int index_mask = 0;
  7452. int entry = 0;
  7453. list_for_each_entry(source_encoder,
  7454. &dev->mode_config.encoder_list, base.head) {
  7455. if (encoder == source_encoder)
  7456. index_mask |= (1 << entry);
  7457. /* Intel hw has only one MUX where enocoders could be cloned. */
  7458. if (encoder->cloneable && source_encoder->cloneable)
  7459. index_mask |= (1 << entry);
  7460. entry++;
  7461. }
  7462. return index_mask;
  7463. }
  7464. static bool has_edp_a(struct drm_device *dev)
  7465. {
  7466. struct drm_i915_private *dev_priv = dev->dev_private;
  7467. if (!IS_MOBILE(dev))
  7468. return false;
  7469. if ((I915_READ(DP_A) & DP_DETECTED) == 0)
  7470. return false;
  7471. if (IS_GEN5(dev) &&
  7472. (I915_READ(ILK_DISPLAY_CHICKEN_FUSES) & ILK_eDP_A_DISABLE))
  7473. return false;
  7474. return true;
  7475. }
  7476. static void intel_setup_outputs(struct drm_device *dev)
  7477. {
  7478. struct drm_i915_private *dev_priv = dev->dev_private;
  7479. struct intel_encoder *encoder;
  7480. bool dpd_is_edp = false;
  7481. intel_lvds_init(dev);
  7482. if (!IS_ULT(dev))
  7483. intel_crt_init(dev);
  7484. if (HAS_DDI(dev)) {
  7485. int found;
  7486. /* Haswell uses DDI functions to detect digital outputs */
  7487. found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
  7488. /* DDI A only supports eDP */
  7489. if (found)
  7490. intel_ddi_init(dev, PORT_A);
  7491. /* DDI B, C and D detection is indicated by the SFUSE_STRAP
  7492. * register */
  7493. found = I915_READ(SFUSE_STRAP);
  7494. if (found & SFUSE_STRAP_DDIB_DETECTED)
  7495. intel_ddi_init(dev, PORT_B);
  7496. if (found & SFUSE_STRAP_DDIC_DETECTED)
  7497. intel_ddi_init(dev, PORT_C);
  7498. if (found & SFUSE_STRAP_DDID_DETECTED)
  7499. intel_ddi_init(dev, PORT_D);
  7500. } else if (HAS_PCH_SPLIT(dev)) {
  7501. int found;
  7502. dpd_is_edp = intel_dpd_is_edp(dev);
  7503. if (has_edp_a(dev))
  7504. intel_dp_init(dev, DP_A, PORT_A);
  7505. if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
  7506. /* PCH SDVOB multiplex with HDMIB */
  7507. found = intel_sdvo_init(dev, PCH_SDVOB, true);
  7508. if (!found)
  7509. intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
  7510. if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
  7511. intel_dp_init(dev, PCH_DP_B, PORT_B);
  7512. }
  7513. if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
  7514. intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
  7515. if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
  7516. intel_hdmi_init(dev, PCH_HDMID, PORT_D);
  7517. if (I915_READ(PCH_DP_C) & DP_DETECTED)
  7518. intel_dp_init(dev, PCH_DP_C, PORT_C);
  7519. if (I915_READ(PCH_DP_D) & DP_DETECTED)
  7520. intel_dp_init(dev, PCH_DP_D, PORT_D);
  7521. } else if (IS_VALLEYVIEW(dev)) {
  7522. /* Check for built-in panel first. Shares lanes with HDMI on SDVOC */
  7523. if (I915_READ(VLV_DISPLAY_BASE + DP_C) & DP_DETECTED)
  7524. intel_dp_init(dev, VLV_DISPLAY_BASE + DP_C, PORT_C);
  7525. if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIB) & SDVO_DETECTED) {
  7526. intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIB,
  7527. PORT_B);
  7528. if (I915_READ(VLV_DISPLAY_BASE + DP_B) & DP_DETECTED)
  7529. intel_dp_init(dev, VLV_DISPLAY_BASE + DP_B, PORT_B);
  7530. }
  7531. } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
  7532. bool found = false;
  7533. if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
  7534. DRM_DEBUG_KMS("probing SDVOB\n");
  7535. found = intel_sdvo_init(dev, GEN3_SDVOB, true);
  7536. if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
  7537. DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
  7538. intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
  7539. }
  7540. if (!found && SUPPORTS_INTEGRATED_DP(dev))
  7541. intel_dp_init(dev, DP_B, PORT_B);
  7542. }
  7543. /* Before G4X SDVOC doesn't have its own detect register */
  7544. if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
  7545. DRM_DEBUG_KMS("probing SDVOC\n");
  7546. found = intel_sdvo_init(dev, GEN3_SDVOC, false);
  7547. }
  7548. if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
  7549. if (SUPPORTS_INTEGRATED_HDMI(dev)) {
  7550. DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
  7551. intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
  7552. }
  7553. if (SUPPORTS_INTEGRATED_DP(dev))
  7554. intel_dp_init(dev, DP_C, PORT_C);
  7555. }
  7556. if (SUPPORTS_INTEGRATED_DP(dev) &&
  7557. (I915_READ(DP_D) & DP_DETECTED))
  7558. intel_dp_init(dev, DP_D, PORT_D);
  7559. } else if (IS_GEN2(dev))
  7560. intel_dvo_init(dev);
  7561. if (SUPPORTS_TV(dev))
  7562. intel_tv_init(dev);
  7563. list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
  7564. encoder->base.possible_crtcs = encoder->crtc_mask;
  7565. encoder->base.possible_clones =
  7566. intel_encoder_clones(encoder);
  7567. }
  7568. intel_init_pch_refclk(dev);
  7569. drm_helper_move_panel_connectors_to_head(dev);
  7570. }
  7571. static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
  7572. {
  7573. struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
  7574. drm_framebuffer_cleanup(fb);
  7575. drm_gem_object_unreference_unlocked(&intel_fb->obj->base);
  7576. kfree(intel_fb);
  7577. }
  7578. static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
  7579. struct drm_file *file,
  7580. unsigned int *handle)
  7581. {
  7582. struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
  7583. struct drm_i915_gem_object *obj = intel_fb->obj;
  7584. return drm_gem_handle_create(file, &obj->base, handle);
  7585. }
  7586. static const struct drm_framebuffer_funcs intel_fb_funcs = {
  7587. .destroy = intel_user_framebuffer_destroy,
  7588. .create_handle = intel_user_framebuffer_create_handle,
  7589. };
  7590. int intel_framebuffer_init(struct drm_device *dev,
  7591. struct intel_framebuffer *intel_fb,
  7592. struct drm_mode_fb_cmd2 *mode_cmd,
  7593. struct drm_i915_gem_object *obj)
  7594. {
  7595. int pitch_limit;
  7596. int ret;
  7597. if (obj->tiling_mode == I915_TILING_Y) {
  7598. DRM_DEBUG("hardware does not support tiling Y\n");
  7599. return -EINVAL;
  7600. }
  7601. if (mode_cmd->pitches[0] & 63) {
  7602. DRM_DEBUG("pitch (%d) must be at least 64 byte aligned\n",
  7603. mode_cmd->pitches[0]);
  7604. return -EINVAL;
  7605. }
  7606. if (INTEL_INFO(dev)->gen >= 5 && !IS_VALLEYVIEW(dev)) {
  7607. pitch_limit = 32*1024;
  7608. } else if (INTEL_INFO(dev)->gen >= 4) {
  7609. if (obj->tiling_mode)
  7610. pitch_limit = 16*1024;
  7611. else
  7612. pitch_limit = 32*1024;
  7613. } else if (INTEL_INFO(dev)->gen >= 3) {
  7614. if (obj->tiling_mode)
  7615. pitch_limit = 8*1024;
  7616. else
  7617. pitch_limit = 16*1024;
  7618. } else
  7619. /* XXX DSPC is limited to 4k tiled */
  7620. pitch_limit = 8*1024;
  7621. if (mode_cmd->pitches[0] > pitch_limit) {
  7622. DRM_DEBUG("%s pitch (%d) must be at less than %d\n",
  7623. obj->tiling_mode ? "tiled" : "linear",
  7624. mode_cmd->pitches[0], pitch_limit);
  7625. return -EINVAL;
  7626. }
  7627. if (obj->tiling_mode != I915_TILING_NONE &&
  7628. mode_cmd->pitches[0] != obj->stride) {
  7629. DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
  7630. mode_cmd->pitches[0], obj->stride);
  7631. return -EINVAL;
  7632. }
  7633. /* Reject formats not supported by any plane early. */
  7634. switch (mode_cmd->pixel_format) {
  7635. case DRM_FORMAT_C8:
  7636. case DRM_FORMAT_RGB565:
  7637. case DRM_FORMAT_XRGB8888:
  7638. case DRM_FORMAT_ARGB8888:
  7639. break;
  7640. case DRM_FORMAT_XRGB1555:
  7641. case DRM_FORMAT_ARGB1555:
  7642. if (INTEL_INFO(dev)->gen > 3) {
  7643. DRM_DEBUG("unsupported pixel format: %s\n",
  7644. drm_get_format_name(mode_cmd->pixel_format));
  7645. return -EINVAL;
  7646. }
  7647. break;
  7648. case DRM_FORMAT_XBGR8888:
  7649. case DRM_FORMAT_ABGR8888:
  7650. case DRM_FORMAT_XRGB2101010:
  7651. case DRM_FORMAT_ARGB2101010:
  7652. case DRM_FORMAT_XBGR2101010:
  7653. case DRM_FORMAT_ABGR2101010:
  7654. if (INTEL_INFO(dev)->gen < 4) {
  7655. DRM_DEBUG("unsupported pixel format: %s\n",
  7656. drm_get_format_name(mode_cmd->pixel_format));
  7657. return -EINVAL;
  7658. }
  7659. break;
  7660. case DRM_FORMAT_YUYV:
  7661. case DRM_FORMAT_UYVY:
  7662. case DRM_FORMAT_YVYU:
  7663. case DRM_FORMAT_VYUY:
  7664. if (INTEL_INFO(dev)->gen < 5) {
  7665. DRM_DEBUG("unsupported pixel format: %s\n",
  7666. drm_get_format_name(mode_cmd->pixel_format));
  7667. return -EINVAL;
  7668. }
  7669. break;
  7670. default:
  7671. DRM_DEBUG("unsupported pixel format: %s\n",
  7672. drm_get_format_name(mode_cmd->pixel_format));
  7673. return -EINVAL;
  7674. }
  7675. /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
  7676. if (mode_cmd->offsets[0] != 0)
  7677. return -EINVAL;
  7678. drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
  7679. intel_fb->obj = obj;
  7680. ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
  7681. if (ret) {
  7682. DRM_ERROR("framebuffer init failed %d\n", ret);
  7683. return ret;
  7684. }
  7685. return 0;
  7686. }
  7687. static struct drm_framebuffer *
  7688. intel_user_framebuffer_create(struct drm_device *dev,
  7689. struct drm_file *filp,
  7690. struct drm_mode_fb_cmd2 *mode_cmd)
  7691. {
  7692. struct drm_i915_gem_object *obj;
  7693. obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
  7694. mode_cmd->handles[0]));
  7695. if (&obj->base == NULL)
  7696. return ERR_PTR(-ENOENT);
  7697. return intel_framebuffer_create(dev, mode_cmd, obj);
  7698. }
  7699. static const struct drm_mode_config_funcs intel_mode_funcs = {
  7700. .fb_create = intel_user_framebuffer_create,
  7701. .output_poll_changed = intel_fb_output_poll_changed,
  7702. };
  7703. /* Set up chip specific display functions */
  7704. static void intel_init_display(struct drm_device *dev)
  7705. {
  7706. struct drm_i915_private *dev_priv = dev->dev_private;
  7707. if (HAS_PCH_SPLIT(dev) || IS_G4X(dev))
  7708. dev_priv->display.find_dpll = g4x_find_best_dpll;
  7709. else if (IS_VALLEYVIEW(dev))
  7710. dev_priv->display.find_dpll = vlv_find_best_dpll;
  7711. else if (IS_PINEVIEW(dev))
  7712. dev_priv->display.find_dpll = pnv_find_best_dpll;
  7713. else
  7714. dev_priv->display.find_dpll = i9xx_find_best_dpll;
  7715. if (HAS_DDI(dev)) {
  7716. dev_priv->display.get_pipe_config = haswell_get_pipe_config;
  7717. dev_priv->display.crtc_mode_set = haswell_crtc_mode_set;
  7718. dev_priv->display.crtc_enable = haswell_crtc_enable;
  7719. dev_priv->display.crtc_disable = haswell_crtc_disable;
  7720. dev_priv->display.off = haswell_crtc_off;
  7721. dev_priv->display.update_plane = ironlake_update_plane;
  7722. } else if (HAS_PCH_SPLIT(dev)) {
  7723. dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
  7724. dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set;
  7725. dev_priv->display.crtc_enable = ironlake_crtc_enable;
  7726. dev_priv->display.crtc_disable = ironlake_crtc_disable;
  7727. dev_priv->display.off = ironlake_crtc_off;
  7728. dev_priv->display.update_plane = ironlake_update_plane;
  7729. } else if (IS_VALLEYVIEW(dev)) {
  7730. dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
  7731. dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
  7732. dev_priv->display.crtc_enable = valleyview_crtc_enable;
  7733. dev_priv->display.crtc_disable = i9xx_crtc_disable;
  7734. dev_priv->display.off = i9xx_crtc_off;
  7735. dev_priv->display.update_plane = i9xx_update_plane;
  7736. } else {
  7737. dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
  7738. dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
  7739. dev_priv->display.crtc_enable = i9xx_crtc_enable;
  7740. dev_priv->display.crtc_disable = i9xx_crtc_disable;
  7741. dev_priv->display.off = i9xx_crtc_off;
  7742. dev_priv->display.update_plane = i9xx_update_plane;
  7743. }
  7744. /* Returns the core display clock speed */
  7745. if (IS_VALLEYVIEW(dev))
  7746. dev_priv->display.get_display_clock_speed =
  7747. valleyview_get_display_clock_speed;
  7748. else if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
  7749. dev_priv->display.get_display_clock_speed =
  7750. i945_get_display_clock_speed;
  7751. else if (IS_I915G(dev))
  7752. dev_priv->display.get_display_clock_speed =
  7753. i915_get_display_clock_speed;
  7754. else if (IS_I945GM(dev) || IS_845G(dev) || IS_PINEVIEW_M(dev))
  7755. dev_priv->display.get_display_clock_speed =
  7756. i9xx_misc_get_display_clock_speed;
  7757. else if (IS_I915GM(dev))
  7758. dev_priv->display.get_display_clock_speed =
  7759. i915gm_get_display_clock_speed;
  7760. else if (IS_I865G(dev))
  7761. dev_priv->display.get_display_clock_speed =
  7762. i865_get_display_clock_speed;
  7763. else if (IS_I85X(dev))
  7764. dev_priv->display.get_display_clock_speed =
  7765. i855_get_display_clock_speed;
  7766. else /* 852, 830 */
  7767. dev_priv->display.get_display_clock_speed =
  7768. i830_get_display_clock_speed;
  7769. if (HAS_PCH_SPLIT(dev)) {
  7770. if (IS_GEN5(dev)) {
  7771. dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
  7772. dev_priv->display.write_eld = ironlake_write_eld;
  7773. } else if (IS_GEN6(dev)) {
  7774. dev_priv->display.fdi_link_train = gen6_fdi_link_train;
  7775. dev_priv->display.write_eld = ironlake_write_eld;
  7776. } else if (IS_IVYBRIDGE(dev)) {
  7777. /* FIXME: detect B0+ stepping and use auto training */
  7778. dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
  7779. dev_priv->display.write_eld = ironlake_write_eld;
  7780. dev_priv->display.modeset_global_resources =
  7781. ivb_modeset_global_resources;
  7782. } else if (IS_HASWELL(dev)) {
  7783. dev_priv->display.fdi_link_train = hsw_fdi_link_train;
  7784. dev_priv->display.write_eld = haswell_write_eld;
  7785. dev_priv->display.modeset_global_resources =
  7786. haswell_modeset_global_resources;
  7787. }
  7788. } else if (IS_G4X(dev)) {
  7789. dev_priv->display.write_eld = g4x_write_eld;
  7790. }
  7791. /* Default just returns -ENODEV to indicate unsupported */
  7792. dev_priv->display.queue_flip = intel_default_queue_flip;
  7793. switch (INTEL_INFO(dev)->gen) {
  7794. case 2:
  7795. dev_priv->display.queue_flip = intel_gen2_queue_flip;
  7796. break;
  7797. case 3:
  7798. dev_priv->display.queue_flip = intel_gen3_queue_flip;
  7799. break;
  7800. case 4:
  7801. case 5:
  7802. dev_priv->display.queue_flip = intel_gen4_queue_flip;
  7803. break;
  7804. case 6:
  7805. dev_priv->display.queue_flip = intel_gen6_queue_flip;
  7806. break;
  7807. case 7:
  7808. dev_priv->display.queue_flip = intel_gen7_queue_flip;
  7809. break;
  7810. }
  7811. }
  7812. /*
  7813. * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
  7814. * resume, or other times. This quirk makes sure that's the case for
  7815. * affected systems.
  7816. */
  7817. static void quirk_pipea_force(struct drm_device *dev)
  7818. {
  7819. struct drm_i915_private *dev_priv = dev->dev_private;
  7820. dev_priv->quirks |= QUIRK_PIPEA_FORCE;
  7821. DRM_INFO("applying pipe a force quirk\n");
  7822. }
  7823. /*
  7824. * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
  7825. */
  7826. static void quirk_ssc_force_disable(struct drm_device *dev)
  7827. {
  7828. struct drm_i915_private *dev_priv = dev->dev_private;
  7829. dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
  7830. DRM_INFO("applying lvds SSC disable quirk\n");
  7831. }
  7832. /*
  7833. * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
  7834. * brightness value
  7835. */
  7836. static void quirk_invert_brightness(struct drm_device *dev)
  7837. {
  7838. struct drm_i915_private *dev_priv = dev->dev_private;
  7839. dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
  7840. DRM_INFO("applying inverted panel brightness quirk\n");
  7841. }
  7842. struct intel_quirk {
  7843. int device;
  7844. int subsystem_vendor;
  7845. int subsystem_device;
  7846. void (*hook)(struct drm_device *dev);
  7847. };
  7848. /* For systems that don't have a meaningful PCI subdevice/subvendor ID */
  7849. struct intel_dmi_quirk {
  7850. void (*hook)(struct drm_device *dev);
  7851. const struct dmi_system_id (*dmi_id_list)[];
  7852. };
  7853. static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
  7854. {
  7855. DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
  7856. return 1;
  7857. }
  7858. static const struct intel_dmi_quirk intel_dmi_quirks[] = {
  7859. {
  7860. .dmi_id_list = &(const struct dmi_system_id[]) {
  7861. {
  7862. .callback = intel_dmi_reverse_brightness,
  7863. .ident = "NCR Corporation",
  7864. .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
  7865. DMI_MATCH(DMI_PRODUCT_NAME, ""),
  7866. },
  7867. },
  7868. { } /* terminating entry */
  7869. },
  7870. .hook = quirk_invert_brightness,
  7871. },
  7872. };
  7873. static struct intel_quirk intel_quirks[] = {
  7874. /* HP Mini needs pipe A force quirk (LP: #322104) */
  7875. { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
  7876. /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
  7877. { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
  7878. /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
  7879. { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
  7880. /* 830/845 need to leave pipe A & dpll A up */
  7881. { 0x2562, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
  7882. { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
  7883. /* Lenovo U160 cannot use SSC on LVDS */
  7884. { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
  7885. /* Sony Vaio Y cannot use SSC on LVDS */
  7886. { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
  7887. /* Acer Aspire 5734Z must invert backlight brightness */
  7888. { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
  7889. /* Acer/eMachines G725 */
  7890. { 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
  7891. /* Acer/eMachines e725 */
  7892. { 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
  7893. /* Acer/Packard Bell NCL20 */
  7894. { 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
  7895. /* Acer Aspire 4736Z */
  7896. { 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
  7897. };
  7898. static void intel_init_quirks(struct drm_device *dev)
  7899. {
  7900. struct pci_dev *d = dev->pdev;
  7901. int i;
  7902. for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
  7903. struct intel_quirk *q = &intel_quirks[i];
  7904. if (d->device == q->device &&
  7905. (d->subsystem_vendor == q->subsystem_vendor ||
  7906. q->subsystem_vendor == PCI_ANY_ID) &&
  7907. (d->subsystem_device == q->subsystem_device ||
  7908. q->subsystem_device == PCI_ANY_ID))
  7909. q->hook(dev);
  7910. }
  7911. for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
  7912. if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
  7913. intel_dmi_quirks[i].hook(dev);
  7914. }
  7915. }
  7916. /* Disable the VGA plane that we never use */
  7917. static void i915_disable_vga(struct drm_device *dev)
  7918. {
  7919. struct drm_i915_private *dev_priv = dev->dev_private;
  7920. u8 sr1;
  7921. u32 vga_reg = i915_vgacntrl_reg(dev);
  7922. vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
  7923. outb(SR01, VGA_SR_INDEX);
  7924. sr1 = inb(VGA_SR_DATA);
  7925. outb(sr1 | 1<<5, VGA_SR_DATA);
  7926. vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
  7927. udelay(300);
  7928. I915_WRITE(vga_reg, VGA_DISP_DISABLE);
  7929. POSTING_READ(vga_reg);
  7930. }
  7931. void intel_modeset_init_hw(struct drm_device *dev)
  7932. {
  7933. intel_init_power_well(dev);
  7934. intel_prepare_ddi(dev);
  7935. intel_init_clock_gating(dev);
  7936. mutex_lock(&dev->struct_mutex);
  7937. intel_enable_gt_powersave(dev);
  7938. mutex_unlock(&dev->struct_mutex);
  7939. }
  7940. void intel_modeset_suspend_hw(struct drm_device *dev)
  7941. {
  7942. intel_suspend_hw(dev);
  7943. }
  7944. void intel_modeset_init(struct drm_device *dev)
  7945. {
  7946. struct drm_i915_private *dev_priv = dev->dev_private;
  7947. int i, j, ret;
  7948. drm_mode_config_init(dev);
  7949. dev->mode_config.min_width = 0;
  7950. dev->mode_config.min_height = 0;
  7951. dev->mode_config.preferred_depth = 24;
  7952. dev->mode_config.prefer_shadow = 1;
  7953. dev->mode_config.funcs = &intel_mode_funcs;
  7954. intel_init_quirks(dev);
  7955. intel_init_pm(dev);
  7956. if (INTEL_INFO(dev)->num_pipes == 0)
  7957. return;
  7958. intel_init_display(dev);
  7959. if (IS_GEN2(dev)) {
  7960. dev->mode_config.max_width = 2048;
  7961. dev->mode_config.max_height = 2048;
  7962. } else if (IS_GEN3(dev)) {
  7963. dev->mode_config.max_width = 4096;
  7964. dev->mode_config.max_height = 4096;
  7965. } else {
  7966. dev->mode_config.max_width = 8192;
  7967. dev->mode_config.max_height = 8192;
  7968. }
  7969. dev->mode_config.fb_base = dev_priv->gtt.mappable_base;
  7970. DRM_DEBUG_KMS("%d display pipe%s available.\n",
  7971. INTEL_INFO(dev)->num_pipes,
  7972. INTEL_INFO(dev)->num_pipes > 1 ? "s" : "");
  7973. for (i = 0; i < INTEL_INFO(dev)->num_pipes; i++) {
  7974. intel_crtc_init(dev, i);
  7975. for (j = 0; j < dev_priv->num_plane; j++) {
  7976. ret = intel_plane_init(dev, i, j);
  7977. if (ret)
  7978. DRM_DEBUG_KMS("pipe %c sprite %c init failed: %d\n",
  7979. pipe_name(i), sprite_name(i, j), ret);
  7980. }
  7981. }
  7982. intel_cpu_pll_init(dev);
  7983. intel_shared_dpll_init(dev);
  7984. /* Just disable it once at startup */
  7985. i915_disable_vga(dev);
  7986. intel_setup_outputs(dev);
  7987. /* Just in case the BIOS is doing something questionable. */
  7988. intel_disable_fbc(dev);
  7989. }
  7990. static void
  7991. intel_connector_break_all_links(struct intel_connector *connector)
  7992. {
  7993. connector->base.dpms = DRM_MODE_DPMS_OFF;
  7994. connector->base.encoder = NULL;
  7995. connector->encoder->connectors_active = false;
  7996. connector->encoder->base.crtc = NULL;
  7997. }
  7998. static void intel_enable_pipe_a(struct drm_device *dev)
  7999. {
  8000. struct intel_connector *connector;
  8001. struct drm_connector *crt = NULL;
  8002. struct intel_load_detect_pipe load_detect_temp;
  8003. /* We can't just switch on the pipe A, we need to set things up with a
  8004. * proper mode and output configuration. As a gross hack, enable pipe A
  8005. * by enabling the load detect pipe once. */
  8006. list_for_each_entry(connector,
  8007. &dev->mode_config.connector_list,
  8008. base.head) {
  8009. if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
  8010. crt = &connector->base;
  8011. break;
  8012. }
  8013. }
  8014. if (!crt)
  8015. return;
  8016. if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp))
  8017. intel_release_load_detect_pipe(crt, &load_detect_temp);
  8018. }
  8019. static bool
  8020. intel_check_plane_mapping(struct intel_crtc *crtc)
  8021. {
  8022. struct drm_device *dev = crtc->base.dev;
  8023. struct drm_i915_private *dev_priv = dev->dev_private;
  8024. u32 reg, val;
  8025. if (INTEL_INFO(dev)->num_pipes == 1)
  8026. return true;
  8027. reg = DSPCNTR(!crtc->plane);
  8028. val = I915_READ(reg);
  8029. if ((val & DISPLAY_PLANE_ENABLE) &&
  8030. (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
  8031. return false;
  8032. return true;
  8033. }
  8034. static void intel_sanitize_crtc(struct intel_crtc *crtc)
  8035. {
  8036. struct drm_device *dev = crtc->base.dev;
  8037. struct drm_i915_private *dev_priv = dev->dev_private;
  8038. u32 reg;
  8039. /* Clear any frame start delays used for debugging left by the BIOS */
  8040. reg = PIPECONF(crtc->config.cpu_transcoder);
  8041. I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
  8042. /* We need to sanitize the plane -> pipe mapping first because this will
  8043. * disable the crtc (and hence change the state) if it is wrong. Note
  8044. * that gen4+ has a fixed plane -> pipe mapping. */
  8045. if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
  8046. struct intel_connector *connector;
  8047. bool plane;
  8048. DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
  8049. crtc->base.base.id);
  8050. /* Pipe has the wrong plane attached and the plane is active.
  8051. * Temporarily change the plane mapping and disable everything
  8052. * ... */
  8053. plane = crtc->plane;
  8054. crtc->plane = !plane;
  8055. dev_priv->display.crtc_disable(&crtc->base);
  8056. crtc->plane = plane;
  8057. /* ... and break all links. */
  8058. list_for_each_entry(connector, &dev->mode_config.connector_list,
  8059. base.head) {
  8060. if (connector->encoder->base.crtc != &crtc->base)
  8061. continue;
  8062. intel_connector_break_all_links(connector);
  8063. }
  8064. WARN_ON(crtc->active);
  8065. crtc->base.enabled = false;
  8066. }
  8067. if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
  8068. crtc->pipe == PIPE_A && !crtc->active) {
  8069. /* BIOS forgot to enable pipe A, this mostly happens after
  8070. * resume. Force-enable the pipe to fix this, the update_dpms
  8071. * call below we restore the pipe to the right state, but leave
  8072. * the required bits on. */
  8073. intel_enable_pipe_a(dev);
  8074. }
  8075. /* Adjust the state of the output pipe according to whether we
  8076. * have active connectors/encoders. */
  8077. intel_crtc_update_dpms(&crtc->base);
  8078. if (crtc->active != crtc->base.enabled) {
  8079. struct intel_encoder *encoder;
  8080. /* This can happen either due to bugs in the get_hw_state
  8081. * functions or because the pipe is force-enabled due to the
  8082. * pipe A quirk. */
  8083. DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
  8084. crtc->base.base.id,
  8085. crtc->base.enabled ? "enabled" : "disabled",
  8086. crtc->active ? "enabled" : "disabled");
  8087. crtc->base.enabled = crtc->active;
  8088. /* Because we only establish the connector -> encoder ->
  8089. * crtc links if something is active, this means the
  8090. * crtc is now deactivated. Break the links. connector
  8091. * -> encoder links are only establish when things are
  8092. * actually up, hence no need to break them. */
  8093. WARN_ON(crtc->active);
  8094. for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
  8095. WARN_ON(encoder->connectors_active);
  8096. encoder->base.crtc = NULL;
  8097. }
  8098. }
  8099. }
  8100. static void intel_sanitize_encoder(struct intel_encoder *encoder)
  8101. {
  8102. struct intel_connector *connector;
  8103. struct drm_device *dev = encoder->base.dev;
  8104. /* We need to check both for a crtc link (meaning that the
  8105. * encoder is active and trying to read from a pipe) and the
  8106. * pipe itself being active. */
  8107. bool has_active_crtc = encoder->base.crtc &&
  8108. to_intel_crtc(encoder->base.crtc)->active;
  8109. if (encoder->connectors_active && !has_active_crtc) {
  8110. DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
  8111. encoder->base.base.id,
  8112. drm_get_encoder_name(&encoder->base));
  8113. /* Connector is active, but has no active pipe. This is
  8114. * fallout from our resume register restoring. Disable
  8115. * the encoder manually again. */
  8116. if (encoder->base.crtc) {
  8117. DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
  8118. encoder->base.base.id,
  8119. drm_get_encoder_name(&encoder->base));
  8120. encoder->disable(encoder);
  8121. }
  8122. /* Inconsistent output/port/pipe state happens presumably due to
  8123. * a bug in one of the get_hw_state functions. Or someplace else
  8124. * in our code, like the register restore mess on resume. Clamp
  8125. * things to off as a safer default. */
  8126. list_for_each_entry(connector,
  8127. &dev->mode_config.connector_list,
  8128. base.head) {
  8129. if (connector->encoder != encoder)
  8130. continue;
  8131. intel_connector_break_all_links(connector);
  8132. }
  8133. }
  8134. /* Enabled encoders without active connectors will be fixed in
  8135. * the crtc fixup. */
  8136. }
  8137. void i915_redisable_vga(struct drm_device *dev)
  8138. {
  8139. struct drm_i915_private *dev_priv = dev->dev_private;
  8140. u32 vga_reg = i915_vgacntrl_reg(dev);
  8141. if (I915_READ(vga_reg) != VGA_DISP_DISABLE) {
  8142. DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
  8143. i915_disable_vga(dev);
  8144. }
  8145. }
  8146. static void intel_modeset_readout_hw_state(struct drm_device *dev)
  8147. {
  8148. struct drm_i915_private *dev_priv = dev->dev_private;
  8149. enum pipe pipe;
  8150. struct intel_crtc *crtc;
  8151. struct intel_encoder *encoder;
  8152. struct intel_connector *connector;
  8153. int i;
  8154. list_for_each_entry(crtc, &dev->mode_config.crtc_list,
  8155. base.head) {
  8156. memset(&crtc->config, 0, sizeof(crtc->config));
  8157. crtc->active = dev_priv->display.get_pipe_config(crtc,
  8158. &crtc->config);
  8159. crtc->base.enabled = crtc->active;
  8160. DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
  8161. crtc->base.base.id,
  8162. crtc->active ? "enabled" : "disabled");
  8163. }
  8164. /* FIXME: Smash this into the new shared dpll infrastructure. */
  8165. if (HAS_DDI(dev))
  8166. intel_ddi_setup_hw_pll_state(dev);
  8167. for (i = 0; i < dev_priv->num_shared_dpll; i++) {
  8168. struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
  8169. pll->on = pll->get_hw_state(dev_priv, pll, &pll->hw_state);
  8170. pll->active = 0;
  8171. list_for_each_entry(crtc, &dev->mode_config.crtc_list,
  8172. base.head) {
  8173. if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
  8174. pll->active++;
  8175. }
  8176. pll->refcount = pll->active;
  8177. DRM_DEBUG_KMS("%s hw state readout: refcount %i\n",
  8178. pll->name, pll->refcount);
  8179. }
  8180. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  8181. base.head) {
  8182. pipe = 0;
  8183. if (encoder->get_hw_state(encoder, &pipe)) {
  8184. crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
  8185. encoder->base.crtc = &crtc->base;
  8186. if (encoder->get_config)
  8187. encoder->get_config(encoder, &crtc->config);
  8188. } else {
  8189. encoder->base.crtc = NULL;
  8190. }
  8191. encoder->connectors_active = false;
  8192. DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe=%i\n",
  8193. encoder->base.base.id,
  8194. drm_get_encoder_name(&encoder->base),
  8195. encoder->base.crtc ? "enabled" : "disabled",
  8196. pipe);
  8197. }
  8198. list_for_each_entry(connector, &dev->mode_config.connector_list,
  8199. base.head) {
  8200. if (connector->get_hw_state(connector)) {
  8201. connector->base.dpms = DRM_MODE_DPMS_ON;
  8202. connector->encoder->connectors_active = true;
  8203. connector->base.encoder = &connector->encoder->base;
  8204. } else {
  8205. connector->base.dpms = DRM_MODE_DPMS_OFF;
  8206. connector->base.encoder = NULL;
  8207. }
  8208. DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
  8209. connector->base.base.id,
  8210. drm_get_connector_name(&connector->base),
  8211. connector->base.encoder ? "enabled" : "disabled");
  8212. }
  8213. }
  8214. /* Scan out the current hw modeset state, sanitizes it and maps it into the drm
  8215. * and i915 state tracking structures. */
  8216. void intel_modeset_setup_hw_state(struct drm_device *dev,
  8217. bool force_restore)
  8218. {
  8219. struct drm_i915_private *dev_priv = dev->dev_private;
  8220. enum pipe pipe;
  8221. struct drm_plane *plane;
  8222. struct intel_crtc *crtc;
  8223. struct intel_encoder *encoder;
  8224. intel_modeset_readout_hw_state(dev);
  8225. /* HW state is read out, now we need to sanitize this mess. */
  8226. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  8227. base.head) {
  8228. intel_sanitize_encoder(encoder);
  8229. }
  8230. for_each_pipe(pipe) {
  8231. crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
  8232. intel_sanitize_crtc(crtc);
  8233. intel_dump_pipe_config(crtc, &crtc->config, "[setup_hw_state]");
  8234. }
  8235. if (force_restore) {
  8236. /*
  8237. * We need to use raw interfaces for restoring state to avoid
  8238. * checking (bogus) intermediate states.
  8239. */
  8240. for_each_pipe(pipe) {
  8241. struct drm_crtc *crtc =
  8242. dev_priv->pipe_to_crtc_mapping[pipe];
  8243. __intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y,
  8244. crtc->fb);
  8245. }
  8246. list_for_each_entry(plane, &dev->mode_config.plane_list, head)
  8247. intel_plane_restore(plane);
  8248. i915_redisable_vga(dev);
  8249. } else {
  8250. intel_modeset_update_staged_output_state(dev);
  8251. }
  8252. intel_modeset_check_state(dev);
  8253. drm_mode_config_reset(dev);
  8254. }
  8255. void intel_modeset_gem_init(struct drm_device *dev)
  8256. {
  8257. intel_modeset_init_hw(dev);
  8258. intel_setup_overlay(dev);
  8259. intel_modeset_setup_hw_state(dev, false);
  8260. }
  8261. void intel_modeset_cleanup(struct drm_device *dev)
  8262. {
  8263. struct drm_i915_private *dev_priv = dev->dev_private;
  8264. struct drm_crtc *crtc;
  8265. struct intel_crtc *intel_crtc;
  8266. /*
  8267. * Interrupts and polling as the first thing to avoid creating havoc.
  8268. * Too much stuff here (turning of rps, connectors, ...) would
  8269. * experience fancy races otherwise.
  8270. */
  8271. drm_irq_uninstall(dev);
  8272. cancel_work_sync(&dev_priv->hotplug_work);
  8273. /*
  8274. * Due to the hpd irq storm handling the hotplug work can re-arm the
  8275. * poll handlers. Hence disable polling after hpd handling is shut down.
  8276. */
  8277. drm_kms_helper_poll_fini(dev);
  8278. mutex_lock(&dev->struct_mutex);
  8279. intel_unregister_dsm_handler();
  8280. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  8281. /* Skip inactive CRTCs */
  8282. if (!crtc->fb)
  8283. continue;
  8284. intel_crtc = to_intel_crtc(crtc);
  8285. intel_increase_pllclock(crtc);
  8286. }
  8287. intel_disable_fbc(dev);
  8288. intel_disable_gt_powersave(dev);
  8289. ironlake_teardown_rc6(dev);
  8290. mutex_unlock(&dev->struct_mutex);
  8291. /* flush any delayed tasks or pending work */
  8292. flush_scheduled_work();
  8293. /* destroy backlight, if any, before the connectors */
  8294. intel_panel_destroy_backlight(dev);
  8295. drm_mode_config_cleanup(dev);
  8296. intel_cleanup_overlay(dev);
  8297. }
  8298. /*
  8299. * Return which encoder is currently attached for connector.
  8300. */
  8301. struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
  8302. {
  8303. return &intel_attached_encoder(connector)->base;
  8304. }
  8305. void intel_connector_attach_encoder(struct intel_connector *connector,
  8306. struct intel_encoder *encoder)
  8307. {
  8308. connector->encoder = encoder;
  8309. drm_mode_connector_attach_encoder(&connector->base,
  8310. &encoder->base);
  8311. }
  8312. /*
  8313. * set vga decode state - true == enable VGA decode
  8314. */
  8315. int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
  8316. {
  8317. struct drm_i915_private *dev_priv = dev->dev_private;
  8318. u16 gmch_ctrl;
  8319. pci_read_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, &gmch_ctrl);
  8320. if (state)
  8321. gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
  8322. else
  8323. gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
  8324. pci_write_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, gmch_ctrl);
  8325. return 0;
  8326. }
  8327. #ifdef CONFIG_DEBUG_FS
  8328. #include <linux/seq_file.h>
  8329. struct intel_display_error_state {
  8330. u32 power_well_driver;
  8331. struct intel_cursor_error_state {
  8332. u32 control;
  8333. u32 position;
  8334. u32 base;
  8335. u32 size;
  8336. } cursor[I915_MAX_PIPES];
  8337. struct intel_pipe_error_state {
  8338. enum transcoder cpu_transcoder;
  8339. u32 conf;
  8340. u32 source;
  8341. u32 htotal;
  8342. u32 hblank;
  8343. u32 hsync;
  8344. u32 vtotal;
  8345. u32 vblank;
  8346. u32 vsync;
  8347. } pipe[I915_MAX_PIPES];
  8348. struct intel_plane_error_state {
  8349. u32 control;
  8350. u32 stride;
  8351. u32 size;
  8352. u32 pos;
  8353. u32 addr;
  8354. u32 surface;
  8355. u32 tile_offset;
  8356. } plane[I915_MAX_PIPES];
  8357. };
  8358. struct intel_display_error_state *
  8359. intel_display_capture_error_state(struct drm_device *dev)
  8360. {
  8361. drm_i915_private_t *dev_priv = dev->dev_private;
  8362. struct intel_display_error_state *error;
  8363. enum transcoder cpu_transcoder;
  8364. int i;
  8365. error = kmalloc(sizeof(*error), GFP_ATOMIC);
  8366. if (error == NULL)
  8367. return NULL;
  8368. if (HAS_POWER_WELL(dev))
  8369. error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER);
  8370. for_each_pipe(i) {
  8371. cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv, i);
  8372. error->pipe[i].cpu_transcoder = cpu_transcoder;
  8373. if (INTEL_INFO(dev)->gen <= 6 || IS_VALLEYVIEW(dev)) {
  8374. error->cursor[i].control = I915_READ(CURCNTR(i));
  8375. error->cursor[i].position = I915_READ(CURPOS(i));
  8376. error->cursor[i].base = I915_READ(CURBASE(i));
  8377. } else {
  8378. error->cursor[i].control = I915_READ(CURCNTR_IVB(i));
  8379. error->cursor[i].position = I915_READ(CURPOS_IVB(i));
  8380. error->cursor[i].base = I915_READ(CURBASE_IVB(i));
  8381. }
  8382. error->plane[i].control = I915_READ(DSPCNTR(i));
  8383. error->plane[i].stride = I915_READ(DSPSTRIDE(i));
  8384. if (INTEL_INFO(dev)->gen <= 3) {
  8385. error->plane[i].size = I915_READ(DSPSIZE(i));
  8386. error->plane[i].pos = I915_READ(DSPPOS(i));
  8387. }
  8388. if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
  8389. error->plane[i].addr = I915_READ(DSPADDR(i));
  8390. if (INTEL_INFO(dev)->gen >= 4) {
  8391. error->plane[i].surface = I915_READ(DSPSURF(i));
  8392. error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
  8393. }
  8394. error->pipe[i].conf = I915_READ(PIPECONF(cpu_transcoder));
  8395. error->pipe[i].source = I915_READ(PIPESRC(i));
  8396. error->pipe[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
  8397. error->pipe[i].hblank = I915_READ(HBLANK(cpu_transcoder));
  8398. error->pipe[i].hsync = I915_READ(HSYNC(cpu_transcoder));
  8399. error->pipe[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
  8400. error->pipe[i].vblank = I915_READ(VBLANK(cpu_transcoder));
  8401. error->pipe[i].vsync = I915_READ(VSYNC(cpu_transcoder));
  8402. }
  8403. /* In the code above we read the registers without checking if the power
  8404. * well was on, so here we have to clear the FPGA_DBG_RM_NOCLAIM bit to
  8405. * prevent the next I915_WRITE from detecting it and printing an error
  8406. * message. */
  8407. if (HAS_POWER_WELL(dev))
  8408. I915_WRITE_NOTRACE(FPGA_DBG, FPGA_DBG_RM_NOCLAIM);
  8409. return error;
  8410. }
  8411. #define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
  8412. void
  8413. intel_display_print_error_state(struct drm_i915_error_state_buf *m,
  8414. struct drm_device *dev,
  8415. struct intel_display_error_state *error)
  8416. {
  8417. int i;
  8418. err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes);
  8419. if (HAS_POWER_WELL(dev))
  8420. err_printf(m, "PWR_WELL_CTL2: %08x\n",
  8421. error->power_well_driver);
  8422. for_each_pipe(i) {
  8423. err_printf(m, "Pipe [%d]:\n", i);
  8424. err_printf(m, " CPU transcoder: %c\n",
  8425. transcoder_name(error->pipe[i].cpu_transcoder));
  8426. err_printf(m, " CONF: %08x\n", error->pipe[i].conf);
  8427. err_printf(m, " SRC: %08x\n", error->pipe[i].source);
  8428. err_printf(m, " HTOTAL: %08x\n", error->pipe[i].htotal);
  8429. err_printf(m, " HBLANK: %08x\n", error->pipe[i].hblank);
  8430. err_printf(m, " HSYNC: %08x\n", error->pipe[i].hsync);
  8431. err_printf(m, " VTOTAL: %08x\n", error->pipe[i].vtotal);
  8432. err_printf(m, " VBLANK: %08x\n", error->pipe[i].vblank);
  8433. err_printf(m, " VSYNC: %08x\n", error->pipe[i].vsync);
  8434. err_printf(m, "Plane [%d]:\n", i);
  8435. err_printf(m, " CNTR: %08x\n", error->plane[i].control);
  8436. err_printf(m, " STRIDE: %08x\n", error->plane[i].stride);
  8437. if (INTEL_INFO(dev)->gen <= 3) {
  8438. err_printf(m, " SIZE: %08x\n", error->plane[i].size);
  8439. err_printf(m, " POS: %08x\n", error->plane[i].pos);
  8440. }
  8441. if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
  8442. err_printf(m, " ADDR: %08x\n", error->plane[i].addr);
  8443. if (INTEL_INFO(dev)->gen >= 4) {
  8444. err_printf(m, " SURF: %08x\n", error->plane[i].surface);
  8445. err_printf(m, " TILEOFF: %08x\n", error->plane[i].tile_offset);
  8446. }
  8447. err_printf(m, "Cursor [%d]:\n", i);
  8448. err_printf(m, " CNTR: %08x\n", error->cursor[i].control);
  8449. err_printf(m, " POS: %08x\n", error->cursor[i].position);
  8450. err_printf(m, " BASE: %08x\n", error->cursor[i].base);
  8451. }
  8452. }
  8453. #endif