lguest_user.c 10 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336
  1. /*P:200 This contains all the /dev/lguest code, whereby the userspace launcher
  2. * controls and communicates with the Guest. For example, the first write will
  3. * tell us the Guest's memory layout, pagetable, entry point and kernel address
  4. * offset. A read will run the Guest until something happens, such as a signal
  5. * or the Guest doing a NOTIFY out to the Launcher. :*/
  6. #include <linux/uaccess.h>
  7. #include <linux/miscdevice.h>
  8. #include <linux/fs.h>
  9. #include "lg.h"
  10. /*L:055 When something happens, the Waker process needs a way to stop the
  11. * kernel running the Guest and return to the Launcher. So the Waker writes
  12. * LHREQ_BREAK and the value "1" to /dev/lguest to do this. Once the Launcher
  13. * has done whatever needs attention, it writes LHREQ_BREAK and "0" to release
  14. * the Waker. */
  15. static int break_guest_out(struct lguest *lg, const unsigned long __user *input)
  16. {
  17. unsigned long on;
  18. /* Fetch whether they're turning break on or off. */
  19. if (get_user(on, input) != 0)
  20. return -EFAULT;
  21. if (on) {
  22. lg->break_out = 1;
  23. /* Pop it out of the Guest (may be running on different CPU) */
  24. wake_up_process(lg->tsk);
  25. /* Wait for them to reset it */
  26. return wait_event_interruptible(lg->break_wq, !lg->break_out);
  27. } else {
  28. lg->break_out = 0;
  29. wake_up(&lg->break_wq);
  30. return 0;
  31. }
  32. }
  33. /*L:050 Sending an interrupt is done by writing LHREQ_IRQ and an interrupt
  34. * number to /dev/lguest. */
  35. static int user_send_irq(struct lguest *lg, const unsigned long __user *input)
  36. {
  37. unsigned long irq;
  38. if (get_user(irq, input) != 0)
  39. return -EFAULT;
  40. if (irq >= LGUEST_IRQS)
  41. return -EINVAL;
  42. /* Next time the Guest runs, the core code will see if it can deliver
  43. * this interrupt. */
  44. set_bit(irq, lg->irqs_pending);
  45. return 0;
  46. }
  47. /*L:040 Once our Guest is initialized, the Launcher makes it run by reading
  48. * from /dev/lguest. */
  49. static ssize_t read(struct file *file, char __user *user, size_t size,loff_t*o)
  50. {
  51. struct lguest *lg = file->private_data;
  52. struct lg_cpu *cpu;
  53. unsigned int cpu_id = *o;
  54. /* You must write LHREQ_INITIALIZE first! */
  55. if (!lg)
  56. return -EINVAL;
  57. /* Watch out for arbitrary vcpu indexes! */
  58. if (cpu_id >= lg->nr_cpus)
  59. return -EINVAL;
  60. cpu = &lg->cpus[cpu_id];
  61. /* If you're not the task which owns the Guest, go away. */
  62. if (current != lg->tsk)
  63. return -EPERM;
  64. /* If the guest is already dead, we indicate why */
  65. if (lg->dead) {
  66. size_t len;
  67. /* lg->dead either contains an error code, or a string. */
  68. if (IS_ERR(lg->dead))
  69. return PTR_ERR(lg->dead);
  70. /* We can only return as much as the buffer they read with. */
  71. len = min(size, strlen(lg->dead)+1);
  72. if (copy_to_user(user, lg->dead, len) != 0)
  73. return -EFAULT;
  74. return len;
  75. }
  76. /* If we returned from read() last time because the Guest notified,
  77. * clear the flag. */
  78. if (lg->pending_notify)
  79. lg->pending_notify = 0;
  80. /* Run the Guest until something interesting happens. */
  81. return run_guest(cpu, (unsigned long __user *)user);
  82. }
  83. static int lg_cpu_start(struct lg_cpu *cpu, unsigned id, unsigned long start_ip)
  84. {
  85. if (id >= NR_CPUS)
  86. return -EINVAL;
  87. cpu->id = id;
  88. cpu->lg = container_of((cpu - id), struct lguest, cpus[0]);
  89. cpu->lg->nr_cpus++;
  90. return 0;
  91. }
  92. /*L:020 The initialization write supplies 4 pointer sized (32 or 64 bit)
  93. * values (in addition to the LHREQ_INITIALIZE value). These are:
  94. *
  95. * base: The start of the Guest-physical memory inside the Launcher memory.
  96. *
  97. * pfnlimit: The highest (Guest-physical) page number the Guest should be
  98. * allowed to access. The Guest memory lives inside the Launcher, so it sets
  99. * this to ensure the Guest can only reach its own memory.
  100. *
  101. * pgdir: The (Guest-physical) address of the top of the initial Guest
  102. * pagetables (which are set up by the Launcher).
  103. *
  104. * start: The first instruction to execute ("eip" in x86-speak).
  105. */
  106. static int initialize(struct file *file, const unsigned long __user *input)
  107. {
  108. /* "struct lguest" contains everything we (the Host) know about a
  109. * Guest. */
  110. struct lguest *lg;
  111. int err;
  112. unsigned long args[4];
  113. /* We grab the Big Lguest lock, which protects against multiple
  114. * simultaneous initializations. */
  115. mutex_lock(&lguest_lock);
  116. /* You can't initialize twice! Close the device and start again... */
  117. if (file->private_data) {
  118. err = -EBUSY;
  119. goto unlock;
  120. }
  121. if (copy_from_user(args, input, sizeof(args)) != 0) {
  122. err = -EFAULT;
  123. goto unlock;
  124. }
  125. lg = kzalloc(sizeof(*lg), GFP_KERNEL);
  126. if (!lg) {
  127. err = -ENOMEM;
  128. goto unlock;
  129. }
  130. /* Populate the easy fields of our "struct lguest" */
  131. lg->mem_base = (void __user *)(long)args[0];
  132. lg->pfn_limit = args[1];
  133. /* This is the first cpu */
  134. err = lg_cpu_start(&lg->cpus[0], 0, args[3]);
  135. if (err)
  136. goto release_guest;
  137. /* We need a complete page for the Guest registers: they are accessible
  138. * to the Guest and we can only grant it access to whole pages. */
  139. lg->regs_page = get_zeroed_page(GFP_KERNEL);
  140. if (!lg->regs_page) {
  141. err = -ENOMEM;
  142. goto release_guest;
  143. }
  144. /* We actually put the registers at the bottom of the page. */
  145. lg->regs = (void *)lg->regs_page + PAGE_SIZE - sizeof(*lg->regs);
  146. /* Initialize the Guest's shadow page tables, using the toplevel
  147. * address the Launcher gave us. This allocates memory, so can
  148. * fail. */
  149. err = init_guest_pagetable(lg, args[2]);
  150. if (err)
  151. goto free_regs;
  152. /* Now we initialize the Guest's registers, handing it the start
  153. * address. */
  154. lguest_arch_setup_regs(lg, args[3]);
  155. /* The timer for lguest's clock needs initialization. */
  156. init_clockdev(lg);
  157. /* We keep a pointer to the Launcher task (ie. current task) for when
  158. * other Guests want to wake this one (inter-Guest I/O). */
  159. lg->tsk = current;
  160. /* We need to keep a pointer to the Launcher's memory map, because if
  161. * the Launcher dies we need to clean it up. If we don't keep a
  162. * reference, it is destroyed before close() is called. */
  163. lg->mm = get_task_mm(lg->tsk);
  164. /* Initialize the queue for the waker to wait on */
  165. init_waitqueue_head(&lg->break_wq);
  166. /* We remember which CPU's pages this Guest used last, for optimization
  167. * when the same Guest runs on the same CPU twice. */
  168. lg->last_pages = NULL;
  169. /* We keep our "struct lguest" in the file's private_data. */
  170. file->private_data = lg;
  171. mutex_unlock(&lguest_lock);
  172. /* And because this is a write() call, we return the length used. */
  173. return sizeof(args);
  174. free_regs:
  175. free_page(lg->regs_page);
  176. release_guest:
  177. kfree(lg);
  178. unlock:
  179. mutex_unlock(&lguest_lock);
  180. return err;
  181. }
  182. /*L:010 The first operation the Launcher does must be a write. All writes
  183. * start with an unsigned long number: for the first write this must be
  184. * LHREQ_INITIALIZE to set up the Guest. After that the Launcher can use
  185. * writes of other values to send interrupts. */
  186. static ssize_t write(struct file *file, const char __user *in,
  187. size_t size, loff_t *off)
  188. {
  189. /* Once the guest is initialized, we hold the "struct lguest" in the
  190. * file private data. */
  191. struct lguest *lg = file->private_data;
  192. const unsigned long __user *input = (const unsigned long __user *)in;
  193. unsigned long req;
  194. if (get_user(req, input) != 0)
  195. return -EFAULT;
  196. input++;
  197. /* If you haven't initialized, you must do that first. */
  198. if (req != LHREQ_INITIALIZE && !lg)
  199. return -EINVAL;
  200. /* Once the Guest is dead, all you can do is read() why it died. */
  201. if (lg && lg->dead)
  202. return -ENOENT;
  203. /* If you're not the task which owns the Guest, you can only break */
  204. if (lg && current != lg->tsk && req != LHREQ_BREAK)
  205. return -EPERM;
  206. switch (req) {
  207. case LHREQ_INITIALIZE:
  208. return initialize(file, input);
  209. case LHREQ_IRQ:
  210. return user_send_irq(lg, input);
  211. case LHREQ_BREAK:
  212. return break_guest_out(lg, input);
  213. default:
  214. return -EINVAL;
  215. }
  216. }
  217. /*L:060 The final piece of interface code is the close() routine. It reverses
  218. * everything done in initialize(). This is usually called because the
  219. * Launcher exited.
  220. *
  221. * Note that the close routine returns 0 or a negative error number: it can't
  222. * really fail, but it can whine. I blame Sun for this wart, and K&R C for
  223. * letting them do it. :*/
  224. static int close(struct inode *inode, struct file *file)
  225. {
  226. struct lguest *lg = file->private_data;
  227. /* If we never successfully initialized, there's nothing to clean up */
  228. if (!lg)
  229. return 0;
  230. /* We need the big lock, to protect from inter-guest I/O and other
  231. * Launchers initializing guests. */
  232. mutex_lock(&lguest_lock);
  233. /* Cancels the hrtimer set via LHCALL_SET_CLOCKEVENT. */
  234. hrtimer_cancel(&lg->hrt);
  235. /* Free up the shadow page tables for the Guest. */
  236. free_guest_pagetable(lg);
  237. /* Now all the memory cleanups are done, it's safe to release the
  238. * Launcher's memory management structure. */
  239. mmput(lg->mm);
  240. /* If lg->dead doesn't contain an error code it will be NULL or a
  241. * kmalloc()ed string, either of which is ok to hand to kfree(). */
  242. if (!IS_ERR(lg->dead))
  243. kfree(lg->dead);
  244. /* We can free up the register page we allocated. */
  245. free_page(lg->regs_page);
  246. /* We clear the entire structure, which also marks it as free for the
  247. * next user. */
  248. memset(lg, 0, sizeof(*lg));
  249. /* Release lock and exit. */
  250. mutex_unlock(&lguest_lock);
  251. return 0;
  252. }
  253. /*L:000
  254. * Welcome to our journey through the Launcher!
  255. *
  256. * The Launcher is the Host userspace program which sets up, runs and services
  257. * the Guest. In fact, many comments in the Drivers which refer to "the Host"
  258. * doing things are inaccurate: the Launcher does all the device handling for
  259. * the Guest, but the Guest can't know that.
  260. *
  261. * Just to confuse you: to the Host kernel, the Launcher *is* the Guest and we
  262. * shall see more of that later.
  263. *
  264. * We begin our understanding with the Host kernel interface which the Launcher
  265. * uses: reading and writing a character device called /dev/lguest. All the
  266. * work happens in the read(), write() and close() routines: */
  267. static struct file_operations lguest_fops = {
  268. .owner = THIS_MODULE,
  269. .release = close,
  270. .write = write,
  271. .read = read,
  272. };
  273. /* This is a textbook example of a "misc" character device. Populate a "struct
  274. * miscdevice" and register it with misc_register(). */
  275. static struct miscdevice lguest_dev = {
  276. .minor = MISC_DYNAMIC_MINOR,
  277. .name = "lguest",
  278. .fops = &lguest_fops,
  279. };
  280. int __init lguest_device_init(void)
  281. {
  282. return misc_register(&lguest_dev);
  283. }
  284. void __exit lguest_device_remove(void)
  285. {
  286. misc_deregister(&lguest_dev);
  287. }