tlb.c 22 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705
  1. /*
  2. * TLB Management (flush/create/diagnostics) for ARC700
  3. *
  4. * Copyright (C) 2004, 2007-2010, 2011-2012 Synopsys, Inc. (www.synopsys.com)
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License version 2 as
  8. * published by the Free Software Foundation.
  9. *
  10. * vineetg: Aug 2011
  11. * -Reintroduce duplicate PD fixup - some customer chips still have the issue
  12. *
  13. * vineetg: May 2011
  14. * -No need to flush_cache_page( ) for each call to update_mmu_cache()
  15. * some of the LMBench tests improved amazingly
  16. * = page-fault thrice as fast (75 usec to 28 usec)
  17. * = mmap twice as fast (9.6 msec to 4.6 msec),
  18. * = fork (5.3 msec to 3.7 msec)
  19. *
  20. * vineetg: April 2011 :
  21. * -MMU v3: PD{0,1} bits layout changed: They don't overlap anymore,
  22. * helps avoid a shift when preparing PD0 from PTE
  23. *
  24. * vineetg: April 2011 : Preparing for MMU V3
  25. * -MMU v2/v3 BCRs decoded differently
  26. * -Remove TLB_SIZE hardcoding as it's variable now: 256 or 512
  27. * -tlb_entry_erase( ) can be void
  28. * -local_flush_tlb_range( ):
  29. * = need not "ceil" @end
  30. * = walks MMU only if range spans < 32 entries, as opposed to 256
  31. *
  32. * Vineetg: Sept 10th 2008
  33. * -Changes related to MMU v2 (Rel 4.8)
  34. *
  35. * Vineetg: Aug 29th 2008
  36. * -In TLB Flush operations (Metal Fix MMU) there is a explict command to
  37. * flush Micro-TLBS. If TLB Index Reg is invalid prior to TLBIVUTLB cmd,
  38. * it fails. Thus need to load it with ANY valid value before invoking
  39. * TLBIVUTLB cmd
  40. *
  41. * Vineetg: Aug 21th 2008:
  42. * -Reduced the duration of IRQ lockouts in TLB Flush routines
  43. * -Multiple copies of TLB erase code seperated into a "single" function
  44. * -In TLB Flush routines, interrupt disabling moved UP to retrieve ASID
  45. * in interrupt-safe region.
  46. *
  47. * Vineetg: April 23rd Bug #93131
  48. * Problem: tlb_flush_kernel_range() doesnt do anything if the range to
  49. * flush is more than the size of TLB itself.
  50. *
  51. * Rahul Trivedi : Codito Technologies 2004
  52. */
  53. #include <linux/module.h>
  54. #include <asm/arcregs.h>
  55. #include <asm/setup.h>
  56. #include <asm/mmu_context.h>
  57. #include <asm/mmu.h>
  58. /* Need for ARC MMU v2
  59. *
  60. * ARC700 MMU-v1 had a Joint-TLB for Code and Data and is 2 way set-assoc.
  61. * For a memcpy operation with 3 players (src/dst/code) such that all 3 pages
  62. * map into same set, there would be contention for the 2 ways causing severe
  63. * Thrashing.
  64. *
  65. * Although J-TLB is 2 way set assoc, ARC700 caches J-TLB into uTLBS which has
  66. * much higher associativity. u-D-TLB is 8 ways, u-I-TLB is 4 ways.
  67. * Given this, the thrasing problem should never happen because once the 3
  68. * J-TLB entries are created (even though 3rd will knock out one of the prev
  69. * two), the u-D-TLB and u-I-TLB will have what is required to accomplish memcpy
  70. *
  71. * Yet we still see the Thrashing because a J-TLB Write cause flush of u-TLBs.
  72. * This is a simple design for keeping them in sync. So what do we do?
  73. * The solution which James came up was pretty neat. It utilised the assoc
  74. * of uTLBs by not invalidating always but only when absolutely necessary.
  75. *
  76. * - Existing TLB commands work as before
  77. * - New command (TLBWriteNI) for TLB write without clearing uTLBs
  78. * - New command (TLBIVUTLB) to invalidate uTLBs.
  79. *
  80. * The uTLBs need only be invalidated when pages are being removed from the
  81. * OS page table. If a 'victim' TLB entry is being overwritten in the main TLB
  82. * as a result of a miss, the removed entry is still allowed to exist in the
  83. * uTLBs as it is still valid and present in the OS page table. This allows the
  84. * full associativity of the uTLBs to hide the limited associativity of the main
  85. * TLB.
  86. *
  87. * During a miss handler, the new "TLBWriteNI" command is used to load
  88. * entries without clearing the uTLBs.
  89. *
  90. * When the OS page table is updated, TLB entries that may be associated with a
  91. * removed page are removed (flushed) from the TLB using TLBWrite. In this
  92. * circumstance, the uTLBs must also be cleared. This is done by using the
  93. * existing TLBWrite command. An explicit IVUTLB is also required for those
  94. * corner cases when TLBWrite was not executed at all because the corresp
  95. * J-TLB entry got evicted/replaced.
  96. */
  97. /* A copy of the ASID from the PID reg is kept in asid_cache */
  98. int asid_cache = FIRST_ASID;
  99. /* ASID to mm struct mapping. We have one extra entry corresponding to
  100. * NO_ASID to save us a compare when clearing the mm entry for old asid
  101. * see get_new_mmu_context (asm-arc/mmu_context.h)
  102. */
  103. struct mm_struct *asid_mm_map[NUM_ASID + 1];
  104. /*
  105. * Utility Routine to erase a J-TLB entry
  106. * The procedure is to look it up in the MMU. If found, ERASE it by
  107. * issuing a TlbWrite CMD with PD0 = PD1 = 0
  108. */
  109. static void __tlb_entry_erase(void)
  110. {
  111. write_aux_reg(ARC_REG_TLBPD1, 0);
  112. write_aux_reg(ARC_REG_TLBPD0, 0);
  113. write_aux_reg(ARC_REG_TLBCOMMAND, TLBWrite);
  114. }
  115. static void tlb_entry_erase(unsigned int vaddr_n_asid)
  116. {
  117. unsigned int idx;
  118. /* Locate the TLB entry for this vaddr + ASID */
  119. write_aux_reg(ARC_REG_TLBPD0, vaddr_n_asid);
  120. write_aux_reg(ARC_REG_TLBCOMMAND, TLBProbe);
  121. idx = read_aux_reg(ARC_REG_TLBINDEX);
  122. /* No error means entry found, zero it out */
  123. if (likely(!(idx & TLB_LKUP_ERR))) {
  124. __tlb_entry_erase();
  125. } else { /* Some sort of Error */
  126. /* Duplicate entry error */
  127. if (idx & 0x1) {
  128. /* TODO we need to handle this case too */
  129. pr_emerg("unhandled Duplicate flush for %x\n",
  130. vaddr_n_asid);
  131. }
  132. /* else entry not found so nothing to do */
  133. }
  134. }
  135. /****************************************************************************
  136. * ARC700 MMU caches recently used J-TLB entries (RAM) as uTLBs (FLOPs)
  137. *
  138. * New IVUTLB cmd in MMU v2 explictly invalidates the uTLB
  139. *
  140. * utlb_invalidate ( )
  141. * -For v2 MMU calls Flush uTLB Cmd
  142. * -For v1 MMU does nothing (except for Metal Fix v1 MMU)
  143. * This is because in v1 TLBWrite itself invalidate uTLBs
  144. ***************************************************************************/
  145. static void utlb_invalidate(void)
  146. {
  147. #if (CONFIG_ARC_MMU_VER >= 2)
  148. #if (CONFIG_ARC_MMU_VER < 3)
  149. /* MMU v2 introduced the uTLB Flush command.
  150. * There was however an obscure hardware bug, where uTLB flush would
  151. * fail when a prior probe for J-TLB (both totally unrelated) would
  152. * return lkup err - because the entry didnt exist in MMU.
  153. * The Workround was to set Index reg with some valid value, prior to
  154. * flush. This was fixed in MMU v3 hence not needed any more
  155. */
  156. unsigned int idx;
  157. /* make sure INDEX Reg is valid */
  158. idx = read_aux_reg(ARC_REG_TLBINDEX);
  159. /* If not write some dummy val */
  160. if (unlikely(idx & TLB_LKUP_ERR))
  161. write_aux_reg(ARC_REG_TLBINDEX, 0xa);
  162. #endif
  163. write_aux_reg(ARC_REG_TLBCOMMAND, TLBIVUTLB);
  164. #endif
  165. }
  166. /*
  167. * Un-conditionally (without lookup) erase the entire MMU contents
  168. */
  169. noinline void local_flush_tlb_all(void)
  170. {
  171. unsigned long flags;
  172. unsigned int entry;
  173. struct cpuinfo_arc_mmu *mmu = &cpuinfo_arc700[smp_processor_id()].mmu;
  174. local_irq_save(flags);
  175. /* Load PD0 and PD1 with template for a Blank Entry */
  176. write_aux_reg(ARC_REG_TLBPD1, 0);
  177. write_aux_reg(ARC_REG_TLBPD0, 0);
  178. for (entry = 0; entry < mmu->num_tlb; entry++) {
  179. /* write this entry to the TLB */
  180. write_aux_reg(ARC_REG_TLBINDEX, entry);
  181. write_aux_reg(ARC_REG_TLBCOMMAND, TLBWrite);
  182. }
  183. utlb_invalidate();
  184. local_irq_restore(flags);
  185. }
  186. /*
  187. * Flush the entrie MM for userland. The fastest way is to move to Next ASID
  188. */
  189. noinline void local_flush_tlb_mm(struct mm_struct *mm)
  190. {
  191. /*
  192. * Small optimisation courtesy IA64
  193. * flush_mm called during fork,exit,munmap etc, multiple times as well.
  194. * Only for fork( ) do we need to move parent to a new MMU ctxt,
  195. * all other cases are NOPs, hence this check.
  196. */
  197. if (atomic_read(&mm->mm_users) == 0)
  198. return;
  199. /*
  200. * Workaround for Android weirdism:
  201. * A binder VMA could end up in a task such that vma->mm != tsk->mm
  202. * old code would cause h/w - s/w ASID to get out of sync
  203. */
  204. if (current->mm != mm)
  205. destroy_context(mm);
  206. else
  207. get_new_mmu_context(mm);
  208. }
  209. /*
  210. * Flush a Range of TLB entries for userland.
  211. * @start is inclusive, while @end is exclusive
  212. * Difference between this and Kernel Range Flush is
  213. * -Here the fastest way (if range is too large) is to move to next ASID
  214. * without doing any explicit Shootdown
  215. * -In case of kernel Flush, entry has to be shot down explictly
  216. */
  217. void local_flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
  218. unsigned long end)
  219. {
  220. unsigned long flags;
  221. unsigned int asid;
  222. /* If range @start to @end is more than 32 TLB entries deep,
  223. * its better to move to a new ASID rather than searching for
  224. * individual entries and then shooting them down
  225. *
  226. * The calc above is rough, doesn't account for unaligned parts,
  227. * since this is heuristics based anyways
  228. */
  229. if (unlikely((end - start) >= PAGE_SIZE * 32)) {
  230. local_flush_tlb_mm(vma->vm_mm);
  231. return;
  232. }
  233. /*
  234. * @start moved to page start: this alone suffices for checking
  235. * loop end condition below, w/o need for aligning @end to end
  236. * e.g. 2000 to 4001 will anyhow loop twice
  237. */
  238. start &= PAGE_MASK;
  239. local_irq_save(flags);
  240. asid = vma->vm_mm->context.asid;
  241. if (asid != NO_ASID) {
  242. while (start < end) {
  243. tlb_entry_erase(start | (asid & 0xff));
  244. start += PAGE_SIZE;
  245. }
  246. }
  247. utlb_invalidate();
  248. local_irq_restore(flags);
  249. }
  250. /* Flush the kernel TLB entries - vmalloc/modules (Global from MMU perspective)
  251. * @start, @end interpreted as kvaddr
  252. * Interestingly, shared TLB entries can also be flushed using just
  253. * @start,@end alone (interpreted as user vaddr), although technically SASID
  254. * is also needed. However our smart TLbProbe lookup takes care of that.
  255. */
  256. void local_flush_tlb_kernel_range(unsigned long start, unsigned long end)
  257. {
  258. unsigned long flags;
  259. /* exactly same as above, except for TLB entry not taking ASID */
  260. if (unlikely((end - start) >= PAGE_SIZE * 32)) {
  261. local_flush_tlb_all();
  262. return;
  263. }
  264. start &= PAGE_MASK;
  265. local_irq_save(flags);
  266. while (start < end) {
  267. tlb_entry_erase(start);
  268. start += PAGE_SIZE;
  269. }
  270. utlb_invalidate();
  271. local_irq_restore(flags);
  272. }
  273. /*
  274. * Delete TLB entry in MMU for a given page (??? address)
  275. * NOTE One TLB entry contains translation for single PAGE
  276. */
  277. void local_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
  278. {
  279. unsigned long flags;
  280. /* Note that it is critical that interrupts are DISABLED between
  281. * checking the ASID and using it flush the TLB entry
  282. */
  283. local_irq_save(flags);
  284. if (vma->vm_mm->context.asid != NO_ASID) {
  285. tlb_entry_erase((page & PAGE_MASK) |
  286. (vma->vm_mm->context.asid & 0xff));
  287. utlb_invalidate();
  288. }
  289. local_irq_restore(flags);
  290. }
  291. /*
  292. * Routine to create a TLB entry
  293. */
  294. void create_tlb(struct vm_area_struct *vma, unsigned long address, pte_t *ptep)
  295. {
  296. unsigned long flags;
  297. unsigned int idx, asid_or_sasid, rwx;
  298. /*
  299. * create_tlb() assumes that current->mm == vma->mm, since
  300. * -it ASID for TLB entry is fetched from MMU ASID reg (valid for curr)
  301. * -completes the lazy write to SASID reg (again valid for curr tsk)
  302. *
  303. * Removing the assumption involves
  304. * -Using vma->mm->context{ASID,SASID}, as opposed to MMU reg.
  305. * -Fix the TLB paranoid debug code to not trigger false negatives.
  306. * -More importantly it makes this handler inconsistent with fast-path
  307. * TLB Refill handler which always deals with "current"
  308. *
  309. * Lets see the use cases when current->mm != vma->mm and we land here
  310. * 1. execve->copy_strings()->__get_user_pages->handle_mm_fault
  311. * Here VM wants to pre-install a TLB entry for user stack while
  312. * current->mm still points to pre-execve mm (hence the condition).
  313. * However the stack vaddr is soon relocated (randomization) and
  314. * move_page_tables() tries to undo that TLB entry.
  315. * Thus not creating TLB entry is not any worse.
  316. *
  317. * 2. ptrace(POKETEXT) causes a CoW - debugger(current) inserting a
  318. * breakpoint in debugged task. Not creating a TLB now is not
  319. * performance critical.
  320. *
  321. * Both the cases above are not good enough for code churn.
  322. */
  323. if (current->active_mm != vma->vm_mm)
  324. return;
  325. local_irq_save(flags);
  326. tlb_paranoid_check(vma->vm_mm->context.asid, address);
  327. address &= PAGE_MASK;
  328. /* update this PTE credentials */
  329. pte_val(*ptep) |= (_PAGE_PRESENT | _PAGE_ACCESSED);
  330. /* Create HW TLB(PD0,PD1) from PTE */
  331. /* ASID for this task */
  332. asid_or_sasid = read_aux_reg(ARC_REG_PID) & 0xff;
  333. write_aux_reg(ARC_REG_TLBPD0, address | asid_or_sasid |
  334. (pte_val(*ptep) & PTE_BITS_IN_PD0));
  335. /*
  336. * ARC MMU provides fully orthogonal access bits for K/U mode,
  337. * however Linux only saves 1 set to save PTE real-estate
  338. * Here we convert 3 PTE bits into 6 MMU bits:
  339. * -Kernel only entries have Kr Kw Kx 0 0 0
  340. * -User entries have mirrored K and U bits
  341. */
  342. rwx = pte_val(*ptep) & PTE_BITS_RWX;
  343. if (pte_val(*ptep) & _PAGE_GLOBAL)
  344. rwx <<= 3; /* r w x => Kr Kw Kx 0 0 0 */
  345. else
  346. rwx |= (rwx << 3); /* r w x => Kr Kw Kx Ur Uw Ux */
  347. /* Load remaining info in PD1 (Page Frame Addr and Kx/Kw/Kr Flags) */
  348. write_aux_reg(ARC_REG_TLBPD1,
  349. rwx | (pte_val(*ptep) & PTE_BITS_NON_RWX_IN_PD1));
  350. /* First verify if entry for this vaddr+ASID already exists */
  351. write_aux_reg(ARC_REG_TLBCOMMAND, TLBProbe);
  352. idx = read_aux_reg(ARC_REG_TLBINDEX);
  353. /*
  354. * If Not already present get a free slot from MMU.
  355. * Otherwise, Probe would have located the entry and set INDEX Reg
  356. * with existing location. This will cause Write CMD to over-write
  357. * existing entry with new PD0 and PD1
  358. */
  359. if (likely(idx & TLB_LKUP_ERR))
  360. write_aux_reg(ARC_REG_TLBCOMMAND, TLBGetIndex);
  361. /*
  362. * Commit the Entry to MMU
  363. * It doesnt sound safe to use the TLBWriteNI cmd here
  364. * which doesn't flush uTLBs. I'd rather be safe than sorry.
  365. */
  366. write_aux_reg(ARC_REG_TLBCOMMAND, TLBWrite);
  367. local_irq_restore(flags);
  368. }
  369. /*
  370. * Called at the end of pagefault, for a userspace mapped page
  371. * -pre-install the corresponding TLB entry into MMU
  372. * -Finalize the delayed D-cache flush of kernel mapping of page due to
  373. * flush_dcache_page(), copy_user_page()
  374. *
  375. * Note that flush (when done) involves both WBACK - so physical page is
  376. * in sync as well as INV - so any non-congruent aliases don't remain
  377. */
  378. void update_mmu_cache(struct vm_area_struct *vma, unsigned long vaddr_unaligned,
  379. pte_t *ptep)
  380. {
  381. unsigned long vaddr = vaddr_unaligned & PAGE_MASK;
  382. unsigned long paddr = pte_val(*ptep) & PAGE_MASK;
  383. struct page *page = pfn_to_page(pte_pfn(*ptep));
  384. create_tlb(vma, vaddr, ptep);
  385. if (page == ZERO_PAGE(0)) {
  386. return;
  387. }
  388. /*
  389. * Exec page : Independent of aliasing/page-color considerations,
  390. * since icache doesn't snoop dcache on ARC, any dirty
  391. * K-mapping of a code page needs to be wback+inv so that
  392. * icache fetch by userspace sees code correctly.
  393. * !EXEC page: If K-mapping is NOT congruent to U-mapping, flush it
  394. * so userspace sees the right data.
  395. * (Avoids the flush for Non-exec + congruent mapping case)
  396. */
  397. if ((vma->vm_flags & VM_EXEC) ||
  398. addr_not_cache_congruent(paddr, vaddr)) {
  399. int dirty = !test_and_set_bit(PG_dc_clean, &page->flags);
  400. if (dirty) {
  401. /* wback + inv dcache lines */
  402. __flush_dcache_page(paddr, paddr);
  403. /* invalidate any existing icache lines */
  404. if (vma->vm_flags & VM_EXEC)
  405. __inv_icache_page(paddr, vaddr);
  406. }
  407. }
  408. }
  409. /* Read the Cache Build Confuration Registers, Decode them and save into
  410. * the cpuinfo structure for later use.
  411. * No Validation is done here, simply read/convert the BCRs
  412. */
  413. void read_decode_mmu_bcr(void)
  414. {
  415. struct cpuinfo_arc_mmu *mmu = &cpuinfo_arc700[smp_processor_id()].mmu;
  416. unsigned int tmp;
  417. struct bcr_mmu_1_2 {
  418. #ifdef CONFIG_CPU_BIG_ENDIAN
  419. unsigned int ver:8, ways:4, sets:4, u_itlb:8, u_dtlb:8;
  420. #else
  421. unsigned int u_dtlb:8, u_itlb:8, sets:4, ways:4, ver:8;
  422. #endif
  423. } *mmu2;
  424. struct bcr_mmu_3 {
  425. #ifdef CONFIG_CPU_BIG_ENDIAN
  426. unsigned int ver:8, ways:4, sets:4, osm:1, reserv:3, pg_sz:4,
  427. u_itlb:4, u_dtlb:4;
  428. #else
  429. unsigned int u_dtlb:4, u_itlb:4, pg_sz:4, reserv:3, osm:1, sets:4,
  430. ways:4, ver:8;
  431. #endif
  432. } *mmu3;
  433. tmp = read_aux_reg(ARC_REG_MMU_BCR);
  434. mmu->ver = (tmp >> 24);
  435. if (mmu->ver <= 2) {
  436. mmu2 = (struct bcr_mmu_1_2 *)&tmp;
  437. mmu->pg_sz = PAGE_SIZE;
  438. mmu->sets = 1 << mmu2->sets;
  439. mmu->ways = 1 << mmu2->ways;
  440. mmu->u_dtlb = mmu2->u_dtlb;
  441. mmu->u_itlb = mmu2->u_itlb;
  442. } else {
  443. mmu3 = (struct bcr_mmu_3 *)&tmp;
  444. mmu->pg_sz = 512 << mmu3->pg_sz;
  445. mmu->sets = 1 << mmu3->sets;
  446. mmu->ways = 1 << mmu3->ways;
  447. mmu->u_dtlb = mmu3->u_dtlb;
  448. mmu->u_itlb = mmu3->u_itlb;
  449. }
  450. mmu->num_tlb = mmu->sets * mmu->ways;
  451. }
  452. char *arc_mmu_mumbojumbo(int cpu_id, char *buf, int len)
  453. {
  454. int n = 0;
  455. struct cpuinfo_arc_mmu *p_mmu = &cpuinfo_arc700[cpu_id].mmu;
  456. n += scnprintf(buf + n, len - n, "ARC700 MMU [v%x]\t: %dk PAGE, ",
  457. p_mmu->ver, TO_KB(p_mmu->pg_sz));
  458. n += scnprintf(buf + n, len - n,
  459. "J-TLB %d (%dx%d), uDTLB %d, uITLB %d, %s\n",
  460. p_mmu->num_tlb, p_mmu->sets, p_mmu->ways,
  461. p_mmu->u_dtlb, p_mmu->u_itlb,
  462. IS_ENABLED(CONFIG_ARC_MMU_SASID) ? "SASID" : "");
  463. return buf;
  464. }
  465. void arc_mmu_init(void)
  466. {
  467. char str[256];
  468. struct cpuinfo_arc_mmu *mmu = &cpuinfo_arc700[smp_processor_id()].mmu;
  469. printk(arc_mmu_mumbojumbo(0, str, sizeof(str)));
  470. /* For efficiency sake, kernel is compile time built for a MMU ver
  471. * This must match the hardware it is running on.
  472. * Linux built for MMU V2, if run on MMU V1 will break down because V1
  473. * hardware doesn't understand cmds such as WriteNI, or IVUTLB
  474. * On the other hand, Linux built for V1 if run on MMU V2 will do
  475. * un-needed workarounds to prevent memcpy thrashing.
  476. * Similarly MMU V3 has new features which won't work on older MMU
  477. */
  478. if (mmu->ver != CONFIG_ARC_MMU_VER) {
  479. panic("MMU ver %d doesn't match kernel built for %d...\n",
  480. mmu->ver, CONFIG_ARC_MMU_VER);
  481. }
  482. if (mmu->pg_sz != PAGE_SIZE)
  483. panic("MMU pg size != PAGE_SIZE (%luk)\n", TO_KB(PAGE_SIZE));
  484. /*
  485. * ASID mgmt data structures are compile time init
  486. * asid_cache = FIRST_ASID and asid_mm_map[] all zeroes
  487. */
  488. local_flush_tlb_all();
  489. /* Enable the MMU */
  490. write_aux_reg(ARC_REG_PID, MMU_ENABLE);
  491. /* In smp we use this reg for interrupt 1 scratch */
  492. #ifndef CONFIG_SMP
  493. /* swapper_pg_dir is the pgd for the kernel, used by vmalloc */
  494. write_aux_reg(ARC_REG_SCRATCH_DATA0, swapper_pg_dir);
  495. #endif
  496. }
  497. /*
  498. * TLB Programmer's Model uses Linear Indexes: 0 to {255, 511} for 128 x {2,4}
  499. * The mapping is Column-first.
  500. * --------------------- -----------
  501. * |way0|way1|way2|way3| |way0|way1|
  502. * --------------------- -----------
  503. * [set0] | 0 | 1 | 2 | 3 | | 0 | 1 |
  504. * [set1] | 4 | 5 | 6 | 7 | | 2 | 3 |
  505. * ~ ~ ~ ~
  506. * [set127] | 508| 509| 510| 511| | 254| 255|
  507. * --------------------- -----------
  508. * For normal operations we don't(must not) care how above works since
  509. * MMU cmd getIndex(vaddr) abstracts that out.
  510. * However for walking WAYS of a SET, we need to know this
  511. */
  512. #define SET_WAY_TO_IDX(mmu, set, way) ((set) * mmu->ways + (way))
  513. /* Handling of Duplicate PD (TLB entry) in MMU.
  514. * -Could be due to buggy customer tapeouts or obscure kernel bugs
  515. * -MMU complaints not at the time of duplicate PD installation, but at the
  516. * time of lookup matching multiple ways.
  517. * -Ideally these should never happen - but if they do - workaround by deleting
  518. * the duplicate one.
  519. * -Knob to be verbose abt it.(TODO: hook them up to debugfs)
  520. */
  521. volatile int dup_pd_verbose = 1;/* Be slient abt it or complain (default) */
  522. void do_tlb_overlap_fault(unsigned long cause, unsigned long address,
  523. struct pt_regs *regs)
  524. {
  525. int set, way, n;
  526. unsigned int pd0[4], pd1[4]; /* assume max 4 ways */
  527. unsigned long flags, is_valid;
  528. struct cpuinfo_arc_mmu *mmu = &cpuinfo_arc700[smp_processor_id()].mmu;
  529. local_irq_save(flags);
  530. /* re-enable the MMU */
  531. write_aux_reg(ARC_REG_PID, MMU_ENABLE | read_aux_reg(ARC_REG_PID));
  532. /* loop thru all sets of TLB */
  533. for (set = 0; set < mmu->sets; set++) {
  534. /* read out all the ways of current set */
  535. for (way = 0, is_valid = 0; way < mmu->ways; way++) {
  536. write_aux_reg(ARC_REG_TLBINDEX,
  537. SET_WAY_TO_IDX(mmu, set, way));
  538. write_aux_reg(ARC_REG_TLBCOMMAND, TLBRead);
  539. pd0[way] = read_aux_reg(ARC_REG_TLBPD0);
  540. pd1[way] = read_aux_reg(ARC_REG_TLBPD1);
  541. is_valid |= pd0[way] & _PAGE_PRESENT;
  542. }
  543. /* If all the WAYS in SET are empty, skip to next SET */
  544. if (!is_valid)
  545. continue;
  546. /* Scan the set for duplicate ways: needs a nested loop */
  547. for (way = 0; way < mmu->ways; way++) {
  548. if (!pd0[way])
  549. continue;
  550. for (n = way + 1; n < mmu->ways; n++) {
  551. if ((pd0[way] & PAGE_MASK) ==
  552. (pd0[n] & PAGE_MASK)) {
  553. if (dup_pd_verbose) {
  554. pr_info("Duplicate PD's @"
  555. "[%d:%d]/[%d:%d]\n",
  556. set, way, set, n);
  557. pr_info("TLBPD0[%u]: %08x\n",
  558. way, pd0[way]);
  559. }
  560. /*
  561. * clear entry @way and not @n. This is
  562. * critical to our optimised loop
  563. */
  564. pd0[way] = pd1[way] = 0;
  565. write_aux_reg(ARC_REG_TLBINDEX,
  566. SET_WAY_TO_IDX(mmu, set, way));
  567. __tlb_entry_erase();
  568. }
  569. }
  570. }
  571. }
  572. local_irq_restore(flags);
  573. }
  574. /***********************************************************************
  575. * Diagnostic Routines
  576. * -Called from Low Level TLB Hanlders if things don;t look good
  577. **********************************************************************/
  578. #ifdef CONFIG_ARC_DBG_TLB_PARANOIA
  579. /*
  580. * Low Level ASM TLB handler calls this if it finds that HW and SW ASIDS
  581. * don't match
  582. */
  583. void print_asid_mismatch(int is_fast_path)
  584. {
  585. int pid_sw, pid_hw;
  586. pid_sw = current->active_mm->context.asid;
  587. pid_hw = read_aux_reg(ARC_REG_PID) & 0xff;
  588. pr_emerg("ASID Mismatch in %s Path Handler: sw-pid=0x%x hw-pid=0x%x\n",
  589. is_fast_path ? "Fast" : "Slow", pid_sw, pid_hw);
  590. __asm__ __volatile__("flag 1");
  591. }
  592. void tlb_paranoid_check(unsigned int pid_sw, unsigned long addr)
  593. {
  594. unsigned int pid_hw;
  595. pid_hw = read_aux_reg(ARC_REG_PID) & 0xff;
  596. if (addr < 0x70000000 && ((pid_hw != pid_sw) || (pid_sw == NO_ASID)))
  597. print_asid_mismatch(0);
  598. }
  599. #endif