skge.c 107 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193
  1. /*
  2. * New driver for Marvell Yukon chipset and SysKonnect Gigabit
  3. * Ethernet adapters. Based on earlier sk98lin, e100 and
  4. * FreeBSD if_sk drivers.
  5. *
  6. * This driver intentionally does not support all the features
  7. * of the original driver such as link fail-over and link management because
  8. * those should be done at higher levels.
  9. *
  10. * Copyright (C) 2004, 2005 Stephen Hemminger <shemminger@osdl.org>
  11. *
  12. * This program is free software; you can redistribute it and/or modify
  13. * it under the terms of the GNU General Public License as published by
  14. * the Free Software Foundation; either version 2 of the License.
  15. *
  16. * This program is distributed in the hope that it will be useful,
  17. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  18. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  19. * GNU General Public License for more details.
  20. *
  21. * You should have received a copy of the GNU General Public License
  22. * along with this program; if not, write to the Free Software
  23. * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  24. */
  25. #include <linux/in.h>
  26. #include <linux/kernel.h>
  27. #include <linux/module.h>
  28. #include <linux/moduleparam.h>
  29. #include <linux/netdevice.h>
  30. #include <linux/etherdevice.h>
  31. #include <linux/ethtool.h>
  32. #include <linux/pci.h>
  33. #include <linux/if_vlan.h>
  34. #include <linux/ip.h>
  35. #include <linux/delay.h>
  36. #include <linux/crc32.h>
  37. #include <linux/dma-mapping.h>
  38. #include <linux/debugfs.h>
  39. #include <linux/seq_file.h>
  40. #include <linux/mii.h>
  41. #include <asm/irq.h>
  42. #include "skge.h"
  43. #define DRV_NAME "skge"
  44. #define DRV_VERSION "1.12"
  45. #define PFX DRV_NAME " "
  46. #define DEFAULT_TX_RING_SIZE 128
  47. #define DEFAULT_RX_RING_SIZE 512
  48. #define MAX_TX_RING_SIZE 1024
  49. #define TX_LOW_WATER (MAX_SKB_FRAGS + 1)
  50. #define MAX_RX_RING_SIZE 4096
  51. #define RX_COPY_THRESHOLD 128
  52. #define RX_BUF_SIZE 1536
  53. #define PHY_RETRIES 1000
  54. #define ETH_JUMBO_MTU 9000
  55. #define TX_WATCHDOG (5 * HZ)
  56. #define NAPI_WEIGHT 64
  57. #define BLINK_MS 250
  58. #define LINK_HZ HZ
  59. #define SKGE_EEPROM_MAGIC 0x9933aabb
  60. MODULE_DESCRIPTION("SysKonnect Gigabit Ethernet driver");
  61. MODULE_AUTHOR("Stephen Hemminger <shemminger@linux-foundation.org>");
  62. MODULE_LICENSE("GPL");
  63. MODULE_VERSION(DRV_VERSION);
  64. static const u32 default_msg
  65. = NETIF_MSG_DRV| NETIF_MSG_PROBE| NETIF_MSG_LINK
  66. | NETIF_MSG_IFUP| NETIF_MSG_IFDOWN;
  67. static int debug = -1; /* defaults above */
  68. module_param(debug, int, 0);
  69. MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
  70. static const struct pci_device_id skge_id_table[] = {
  71. { PCI_DEVICE(PCI_VENDOR_ID_3COM, PCI_DEVICE_ID_3COM_3C940) },
  72. { PCI_DEVICE(PCI_VENDOR_ID_3COM, PCI_DEVICE_ID_3COM_3C940B) },
  73. { PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT, PCI_DEVICE_ID_SYSKONNECT_GE) },
  74. { PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT, PCI_DEVICE_ID_SYSKONNECT_YU) },
  75. { PCI_DEVICE(PCI_VENDOR_ID_DLINK, PCI_DEVICE_ID_DLINK_DGE510T) },
  76. { PCI_DEVICE(PCI_VENDOR_ID_DLINK, 0x4b01) }, /* DGE-530T */
  77. { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4320) },
  78. { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x5005) }, /* Belkin */
  79. { PCI_DEVICE(PCI_VENDOR_ID_CNET, PCI_DEVICE_ID_CNET_GIGACARD) },
  80. { PCI_DEVICE(PCI_VENDOR_ID_LINKSYS, PCI_DEVICE_ID_LINKSYS_EG1064) },
  81. { PCI_VENDOR_ID_LINKSYS, 0x1032, PCI_ANY_ID, 0x0015 },
  82. { 0 }
  83. };
  84. MODULE_DEVICE_TABLE(pci, skge_id_table);
  85. static int skge_up(struct net_device *dev);
  86. static int skge_down(struct net_device *dev);
  87. static void skge_phy_reset(struct skge_port *skge);
  88. static void skge_tx_clean(struct net_device *dev);
  89. static int xm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val);
  90. static int gm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val);
  91. static void genesis_get_stats(struct skge_port *skge, u64 *data);
  92. static void yukon_get_stats(struct skge_port *skge, u64 *data);
  93. static void yukon_init(struct skge_hw *hw, int port);
  94. static void genesis_mac_init(struct skge_hw *hw, int port);
  95. static void genesis_link_up(struct skge_port *skge);
  96. /* Avoid conditionals by using array */
  97. static const int txqaddr[] = { Q_XA1, Q_XA2 };
  98. static const int rxqaddr[] = { Q_R1, Q_R2 };
  99. static const u32 rxirqmask[] = { IS_R1_F, IS_R2_F };
  100. static const u32 txirqmask[] = { IS_XA1_F, IS_XA2_F };
  101. static const u32 napimask[] = { IS_R1_F|IS_XA1_F, IS_R2_F|IS_XA2_F };
  102. static const u32 portmask[] = { IS_PORT_1, IS_PORT_2 };
  103. static int skge_get_regs_len(struct net_device *dev)
  104. {
  105. return 0x4000;
  106. }
  107. /*
  108. * Returns copy of whole control register region
  109. * Note: skip RAM address register because accessing it will
  110. * cause bus hangs!
  111. */
  112. static void skge_get_regs(struct net_device *dev, struct ethtool_regs *regs,
  113. void *p)
  114. {
  115. const struct skge_port *skge = netdev_priv(dev);
  116. const void __iomem *io = skge->hw->regs;
  117. regs->version = 1;
  118. memset(p, 0, regs->len);
  119. memcpy_fromio(p, io, B3_RAM_ADDR);
  120. memcpy_fromio(p + B3_RI_WTO_R1, io + B3_RI_WTO_R1,
  121. regs->len - B3_RI_WTO_R1);
  122. }
  123. /* Wake on Lan only supported on Yukon chips with rev 1 or above */
  124. static u32 wol_supported(const struct skge_hw *hw)
  125. {
  126. if (hw->chip_id == CHIP_ID_GENESIS)
  127. return 0;
  128. if (hw->chip_id == CHIP_ID_YUKON && hw->chip_rev == 0)
  129. return 0;
  130. return WAKE_MAGIC | WAKE_PHY;
  131. }
  132. static u32 pci_wake_enabled(struct pci_dev *dev)
  133. {
  134. int pm = pci_find_capability(dev, PCI_CAP_ID_PM);
  135. u16 value;
  136. /* If device doesn't support PM Capabilities, but request is to disable
  137. * wake events, it's a nop; otherwise fail */
  138. if (!pm)
  139. return 0;
  140. pci_read_config_word(dev, pm + PCI_PM_PMC, &value);
  141. value &= PCI_PM_CAP_PME_MASK;
  142. value >>= ffs(PCI_PM_CAP_PME_MASK) - 1; /* First bit of mask */
  143. return value != 0;
  144. }
  145. static void skge_wol_init(struct skge_port *skge)
  146. {
  147. struct skge_hw *hw = skge->hw;
  148. int port = skge->port;
  149. u16 ctrl;
  150. skge_write16(hw, B0_CTST, CS_RST_CLR);
  151. skge_write16(hw, SK_REG(port, GMAC_LINK_CTRL), GMLC_RST_CLR);
  152. /* Turn on Vaux */
  153. skge_write8(hw, B0_POWER_CTRL,
  154. PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_ON | PC_VCC_OFF);
  155. /* WA code for COMA mode -- clear PHY reset */
  156. if (hw->chip_id == CHIP_ID_YUKON_LITE &&
  157. hw->chip_rev >= CHIP_REV_YU_LITE_A3) {
  158. u32 reg = skge_read32(hw, B2_GP_IO);
  159. reg |= GP_DIR_9;
  160. reg &= ~GP_IO_9;
  161. skge_write32(hw, B2_GP_IO, reg);
  162. }
  163. skge_write32(hw, SK_REG(port, GPHY_CTRL),
  164. GPC_DIS_SLEEP |
  165. GPC_HWCFG_M_3 | GPC_HWCFG_M_2 | GPC_HWCFG_M_1 | GPC_HWCFG_M_0 |
  166. GPC_ANEG_1 | GPC_RST_SET);
  167. skge_write32(hw, SK_REG(port, GPHY_CTRL),
  168. GPC_DIS_SLEEP |
  169. GPC_HWCFG_M_3 | GPC_HWCFG_M_2 | GPC_HWCFG_M_1 | GPC_HWCFG_M_0 |
  170. GPC_ANEG_1 | GPC_RST_CLR);
  171. skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_RST_CLR);
  172. /* Force to 10/100 skge_reset will re-enable on resume */
  173. gm_phy_write(hw, port, PHY_MARV_AUNE_ADV,
  174. PHY_AN_100FULL | PHY_AN_100HALF |
  175. PHY_AN_10FULL | PHY_AN_10HALF| PHY_AN_CSMA);
  176. /* no 1000 HD/FD */
  177. gm_phy_write(hw, port, PHY_MARV_1000T_CTRL, 0);
  178. gm_phy_write(hw, port, PHY_MARV_CTRL,
  179. PHY_CT_RESET | PHY_CT_SPS_LSB | PHY_CT_ANE |
  180. PHY_CT_RE_CFG | PHY_CT_DUP_MD);
  181. /* Set GMAC to no flow control and auto update for speed/duplex */
  182. gma_write16(hw, port, GM_GP_CTRL,
  183. GM_GPCR_FC_TX_DIS|GM_GPCR_TX_ENA|GM_GPCR_RX_ENA|
  184. GM_GPCR_DUP_FULL|GM_GPCR_FC_RX_DIS|GM_GPCR_AU_FCT_DIS);
  185. /* Set WOL address */
  186. memcpy_toio(hw->regs + WOL_REGS(port, WOL_MAC_ADDR),
  187. skge->netdev->dev_addr, ETH_ALEN);
  188. /* Turn on appropriate WOL control bits */
  189. skge_write16(hw, WOL_REGS(port, WOL_CTRL_STAT), WOL_CTL_CLEAR_RESULT);
  190. ctrl = 0;
  191. if (skge->wol & WAKE_PHY)
  192. ctrl |= WOL_CTL_ENA_PME_ON_LINK_CHG|WOL_CTL_ENA_LINK_CHG_UNIT;
  193. else
  194. ctrl |= WOL_CTL_DIS_PME_ON_LINK_CHG|WOL_CTL_DIS_LINK_CHG_UNIT;
  195. if (skge->wol & WAKE_MAGIC)
  196. ctrl |= WOL_CTL_ENA_PME_ON_MAGIC_PKT|WOL_CTL_ENA_MAGIC_PKT_UNIT;
  197. else
  198. ctrl |= WOL_CTL_DIS_PME_ON_MAGIC_PKT|WOL_CTL_DIS_MAGIC_PKT_UNIT;;
  199. ctrl |= WOL_CTL_DIS_PME_ON_PATTERN|WOL_CTL_DIS_PATTERN_UNIT;
  200. skge_write16(hw, WOL_REGS(port, WOL_CTRL_STAT), ctrl);
  201. /* block receiver */
  202. skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_SET);
  203. }
  204. static void skge_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
  205. {
  206. struct skge_port *skge = netdev_priv(dev);
  207. wol->supported = wol_supported(skge->hw);
  208. wol->wolopts = skge->wol;
  209. }
  210. static int skge_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
  211. {
  212. struct skge_port *skge = netdev_priv(dev);
  213. struct skge_hw *hw = skge->hw;
  214. if (wol->wolopts & ~wol_supported(hw))
  215. return -EOPNOTSUPP;
  216. skge->wol = wol->wolopts;
  217. return 0;
  218. }
  219. /* Determine supported/advertised modes based on hardware.
  220. * Note: ethtool ADVERTISED_xxx == SUPPORTED_xxx
  221. */
  222. static u32 skge_supported_modes(const struct skge_hw *hw)
  223. {
  224. u32 supported;
  225. if (hw->copper) {
  226. supported = SUPPORTED_10baseT_Half
  227. | SUPPORTED_10baseT_Full
  228. | SUPPORTED_100baseT_Half
  229. | SUPPORTED_100baseT_Full
  230. | SUPPORTED_1000baseT_Half
  231. | SUPPORTED_1000baseT_Full
  232. | SUPPORTED_Autoneg| SUPPORTED_TP;
  233. if (hw->chip_id == CHIP_ID_GENESIS)
  234. supported &= ~(SUPPORTED_10baseT_Half
  235. | SUPPORTED_10baseT_Full
  236. | SUPPORTED_100baseT_Half
  237. | SUPPORTED_100baseT_Full);
  238. else if (hw->chip_id == CHIP_ID_YUKON)
  239. supported &= ~SUPPORTED_1000baseT_Half;
  240. } else
  241. supported = SUPPORTED_1000baseT_Full | SUPPORTED_1000baseT_Half
  242. | SUPPORTED_FIBRE | SUPPORTED_Autoneg;
  243. return supported;
  244. }
  245. static int skge_get_settings(struct net_device *dev,
  246. struct ethtool_cmd *ecmd)
  247. {
  248. struct skge_port *skge = netdev_priv(dev);
  249. struct skge_hw *hw = skge->hw;
  250. ecmd->transceiver = XCVR_INTERNAL;
  251. ecmd->supported = skge_supported_modes(hw);
  252. if (hw->copper) {
  253. ecmd->port = PORT_TP;
  254. ecmd->phy_address = hw->phy_addr;
  255. } else
  256. ecmd->port = PORT_FIBRE;
  257. ecmd->advertising = skge->advertising;
  258. ecmd->autoneg = skge->autoneg;
  259. ecmd->speed = skge->speed;
  260. ecmd->duplex = skge->duplex;
  261. return 0;
  262. }
  263. static int skge_set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
  264. {
  265. struct skge_port *skge = netdev_priv(dev);
  266. const struct skge_hw *hw = skge->hw;
  267. u32 supported = skge_supported_modes(hw);
  268. if (ecmd->autoneg == AUTONEG_ENABLE) {
  269. ecmd->advertising = supported;
  270. skge->duplex = -1;
  271. skge->speed = -1;
  272. } else {
  273. u32 setting;
  274. switch (ecmd->speed) {
  275. case SPEED_1000:
  276. if (ecmd->duplex == DUPLEX_FULL)
  277. setting = SUPPORTED_1000baseT_Full;
  278. else if (ecmd->duplex == DUPLEX_HALF)
  279. setting = SUPPORTED_1000baseT_Half;
  280. else
  281. return -EINVAL;
  282. break;
  283. case SPEED_100:
  284. if (ecmd->duplex == DUPLEX_FULL)
  285. setting = SUPPORTED_100baseT_Full;
  286. else if (ecmd->duplex == DUPLEX_HALF)
  287. setting = SUPPORTED_100baseT_Half;
  288. else
  289. return -EINVAL;
  290. break;
  291. case SPEED_10:
  292. if (ecmd->duplex == DUPLEX_FULL)
  293. setting = SUPPORTED_10baseT_Full;
  294. else if (ecmd->duplex == DUPLEX_HALF)
  295. setting = SUPPORTED_10baseT_Half;
  296. else
  297. return -EINVAL;
  298. break;
  299. default:
  300. return -EINVAL;
  301. }
  302. if ((setting & supported) == 0)
  303. return -EINVAL;
  304. skge->speed = ecmd->speed;
  305. skge->duplex = ecmd->duplex;
  306. }
  307. skge->autoneg = ecmd->autoneg;
  308. skge->advertising = ecmd->advertising;
  309. if (netif_running(dev))
  310. skge_phy_reset(skge);
  311. return (0);
  312. }
  313. static void skge_get_drvinfo(struct net_device *dev,
  314. struct ethtool_drvinfo *info)
  315. {
  316. struct skge_port *skge = netdev_priv(dev);
  317. strcpy(info->driver, DRV_NAME);
  318. strcpy(info->version, DRV_VERSION);
  319. strcpy(info->fw_version, "N/A");
  320. strcpy(info->bus_info, pci_name(skge->hw->pdev));
  321. }
  322. static const struct skge_stat {
  323. char name[ETH_GSTRING_LEN];
  324. u16 xmac_offset;
  325. u16 gma_offset;
  326. } skge_stats[] = {
  327. { "tx_bytes", XM_TXO_OK_HI, GM_TXO_OK_HI },
  328. { "rx_bytes", XM_RXO_OK_HI, GM_RXO_OK_HI },
  329. { "tx_broadcast", XM_TXF_BC_OK, GM_TXF_BC_OK },
  330. { "rx_broadcast", XM_RXF_BC_OK, GM_RXF_BC_OK },
  331. { "tx_multicast", XM_TXF_MC_OK, GM_TXF_MC_OK },
  332. { "rx_multicast", XM_RXF_MC_OK, GM_RXF_MC_OK },
  333. { "tx_unicast", XM_TXF_UC_OK, GM_TXF_UC_OK },
  334. { "rx_unicast", XM_RXF_UC_OK, GM_RXF_UC_OK },
  335. { "tx_mac_pause", XM_TXF_MPAUSE, GM_TXF_MPAUSE },
  336. { "rx_mac_pause", XM_RXF_MPAUSE, GM_RXF_MPAUSE },
  337. { "collisions", XM_TXF_SNG_COL, GM_TXF_SNG_COL },
  338. { "multi_collisions", XM_TXF_MUL_COL, GM_TXF_MUL_COL },
  339. { "aborted", XM_TXF_ABO_COL, GM_TXF_ABO_COL },
  340. { "late_collision", XM_TXF_LAT_COL, GM_TXF_LAT_COL },
  341. { "fifo_underrun", XM_TXE_FIFO_UR, GM_TXE_FIFO_UR },
  342. { "fifo_overflow", XM_RXE_FIFO_OV, GM_RXE_FIFO_OV },
  343. { "rx_toolong", XM_RXF_LNG_ERR, GM_RXF_LNG_ERR },
  344. { "rx_jabber", XM_RXF_JAB_PKT, GM_RXF_JAB_PKT },
  345. { "rx_runt", XM_RXE_RUNT, GM_RXE_FRAG },
  346. { "rx_too_long", XM_RXF_LNG_ERR, GM_RXF_LNG_ERR },
  347. { "rx_fcs_error", XM_RXF_FCS_ERR, GM_RXF_FCS_ERR },
  348. };
  349. static int skge_get_sset_count(struct net_device *dev, int sset)
  350. {
  351. switch (sset) {
  352. case ETH_SS_STATS:
  353. return ARRAY_SIZE(skge_stats);
  354. default:
  355. return -EOPNOTSUPP;
  356. }
  357. }
  358. static void skge_get_ethtool_stats(struct net_device *dev,
  359. struct ethtool_stats *stats, u64 *data)
  360. {
  361. struct skge_port *skge = netdev_priv(dev);
  362. if (skge->hw->chip_id == CHIP_ID_GENESIS)
  363. genesis_get_stats(skge, data);
  364. else
  365. yukon_get_stats(skge, data);
  366. }
  367. /* Use hardware MIB variables for critical path statistics and
  368. * transmit feedback not reported at interrupt.
  369. * Other errors are accounted for in interrupt handler.
  370. */
  371. static struct net_device_stats *skge_get_stats(struct net_device *dev)
  372. {
  373. struct skge_port *skge = netdev_priv(dev);
  374. u64 data[ARRAY_SIZE(skge_stats)];
  375. if (skge->hw->chip_id == CHIP_ID_GENESIS)
  376. genesis_get_stats(skge, data);
  377. else
  378. yukon_get_stats(skge, data);
  379. dev->stats.tx_bytes = data[0];
  380. dev->stats.rx_bytes = data[1];
  381. dev->stats.tx_packets = data[2] + data[4] + data[6];
  382. dev->stats.rx_packets = data[3] + data[5] + data[7];
  383. dev->stats.multicast = data[3] + data[5];
  384. dev->stats.collisions = data[10];
  385. dev->stats.tx_aborted_errors = data[12];
  386. return &dev->stats;
  387. }
  388. static void skge_get_strings(struct net_device *dev, u32 stringset, u8 *data)
  389. {
  390. int i;
  391. switch (stringset) {
  392. case ETH_SS_STATS:
  393. for (i = 0; i < ARRAY_SIZE(skge_stats); i++)
  394. memcpy(data + i * ETH_GSTRING_LEN,
  395. skge_stats[i].name, ETH_GSTRING_LEN);
  396. break;
  397. }
  398. }
  399. static void skge_get_ring_param(struct net_device *dev,
  400. struct ethtool_ringparam *p)
  401. {
  402. struct skge_port *skge = netdev_priv(dev);
  403. p->rx_max_pending = MAX_RX_RING_SIZE;
  404. p->tx_max_pending = MAX_TX_RING_SIZE;
  405. p->rx_mini_max_pending = 0;
  406. p->rx_jumbo_max_pending = 0;
  407. p->rx_pending = skge->rx_ring.count;
  408. p->tx_pending = skge->tx_ring.count;
  409. p->rx_mini_pending = 0;
  410. p->rx_jumbo_pending = 0;
  411. }
  412. static int skge_set_ring_param(struct net_device *dev,
  413. struct ethtool_ringparam *p)
  414. {
  415. struct skge_port *skge = netdev_priv(dev);
  416. int err;
  417. if (p->rx_pending == 0 || p->rx_pending > MAX_RX_RING_SIZE ||
  418. p->tx_pending < TX_LOW_WATER || p->tx_pending > MAX_TX_RING_SIZE)
  419. return -EINVAL;
  420. skge->rx_ring.count = p->rx_pending;
  421. skge->tx_ring.count = p->tx_pending;
  422. if (netif_running(dev)) {
  423. skge_down(dev);
  424. err = skge_up(dev);
  425. if (err)
  426. dev_close(dev);
  427. }
  428. return 0;
  429. }
  430. static u32 skge_get_msglevel(struct net_device *netdev)
  431. {
  432. struct skge_port *skge = netdev_priv(netdev);
  433. return skge->msg_enable;
  434. }
  435. static void skge_set_msglevel(struct net_device *netdev, u32 value)
  436. {
  437. struct skge_port *skge = netdev_priv(netdev);
  438. skge->msg_enable = value;
  439. }
  440. static int skge_nway_reset(struct net_device *dev)
  441. {
  442. struct skge_port *skge = netdev_priv(dev);
  443. if (skge->autoneg != AUTONEG_ENABLE || !netif_running(dev))
  444. return -EINVAL;
  445. skge_phy_reset(skge);
  446. return 0;
  447. }
  448. static int skge_set_sg(struct net_device *dev, u32 data)
  449. {
  450. struct skge_port *skge = netdev_priv(dev);
  451. struct skge_hw *hw = skge->hw;
  452. if (hw->chip_id == CHIP_ID_GENESIS && data)
  453. return -EOPNOTSUPP;
  454. return ethtool_op_set_sg(dev, data);
  455. }
  456. static int skge_set_tx_csum(struct net_device *dev, u32 data)
  457. {
  458. struct skge_port *skge = netdev_priv(dev);
  459. struct skge_hw *hw = skge->hw;
  460. if (hw->chip_id == CHIP_ID_GENESIS && data)
  461. return -EOPNOTSUPP;
  462. return ethtool_op_set_tx_csum(dev, data);
  463. }
  464. static u32 skge_get_rx_csum(struct net_device *dev)
  465. {
  466. struct skge_port *skge = netdev_priv(dev);
  467. return skge->rx_csum;
  468. }
  469. /* Only Yukon supports checksum offload. */
  470. static int skge_set_rx_csum(struct net_device *dev, u32 data)
  471. {
  472. struct skge_port *skge = netdev_priv(dev);
  473. if (skge->hw->chip_id == CHIP_ID_GENESIS && data)
  474. return -EOPNOTSUPP;
  475. skge->rx_csum = data;
  476. return 0;
  477. }
  478. static void skge_get_pauseparam(struct net_device *dev,
  479. struct ethtool_pauseparam *ecmd)
  480. {
  481. struct skge_port *skge = netdev_priv(dev);
  482. ecmd->rx_pause = (skge->flow_control == FLOW_MODE_SYMMETRIC)
  483. || (skge->flow_control == FLOW_MODE_SYM_OR_REM);
  484. ecmd->tx_pause = ecmd->rx_pause || (skge->flow_control == FLOW_MODE_LOC_SEND);
  485. ecmd->autoneg = ecmd->rx_pause || ecmd->tx_pause;
  486. }
  487. static int skge_set_pauseparam(struct net_device *dev,
  488. struct ethtool_pauseparam *ecmd)
  489. {
  490. struct skge_port *skge = netdev_priv(dev);
  491. struct ethtool_pauseparam old;
  492. skge_get_pauseparam(dev, &old);
  493. if (ecmd->autoneg != old.autoneg)
  494. skge->flow_control = ecmd->autoneg ? FLOW_MODE_NONE : FLOW_MODE_SYMMETRIC;
  495. else {
  496. if (ecmd->rx_pause && ecmd->tx_pause)
  497. skge->flow_control = FLOW_MODE_SYMMETRIC;
  498. else if (ecmd->rx_pause && !ecmd->tx_pause)
  499. skge->flow_control = FLOW_MODE_SYM_OR_REM;
  500. else if (!ecmd->rx_pause && ecmd->tx_pause)
  501. skge->flow_control = FLOW_MODE_LOC_SEND;
  502. else
  503. skge->flow_control = FLOW_MODE_NONE;
  504. }
  505. if (netif_running(dev))
  506. skge_phy_reset(skge);
  507. return 0;
  508. }
  509. /* Chip internal frequency for clock calculations */
  510. static inline u32 hwkhz(const struct skge_hw *hw)
  511. {
  512. return (hw->chip_id == CHIP_ID_GENESIS) ? 53125 : 78125;
  513. }
  514. /* Chip HZ to microseconds */
  515. static inline u32 skge_clk2usec(const struct skge_hw *hw, u32 ticks)
  516. {
  517. return (ticks * 1000) / hwkhz(hw);
  518. }
  519. /* Microseconds to chip HZ */
  520. static inline u32 skge_usecs2clk(const struct skge_hw *hw, u32 usec)
  521. {
  522. return hwkhz(hw) * usec / 1000;
  523. }
  524. static int skge_get_coalesce(struct net_device *dev,
  525. struct ethtool_coalesce *ecmd)
  526. {
  527. struct skge_port *skge = netdev_priv(dev);
  528. struct skge_hw *hw = skge->hw;
  529. int port = skge->port;
  530. ecmd->rx_coalesce_usecs = 0;
  531. ecmd->tx_coalesce_usecs = 0;
  532. if (skge_read32(hw, B2_IRQM_CTRL) & TIM_START) {
  533. u32 delay = skge_clk2usec(hw, skge_read32(hw, B2_IRQM_INI));
  534. u32 msk = skge_read32(hw, B2_IRQM_MSK);
  535. if (msk & rxirqmask[port])
  536. ecmd->rx_coalesce_usecs = delay;
  537. if (msk & txirqmask[port])
  538. ecmd->tx_coalesce_usecs = delay;
  539. }
  540. return 0;
  541. }
  542. /* Note: interrupt timer is per board, but can turn on/off per port */
  543. static int skge_set_coalesce(struct net_device *dev,
  544. struct ethtool_coalesce *ecmd)
  545. {
  546. struct skge_port *skge = netdev_priv(dev);
  547. struct skge_hw *hw = skge->hw;
  548. int port = skge->port;
  549. u32 msk = skge_read32(hw, B2_IRQM_MSK);
  550. u32 delay = 25;
  551. if (ecmd->rx_coalesce_usecs == 0)
  552. msk &= ~rxirqmask[port];
  553. else if (ecmd->rx_coalesce_usecs < 25 ||
  554. ecmd->rx_coalesce_usecs > 33333)
  555. return -EINVAL;
  556. else {
  557. msk |= rxirqmask[port];
  558. delay = ecmd->rx_coalesce_usecs;
  559. }
  560. if (ecmd->tx_coalesce_usecs == 0)
  561. msk &= ~txirqmask[port];
  562. else if (ecmd->tx_coalesce_usecs < 25 ||
  563. ecmd->tx_coalesce_usecs > 33333)
  564. return -EINVAL;
  565. else {
  566. msk |= txirqmask[port];
  567. delay = min(delay, ecmd->rx_coalesce_usecs);
  568. }
  569. skge_write32(hw, B2_IRQM_MSK, msk);
  570. if (msk == 0)
  571. skge_write32(hw, B2_IRQM_CTRL, TIM_STOP);
  572. else {
  573. skge_write32(hw, B2_IRQM_INI, skge_usecs2clk(hw, delay));
  574. skge_write32(hw, B2_IRQM_CTRL, TIM_START);
  575. }
  576. return 0;
  577. }
  578. enum led_mode { LED_MODE_OFF, LED_MODE_ON, LED_MODE_TST };
  579. static void skge_led(struct skge_port *skge, enum led_mode mode)
  580. {
  581. struct skge_hw *hw = skge->hw;
  582. int port = skge->port;
  583. spin_lock_bh(&hw->phy_lock);
  584. if (hw->chip_id == CHIP_ID_GENESIS) {
  585. switch (mode) {
  586. case LED_MODE_OFF:
  587. if (hw->phy_type == SK_PHY_BCOM)
  588. xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, PHY_B_PEC_LED_OFF);
  589. else {
  590. skge_write32(hw, SK_REG(port, TX_LED_VAL), 0);
  591. skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_T_OFF);
  592. }
  593. skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_OFF);
  594. skge_write32(hw, SK_REG(port, RX_LED_VAL), 0);
  595. skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_T_OFF);
  596. break;
  597. case LED_MODE_ON:
  598. skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_ON);
  599. skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_LINKSYNC_ON);
  600. skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_START);
  601. skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_START);
  602. break;
  603. case LED_MODE_TST:
  604. skge_write8(hw, SK_REG(port, RX_LED_TST), LED_T_ON);
  605. skge_write32(hw, SK_REG(port, RX_LED_VAL), 100);
  606. skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_START);
  607. if (hw->phy_type == SK_PHY_BCOM)
  608. xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, PHY_B_PEC_LED_ON);
  609. else {
  610. skge_write8(hw, SK_REG(port, TX_LED_TST), LED_T_ON);
  611. skge_write32(hw, SK_REG(port, TX_LED_VAL), 100);
  612. skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_START);
  613. }
  614. }
  615. } else {
  616. switch (mode) {
  617. case LED_MODE_OFF:
  618. gm_phy_write(hw, port, PHY_MARV_LED_CTRL, 0);
  619. gm_phy_write(hw, port, PHY_MARV_LED_OVER,
  620. PHY_M_LED_MO_DUP(MO_LED_OFF) |
  621. PHY_M_LED_MO_10(MO_LED_OFF) |
  622. PHY_M_LED_MO_100(MO_LED_OFF) |
  623. PHY_M_LED_MO_1000(MO_LED_OFF) |
  624. PHY_M_LED_MO_RX(MO_LED_OFF));
  625. break;
  626. case LED_MODE_ON:
  627. gm_phy_write(hw, port, PHY_MARV_LED_CTRL,
  628. PHY_M_LED_PULS_DUR(PULS_170MS) |
  629. PHY_M_LED_BLINK_RT(BLINK_84MS) |
  630. PHY_M_LEDC_TX_CTRL |
  631. PHY_M_LEDC_DP_CTRL);
  632. gm_phy_write(hw, port, PHY_MARV_LED_OVER,
  633. PHY_M_LED_MO_RX(MO_LED_OFF) |
  634. (skge->speed == SPEED_100 ?
  635. PHY_M_LED_MO_100(MO_LED_ON) : 0));
  636. break;
  637. case LED_MODE_TST:
  638. gm_phy_write(hw, port, PHY_MARV_LED_CTRL, 0);
  639. gm_phy_write(hw, port, PHY_MARV_LED_OVER,
  640. PHY_M_LED_MO_DUP(MO_LED_ON) |
  641. PHY_M_LED_MO_10(MO_LED_ON) |
  642. PHY_M_LED_MO_100(MO_LED_ON) |
  643. PHY_M_LED_MO_1000(MO_LED_ON) |
  644. PHY_M_LED_MO_RX(MO_LED_ON));
  645. }
  646. }
  647. spin_unlock_bh(&hw->phy_lock);
  648. }
  649. /* blink LED's for finding board */
  650. static int skge_phys_id(struct net_device *dev, u32 data)
  651. {
  652. struct skge_port *skge = netdev_priv(dev);
  653. unsigned long ms;
  654. enum led_mode mode = LED_MODE_TST;
  655. if (!data || data > (u32)(MAX_SCHEDULE_TIMEOUT / HZ))
  656. ms = jiffies_to_msecs(MAX_SCHEDULE_TIMEOUT / HZ) * 1000;
  657. else
  658. ms = data * 1000;
  659. while (ms > 0) {
  660. skge_led(skge, mode);
  661. mode ^= LED_MODE_TST;
  662. if (msleep_interruptible(BLINK_MS))
  663. break;
  664. ms -= BLINK_MS;
  665. }
  666. /* back to regular LED state */
  667. skge_led(skge, netif_running(dev) ? LED_MODE_ON : LED_MODE_OFF);
  668. return 0;
  669. }
  670. static int skge_get_eeprom_len(struct net_device *dev)
  671. {
  672. struct skge_port *skge = netdev_priv(dev);
  673. u32 reg2;
  674. pci_read_config_dword(skge->hw->pdev, PCI_DEV_REG2, &reg2);
  675. return 1 << ( ((reg2 & PCI_VPD_ROM_SZ) >> 14) + 8);
  676. }
  677. static u32 skge_vpd_read(struct pci_dev *pdev, int cap, u16 offset)
  678. {
  679. u32 val;
  680. pci_write_config_word(pdev, cap + PCI_VPD_ADDR, offset);
  681. do {
  682. pci_read_config_word(pdev, cap + PCI_VPD_ADDR, &offset);
  683. } while (!(offset & PCI_VPD_ADDR_F));
  684. pci_read_config_dword(pdev, cap + PCI_VPD_DATA, &val);
  685. return val;
  686. }
  687. static void skge_vpd_write(struct pci_dev *pdev, int cap, u16 offset, u32 val)
  688. {
  689. pci_write_config_dword(pdev, cap + PCI_VPD_DATA, val);
  690. pci_write_config_word(pdev, cap + PCI_VPD_ADDR,
  691. offset | PCI_VPD_ADDR_F);
  692. do {
  693. pci_read_config_word(pdev, cap + PCI_VPD_ADDR, &offset);
  694. } while (offset & PCI_VPD_ADDR_F);
  695. }
  696. static int skge_get_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
  697. u8 *data)
  698. {
  699. struct skge_port *skge = netdev_priv(dev);
  700. struct pci_dev *pdev = skge->hw->pdev;
  701. int cap = pci_find_capability(pdev, PCI_CAP_ID_VPD);
  702. int length = eeprom->len;
  703. u16 offset = eeprom->offset;
  704. if (!cap)
  705. return -EINVAL;
  706. eeprom->magic = SKGE_EEPROM_MAGIC;
  707. while (length > 0) {
  708. u32 val = skge_vpd_read(pdev, cap, offset);
  709. int n = min_t(int, length, sizeof(val));
  710. memcpy(data, &val, n);
  711. length -= n;
  712. data += n;
  713. offset += n;
  714. }
  715. return 0;
  716. }
  717. static int skge_set_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
  718. u8 *data)
  719. {
  720. struct skge_port *skge = netdev_priv(dev);
  721. struct pci_dev *pdev = skge->hw->pdev;
  722. int cap = pci_find_capability(pdev, PCI_CAP_ID_VPD);
  723. int length = eeprom->len;
  724. u16 offset = eeprom->offset;
  725. if (!cap)
  726. return -EINVAL;
  727. if (eeprom->magic != SKGE_EEPROM_MAGIC)
  728. return -EINVAL;
  729. while (length > 0) {
  730. u32 val;
  731. int n = min_t(int, length, sizeof(val));
  732. if (n < sizeof(val))
  733. val = skge_vpd_read(pdev, cap, offset);
  734. memcpy(&val, data, n);
  735. skge_vpd_write(pdev, cap, offset, val);
  736. length -= n;
  737. data += n;
  738. offset += n;
  739. }
  740. return 0;
  741. }
  742. static const struct ethtool_ops skge_ethtool_ops = {
  743. .get_settings = skge_get_settings,
  744. .set_settings = skge_set_settings,
  745. .get_drvinfo = skge_get_drvinfo,
  746. .get_regs_len = skge_get_regs_len,
  747. .get_regs = skge_get_regs,
  748. .get_wol = skge_get_wol,
  749. .set_wol = skge_set_wol,
  750. .get_msglevel = skge_get_msglevel,
  751. .set_msglevel = skge_set_msglevel,
  752. .nway_reset = skge_nway_reset,
  753. .get_link = ethtool_op_get_link,
  754. .get_eeprom_len = skge_get_eeprom_len,
  755. .get_eeprom = skge_get_eeprom,
  756. .set_eeprom = skge_set_eeprom,
  757. .get_ringparam = skge_get_ring_param,
  758. .set_ringparam = skge_set_ring_param,
  759. .get_pauseparam = skge_get_pauseparam,
  760. .set_pauseparam = skge_set_pauseparam,
  761. .get_coalesce = skge_get_coalesce,
  762. .set_coalesce = skge_set_coalesce,
  763. .set_sg = skge_set_sg,
  764. .set_tx_csum = skge_set_tx_csum,
  765. .get_rx_csum = skge_get_rx_csum,
  766. .set_rx_csum = skge_set_rx_csum,
  767. .get_strings = skge_get_strings,
  768. .phys_id = skge_phys_id,
  769. .get_sset_count = skge_get_sset_count,
  770. .get_ethtool_stats = skge_get_ethtool_stats,
  771. };
  772. /*
  773. * Allocate ring elements and chain them together
  774. * One-to-one association of board descriptors with ring elements
  775. */
  776. static int skge_ring_alloc(struct skge_ring *ring, void *vaddr, u32 base)
  777. {
  778. struct skge_tx_desc *d;
  779. struct skge_element *e;
  780. int i;
  781. ring->start = kcalloc(ring->count, sizeof(*e), GFP_KERNEL);
  782. if (!ring->start)
  783. return -ENOMEM;
  784. for (i = 0, e = ring->start, d = vaddr; i < ring->count; i++, e++, d++) {
  785. e->desc = d;
  786. if (i == ring->count - 1) {
  787. e->next = ring->start;
  788. d->next_offset = base;
  789. } else {
  790. e->next = e + 1;
  791. d->next_offset = base + (i+1) * sizeof(*d);
  792. }
  793. }
  794. ring->to_use = ring->to_clean = ring->start;
  795. return 0;
  796. }
  797. /* Allocate and setup a new buffer for receiving */
  798. static void skge_rx_setup(struct skge_port *skge, struct skge_element *e,
  799. struct sk_buff *skb, unsigned int bufsize)
  800. {
  801. struct skge_rx_desc *rd = e->desc;
  802. u64 map;
  803. map = pci_map_single(skge->hw->pdev, skb->data, bufsize,
  804. PCI_DMA_FROMDEVICE);
  805. rd->dma_lo = map;
  806. rd->dma_hi = map >> 32;
  807. e->skb = skb;
  808. rd->csum1_start = ETH_HLEN;
  809. rd->csum2_start = ETH_HLEN;
  810. rd->csum1 = 0;
  811. rd->csum2 = 0;
  812. wmb();
  813. rd->control = BMU_OWN | BMU_STF | BMU_IRQ_EOF | BMU_TCP_CHECK | bufsize;
  814. pci_unmap_addr_set(e, mapaddr, map);
  815. pci_unmap_len_set(e, maplen, bufsize);
  816. }
  817. /* Resume receiving using existing skb,
  818. * Note: DMA address is not changed by chip.
  819. * MTU not changed while receiver active.
  820. */
  821. static inline void skge_rx_reuse(struct skge_element *e, unsigned int size)
  822. {
  823. struct skge_rx_desc *rd = e->desc;
  824. rd->csum2 = 0;
  825. rd->csum2_start = ETH_HLEN;
  826. wmb();
  827. rd->control = BMU_OWN | BMU_STF | BMU_IRQ_EOF | BMU_TCP_CHECK | size;
  828. }
  829. /* Free all buffers in receive ring, assumes receiver stopped */
  830. static void skge_rx_clean(struct skge_port *skge)
  831. {
  832. struct skge_hw *hw = skge->hw;
  833. struct skge_ring *ring = &skge->rx_ring;
  834. struct skge_element *e;
  835. e = ring->start;
  836. do {
  837. struct skge_rx_desc *rd = e->desc;
  838. rd->control = 0;
  839. if (e->skb) {
  840. pci_unmap_single(hw->pdev,
  841. pci_unmap_addr(e, mapaddr),
  842. pci_unmap_len(e, maplen),
  843. PCI_DMA_FROMDEVICE);
  844. dev_kfree_skb(e->skb);
  845. e->skb = NULL;
  846. }
  847. } while ((e = e->next) != ring->start);
  848. }
  849. /* Allocate buffers for receive ring
  850. * For receive: to_clean is next received frame.
  851. */
  852. static int skge_rx_fill(struct net_device *dev)
  853. {
  854. struct skge_port *skge = netdev_priv(dev);
  855. struct skge_ring *ring = &skge->rx_ring;
  856. struct skge_element *e;
  857. e = ring->start;
  858. do {
  859. struct sk_buff *skb;
  860. skb = __netdev_alloc_skb(dev, skge->rx_buf_size + NET_IP_ALIGN,
  861. GFP_KERNEL);
  862. if (!skb)
  863. return -ENOMEM;
  864. skb_reserve(skb, NET_IP_ALIGN);
  865. skge_rx_setup(skge, e, skb, skge->rx_buf_size);
  866. } while ( (e = e->next) != ring->start);
  867. ring->to_clean = ring->start;
  868. return 0;
  869. }
  870. static const char *skge_pause(enum pause_status status)
  871. {
  872. switch(status) {
  873. case FLOW_STAT_NONE:
  874. return "none";
  875. case FLOW_STAT_REM_SEND:
  876. return "rx only";
  877. case FLOW_STAT_LOC_SEND:
  878. return "tx_only";
  879. case FLOW_STAT_SYMMETRIC: /* Both station may send PAUSE */
  880. return "both";
  881. default:
  882. return "indeterminated";
  883. }
  884. }
  885. static void skge_link_up(struct skge_port *skge)
  886. {
  887. skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG),
  888. LED_BLK_OFF|LED_SYNC_OFF|LED_ON);
  889. netif_carrier_on(skge->netdev);
  890. netif_wake_queue(skge->netdev);
  891. if (netif_msg_link(skge)) {
  892. printk(KERN_INFO PFX
  893. "%s: Link is up at %d Mbps, %s duplex, flow control %s\n",
  894. skge->netdev->name, skge->speed,
  895. skge->duplex == DUPLEX_FULL ? "full" : "half",
  896. skge_pause(skge->flow_status));
  897. }
  898. }
  899. static void skge_link_down(struct skge_port *skge)
  900. {
  901. skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG), LED_OFF);
  902. netif_carrier_off(skge->netdev);
  903. netif_stop_queue(skge->netdev);
  904. if (netif_msg_link(skge))
  905. printk(KERN_INFO PFX "%s: Link is down.\n", skge->netdev->name);
  906. }
  907. static void xm_link_down(struct skge_hw *hw, int port)
  908. {
  909. struct net_device *dev = hw->dev[port];
  910. struct skge_port *skge = netdev_priv(dev);
  911. u16 cmd = xm_read16(hw, port, XM_MMU_CMD);
  912. xm_write16(hw, port, XM_IMSK, XM_IMSK_DISABLE);
  913. cmd &= ~(XM_MMU_ENA_RX | XM_MMU_ENA_TX);
  914. xm_write16(hw, port, XM_MMU_CMD, cmd);
  915. /* dummy read to ensure writing */
  916. xm_read16(hw, port, XM_MMU_CMD);
  917. if (netif_carrier_ok(dev))
  918. skge_link_down(skge);
  919. }
  920. static int __xm_phy_read(struct skge_hw *hw, int port, u16 reg, u16 *val)
  921. {
  922. int i;
  923. xm_write16(hw, port, XM_PHY_ADDR, reg | hw->phy_addr);
  924. *val = xm_read16(hw, port, XM_PHY_DATA);
  925. if (hw->phy_type == SK_PHY_XMAC)
  926. goto ready;
  927. for (i = 0; i < PHY_RETRIES; i++) {
  928. if (xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_RDY)
  929. goto ready;
  930. udelay(1);
  931. }
  932. return -ETIMEDOUT;
  933. ready:
  934. *val = xm_read16(hw, port, XM_PHY_DATA);
  935. return 0;
  936. }
  937. static u16 xm_phy_read(struct skge_hw *hw, int port, u16 reg)
  938. {
  939. u16 v = 0;
  940. if (__xm_phy_read(hw, port, reg, &v))
  941. printk(KERN_WARNING PFX "%s: phy read timed out\n",
  942. hw->dev[port]->name);
  943. return v;
  944. }
  945. static int xm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val)
  946. {
  947. int i;
  948. xm_write16(hw, port, XM_PHY_ADDR, reg | hw->phy_addr);
  949. for (i = 0; i < PHY_RETRIES; i++) {
  950. if (!(xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_BUSY))
  951. goto ready;
  952. udelay(1);
  953. }
  954. return -EIO;
  955. ready:
  956. xm_write16(hw, port, XM_PHY_DATA, val);
  957. for (i = 0; i < PHY_RETRIES; i++) {
  958. if (!(xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_BUSY))
  959. return 0;
  960. udelay(1);
  961. }
  962. return -ETIMEDOUT;
  963. }
  964. static void genesis_init(struct skge_hw *hw)
  965. {
  966. /* set blink source counter */
  967. skge_write32(hw, B2_BSC_INI, (SK_BLK_DUR * SK_FACT_53) / 100);
  968. skge_write8(hw, B2_BSC_CTRL, BSC_START);
  969. /* configure mac arbiter */
  970. skge_write16(hw, B3_MA_TO_CTRL, MA_RST_CLR);
  971. /* configure mac arbiter timeout values */
  972. skge_write8(hw, B3_MA_TOINI_RX1, SK_MAC_TO_53);
  973. skge_write8(hw, B3_MA_TOINI_RX2, SK_MAC_TO_53);
  974. skge_write8(hw, B3_MA_TOINI_TX1, SK_MAC_TO_53);
  975. skge_write8(hw, B3_MA_TOINI_TX2, SK_MAC_TO_53);
  976. skge_write8(hw, B3_MA_RCINI_RX1, 0);
  977. skge_write8(hw, B3_MA_RCINI_RX2, 0);
  978. skge_write8(hw, B3_MA_RCINI_TX1, 0);
  979. skge_write8(hw, B3_MA_RCINI_TX2, 0);
  980. /* configure packet arbiter timeout */
  981. skge_write16(hw, B3_PA_CTRL, PA_RST_CLR);
  982. skge_write16(hw, B3_PA_TOINI_RX1, SK_PKT_TO_MAX);
  983. skge_write16(hw, B3_PA_TOINI_TX1, SK_PKT_TO_MAX);
  984. skge_write16(hw, B3_PA_TOINI_RX2, SK_PKT_TO_MAX);
  985. skge_write16(hw, B3_PA_TOINI_TX2, SK_PKT_TO_MAX);
  986. }
  987. static void genesis_reset(struct skge_hw *hw, int port)
  988. {
  989. const u8 zero[8] = { 0 };
  990. skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), 0);
  991. /* reset the statistics module */
  992. xm_write32(hw, port, XM_GP_PORT, XM_GP_RES_STAT);
  993. xm_write16(hw, port, XM_IMSK, XM_IMSK_DISABLE);
  994. xm_write32(hw, port, XM_MODE, 0); /* clear Mode Reg */
  995. xm_write16(hw, port, XM_TX_CMD, 0); /* reset TX CMD Reg */
  996. xm_write16(hw, port, XM_RX_CMD, 0); /* reset RX CMD Reg */
  997. /* disable Broadcom PHY IRQ */
  998. if (hw->phy_type == SK_PHY_BCOM)
  999. xm_write16(hw, port, PHY_BCOM_INT_MASK, 0xffff);
  1000. xm_outhash(hw, port, XM_HSM, zero);
  1001. }
  1002. /* Convert mode to MII values */
  1003. static const u16 phy_pause_map[] = {
  1004. [FLOW_MODE_NONE] = 0,
  1005. [FLOW_MODE_LOC_SEND] = PHY_AN_PAUSE_ASYM,
  1006. [FLOW_MODE_SYMMETRIC] = PHY_AN_PAUSE_CAP,
  1007. [FLOW_MODE_SYM_OR_REM] = PHY_AN_PAUSE_CAP | PHY_AN_PAUSE_ASYM,
  1008. };
  1009. /* special defines for FIBER (88E1011S only) */
  1010. static const u16 fiber_pause_map[] = {
  1011. [FLOW_MODE_NONE] = PHY_X_P_NO_PAUSE,
  1012. [FLOW_MODE_LOC_SEND] = PHY_X_P_ASYM_MD,
  1013. [FLOW_MODE_SYMMETRIC] = PHY_X_P_SYM_MD,
  1014. [FLOW_MODE_SYM_OR_REM] = PHY_X_P_BOTH_MD,
  1015. };
  1016. /* Check status of Broadcom phy link */
  1017. static void bcom_check_link(struct skge_hw *hw, int port)
  1018. {
  1019. struct net_device *dev = hw->dev[port];
  1020. struct skge_port *skge = netdev_priv(dev);
  1021. u16 status;
  1022. /* read twice because of latch */
  1023. xm_phy_read(hw, port, PHY_BCOM_STAT);
  1024. status = xm_phy_read(hw, port, PHY_BCOM_STAT);
  1025. if ((status & PHY_ST_LSYNC) == 0) {
  1026. xm_link_down(hw, port);
  1027. return;
  1028. }
  1029. if (skge->autoneg == AUTONEG_ENABLE) {
  1030. u16 lpa, aux;
  1031. if (!(status & PHY_ST_AN_OVER))
  1032. return;
  1033. lpa = xm_phy_read(hw, port, PHY_XMAC_AUNE_LP);
  1034. if (lpa & PHY_B_AN_RF) {
  1035. printk(KERN_NOTICE PFX "%s: remote fault\n",
  1036. dev->name);
  1037. return;
  1038. }
  1039. aux = xm_phy_read(hw, port, PHY_BCOM_AUX_STAT);
  1040. /* Check Duplex mismatch */
  1041. switch (aux & PHY_B_AS_AN_RES_MSK) {
  1042. case PHY_B_RES_1000FD:
  1043. skge->duplex = DUPLEX_FULL;
  1044. break;
  1045. case PHY_B_RES_1000HD:
  1046. skge->duplex = DUPLEX_HALF;
  1047. break;
  1048. default:
  1049. printk(KERN_NOTICE PFX "%s: duplex mismatch\n",
  1050. dev->name);
  1051. return;
  1052. }
  1053. /* We are using IEEE 802.3z/D5.0 Table 37-4 */
  1054. switch (aux & PHY_B_AS_PAUSE_MSK) {
  1055. case PHY_B_AS_PAUSE_MSK:
  1056. skge->flow_status = FLOW_STAT_SYMMETRIC;
  1057. break;
  1058. case PHY_B_AS_PRR:
  1059. skge->flow_status = FLOW_STAT_REM_SEND;
  1060. break;
  1061. case PHY_B_AS_PRT:
  1062. skge->flow_status = FLOW_STAT_LOC_SEND;
  1063. break;
  1064. default:
  1065. skge->flow_status = FLOW_STAT_NONE;
  1066. }
  1067. skge->speed = SPEED_1000;
  1068. }
  1069. if (!netif_carrier_ok(dev))
  1070. genesis_link_up(skge);
  1071. }
  1072. /* Broadcom 5400 only supports giagabit! SysKonnect did not put an additional
  1073. * Phy on for 100 or 10Mbit operation
  1074. */
  1075. static void bcom_phy_init(struct skge_port *skge)
  1076. {
  1077. struct skge_hw *hw = skge->hw;
  1078. int port = skge->port;
  1079. int i;
  1080. u16 id1, r, ext, ctl;
  1081. /* magic workaround patterns for Broadcom */
  1082. static const struct {
  1083. u16 reg;
  1084. u16 val;
  1085. } A1hack[] = {
  1086. { 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 },
  1087. { 0x17, 0x0013 }, { 0x15, 0x0404 }, { 0x17, 0x8006 },
  1088. { 0x15, 0x0132 }, { 0x17, 0x8006 }, { 0x15, 0x0232 },
  1089. { 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 },
  1090. }, C0hack[] = {
  1091. { 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1204 },
  1092. { 0x17, 0x0013 }, { 0x15, 0x0A04 }, { 0x18, 0x0420 },
  1093. };
  1094. /* read Id from external PHY (all have the same address) */
  1095. id1 = xm_phy_read(hw, port, PHY_XMAC_ID1);
  1096. /* Optimize MDIO transfer by suppressing preamble. */
  1097. r = xm_read16(hw, port, XM_MMU_CMD);
  1098. r |= XM_MMU_NO_PRE;
  1099. xm_write16(hw, port, XM_MMU_CMD,r);
  1100. switch (id1) {
  1101. case PHY_BCOM_ID1_C0:
  1102. /*
  1103. * Workaround BCOM Errata for the C0 type.
  1104. * Write magic patterns to reserved registers.
  1105. */
  1106. for (i = 0; i < ARRAY_SIZE(C0hack); i++)
  1107. xm_phy_write(hw, port,
  1108. C0hack[i].reg, C0hack[i].val);
  1109. break;
  1110. case PHY_BCOM_ID1_A1:
  1111. /*
  1112. * Workaround BCOM Errata for the A1 type.
  1113. * Write magic patterns to reserved registers.
  1114. */
  1115. for (i = 0; i < ARRAY_SIZE(A1hack); i++)
  1116. xm_phy_write(hw, port,
  1117. A1hack[i].reg, A1hack[i].val);
  1118. break;
  1119. }
  1120. /*
  1121. * Workaround BCOM Errata (#10523) for all BCom PHYs.
  1122. * Disable Power Management after reset.
  1123. */
  1124. r = xm_phy_read(hw, port, PHY_BCOM_AUX_CTRL);
  1125. r |= PHY_B_AC_DIS_PM;
  1126. xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL, r);
  1127. /* Dummy read */
  1128. xm_read16(hw, port, XM_ISRC);
  1129. ext = PHY_B_PEC_EN_LTR; /* enable tx led */
  1130. ctl = PHY_CT_SP1000; /* always 1000mbit */
  1131. if (skge->autoneg == AUTONEG_ENABLE) {
  1132. /*
  1133. * Workaround BCOM Errata #1 for the C5 type.
  1134. * 1000Base-T Link Acquisition Failure in Slave Mode
  1135. * Set Repeater/DTE bit 10 of the 1000Base-T Control Register
  1136. */
  1137. u16 adv = PHY_B_1000C_RD;
  1138. if (skge->advertising & ADVERTISED_1000baseT_Half)
  1139. adv |= PHY_B_1000C_AHD;
  1140. if (skge->advertising & ADVERTISED_1000baseT_Full)
  1141. adv |= PHY_B_1000C_AFD;
  1142. xm_phy_write(hw, port, PHY_BCOM_1000T_CTRL, adv);
  1143. ctl |= PHY_CT_ANE | PHY_CT_RE_CFG;
  1144. } else {
  1145. if (skge->duplex == DUPLEX_FULL)
  1146. ctl |= PHY_CT_DUP_MD;
  1147. /* Force to slave */
  1148. xm_phy_write(hw, port, PHY_BCOM_1000T_CTRL, PHY_B_1000C_MSE);
  1149. }
  1150. /* Set autonegotiation pause parameters */
  1151. xm_phy_write(hw, port, PHY_BCOM_AUNE_ADV,
  1152. phy_pause_map[skge->flow_control] | PHY_AN_CSMA);
  1153. /* Handle Jumbo frames */
  1154. if (hw->dev[port]->mtu > ETH_DATA_LEN) {
  1155. xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL,
  1156. PHY_B_AC_TX_TST | PHY_B_AC_LONG_PACK);
  1157. ext |= PHY_B_PEC_HIGH_LA;
  1158. }
  1159. xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, ext);
  1160. xm_phy_write(hw, port, PHY_BCOM_CTRL, ctl);
  1161. /* Use link status change interrupt */
  1162. xm_phy_write(hw, port, PHY_BCOM_INT_MASK, PHY_B_DEF_MSK);
  1163. }
  1164. static void xm_phy_init(struct skge_port *skge)
  1165. {
  1166. struct skge_hw *hw = skge->hw;
  1167. int port = skge->port;
  1168. u16 ctrl = 0;
  1169. if (skge->autoneg == AUTONEG_ENABLE) {
  1170. if (skge->advertising & ADVERTISED_1000baseT_Half)
  1171. ctrl |= PHY_X_AN_HD;
  1172. if (skge->advertising & ADVERTISED_1000baseT_Full)
  1173. ctrl |= PHY_X_AN_FD;
  1174. ctrl |= fiber_pause_map[skge->flow_control];
  1175. xm_phy_write(hw, port, PHY_XMAC_AUNE_ADV, ctrl);
  1176. /* Restart Auto-negotiation */
  1177. ctrl = PHY_CT_ANE | PHY_CT_RE_CFG;
  1178. } else {
  1179. /* Set DuplexMode in Config register */
  1180. if (skge->duplex == DUPLEX_FULL)
  1181. ctrl |= PHY_CT_DUP_MD;
  1182. /*
  1183. * Do NOT enable Auto-negotiation here. This would hold
  1184. * the link down because no IDLEs are transmitted
  1185. */
  1186. }
  1187. xm_phy_write(hw, port, PHY_XMAC_CTRL, ctrl);
  1188. /* Poll PHY for status changes */
  1189. mod_timer(&skge->link_timer, jiffies + LINK_HZ);
  1190. }
  1191. static int xm_check_link(struct net_device *dev)
  1192. {
  1193. struct skge_port *skge = netdev_priv(dev);
  1194. struct skge_hw *hw = skge->hw;
  1195. int port = skge->port;
  1196. u16 status;
  1197. /* read twice because of latch */
  1198. xm_phy_read(hw, port, PHY_XMAC_STAT);
  1199. status = xm_phy_read(hw, port, PHY_XMAC_STAT);
  1200. if ((status & PHY_ST_LSYNC) == 0) {
  1201. xm_link_down(hw, port);
  1202. return 0;
  1203. }
  1204. if (skge->autoneg == AUTONEG_ENABLE) {
  1205. u16 lpa, res;
  1206. if (!(status & PHY_ST_AN_OVER))
  1207. return 0;
  1208. lpa = xm_phy_read(hw, port, PHY_XMAC_AUNE_LP);
  1209. if (lpa & PHY_B_AN_RF) {
  1210. printk(KERN_NOTICE PFX "%s: remote fault\n",
  1211. dev->name);
  1212. return 0;
  1213. }
  1214. res = xm_phy_read(hw, port, PHY_XMAC_RES_ABI);
  1215. /* Check Duplex mismatch */
  1216. switch (res & (PHY_X_RS_HD | PHY_X_RS_FD)) {
  1217. case PHY_X_RS_FD:
  1218. skge->duplex = DUPLEX_FULL;
  1219. break;
  1220. case PHY_X_RS_HD:
  1221. skge->duplex = DUPLEX_HALF;
  1222. break;
  1223. default:
  1224. printk(KERN_NOTICE PFX "%s: duplex mismatch\n",
  1225. dev->name);
  1226. return 0;
  1227. }
  1228. /* We are using IEEE 802.3z/D5.0 Table 37-4 */
  1229. if ((skge->flow_control == FLOW_MODE_SYMMETRIC ||
  1230. skge->flow_control == FLOW_MODE_SYM_OR_REM) &&
  1231. (lpa & PHY_X_P_SYM_MD))
  1232. skge->flow_status = FLOW_STAT_SYMMETRIC;
  1233. else if (skge->flow_control == FLOW_MODE_SYM_OR_REM &&
  1234. (lpa & PHY_X_RS_PAUSE) == PHY_X_P_ASYM_MD)
  1235. /* Enable PAUSE receive, disable PAUSE transmit */
  1236. skge->flow_status = FLOW_STAT_REM_SEND;
  1237. else if (skge->flow_control == FLOW_MODE_LOC_SEND &&
  1238. (lpa & PHY_X_RS_PAUSE) == PHY_X_P_BOTH_MD)
  1239. /* Disable PAUSE receive, enable PAUSE transmit */
  1240. skge->flow_status = FLOW_STAT_LOC_SEND;
  1241. else
  1242. skge->flow_status = FLOW_STAT_NONE;
  1243. skge->speed = SPEED_1000;
  1244. }
  1245. if (!netif_carrier_ok(dev))
  1246. genesis_link_up(skge);
  1247. return 1;
  1248. }
  1249. /* Poll to check for link coming up.
  1250. *
  1251. * Since internal PHY is wired to a level triggered pin, can't
  1252. * get an interrupt when carrier is detected, need to poll for
  1253. * link coming up.
  1254. */
  1255. static void xm_link_timer(unsigned long arg)
  1256. {
  1257. struct skge_port *skge = (struct skge_port *) arg;
  1258. struct net_device *dev = skge->netdev;
  1259. struct skge_hw *hw = skge->hw;
  1260. int port = skge->port;
  1261. int i;
  1262. unsigned long flags;
  1263. if (!netif_running(dev))
  1264. return;
  1265. spin_lock_irqsave(&hw->phy_lock, flags);
  1266. /*
  1267. * Verify that the link by checking GPIO register three times.
  1268. * This pin has the signal from the link_sync pin connected to it.
  1269. */
  1270. for (i = 0; i < 3; i++) {
  1271. if (xm_read16(hw, port, XM_GP_PORT) & XM_GP_INP_ASS)
  1272. goto link_down;
  1273. }
  1274. /* Re-enable interrupt to detect link down */
  1275. if (xm_check_link(dev)) {
  1276. u16 msk = xm_read16(hw, port, XM_IMSK);
  1277. msk &= ~XM_IS_INP_ASS;
  1278. xm_write16(hw, port, XM_IMSK, msk);
  1279. xm_read16(hw, port, XM_ISRC);
  1280. } else {
  1281. link_down:
  1282. mod_timer(&skge->link_timer,
  1283. round_jiffies(jiffies + LINK_HZ));
  1284. }
  1285. spin_unlock_irqrestore(&hw->phy_lock, flags);
  1286. }
  1287. static void genesis_mac_init(struct skge_hw *hw, int port)
  1288. {
  1289. struct net_device *dev = hw->dev[port];
  1290. struct skge_port *skge = netdev_priv(dev);
  1291. int jumbo = hw->dev[port]->mtu > ETH_DATA_LEN;
  1292. int i;
  1293. u32 r;
  1294. const u8 zero[6] = { 0 };
  1295. for (i = 0; i < 10; i++) {
  1296. skge_write16(hw, SK_REG(port, TX_MFF_CTRL1),
  1297. MFF_SET_MAC_RST);
  1298. if (skge_read16(hw, SK_REG(port, TX_MFF_CTRL1)) & MFF_SET_MAC_RST)
  1299. goto reset_ok;
  1300. udelay(1);
  1301. }
  1302. printk(KERN_WARNING PFX "%s: genesis reset failed\n", dev->name);
  1303. reset_ok:
  1304. /* Unreset the XMAC. */
  1305. skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_CLR_MAC_RST);
  1306. /*
  1307. * Perform additional initialization for external PHYs,
  1308. * namely for the 1000baseTX cards that use the XMAC's
  1309. * GMII mode.
  1310. */
  1311. if (hw->phy_type != SK_PHY_XMAC) {
  1312. /* Take external Phy out of reset */
  1313. r = skge_read32(hw, B2_GP_IO);
  1314. if (port == 0)
  1315. r |= GP_DIR_0|GP_IO_0;
  1316. else
  1317. r |= GP_DIR_2|GP_IO_2;
  1318. skge_write32(hw, B2_GP_IO, r);
  1319. /* Enable GMII interface */
  1320. xm_write16(hw, port, XM_HW_CFG, XM_HW_GMII_MD);
  1321. }
  1322. switch(hw->phy_type) {
  1323. case SK_PHY_XMAC:
  1324. xm_phy_init(skge);
  1325. break;
  1326. case SK_PHY_BCOM:
  1327. bcom_phy_init(skge);
  1328. bcom_check_link(hw, port);
  1329. }
  1330. /* Set Station Address */
  1331. xm_outaddr(hw, port, XM_SA, dev->dev_addr);
  1332. /* We don't use match addresses so clear */
  1333. for (i = 1; i < 16; i++)
  1334. xm_outaddr(hw, port, XM_EXM(i), zero);
  1335. /* Clear MIB counters */
  1336. xm_write16(hw, port, XM_STAT_CMD,
  1337. XM_SC_CLR_RXC | XM_SC_CLR_TXC);
  1338. /* Clear two times according to Errata #3 */
  1339. xm_write16(hw, port, XM_STAT_CMD,
  1340. XM_SC_CLR_RXC | XM_SC_CLR_TXC);
  1341. /* configure Rx High Water Mark (XM_RX_HI_WM) */
  1342. xm_write16(hw, port, XM_RX_HI_WM, 1450);
  1343. /* We don't need the FCS appended to the packet. */
  1344. r = XM_RX_LENERR_OK | XM_RX_STRIP_FCS;
  1345. if (jumbo)
  1346. r |= XM_RX_BIG_PK_OK;
  1347. if (skge->duplex == DUPLEX_HALF) {
  1348. /*
  1349. * If in manual half duplex mode the other side might be in
  1350. * full duplex mode, so ignore if a carrier extension is not seen
  1351. * on frames received
  1352. */
  1353. r |= XM_RX_DIS_CEXT;
  1354. }
  1355. xm_write16(hw, port, XM_RX_CMD, r);
  1356. /* We want short frames padded to 60 bytes. */
  1357. xm_write16(hw, port, XM_TX_CMD, XM_TX_AUTO_PAD);
  1358. /*
  1359. * Bump up the transmit threshold. This helps hold off transmit
  1360. * underruns when we're blasting traffic from both ports at once.
  1361. */
  1362. xm_write16(hw, port, XM_TX_THR, 512);
  1363. /*
  1364. * Enable the reception of all error frames. This is is
  1365. * a necessary evil due to the design of the XMAC. The
  1366. * XMAC's receive FIFO is only 8K in size, however jumbo
  1367. * frames can be up to 9000 bytes in length. When bad
  1368. * frame filtering is enabled, the XMAC's RX FIFO operates
  1369. * in 'store and forward' mode. For this to work, the
  1370. * entire frame has to fit into the FIFO, but that means
  1371. * that jumbo frames larger than 8192 bytes will be
  1372. * truncated. Disabling all bad frame filtering causes
  1373. * the RX FIFO to operate in streaming mode, in which
  1374. * case the XMAC will start transferring frames out of the
  1375. * RX FIFO as soon as the FIFO threshold is reached.
  1376. */
  1377. xm_write32(hw, port, XM_MODE, XM_DEF_MODE);
  1378. /*
  1379. * Initialize the Receive Counter Event Mask (XM_RX_EV_MSK)
  1380. * - Enable all bits excepting 'Octets Rx OK Low CntOv'
  1381. * and 'Octets Rx OK Hi Cnt Ov'.
  1382. */
  1383. xm_write32(hw, port, XM_RX_EV_MSK, XMR_DEF_MSK);
  1384. /*
  1385. * Initialize the Transmit Counter Event Mask (XM_TX_EV_MSK)
  1386. * - Enable all bits excepting 'Octets Tx OK Low CntOv'
  1387. * and 'Octets Tx OK Hi Cnt Ov'.
  1388. */
  1389. xm_write32(hw, port, XM_TX_EV_MSK, XMT_DEF_MSK);
  1390. /* Configure MAC arbiter */
  1391. skge_write16(hw, B3_MA_TO_CTRL, MA_RST_CLR);
  1392. /* configure timeout values */
  1393. skge_write8(hw, B3_MA_TOINI_RX1, 72);
  1394. skge_write8(hw, B3_MA_TOINI_RX2, 72);
  1395. skge_write8(hw, B3_MA_TOINI_TX1, 72);
  1396. skge_write8(hw, B3_MA_TOINI_TX2, 72);
  1397. skge_write8(hw, B3_MA_RCINI_RX1, 0);
  1398. skge_write8(hw, B3_MA_RCINI_RX2, 0);
  1399. skge_write8(hw, B3_MA_RCINI_TX1, 0);
  1400. skge_write8(hw, B3_MA_RCINI_TX2, 0);
  1401. /* Configure Rx MAC FIFO */
  1402. skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_RST_CLR);
  1403. skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_ENA_TIM_PAT);
  1404. skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_ENA_OP_MD);
  1405. /* Configure Tx MAC FIFO */
  1406. skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_RST_CLR);
  1407. skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_TX_CTRL_DEF);
  1408. skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_ENA_OP_MD);
  1409. if (jumbo) {
  1410. /* Enable frame flushing if jumbo frames used */
  1411. skge_write16(hw, SK_REG(port,RX_MFF_CTRL1), MFF_ENA_FLUSH);
  1412. } else {
  1413. /* enable timeout timers if normal frames */
  1414. skge_write16(hw, B3_PA_CTRL,
  1415. (port == 0) ? PA_ENA_TO_TX1 : PA_ENA_TO_TX2);
  1416. }
  1417. }
  1418. static void genesis_stop(struct skge_port *skge)
  1419. {
  1420. struct skge_hw *hw = skge->hw;
  1421. int port = skge->port;
  1422. u32 reg;
  1423. genesis_reset(hw, port);
  1424. /* Clear Tx packet arbiter timeout IRQ */
  1425. skge_write16(hw, B3_PA_CTRL,
  1426. port == 0 ? PA_CLR_TO_TX1 : PA_CLR_TO_TX2);
  1427. /*
  1428. * If the transfer sticks at the MAC the STOP command will not
  1429. * terminate if we don't flush the XMAC's transmit FIFO !
  1430. */
  1431. xm_write32(hw, port, XM_MODE,
  1432. xm_read32(hw, port, XM_MODE)|XM_MD_FTF);
  1433. /* Reset the MAC */
  1434. skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_SET_MAC_RST);
  1435. /* For external PHYs there must be special handling */
  1436. if (hw->phy_type != SK_PHY_XMAC) {
  1437. reg = skge_read32(hw, B2_GP_IO);
  1438. if (port == 0) {
  1439. reg |= GP_DIR_0;
  1440. reg &= ~GP_IO_0;
  1441. } else {
  1442. reg |= GP_DIR_2;
  1443. reg &= ~GP_IO_2;
  1444. }
  1445. skge_write32(hw, B2_GP_IO, reg);
  1446. skge_read32(hw, B2_GP_IO);
  1447. }
  1448. xm_write16(hw, port, XM_MMU_CMD,
  1449. xm_read16(hw, port, XM_MMU_CMD)
  1450. & ~(XM_MMU_ENA_RX | XM_MMU_ENA_TX));
  1451. xm_read16(hw, port, XM_MMU_CMD);
  1452. }
  1453. static void genesis_get_stats(struct skge_port *skge, u64 *data)
  1454. {
  1455. struct skge_hw *hw = skge->hw;
  1456. int port = skge->port;
  1457. int i;
  1458. unsigned long timeout = jiffies + HZ;
  1459. xm_write16(hw, port,
  1460. XM_STAT_CMD, XM_SC_SNP_TXC | XM_SC_SNP_RXC);
  1461. /* wait for update to complete */
  1462. while (xm_read16(hw, port, XM_STAT_CMD)
  1463. & (XM_SC_SNP_TXC | XM_SC_SNP_RXC)) {
  1464. if (time_after(jiffies, timeout))
  1465. break;
  1466. udelay(10);
  1467. }
  1468. /* special case for 64 bit octet counter */
  1469. data[0] = (u64) xm_read32(hw, port, XM_TXO_OK_HI) << 32
  1470. | xm_read32(hw, port, XM_TXO_OK_LO);
  1471. data[1] = (u64) xm_read32(hw, port, XM_RXO_OK_HI) << 32
  1472. | xm_read32(hw, port, XM_RXO_OK_LO);
  1473. for (i = 2; i < ARRAY_SIZE(skge_stats); i++)
  1474. data[i] = xm_read32(hw, port, skge_stats[i].xmac_offset);
  1475. }
  1476. static void genesis_mac_intr(struct skge_hw *hw, int port)
  1477. {
  1478. struct net_device *dev = hw->dev[port];
  1479. struct skge_port *skge = netdev_priv(dev);
  1480. u16 status = xm_read16(hw, port, XM_ISRC);
  1481. if (netif_msg_intr(skge))
  1482. printk(KERN_DEBUG PFX "%s: mac interrupt status 0x%x\n",
  1483. dev->name, status);
  1484. if (hw->phy_type == SK_PHY_XMAC && (status & XM_IS_INP_ASS)) {
  1485. xm_link_down(hw, port);
  1486. mod_timer(&skge->link_timer, jiffies + 1);
  1487. }
  1488. if (status & XM_IS_TXF_UR) {
  1489. xm_write32(hw, port, XM_MODE, XM_MD_FTF);
  1490. ++dev->stats.tx_fifo_errors;
  1491. }
  1492. }
  1493. static void genesis_link_up(struct skge_port *skge)
  1494. {
  1495. struct skge_hw *hw = skge->hw;
  1496. int port = skge->port;
  1497. u16 cmd, msk;
  1498. u32 mode;
  1499. cmd = xm_read16(hw, port, XM_MMU_CMD);
  1500. /*
  1501. * enabling pause frame reception is required for 1000BT
  1502. * because the XMAC is not reset if the link is going down
  1503. */
  1504. if (skge->flow_status == FLOW_STAT_NONE ||
  1505. skge->flow_status == FLOW_STAT_LOC_SEND)
  1506. /* Disable Pause Frame Reception */
  1507. cmd |= XM_MMU_IGN_PF;
  1508. else
  1509. /* Enable Pause Frame Reception */
  1510. cmd &= ~XM_MMU_IGN_PF;
  1511. xm_write16(hw, port, XM_MMU_CMD, cmd);
  1512. mode = xm_read32(hw, port, XM_MODE);
  1513. if (skge->flow_status== FLOW_STAT_SYMMETRIC ||
  1514. skge->flow_status == FLOW_STAT_LOC_SEND) {
  1515. /*
  1516. * Configure Pause Frame Generation
  1517. * Use internal and external Pause Frame Generation.
  1518. * Sending pause frames is edge triggered.
  1519. * Send a Pause frame with the maximum pause time if
  1520. * internal oder external FIFO full condition occurs.
  1521. * Send a zero pause time frame to re-start transmission.
  1522. */
  1523. /* XM_PAUSE_DA = '010000C28001' (default) */
  1524. /* XM_MAC_PTIME = 0xffff (maximum) */
  1525. /* remember this value is defined in big endian (!) */
  1526. xm_write16(hw, port, XM_MAC_PTIME, 0xffff);
  1527. mode |= XM_PAUSE_MODE;
  1528. skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_ENA_PAUSE);
  1529. } else {
  1530. /*
  1531. * disable pause frame generation is required for 1000BT
  1532. * because the XMAC is not reset if the link is going down
  1533. */
  1534. /* Disable Pause Mode in Mode Register */
  1535. mode &= ~XM_PAUSE_MODE;
  1536. skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_DIS_PAUSE);
  1537. }
  1538. xm_write32(hw, port, XM_MODE, mode);
  1539. /* Turn on detection of Tx underrun */
  1540. msk = xm_read16(hw, port, XM_IMSK);
  1541. msk &= ~XM_IS_TXF_UR;
  1542. xm_write16(hw, port, XM_IMSK, msk);
  1543. xm_read16(hw, port, XM_ISRC);
  1544. /* get MMU Command Reg. */
  1545. cmd = xm_read16(hw, port, XM_MMU_CMD);
  1546. if (hw->phy_type != SK_PHY_XMAC && skge->duplex == DUPLEX_FULL)
  1547. cmd |= XM_MMU_GMII_FD;
  1548. /*
  1549. * Workaround BCOM Errata (#10523) for all BCom Phys
  1550. * Enable Power Management after link up
  1551. */
  1552. if (hw->phy_type == SK_PHY_BCOM) {
  1553. xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL,
  1554. xm_phy_read(hw, port, PHY_BCOM_AUX_CTRL)
  1555. & ~PHY_B_AC_DIS_PM);
  1556. xm_phy_write(hw, port, PHY_BCOM_INT_MASK, PHY_B_DEF_MSK);
  1557. }
  1558. /* enable Rx/Tx */
  1559. xm_write16(hw, port, XM_MMU_CMD,
  1560. cmd | XM_MMU_ENA_RX | XM_MMU_ENA_TX);
  1561. skge_link_up(skge);
  1562. }
  1563. static inline void bcom_phy_intr(struct skge_port *skge)
  1564. {
  1565. struct skge_hw *hw = skge->hw;
  1566. int port = skge->port;
  1567. u16 isrc;
  1568. isrc = xm_phy_read(hw, port, PHY_BCOM_INT_STAT);
  1569. if (netif_msg_intr(skge))
  1570. printk(KERN_DEBUG PFX "%s: phy interrupt status 0x%x\n",
  1571. skge->netdev->name, isrc);
  1572. if (isrc & PHY_B_IS_PSE)
  1573. printk(KERN_ERR PFX "%s: uncorrectable pair swap error\n",
  1574. hw->dev[port]->name);
  1575. /* Workaround BCom Errata:
  1576. * enable and disable loopback mode if "NO HCD" occurs.
  1577. */
  1578. if (isrc & PHY_B_IS_NO_HDCL) {
  1579. u16 ctrl = xm_phy_read(hw, port, PHY_BCOM_CTRL);
  1580. xm_phy_write(hw, port, PHY_BCOM_CTRL,
  1581. ctrl | PHY_CT_LOOP);
  1582. xm_phy_write(hw, port, PHY_BCOM_CTRL,
  1583. ctrl & ~PHY_CT_LOOP);
  1584. }
  1585. if (isrc & (PHY_B_IS_AN_PR | PHY_B_IS_LST_CHANGE))
  1586. bcom_check_link(hw, port);
  1587. }
  1588. static int gm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val)
  1589. {
  1590. int i;
  1591. gma_write16(hw, port, GM_SMI_DATA, val);
  1592. gma_write16(hw, port, GM_SMI_CTRL,
  1593. GM_SMI_CT_PHY_AD(hw->phy_addr) | GM_SMI_CT_REG_AD(reg));
  1594. for (i = 0; i < PHY_RETRIES; i++) {
  1595. udelay(1);
  1596. if (!(gma_read16(hw, port, GM_SMI_CTRL) & GM_SMI_CT_BUSY))
  1597. return 0;
  1598. }
  1599. printk(KERN_WARNING PFX "%s: phy write timeout\n",
  1600. hw->dev[port]->name);
  1601. return -EIO;
  1602. }
  1603. static int __gm_phy_read(struct skge_hw *hw, int port, u16 reg, u16 *val)
  1604. {
  1605. int i;
  1606. gma_write16(hw, port, GM_SMI_CTRL,
  1607. GM_SMI_CT_PHY_AD(hw->phy_addr)
  1608. | GM_SMI_CT_REG_AD(reg) | GM_SMI_CT_OP_RD);
  1609. for (i = 0; i < PHY_RETRIES; i++) {
  1610. udelay(1);
  1611. if (gma_read16(hw, port, GM_SMI_CTRL) & GM_SMI_CT_RD_VAL)
  1612. goto ready;
  1613. }
  1614. return -ETIMEDOUT;
  1615. ready:
  1616. *val = gma_read16(hw, port, GM_SMI_DATA);
  1617. return 0;
  1618. }
  1619. static u16 gm_phy_read(struct skge_hw *hw, int port, u16 reg)
  1620. {
  1621. u16 v = 0;
  1622. if (__gm_phy_read(hw, port, reg, &v))
  1623. printk(KERN_WARNING PFX "%s: phy read timeout\n",
  1624. hw->dev[port]->name);
  1625. return v;
  1626. }
  1627. /* Marvell Phy Initialization */
  1628. static void yukon_init(struct skge_hw *hw, int port)
  1629. {
  1630. struct skge_port *skge = netdev_priv(hw->dev[port]);
  1631. u16 ctrl, ct1000, adv;
  1632. if (skge->autoneg == AUTONEG_ENABLE) {
  1633. u16 ectrl = gm_phy_read(hw, port, PHY_MARV_EXT_CTRL);
  1634. ectrl &= ~(PHY_M_EC_M_DSC_MSK | PHY_M_EC_S_DSC_MSK |
  1635. PHY_M_EC_MAC_S_MSK);
  1636. ectrl |= PHY_M_EC_MAC_S(MAC_TX_CLK_25_MHZ);
  1637. ectrl |= PHY_M_EC_M_DSC(0) | PHY_M_EC_S_DSC(1);
  1638. gm_phy_write(hw, port, PHY_MARV_EXT_CTRL, ectrl);
  1639. }
  1640. ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL);
  1641. if (skge->autoneg == AUTONEG_DISABLE)
  1642. ctrl &= ~PHY_CT_ANE;
  1643. ctrl |= PHY_CT_RESET;
  1644. gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
  1645. ctrl = 0;
  1646. ct1000 = 0;
  1647. adv = PHY_AN_CSMA;
  1648. if (skge->autoneg == AUTONEG_ENABLE) {
  1649. if (hw->copper) {
  1650. if (skge->advertising & ADVERTISED_1000baseT_Full)
  1651. ct1000 |= PHY_M_1000C_AFD;
  1652. if (skge->advertising & ADVERTISED_1000baseT_Half)
  1653. ct1000 |= PHY_M_1000C_AHD;
  1654. if (skge->advertising & ADVERTISED_100baseT_Full)
  1655. adv |= PHY_M_AN_100_FD;
  1656. if (skge->advertising & ADVERTISED_100baseT_Half)
  1657. adv |= PHY_M_AN_100_HD;
  1658. if (skge->advertising & ADVERTISED_10baseT_Full)
  1659. adv |= PHY_M_AN_10_FD;
  1660. if (skge->advertising & ADVERTISED_10baseT_Half)
  1661. adv |= PHY_M_AN_10_HD;
  1662. /* Set Flow-control capabilities */
  1663. adv |= phy_pause_map[skge->flow_control];
  1664. } else {
  1665. if (skge->advertising & ADVERTISED_1000baseT_Full)
  1666. adv |= PHY_M_AN_1000X_AFD;
  1667. if (skge->advertising & ADVERTISED_1000baseT_Half)
  1668. adv |= PHY_M_AN_1000X_AHD;
  1669. adv |= fiber_pause_map[skge->flow_control];
  1670. }
  1671. /* Restart Auto-negotiation */
  1672. ctrl |= PHY_CT_ANE | PHY_CT_RE_CFG;
  1673. } else {
  1674. /* forced speed/duplex settings */
  1675. ct1000 = PHY_M_1000C_MSE;
  1676. if (skge->duplex == DUPLEX_FULL)
  1677. ctrl |= PHY_CT_DUP_MD;
  1678. switch (skge->speed) {
  1679. case SPEED_1000:
  1680. ctrl |= PHY_CT_SP1000;
  1681. break;
  1682. case SPEED_100:
  1683. ctrl |= PHY_CT_SP100;
  1684. break;
  1685. }
  1686. ctrl |= PHY_CT_RESET;
  1687. }
  1688. gm_phy_write(hw, port, PHY_MARV_1000T_CTRL, ct1000);
  1689. gm_phy_write(hw, port, PHY_MARV_AUNE_ADV, adv);
  1690. gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
  1691. /* Enable phy interrupt on autonegotiation complete (or link up) */
  1692. if (skge->autoneg == AUTONEG_ENABLE)
  1693. gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_AN_MSK);
  1694. else
  1695. gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_DEF_MSK);
  1696. }
  1697. static void yukon_reset(struct skge_hw *hw, int port)
  1698. {
  1699. gm_phy_write(hw, port, PHY_MARV_INT_MASK, 0);/* disable PHY IRQs */
  1700. gma_write16(hw, port, GM_MC_ADDR_H1, 0); /* clear MC hash */
  1701. gma_write16(hw, port, GM_MC_ADDR_H2, 0);
  1702. gma_write16(hw, port, GM_MC_ADDR_H3, 0);
  1703. gma_write16(hw, port, GM_MC_ADDR_H4, 0);
  1704. gma_write16(hw, port, GM_RX_CTRL,
  1705. gma_read16(hw, port, GM_RX_CTRL)
  1706. | GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
  1707. }
  1708. /* Apparently, early versions of Yukon-Lite had wrong chip_id? */
  1709. static int is_yukon_lite_a0(struct skge_hw *hw)
  1710. {
  1711. u32 reg;
  1712. int ret;
  1713. if (hw->chip_id != CHIP_ID_YUKON)
  1714. return 0;
  1715. reg = skge_read32(hw, B2_FAR);
  1716. skge_write8(hw, B2_FAR + 3, 0xff);
  1717. ret = (skge_read8(hw, B2_FAR + 3) != 0);
  1718. skge_write32(hw, B2_FAR, reg);
  1719. return ret;
  1720. }
  1721. static void yukon_mac_init(struct skge_hw *hw, int port)
  1722. {
  1723. struct skge_port *skge = netdev_priv(hw->dev[port]);
  1724. int i;
  1725. u32 reg;
  1726. const u8 *addr = hw->dev[port]->dev_addr;
  1727. /* WA code for COMA mode -- set PHY reset */
  1728. if (hw->chip_id == CHIP_ID_YUKON_LITE &&
  1729. hw->chip_rev >= CHIP_REV_YU_LITE_A3) {
  1730. reg = skge_read32(hw, B2_GP_IO);
  1731. reg |= GP_DIR_9 | GP_IO_9;
  1732. skge_write32(hw, B2_GP_IO, reg);
  1733. }
  1734. /* hard reset */
  1735. skge_write32(hw, SK_REG(port, GPHY_CTRL), GPC_RST_SET);
  1736. skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_RST_SET);
  1737. /* WA code for COMA mode -- clear PHY reset */
  1738. if (hw->chip_id == CHIP_ID_YUKON_LITE &&
  1739. hw->chip_rev >= CHIP_REV_YU_LITE_A3) {
  1740. reg = skge_read32(hw, B2_GP_IO);
  1741. reg |= GP_DIR_9;
  1742. reg &= ~GP_IO_9;
  1743. skge_write32(hw, B2_GP_IO, reg);
  1744. }
  1745. /* Set hardware config mode */
  1746. reg = GPC_INT_POL_HI | GPC_DIS_FC | GPC_DIS_SLEEP |
  1747. GPC_ENA_XC | GPC_ANEG_ADV_ALL_M | GPC_ENA_PAUSE;
  1748. reg |= hw->copper ? GPC_HWCFG_GMII_COP : GPC_HWCFG_GMII_FIB;
  1749. /* Clear GMC reset */
  1750. skge_write32(hw, SK_REG(port, GPHY_CTRL), reg | GPC_RST_SET);
  1751. skge_write32(hw, SK_REG(port, GPHY_CTRL), reg | GPC_RST_CLR);
  1752. skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_ON | GMC_RST_CLR);
  1753. if (skge->autoneg == AUTONEG_DISABLE) {
  1754. reg = GM_GPCR_AU_ALL_DIS;
  1755. gma_write16(hw, port, GM_GP_CTRL,
  1756. gma_read16(hw, port, GM_GP_CTRL) | reg);
  1757. switch (skge->speed) {
  1758. case SPEED_1000:
  1759. reg &= ~GM_GPCR_SPEED_100;
  1760. reg |= GM_GPCR_SPEED_1000;
  1761. break;
  1762. case SPEED_100:
  1763. reg &= ~GM_GPCR_SPEED_1000;
  1764. reg |= GM_GPCR_SPEED_100;
  1765. break;
  1766. case SPEED_10:
  1767. reg &= ~(GM_GPCR_SPEED_1000 | GM_GPCR_SPEED_100);
  1768. break;
  1769. }
  1770. if (skge->duplex == DUPLEX_FULL)
  1771. reg |= GM_GPCR_DUP_FULL;
  1772. } else
  1773. reg = GM_GPCR_SPEED_1000 | GM_GPCR_SPEED_100 | GM_GPCR_DUP_FULL;
  1774. switch (skge->flow_control) {
  1775. case FLOW_MODE_NONE:
  1776. skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_OFF);
  1777. reg |= GM_GPCR_FC_TX_DIS | GM_GPCR_FC_RX_DIS | GM_GPCR_AU_FCT_DIS;
  1778. break;
  1779. case FLOW_MODE_LOC_SEND:
  1780. /* disable Rx flow-control */
  1781. reg |= GM_GPCR_FC_RX_DIS | GM_GPCR_AU_FCT_DIS;
  1782. break;
  1783. case FLOW_MODE_SYMMETRIC:
  1784. case FLOW_MODE_SYM_OR_REM:
  1785. /* enable Tx & Rx flow-control */
  1786. break;
  1787. }
  1788. gma_write16(hw, port, GM_GP_CTRL, reg);
  1789. skge_read16(hw, SK_REG(port, GMAC_IRQ_SRC));
  1790. yukon_init(hw, port);
  1791. /* MIB clear */
  1792. reg = gma_read16(hw, port, GM_PHY_ADDR);
  1793. gma_write16(hw, port, GM_PHY_ADDR, reg | GM_PAR_MIB_CLR);
  1794. for (i = 0; i < GM_MIB_CNT_SIZE; i++)
  1795. gma_read16(hw, port, GM_MIB_CNT_BASE + 8*i);
  1796. gma_write16(hw, port, GM_PHY_ADDR, reg);
  1797. /* transmit control */
  1798. gma_write16(hw, port, GM_TX_CTRL, TX_COL_THR(TX_COL_DEF));
  1799. /* receive control reg: unicast + multicast + no FCS */
  1800. gma_write16(hw, port, GM_RX_CTRL,
  1801. GM_RXCR_UCF_ENA | GM_RXCR_CRC_DIS | GM_RXCR_MCF_ENA);
  1802. /* transmit flow control */
  1803. gma_write16(hw, port, GM_TX_FLOW_CTRL, 0xffff);
  1804. /* transmit parameter */
  1805. gma_write16(hw, port, GM_TX_PARAM,
  1806. TX_JAM_LEN_VAL(TX_JAM_LEN_DEF) |
  1807. TX_JAM_IPG_VAL(TX_JAM_IPG_DEF) |
  1808. TX_IPG_JAM_DATA(TX_IPG_JAM_DEF));
  1809. /* serial mode register */
  1810. reg = GM_SMOD_VLAN_ENA | IPG_DATA_VAL(IPG_DATA_DEF);
  1811. if (hw->dev[port]->mtu > 1500)
  1812. reg |= GM_SMOD_JUMBO_ENA;
  1813. gma_write16(hw, port, GM_SERIAL_MODE, reg);
  1814. /* physical address: used for pause frames */
  1815. gma_set_addr(hw, port, GM_SRC_ADDR_1L, addr);
  1816. /* virtual address for data */
  1817. gma_set_addr(hw, port, GM_SRC_ADDR_2L, addr);
  1818. /* enable interrupt mask for counter overflows */
  1819. gma_write16(hw, port, GM_TX_IRQ_MSK, 0);
  1820. gma_write16(hw, port, GM_RX_IRQ_MSK, 0);
  1821. gma_write16(hw, port, GM_TR_IRQ_MSK, 0);
  1822. /* Initialize Mac Fifo */
  1823. /* Configure Rx MAC FIFO */
  1824. skge_write16(hw, SK_REG(port, RX_GMF_FL_MSK), RX_FF_FL_DEF_MSK);
  1825. reg = GMF_OPER_ON | GMF_RX_F_FL_ON;
  1826. /* disable Rx GMAC FIFO Flush for YUKON-Lite Rev. A0 only */
  1827. if (is_yukon_lite_a0(hw))
  1828. reg &= ~GMF_RX_F_FL_ON;
  1829. skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_CLR);
  1830. skge_write16(hw, SK_REG(port, RX_GMF_CTRL_T), reg);
  1831. /*
  1832. * because Pause Packet Truncation in GMAC is not working
  1833. * we have to increase the Flush Threshold to 64 bytes
  1834. * in order to flush pause packets in Rx FIFO on Yukon-1
  1835. */
  1836. skge_write16(hw, SK_REG(port, RX_GMF_FL_THR), RX_GMF_FL_THR_DEF+1);
  1837. /* Configure Tx MAC FIFO */
  1838. skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_RST_CLR);
  1839. skge_write16(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_OPER_ON);
  1840. }
  1841. /* Go into power down mode */
  1842. static void yukon_suspend(struct skge_hw *hw, int port)
  1843. {
  1844. u16 ctrl;
  1845. ctrl = gm_phy_read(hw, port, PHY_MARV_PHY_CTRL);
  1846. ctrl |= PHY_M_PC_POL_R_DIS;
  1847. gm_phy_write(hw, port, PHY_MARV_PHY_CTRL, ctrl);
  1848. ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL);
  1849. ctrl |= PHY_CT_RESET;
  1850. gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
  1851. /* switch IEEE compatible power down mode on */
  1852. ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL);
  1853. ctrl |= PHY_CT_PDOWN;
  1854. gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
  1855. }
  1856. static void yukon_stop(struct skge_port *skge)
  1857. {
  1858. struct skge_hw *hw = skge->hw;
  1859. int port = skge->port;
  1860. skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), 0);
  1861. yukon_reset(hw, port);
  1862. gma_write16(hw, port, GM_GP_CTRL,
  1863. gma_read16(hw, port, GM_GP_CTRL)
  1864. & ~(GM_GPCR_TX_ENA|GM_GPCR_RX_ENA));
  1865. gma_read16(hw, port, GM_GP_CTRL);
  1866. yukon_suspend(hw, port);
  1867. /* set GPHY Control reset */
  1868. skge_write8(hw, SK_REG(port, GPHY_CTRL), GPC_RST_SET);
  1869. skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_RST_SET);
  1870. }
  1871. static void yukon_get_stats(struct skge_port *skge, u64 *data)
  1872. {
  1873. struct skge_hw *hw = skge->hw;
  1874. int port = skge->port;
  1875. int i;
  1876. data[0] = (u64) gma_read32(hw, port, GM_TXO_OK_HI) << 32
  1877. | gma_read32(hw, port, GM_TXO_OK_LO);
  1878. data[1] = (u64) gma_read32(hw, port, GM_RXO_OK_HI) << 32
  1879. | gma_read32(hw, port, GM_RXO_OK_LO);
  1880. for (i = 2; i < ARRAY_SIZE(skge_stats); i++)
  1881. data[i] = gma_read32(hw, port,
  1882. skge_stats[i].gma_offset);
  1883. }
  1884. static void yukon_mac_intr(struct skge_hw *hw, int port)
  1885. {
  1886. struct net_device *dev = hw->dev[port];
  1887. struct skge_port *skge = netdev_priv(dev);
  1888. u8 status = skge_read8(hw, SK_REG(port, GMAC_IRQ_SRC));
  1889. if (netif_msg_intr(skge))
  1890. printk(KERN_DEBUG PFX "%s: mac interrupt status 0x%x\n",
  1891. dev->name, status);
  1892. if (status & GM_IS_RX_FF_OR) {
  1893. ++dev->stats.rx_fifo_errors;
  1894. skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_CLI_RX_FO);
  1895. }
  1896. if (status & GM_IS_TX_FF_UR) {
  1897. ++dev->stats.tx_fifo_errors;
  1898. skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_CLI_TX_FU);
  1899. }
  1900. }
  1901. static u16 yukon_speed(const struct skge_hw *hw, u16 aux)
  1902. {
  1903. switch (aux & PHY_M_PS_SPEED_MSK) {
  1904. case PHY_M_PS_SPEED_1000:
  1905. return SPEED_1000;
  1906. case PHY_M_PS_SPEED_100:
  1907. return SPEED_100;
  1908. default:
  1909. return SPEED_10;
  1910. }
  1911. }
  1912. static void yukon_link_up(struct skge_port *skge)
  1913. {
  1914. struct skge_hw *hw = skge->hw;
  1915. int port = skge->port;
  1916. u16 reg;
  1917. /* Enable Transmit FIFO Underrun */
  1918. skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), GMAC_DEF_MSK);
  1919. reg = gma_read16(hw, port, GM_GP_CTRL);
  1920. if (skge->duplex == DUPLEX_FULL || skge->autoneg == AUTONEG_ENABLE)
  1921. reg |= GM_GPCR_DUP_FULL;
  1922. /* enable Rx/Tx */
  1923. reg |= GM_GPCR_RX_ENA | GM_GPCR_TX_ENA;
  1924. gma_write16(hw, port, GM_GP_CTRL, reg);
  1925. gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_DEF_MSK);
  1926. skge_link_up(skge);
  1927. }
  1928. static void yukon_link_down(struct skge_port *skge)
  1929. {
  1930. struct skge_hw *hw = skge->hw;
  1931. int port = skge->port;
  1932. u16 ctrl;
  1933. ctrl = gma_read16(hw, port, GM_GP_CTRL);
  1934. ctrl &= ~(GM_GPCR_RX_ENA | GM_GPCR_TX_ENA);
  1935. gma_write16(hw, port, GM_GP_CTRL, ctrl);
  1936. if (skge->flow_status == FLOW_STAT_REM_SEND) {
  1937. ctrl = gm_phy_read(hw, port, PHY_MARV_AUNE_ADV);
  1938. ctrl |= PHY_M_AN_ASP;
  1939. /* restore Asymmetric Pause bit */
  1940. gm_phy_write(hw, port, PHY_MARV_AUNE_ADV, ctrl);
  1941. }
  1942. skge_link_down(skge);
  1943. yukon_init(hw, port);
  1944. }
  1945. static void yukon_phy_intr(struct skge_port *skge)
  1946. {
  1947. struct skge_hw *hw = skge->hw;
  1948. int port = skge->port;
  1949. const char *reason = NULL;
  1950. u16 istatus, phystat;
  1951. istatus = gm_phy_read(hw, port, PHY_MARV_INT_STAT);
  1952. phystat = gm_phy_read(hw, port, PHY_MARV_PHY_STAT);
  1953. if (netif_msg_intr(skge))
  1954. printk(KERN_DEBUG PFX "%s: phy interrupt status 0x%x 0x%x\n",
  1955. skge->netdev->name, istatus, phystat);
  1956. if (istatus & PHY_M_IS_AN_COMPL) {
  1957. if (gm_phy_read(hw, port, PHY_MARV_AUNE_LP)
  1958. & PHY_M_AN_RF) {
  1959. reason = "remote fault";
  1960. goto failed;
  1961. }
  1962. if (gm_phy_read(hw, port, PHY_MARV_1000T_STAT) & PHY_B_1000S_MSF) {
  1963. reason = "master/slave fault";
  1964. goto failed;
  1965. }
  1966. if (!(phystat & PHY_M_PS_SPDUP_RES)) {
  1967. reason = "speed/duplex";
  1968. goto failed;
  1969. }
  1970. skge->duplex = (phystat & PHY_M_PS_FULL_DUP)
  1971. ? DUPLEX_FULL : DUPLEX_HALF;
  1972. skge->speed = yukon_speed(hw, phystat);
  1973. /* We are using IEEE 802.3z/D5.0 Table 37-4 */
  1974. switch (phystat & PHY_M_PS_PAUSE_MSK) {
  1975. case PHY_M_PS_PAUSE_MSK:
  1976. skge->flow_status = FLOW_STAT_SYMMETRIC;
  1977. break;
  1978. case PHY_M_PS_RX_P_EN:
  1979. skge->flow_status = FLOW_STAT_REM_SEND;
  1980. break;
  1981. case PHY_M_PS_TX_P_EN:
  1982. skge->flow_status = FLOW_STAT_LOC_SEND;
  1983. break;
  1984. default:
  1985. skge->flow_status = FLOW_STAT_NONE;
  1986. }
  1987. if (skge->flow_status == FLOW_STAT_NONE ||
  1988. (skge->speed < SPEED_1000 && skge->duplex == DUPLEX_HALF))
  1989. skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_OFF);
  1990. else
  1991. skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_ON);
  1992. yukon_link_up(skge);
  1993. return;
  1994. }
  1995. if (istatus & PHY_M_IS_LSP_CHANGE)
  1996. skge->speed = yukon_speed(hw, phystat);
  1997. if (istatus & PHY_M_IS_DUP_CHANGE)
  1998. skge->duplex = (phystat & PHY_M_PS_FULL_DUP) ? DUPLEX_FULL : DUPLEX_HALF;
  1999. if (istatus & PHY_M_IS_LST_CHANGE) {
  2000. if (phystat & PHY_M_PS_LINK_UP)
  2001. yukon_link_up(skge);
  2002. else
  2003. yukon_link_down(skge);
  2004. }
  2005. return;
  2006. failed:
  2007. printk(KERN_ERR PFX "%s: autonegotiation failed (%s)\n",
  2008. skge->netdev->name, reason);
  2009. /* XXX restart autonegotiation? */
  2010. }
  2011. static void skge_phy_reset(struct skge_port *skge)
  2012. {
  2013. struct skge_hw *hw = skge->hw;
  2014. int port = skge->port;
  2015. struct net_device *dev = hw->dev[port];
  2016. netif_stop_queue(skge->netdev);
  2017. netif_carrier_off(skge->netdev);
  2018. spin_lock_bh(&hw->phy_lock);
  2019. if (hw->chip_id == CHIP_ID_GENESIS) {
  2020. genesis_reset(hw, port);
  2021. genesis_mac_init(hw, port);
  2022. } else {
  2023. yukon_reset(hw, port);
  2024. yukon_init(hw, port);
  2025. }
  2026. spin_unlock_bh(&hw->phy_lock);
  2027. dev->set_multicast_list(dev);
  2028. }
  2029. /* Basic MII support */
  2030. static int skge_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
  2031. {
  2032. struct mii_ioctl_data *data = if_mii(ifr);
  2033. struct skge_port *skge = netdev_priv(dev);
  2034. struct skge_hw *hw = skge->hw;
  2035. int err = -EOPNOTSUPP;
  2036. if (!netif_running(dev))
  2037. return -ENODEV; /* Phy still in reset */
  2038. switch(cmd) {
  2039. case SIOCGMIIPHY:
  2040. data->phy_id = hw->phy_addr;
  2041. /* fallthru */
  2042. case SIOCGMIIREG: {
  2043. u16 val = 0;
  2044. spin_lock_bh(&hw->phy_lock);
  2045. if (hw->chip_id == CHIP_ID_GENESIS)
  2046. err = __xm_phy_read(hw, skge->port, data->reg_num & 0x1f, &val);
  2047. else
  2048. err = __gm_phy_read(hw, skge->port, data->reg_num & 0x1f, &val);
  2049. spin_unlock_bh(&hw->phy_lock);
  2050. data->val_out = val;
  2051. break;
  2052. }
  2053. case SIOCSMIIREG:
  2054. if (!capable(CAP_NET_ADMIN))
  2055. return -EPERM;
  2056. spin_lock_bh(&hw->phy_lock);
  2057. if (hw->chip_id == CHIP_ID_GENESIS)
  2058. err = xm_phy_write(hw, skge->port, data->reg_num & 0x1f,
  2059. data->val_in);
  2060. else
  2061. err = gm_phy_write(hw, skge->port, data->reg_num & 0x1f,
  2062. data->val_in);
  2063. spin_unlock_bh(&hw->phy_lock);
  2064. break;
  2065. }
  2066. return err;
  2067. }
  2068. static void skge_ramset(struct skge_hw *hw, u16 q, u32 start, size_t len)
  2069. {
  2070. u32 end;
  2071. start /= 8;
  2072. len /= 8;
  2073. end = start + len - 1;
  2074. skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_RST_CLR);
  2075. skge_write32(hw, RB_ADDR(q, RB_START), start);
  2076. skge_write32(hw, RB_ADDR(q, RB_WP), start);
  2077. skge_write32(hw, RB_ADDR(q, RB_RP), start);
  2078. skge_write32(hw, RB_ADDR(q, RB_END), end);
  2079. if (q == Q_R1 || q == Q_R2) {
  2080. /* Set thresholds on receive queue's */
  2081. skge_write32(hw, RB_ADDR(q, RB_RX_UTPP),
  2082. start + (2*len)/3);
  2083. skge_write32(hw, RB_ADDR(q, RB_RX_LTPP),
  2084. start + (len/3));
  2085. } else {
  2086. /* Enable store & forward on Tx queue's because
  2087. * Tx FIFO is only 4K on Genesis and 1K on Yukon
  2088. */
  2089. skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_ENA_STFWD);
  2090. }
  2091. skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_ENA_OP_MD);
  2092. }
  2093. /* Setup Bus Memory Interface */
  2094. static void skge_qset(struct skge_port *skge, u16 q,
  2095. const struct skge_element *e)
  2096. {
  2097. struct skge_hw *hw = skge->hw;
  2098. u32 watermark = 0x600;
  2099. u64 base = skge->dma + (e->desc - skge->mem);
  2100. /* optimization to reduce window on 32bit/33mhz */
  2101. if ((skge_read16(hw, B0_CTST) & (CS_BUS_CLOCK | CS_BUS_SLOT_SZ)) == 0)
  2102. watermark /= 2;
  2103. skge_write32(hw, Q_ADDR(q, Q_CSR), CSR_CLR_RESET);
  2104. skge_write32(hw, Q_ADDR(q, Q_F), watermark);
  2105. skge_write32(hw, Q_ADDR(q, Q_DA_H), (u32)(base >> 32));
  2106. skge_write32(hw, Q_ADDR(q, Q_DA_L), (u32)base);
  2107. }
  2108. static int skge_up(struct net_device *dev)
  2109. {
  2110. struct skge_port *skge = netdev_priv(dev);
  2111. struct skge_hw *hw = skge->hw;
  2112. int port = skge->port;
  2113. u32 chunk, ram_addr;
  2114. size_t rx_size, tx_size;
  2115. int err;
  2116. if (!is_valid_ether_addr(dev->dev_addr))
  2117. return -EINVAL;
  2118. if (netif_msg_ifup(skge))
  2119. printk(KERN_INFO PFX "%s: enabling interface\n", dev->name);
  2120. if (dev->mtu > RX_BUF_SIZE)
  2121. skge->rx_buf_size = dev->mtu + ETH_HLEN;
  2122. else
  2123. skge->rx_buf_size = RX_BUF_SIZE;
  2124. rx_size = skge->rx_ring.count * sizeof(struct skge_rx_desc);
  2125. tx_size = skge->tx_ring.count * sizeof(struct skge_tx_desc);
  2126. skge->mem_size = tx_size + rx_size;
  2127. skge->mem = pci_alloc_consistent(hw->pdev, skge->mem_size, &skge->dma);
  2128. if (!skge->mem)
  2129. return -ENOMEM;
  2130. BUG_ON(skge->dma & 7);
  2131. if ((u64)skge->dma >> 32 != ((u64) skge->dma + skge->mem_size) >> 32) {
  2132. dev_err(&hw->pdev->dev, "pci_alloc_consistent region crosses 4G boundary\n");
  2133. err = -EINVAL;
  2134. goto free_pci_mem;
  2135. }
  2136. memset(skge->mem, 0, skge->mem_size);
  2137. err = skge_ring_alloc(&skge->rx_ring, skge->mem, skge->dma);
  2138. if (err)
  2139. goto free_pci_mem;
  2140. err = skge_rx_fill(dev);
  2141. if (err)
  2142. goto free_rx_ring;
  2143. err = skge_ring_alloc(&skge->tx_ring, skge->mem + rx_size,
  2144. skge->dma + rx_size);
  2145. if (err)
  2146. goto free_rx_ring;
  2147. /* Initialize MAC */
  2148. spin_lock_bh(&hw->phy_lock);
  2149. if (hw->chip_id == CHIP_ID_GENESIS)
  2150. genesis_mac_init(hw, port);
  2151. else
  2152. yukon_mac_init(hw, port);
  2153. spin_unlock_bh(&hw->phy_lock);
  2154. /* Configure RAMbuffers - equally between ports and tx/rx */
  2155. chunk = (hw->ram_size - hw->ram_offset) / (hw->ports * 2);
  2156. ram_addr = hw->ram_offset + 2 * chunk * port;
  2157. skge_ramset(hw, rxqaddr[port], ram_addr, chunk);
  2158. skge_qset(skge, rxqaddr[port], skge->rx_ring.to_clean);
  2159. BUG_ON(skge->tx_ring.to_use != skge->tx_ring.to_clean);
  2160. skge_ramset(hw, txqaddr[port], ram_addr+chunk, chunk);
  2161. skge_qset(skge, txqaddr[port], skge->tx_ring.to_use);
  2162. /* Start receiver BMU */
  2163. wmb();
  2164. skge_write8(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_START | CSR_IRQ_CL_F);
  2165. skge_led(skge, LED_MODE_ON);
  2166. spin_lock_irq(&hw->hw_lock);
  2167. hw->intr_mask |= portmask[port];
  2168. skge_write32(hw, B0_IMSK, hw->intr_mask);
  2169. spin_unlock_irq(&hw->hw_lock);
  2170. napi_enable(&skge->napi);
  2171. return 0;
  2172. free_rx_ring:
  2173. skge_rx_clean(skge);
  2174. kfree(skge->rx_ring.start);
  2175. free_pci_mem:
  2176. pci_free_consistent(hw->pdev, skge->mem_size, skge->mem, skge->dma);
  2177. skge->mem = NULL;
  2178. return err;
  2179. }
  2180. /* stop receiver */
  2181. static void skge_rx_stop(struct skge_hw *hw, int port)
  2182. {
  2183. skge_write8(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_STOP);
  2184. skge_write32(hw, RB_ADDR(port ? Q_R2 : Q_R1, RB_CTRL),
  2185. RB_RST_SET|RB_DIS_OP_MD);
  2186. skge_write32(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_SET_RESET);
  2187. }
  2188. static int skge_down(struct net_device *dev)
  2189. {
  2190. struct skge_port *skge = netdev_priv(dev);
  2191. struct skge_hw *hw = skge->hw;
  2192. int port = skge->port;
  2193. if (skge->mem == NULL)
  2194. return 0;
  2195. if (netif_msg_ifdown(skge))
  2196. printk(KERN_INFO PFX "%s: disabling interface\n", dev->name);
  2197. netif_stop_queue(dev);
  2198. if (hw->chip_id == CHIP_ID_GENESIS && hw->phy_type == SK_PHY_XMAC)
  2199. del_timer_sync(&skge->link_timer);
  2200. napi_disable(&skge->napi);
  2201. netif_carrier_off(dev);
  2202. spin_lock_irq(&hw->hw_lock);
  2203. hw->intr_mask &= ~portmask[port];
  2204. skge_write32(hw, B0_IMSK, hw->intr_mask);
  2205. spin_unlock_irq(&hw->hw_lock);
  2206. skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG), LED_OFF);
  2207. if (hw->chip_id == CHIP_ID_GENESIS)
  2208. genesis_stop(skge);
  2209. else
  2210. yukon_stop(skge);
  2211. /* Stop transmitter */
  2212. skge_write8(hw, Q_ADDR(txqaddr[port], Q_CSR), CSR_STOP);
  2213. skge_write32(hw, RB_ADDR(txqaddr[port], RB_CTRL),
  2214. RB_RST_SET|RB_DIS_OP_MD);
  2215. /* Disable Force Sync bit and Enable Alloc bit */
  2216. skge_write8(hw, SK_REG(port, TXA_CTRL),
  2217. TXA_DIS_FSYNC | TXA_DIS_ALLOC | TXA_STOP_RC);
  2218. /* Stop Interval Timer and Limit Counter of Tx Arbiter */
  2219. skge_write32(hw, SK_REG(port, TXA_ITI_INI), 0L);
  2220. skge_write32(hw, SK_REG(port, TXA_LIM_INI), 0L);
  2221. /* Reset PCI FIFO */
  2222. skge_write32(hw, Q_ADDR(txqaddr[port], Q_CSR), CSR_SET_RESET);
  2223. skge_write32(hw, RB_ADDR(txqaddr[port], RB_CTRL), RB_RST_SET);
  2224. /* Reset the RAM Buffer async Tx queue */
  2225. skge_write8(hw, RB_ADDR(port == 0 ? Q_XA1 : Q_XA2, RB_CTRL), RB_RST_SET);
  2226. skge_rx_stop(hw, port);
  2227. if (hw->chip_id == CHIP_ID_GENESIS) {
  2228. skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_RST_SET);
  2229. skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_RST_SET);
  2230. } else {
  2231. skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_SET);
  2232. skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_RST_SET);
  2233. }
  2234. skge_led(skge, LED_MODE_OFF);
  2235. netif_tx_lock_bh(dev);
  2236. skge_tx_clean(dev);
  2237. netif_tx_unlock_bh(dev);
  2238. skge_rx_clean(skge);
  2239. kfree(skge->rx_ring.start);
  2240. kfree(skge->tx_ring.start);
  2241. pci_free_consistent(hw->pdev, skge->mem_size, skge->mem, skge->dma);
  2242. skge->mem = NULL;
  2243. return 0;
  2244. }
  2245. static inline int skge_avail(const struct skge_ring *ring)
  2246. {
  2247. smp_mb();
  2248. return ((ring->to_clean > ring->to_use) ? 0 : ring->count)
  2249. + (ring->to_clean - ring->to_use) - 1;
  2250. }
  2251. static int skge_xmit_frame(struct sk_buff *skb, struct net_device *dev)
  2252. {
  2253. struct skge_port *skge = netdev_priv(dev);
  2254. struct skge_hw *hw = skge->hw;
  2255. struct skge_element *e;
  2256. struct skge_tx_desc *td;
  2257. int i;
  2258. u32 control, len;
  2259. u64 map;
  2260. if (skb_padto(skb, ETH_ZLEN))
  2261. return NETDEV_TX_OK;
  2262. if (unlikely(skge_avail(&skge->tx_ring) < skb_shinfo(skb)->nr_frags + 1))
  2263. return NETDEV_TX_BUSY;
  2264. e = skge->tx_ring.to_use;
  2265. td = e->desc;
  2266. BUG_ON(td->control & BMU_OWN);
  2267. e->skb = skb;
  2268. len = skb_headlen(skb);
  2269. map = pci_map_single(hw->pdev, skb->data, len, PCI_DMA_TODEVICE);
  2270. pci_unmap_addr_set(e, mapaddr, map);
  2271. pci_unmap_len_set(e, maplen, len);
  2272. td->dma_lo = map;
  2273. td->dma_hi = map >> 32;
  2274. if (skb->ip_summed == CHECKSUM_PARTIAL) {
  2275. const int offset = skb_transport_offset(skb);
  2276. /* This seems backwards, but it is what the sk98lin
  2277. * does. Looks like hardware is wrong?
  2278. */
  2279. if (ipip_hdr(skb)->protocol == IPPROTO_UDP
  2280. && hw->chip_rev == 0 && hw->chip_id == CHIP_ID_YUKON)
  2281. control = BMU_TCP_CHECK;
  2282. else
  2283. control = BMU_UDP_CHECK;
  2284. td->csum_offs = 0;
  2285. td->csum_start = offset;
  2286. td->csum_write = offset + skb->csum_offset;
  2287. } else
  2288. control = BMU_CHECK;
  2289. if (!skb_shinfo(skb)->nr_frags) /* single buffer i.e. no fragments */
  2290. control |= BMU_EOF| BMU_IRQ_EOF;
  2291. else {
  2292. struct skge_tx_desc *tf = td;
  2293. control |= BMU_STFWD;
  2294. for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
  2295. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  2296. map = pci_map_page(hw->pdev, frag->page, frag->page_offset,
  2297. frag->size, PCI_DMA_TODEVICE);
  2298. e = e->next;
  2299. e->skb = skb;
  2300. tf = e->desc;
  2301. BUG_ON(tf->control & BMU_OWN);
  2302. tf->dma_lo = map;
  2303. tf->dma_hi = (u64) map >> 32;
  2304. pci_unmap_addr_set(e, mapaddr, map);
  2305. pci_unmap_len_set(e, maplen, frag->size);
  2306. tf->control = BMU_OWN | BMU_SW | control | frag->size;
  2307. }
  2308. tf->control |= BMU_EOF | BMU_IRQ_EOF;
  2309. }
  2310. /* Make sure all the descriptors written */
  2311. wmb();
  2312. td->control = BMU_OWN | BMU_SW | BMU_STF | control | len;
  2313. wmb();
  2314. skge_write8(hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_START);
  2315. if (unlikely(netif_msg_tx_queued(skge)))
  2316. printk(KERN_DEBUG "%s: tx queued, slot %td, len %d\n",
  2317. dev->name, e - skge->tx_ring.start, skb->len);
  2318. skge->tx_ring.to_use = e->next;
  2319. smp_wmb();
  2320. if (skge_avail(&skge->tx_ring) <= TX_LOW_WATER) {
  2321. pr_debug("%s: transmit queue full\n", dev->name);
  2322. netif_stop_queue(dev);
  2323. }
  2324. dev->trans_start = jiffies;
  2325. return NETDEV_TX_OK;
  2326. }
  2327. /* Free resources associated with this reing element */
  2328. static void skge_tx_free(struct skge_port *skge, struct skge_element *e,
  2329. u32 control)
  2330. {
  2331. struct pci_dev *pdev = skge->hw->pdev;
  2332. /* skb header vs. fragment */
  2333. if (control & BMU_STF)
  2334. pci_unmap_single(pdev, pci_unmap_addr(e, mapaddr),
  2335. pci_unmap_len(e, maplen),
  2336. PCI_DMA_TODEVICE);
  2337. else
  2338. pci_unmap_page(pdev, pci_unmap_addr(e, mapaddr),
  2339. pci_unmap_len(e, maplen),
  2340. PCI_DMA_TODEVICE);
  2341. if (control & BMU_EOF) {
  2342. if (unlikely(netif_msg_tx_done(skge)))
  2343. printk(KERN_DEBUG PFX "%s: tx done slot %td\n",
  2344. skge->netdev->name, e - skge->tx_ring.start);
  2345. dev_kfree_skb(e->skb);
  2346. }
  2347. }
  2348. /* Free all buffers in transmit ring */
  2349. static void skge_tx_clean(struct net_device *dev)
  2350. {
  2351. struct skge_port *skge = netdev_priv(dev);
  2352. struct skge_element *e;
  2353. for (e = skge->tx_ring.to_clean; e != skge->tx_ring.to_use; e = e->next) {
  2354. struct skge_tx_desc *td = e->desc;
  2355. skge_tx_free(skge, e, td->control);
  2356. td->control = 0;
  2357. }
  2358. skge->tx_ring.to_clean = e;
  2359. netif_wake_queue(dev);
  2360. }
  2361. static void skge_tx_timeout(struct net_device *dev)
  2362. {
  2363. struct skge_port *skge = netdev_priv(dev);
  2364. if (netif_msg_timer(skge))
  2365. printk(KERN_DEBUG PFX "%s: tx timeout\n", dev->name);
  2366. skge_write8(skge->hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_STOP);
  2367. skge_tx_clean(dev);
  2368. }
  2369. static int skge_change_mtu(struct net_device *dev, int new_mtu)
  2370. {
  2371. struct skge_port *skge = netdev_priv(dev);
  2372. struct skge_hw *hw = skge->hw;
  2373. int port = skge->port;
  2374. int err;
  2375. u16 ctl, reg;
  2376. if (new_mtu < ETH_ZLEN || new_mtu > ETH_JUMBO_MTU)
  2377. return -EINVAL;
  2378. if (!netif_running(dev)) {
  2379. dev->mtu = new_mtu;
  2380. return 0;
  2381. }
  2382. skge_write32(hw, B0_IMSK, 0);
  2383. dev->trans_start = jiffies; /* prevent tx timeout */
  2384. netif_stop_queue(dev);
  2385. napi_disable(&skge->napi);
  2386. ctl = gma_read16(hw, port, GM_GP_CTRL);
  2387. gma_write16(hw, port, GM_GP_CTRL, ctl & ~GM_GPCR_RX_ENA);
  2388. skge_rx_clean(skge);
  2389. skge_rx_stop(hw, port);
  2390. dev->mtu = new_mtu;
  2391. reg = GM_SMOD_VLAN_ENA | IPG_DATA_VAL(IPG_DATA_DEF);
  2392. if (new_mtu > 1500)
  2393. reg |= GM_SMOD_JUMBO_ENA;
  2394. gma_write16(hw, port, GM_SERIAL_MODE, reg);
  2395. skge_write8(hw, RB_ADDR(rxqaddr[port], RB_CTRL), RB_ENA_OP_MD);
  2396. err = skge_rx_fill(dev);
  2397. wmb();
  2398. if (!err)
  2399. skge_write8(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_START | CSR_IRQ_CL_F);
  2400. skge_write32(hw, B0_IMSK, hw->intr_mask);
  2401. if (err)
  2402. dev_close(dev);
  2403. else {
  2404. gma_write16(hw, port, GM_GP_CTRL, ctl);
  2405. napi_enable(&skge->napi);
  2406. netif_wake_queue(dev);
  2407. }
  2408. return err;
  2409. }
  2410. static const u8 pause_mc_addr[ETH_ALEN] = { 0x1, 0x80, 0xc2, 0x0, 0x0, 0x1 };
  2411. static void genesis_add_filter(u8 filter[8], const u8 *addr)
  2412. {
  2413. u32 crc, bit;
  2414. crc = ether_crc_le(ETH_ALEN, addr);
  2415. bit = ~crc & 0x3f;
  2416. filter[bit/8] |= 1 << (bit%8);
  2417. }
  2418. static void genesis_set_multicast(struct net_device *dev)
  2419. {
  2420. struct skge_port *skge = netdev_priv(dev);
  2421. struct skge_hw *hw = skge->hw;
  2422. int port = skge->port;
  2423. int i, count = dev->mc_count;
  2424. struct dev_mc_list *list = dev->mc_list;
  2425. u32 mode;
  2426. u8 filter[8];
  2427. mode = xm_read32(hw, port, XM_MODE);
  2428. mode |= XM_MD_ENA_HASH;
  2429. if (dev->flags & IFF_PROMISC)
  2430. mode |= XM_MD_ENA_PROM;
  2431. else
  2432. mode &= ~XM_MD_ENA_PROM;
  2433. if (dev->flags & IFF_ALLMULTI)
  2434. memset(filter, 0xff, sizeof(filter));
  2435. else {
  2436. memset(filter, 0, sizeof(filter));
  2437. if (skge->flow_status == FLOW_STAT_REM_SEND
  2438. || skge->flow_status == FLOW_STAT_SYMMETRIC)
  2439. genesis_add_filter(filter, pause_mc_addr);
  2440. for (i = 0; list && i < count; i++, list = list->next)
  2441. genesis_add_filter(filter, list->dmi_addr);
  2442. }
  2443. xm_write32(hw, port, XM_MODE, mode);
  2444. xm_outhash(hw, port, XM_HSM, filter);
  2445. }
  2446. static void yukon_add_filter(u8 filter[8], const u8 *addr)
  2447. {
  2448. u32 bit = ether_crc(ETH_ALEN, addr) & 0x3f;
  2449. filter[bit/8] |= 1 << (bit%8);
  2450. }
  2451. static void yukon_set_multicast(struct net_device *dev)
  2452. {
  2453. struct skge_port *skge = netdev_priv(dev);
  2454. struct skge_hw *hw = skge->hw;
  2455. int port = skge->port;
  2456. struct dev_mc_list *list = dev->mc_list;
  2457. int rx_pause = (skge->flow_status == FLOW_STAT_REM_SEND
  2458. || skge->flow_status == FLOW_STAT_SYMMETRIC);
  2459. u16 reg;
  2460. u8 filter[8];
  2461. memset(filter, 0, sizeof(filter));
  2462. reg = gma_read16(hw, port, GM_RX_CTRL);
  2463. reg |= GM_RXCR_UCF_ENA;
  2464. if (dev->flags & IFF_PROMISC) /* promiscuous */
  2465. reg &= ~(GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
  2466. else if (dev->flags & IFF_ALLMULTI) /* all multicast */
  2467. memset(filter, 0xff, sizeof(filter));
  2468. else if (dev->mc_count == 0 && !rx_pause)/* no multicast */
  2469. reg &= ~GM_RXCR_MCF_ENA;
  2470. else {
  2471. int i;
  2472. reg |= GM_RXCR_MCF_ENA;
  2473. if (rx_pause)
  2474. yukon_add_filter(filter, pause_mc_addr);
  2475. for (i = 0; list && i < dev->mc_count; i++, list = list->next)
  2476. yukon_add_filter(filter, list->dmi_addr);
  2477. }
  2478. gma_write16(hw, port, GM_MC_ADDR_H1,
  2479. (u16)filter[0] | ((u16)filter[1] << 8));
  2480. gma_write16(hw, port, GM_MC_ADDR_H2,
  2481. (u16)filter[2] | ((u16)filter[3] << 8));
  2482. gma_write16(hw, port, GM_MC_ADDR_H3,
  2483. (u16)filter[4] | ((u16)filter[5] << 8));
  2484. gma_write16(hw, port, GM_MC_ADDR_H4,
  2485. (u16)filter[6] | ((u16)filter[7] << 8));
  2486. gma_write16(hw, port, GM_RX_CTRL, reg);
  2487. }
  2488. static inline u16 phy_length(const struct skge_hw *hw, u32 status)
  2489. {
  2490. if (hw->chip_id == CHIP_ID_GENESIS)
  2491. return status >> XMR_FS_LEN_SHIFT;
  2492. else
  2493. return status >> GMR_FS_LEN_SHIFT;
  2494. }
  2495. static inline int bad_phy_status(const struct skge_hw *hw, u32 status)
  2496. {
  2497. if (hw->chip_id == CHIP_ID_GENESIS)
  2498. return (status & (XMR_FS_ERR | XMR_FS_2L_VLAN)) != 0;
  2499. else
  2500. return (status & GMR_FS_ANY_ERR) ||
  2501. (status & GMR_FS_RX_OK) == 0;
  2502. }
  2503. /* Get receive buffer from descriptor.
  2504. * Handles copy of small buffers and reallocation failures
  2505. */
  2506. static struct sk_buff *skge_rx_get(struct net_device *dev,
  2507. struct skge_element *e,
  2508. u32 control, u32 status, u16 csum)
  2509. {
  2510. struct skge_port *skge = netdev_priv(dev);
  2511. struct sk_buff *skb;
  2512. u16 len = control & BMU_BBC;
  2513. if (unlikely(netif_msg_rx_status(skge)))
  2514. printk(KERN_DEBUG PFX "%s: rx slot %td status 0x%x len %d\n",
  2515. dev->name, e - skge->rx_ring.start,
  2516. status, len);
  2517. if (len > skge->rx_buf_size)
  2518. goto error;
  2519. if ((control & (BMU_EOF|BMU_STF)) != (BMU_STF|BMU_EOF))
  2520. goto error;
  2521. if (bad_phy_status(skge->hw, status))
  2522. goto error;
  2523. if (phy_length(skge->hw, status) != len)
  2524. goto error;
  2525. if (len < RX_COPY_THRESHOLD) {
  2526. skb = netdev_alloc_skb(dev, len + 2);
  2527. if (!skb)
  2528. goto resubmit;
  2529. skb_reserve(skb, 2);
  2530. pci_dma_sync_single_for_cpu(skge->hw->pdev,
  2531. pci_unmap_addr(e, mapaddr),
  2532. len, PCI_DMA_FROMDEVICE);
  2533. skb_copy_from_linear_data(e->skb, skb->data, len);
  2534. pci_dma_sync_single_for_device(skge->hw->pdev,
  2535. pci_unmap_addr(e, mapaddr),
  2536. len, PCI_DMA_FROMDEVICE);
  2537. skge_rx_reuse(e, skge->rx_buf_size);
  2538. } else {
  2539. struct sk_buff *nskb;
  2540. nskb = netdev_alloc_skb(dev, skge->rx_buf_size + NET_IP_ALIGN);
  2541. if (!nskb)
  2542. goto resubmit;
  2543. skb_reserve(nskb, NET_IP_ALIGN);
  2544. pci_unmap_single(skge->hw->pdev,
  2545. pci_unmap_addr(e, mapaddr),
  2546. pci_unmap_len(e, maplen),
  2547. PCI_DMA_FROMDEVICE);
  2548. skb = e->skb;
  2549. prefetch(skb->data);
  2550. skge_rx_setup(skge, e, nskb, skge->rx_buf_size);
  2551. }
  2552. skb_put(skb, len);
  2553. if (skge->rx_csum) {
  2554. skb->csum = csum;
  2555. skb->ip_summed = CHECKSUM_COMPLETE;
  2556. }
  2557. skb->protocol = eth_type_trans(skb, dev);
  2558. return skb;
  2559. error:
  2560. if (netif_msg_rx_err(skge))
  2561. printk(KERN_DEBUG PFX "%s: rx err, slot %td control 0x%x status 0x%x\n",
  2562. dev->name, e - skge->rx_ring.start,
  2563. control, status);
  2564. if (skge->hw->chip_id == CHIP_ID_GENESIS) {
  2565. if (status & (XMR_FS_RUNT|XMR_FS_LNG_ERR))
  2566. dev->stats.rx_length_errors++;
  2567. if (status & XMR_FS_FRA_ERR)
  2568. dev->stats.rx_frame_errors++;
  2569. if (status & XMR_FS_FCS_ERR)
  2570. dev->stats.rx_crc_errors++;
  2571. } else {
  2572. if (status & (GMR_FS_LONG_ERR|GMR_FS_UN_SIZE))
  2573. dev->stats.rx_length_errors++;
  2574. if (status & GMR_FS_FRAGMENT)
  2575. dev->stats.rx_frame_errors++;
  2576. if (status & GMR_FS_CRC_ERR)
  2577. dev->stats.rx_crc_errors++;
  2578. }
  2579. resubmit:
  2580. skge_rx_reuse(e, skge->rx_buf_size);
  2581. return NULL;
  2582. }
  2583. /* Free all buffers in Tx ring which are no longer owned by device */
  2584. static void skge_tx_done(struct net_device *dev)
  2585. {
  2586. struct skge_port *skge = netdev_priv(dev);
  2587. struct skge_ring *ring = &skge->tx_ring;
  2588. struct skge_element *e;
  2589. skge_write8(skge->hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_IRQ_CL_F);
  2590. for (e = ring->to_clean; e != ring->to_use; e = e->next) {
  2591. u32 control = ((const struct skge_tx_desc *) e->desc)->control;
  2592. if (control & BMU_OWN)
  2593. break;
  2594. skge_tx_free(skge, e, control);
  2595. }
  2596. skge->tx_ring.to_clean = e;
  2597. /* Can run lockless until we need to synchronize to restart queue. */
  2598. smp_mb();
  2599. if (unlikely(netif_queue_stopped(dev) &&
  2600. skge_avail(&skge->tx_ring) > TX_LOW_WATER)) {
  2601. netif_tx_lock(dev);
  2602. if (unlikely(netif_queue_stopped(dev) &&
  2603. skge_avail(&skge->tx_ring) > TX_LOW_WATER)) {
  2604. netif_wake_queue(dev);
  2605. }
  2606. netif_tx_unlock(dev);
  2607. }
  2608. }
  2609. static int skge_poll(struct napi_struct *napi, int to_do)
  2610. {
  2611. struct skge_port *skge = container_of(napi, struct skge_port, napi);
  2612. struct net_device *dev = skge->netdev;
  2613. struct skge_hw *hw = skge->hw;
  2614. struct skge_ring *ring = &skge->rx_ring;
  2615. struct skge_element *e;
  2616. int work_done = 0;
  2617. skge_tx_done(dev);
  2618. skge_write8(hw, Q_ADDR(rxqaddr[skge->port], Q_CSR), CSR_IRQ_CL_F);
  2619. for (e = ring->to_clean; prefetch(e->next), work_done < to_do; e = e->next) {
  2620. struct skge_rx_desc *rd = e->desc;
  2621. struct sk_buff *skb;
  2622. u32 control;
  2623. rmb();
  2624. control = rd->control;
  2625. if (control & BMU_OWN)
  2626. break;
  2627. skb = skge_rx_get(dev, e, control, rd->status, rd->csum2);
  2628. if (likely(skb)) {
  2629. dev->last_rx = jiffies;
  2630. netif_receive_skb(skb);
  2631. ++work_done;
  2632. }
  2633. }
  2634. ring->to_clean = e;
  2635. /* restart receiver */
  2636. wmb();
  2637. skge_write8(hw, Q_ADDR(rxqaddr[skge->port], Q_CSR), CSR_START);
  2638. if (work_done < to_do) {
  2639. spin_lock_irq(&hw->hw_lock);
  2640. __netif_rx_complete(dev, napi);
  2641. hw->intr_mask |= napimask[skge->port];
  2642. skge_write32(hw, B0_IMSK, hw->intr_mask);
  2643. skge_read32(hw, B0_IMSK);
  2644. spin_unlock_irq(&hw->hw_lock);
  2645. }
  2646. return work_done;
  2647. }
  2648. /* Parity errors seem to happen when Genesis is connected to a switch
  2649. * with no other ports present. Heartbeat error??
  2650. */
  2651. static void skge_mac_parity(struct skge_hw *hw, int port)
  2652. {
  2653. struct net_device *dev = hw->dev[port];
  2654. ++dev->stats.tx_heartbeat_errors;
  2655. if (hw->chip_id == CHIP_ID_GENESIS)
  2656. skge_write16(hw, SK_REG(port, TX_MFF_CTRL1),
  2657. MFF_CLR_PERR);
  2658. else
  2659. /* HW-Bug #8: cleared by GMF_CLI_TX_FC instead of GMF_CLI_TX_PE */
  2660. skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T),
  2661. (hw->chip_id == CHIP_ID_YUKON && hw->chip_rev == 0)
  2662. ? GMF_CLI_TX_FC : GMF_CLI_TX_PE);
  2663. }
  2664. static void skge_mac_intr(struct skge_hw *hw, int port)
  2665. {
  2666. if (hw->chip_id == CHIP_ID_GENESIS)
  2667. genesis_mac_intr(hw, port);
  2668. else
  2669. yukon_mac_intr(hw, port);
  2670. }
  2671. /* Handle device specific framing and timeout interrupts */
  2672. static void skge_error_irq(struct skge_hw *hw)
  2673. {
  2674. struct pci_dev *pdev = hw->pdev;
  2675. u32 hwstatus = skge_read32(hw, B0_HWE_ISRC);
  2676. if (hw->chip_id == CHIP_ID_GENESIS) {
  2677. /* clear xmac errors */
  2678. if (hwstatus & (IS_NO_STAT_M1|IS_NO_TIST_M1))
  2679. skge_write16(hw, RX_MFF_CTRL1, MFF_CLR_INSTAT);
  2680. if (hwstatus & (IS_NO_STAT_M2|IS_NO_TIST_M2))
  2681. skge_write16(hw, RX_MFF_CTRL2, MFF_CLR_INSTAT);
  2682. } else {
  2683. /* Timestamp (unused) overflow */
  2684. if (hwstatus & IS_IRQ_TIST_OV)
  2685. skge_write8(hw, GMAC_TI_ST_CTRL, GMT_ST_CLR_IRQ);
  2686. }
  2687. if (hwstatus & IS_RAM_RD_PAR) {
  2688. dev_err(&pdev->dev, "Ram read data parity error\n");
  2689. skge_write16(hw, B3_RI_CTRL, RI_CLR_RD_PERR);
  2690. }
  2691. if (hwstatus & IS_RAM_WR_PAR) {
  2692. dev_err(&pdev->dev, "Ram write data parity error\n");
  2693. skge_write16(hw, B3_RI_CTRL, RI_CLR_WR_PERR);
  2694. }
  2695. if (hwstatus & IS_M1_PAR_ERR)
  2696. skge_mac_parity(hw, 0);
  2697. if (hwstatus & IS_M2_PAR_ERR)
  2698. skge_mac_parity(hw, 1);
  2699. if (hwstatus & IS_R1_PAR_ERR) {
  2700. dev_err(&pdev->dev, "%s: receive queue parity error\n",
  2701. hw->dev[0]->name);
  2702. skge_write32(hw, B0_R1_CSR, CSR_IRQ_CL_P);
  2703. }
  2704. if (hwstatus & IS_R2_PAR_ERR) {
  2705. dev_err(&pdev->dev, "%s: receive queue parity error\n",
  2706. hw->dev[1]->name);
  2707. skge_write32(hw, B0_R2_CSR, CSR_IRQ_CL_P);
  2708. }
  2709. if (hwstatus & (IS_IRQ_MST_ERR|IS_IRQ_STAT)) {
  2710. u16 pci_status, pci_cmd;
  2711. pci_read_config_word(pdev, PCI_COMMAND, &pci_cmd);
  2712. pci_read_config_word(pdev, PCI_STATUS, &pci_status);
  2713. dev_err(&pdev->dev, "PCI error cmd=%#x status=%#x\n",
  2714. pci_cmd, pci_status);
  2715. /* Write the error bits back to clear them. */
  2716. pci_status &= PCI_STATUS_ERROR_BITS;
  2717. skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
  2718. pci_write_config_word(pdev, PCI_COMMAND,
  2719. pci_cmd | PCI_COMMAND_SERR | PCI_COMMAND_PARITY);
  2720. pci_write_config_word(pdev, PCI_STATUS, pci_status);
  2721. skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
  2722. /* if error still set then just ignore it */
  2723. hwstatus = skge_read32(hw, B0_HWE_ISRC);
  2724. if (hwstatus & IS_IRQ_STAT) {
  2725. dev_warn(&hw->pdev->dev, "unable to clear error (so ignoring them)\n");
  2726. hw->intr_mask &= ~IS_HW_ERR;
  2727. }
  2728. }
  2729. }
  2730. /*
  2731. * Interrupt from PHY are handled in tasklet (softirq)
  2732. * because accessing phy registers requires spin wait which might
  2733. * cause excess interrupt latency.
  2734. */
  2735. static void skge_extirq(unsigned long arg)
  2736. {
  2737. struct skge_hw *hw = (struct skge_hw *) arg;
  2738. int port;
  2739. for (port = 0; port < hw->ports; port++) {
  2740. struct net_device *dev = hw->dev[port];
  2741. if (netif_running(dev)) {
  2742. struct skge_port *skge = netdev_priv(dev);
  2743. spin_lock(&hw->phy_lock);
  2744. if (hw->chip_id != CHIP_ID_GENESIS)
  2745. yukon_phy_intr(skge);
  2746. else if (hw->phy_type == SK_PHY_BCOM)
  2747. bcom_phy_intr(skge);
  2748. spin_unlock(&hw->phy_lock);
  2749. }
  2750. }
  2751. spin_lock_irq(&hw->hw_lock);
  2752. hw->intr_mask |= IS_EXT_REG;
  2753. skge_write32(hw, B0_IMSK, hw->intr_mask);
  2754. skge_read32(hw, B0_IMSK);
  2755. spin_unlock_irq(&hw->hw_lock);
  2756. }
  2757. static irqreturn_t skge_intr(int irq, void *dev_id)
  2758. {
  2759. struct skge_hw *hw = dev_id;
  2760. u32 status;
  2761. int handled = 0;
  2762. spin_lock(&hw->hw_lock);
  2763. /* Reading this register masks IRQ */
  2764. status = skge_read32(hw, B0_SP_ISRC);
  2765. if (status == 0 || status == ~0)
  2766. goto out;
  2767. handled = 1;
  2768. status &= hw->intr_mask;
  2769. if (status & IS_EXT_REG) {
  2770. hw->intr_mask &= ~IS_EXT_REG;
  2771. tasklet_schedule(&hw->phy_task);
  2772. }
  2773. if (status & (IS_XA1_F|IS_R1_F)) {
  2774. struct skge_port *skge = netdev_priv(hw->dev[0]);
  2775. hw->intr_mask &= ~(IS_XA1_F|IS_R1_F);
  2776. netif_rx_schedule(hw->dev[0], &skge->napi);
  2777. }
  2778. if (status & IS_PA_TO_TX1)
  2779. skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_TX1);
  2780. if (status & IS_PA_TO_RX1) {
  2781. ++hw->dev[0]->stats.rx_over_errors;
  2782. skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_RX1);
  2783. }
  2784. if (status & IS_MAC1)
  2785. skge_mac_intr(hw, 0);
  2786. if (hw->dev[1]) {
  2787. struct skge_port *skge = netdev_priv(hw->dev[1]);
  2788. if (status & (IS_XA2_F|IS_R2_F)) {
  2789. hw->intr_mask &= ~(IS_XA2_F|IS_R2_F);
  2790. netif_rx_schedule(hw->dev[1], &skge->napi);
  2791. }
  2792. if (status & IS_PA_TO_RX2) {
  2793. ++hw->dev[1]->stats.rx_over_errors;
  2794. skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_RX2);
  2795. }
  2796. if (status & IS_PA_TO_TX2)
  2797. skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_TX2);
  2798. if (status & IS_MAC2)
  2799. skge_mac_intr(hw, 1);
  2800. }
  2801. if (status & IS_HW_ERR)
  2802. skge_error_irq(hw);
  2803. skge_write32(hw, B0_IMSK, hw->intr_mask);
  2804. skge_read32(hw, B0_IMSK);
  2805. out:
  2806. spin_unlock(&hw->hw_lock);
  2807. return IRQ_RETVAL(handled);
  2808. }
  2809. #ifdef CONFIG_NET_POLL_CONTROLLER
  2810. static void skge_netpoll(struct net_device *dev)
  2811. {
  2812. struct skge_port *skge = netdev_priv(dev);
  2813. disable_irq(dev->irq);
  2814. skge_intr(dev->irq, skge->hw);
  2815. enable_irq(dev->irq);
  2816. }
  2817. #endif
  2818. static int skge_set_mac_address(struct net_device *dev, void *p)
  2819. {
  2820. struct skge_port *skge = netdev_priv(dev);
  2821. struct skge_hw *hw = skge->hw;
  2822. unsigned port = skge->port;
  2823. const struct sockaddr *addr = p;
  2824. u16 ctrl;
  2825. if (!is_valid_ether_addr(addr->sa_data))
  2826. return -EADDRNOTAVAIL;
  2827. memcpy(dev->dev_addr, addr->sa_data, ETH_ALEN);
  2828. if (!netif_running(dev)) {
  2829. memcpy_toio(hw->regs + B2_MAC_1 + port*8, dev->dev_addr, ETH_ALEN);
  2830. memcpy_toio(hw->regs + B2_MAC_2 + port*8, dev->dev_addr, ETH_ALEN);
  2831. } else {
  2832. /* disable Rx */
  2833. spin_lock_bh(&hw->phy_lock);
  2834. ctrl = gma_read16(hw, port, GM_GP_CTRL);
  2835. gma_write16(hw, port, GM_GP_CTRL, ctrl & ~GM_GPCR_RX_ENA);
  2836. memcpy_toio(hw->regs + B2_MAC_1 + port*8, dev->dev_addr, ETH_ALEN);
  2837. memcpy_toio(hw->regs + B2_MAC_2 + port*8, dev->dev_addr, ETH_ALEN);
  2838. if (hw->chip_id == CHIP_ID_GENESIS)
  2839. xm_outaddr(hw, port, XM_SA, dev->dev_addr);
  2840. else {
  2841. gma_set_addr(hw, port, GM_SRC_ADDR_1L, dev->dev_addr);
  2842. gma_set_addr(hw, port, GM_SRC_ADDR_2L, dev->dev_addr);
  2843. }
  2844. gma_write16(hw, port, GM_GP_CTRL, ctrl);
  2845. spin_unlock_bh(&hw->phy_lock);
  2846. }
  2847. return 0;
  2848. }
  2849. static const struct {
  2850. u8 id;
  2851. const char *name;
  2852. } skge_chips[] = {
  2853. { CHIP_ID_GENESIS, "Genesis" },
  2854. { CHIP_ID_YUKON, "Yukon" },
  2855. { CHIP_ID_YUKON_LITE, "Yukon-Lite"},
  2856. { CHIP_ID_YUKON_LP, "Yukon-LP"},
  2857. };
  2858. static const char *skge_board_name(const struct skge_hw *hw)
  2859. {
  2860. int i;
  2861. static char buf[16];
  2862. for (i = 0; i < ARRAY_SIZE(skge_chips); i++)
  2863. if (skge_chips[i].id == hw->chip_id)
  2864. return skge_chips[i].name;
  2865. snprintf(buf, sizeof buf, "chipid 0x%x", hw->chip_id);
  2866. return buf;
  2867. }
  2868. /*
  2869. * Setup the board data structure, but don't bring up
  2870. * the port(s)
  2871. */
  2872. static int skge_reset(struct skge_hw *hw)
  2873. {
  2874. u32 reg;
  2875. u16 ctst, pci_status;
  2876. u8 t8, mac_cfg, pmd_type;
  2877. int i;
  2878. ctst = skge_read16(hw, B0_CTST);
  2879. /* do a SW reset */
  2880. skge_write8(hw, B0_CTST, CS_RST_SET);
  2881. skge_write8(hw, B0_CTST, CS_RST_CLR);
  2882. /* clear PCI errors, if any */
  2883. skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
  2884. skge_write8(hw, B2_TST_CTRL2, 0);
  2885. pci_read_config_word(hw->pdev, PCI_STATUS, &pci_status);
  2886. pci_write_config_word(hw->pdev, PCI_STATUS,
  2887. pci_status | PCI_STATUS_ERROR_BITS);
  2888. skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
  2889. skge_write8(hw, B0_CTST, CS_MRST_CLR);
  2890. /* restore CLK_RUN bits (for Yukon-Lite) */
  2891. skge_write16(hw, B0_CTST,
  2892. ctst & (CS_CLK_RUN_HOT|CS_CLK_RUN_RST|CS_CLK_RUN_ENA));
  2893. hw->chip_id = skge_read8(hw, B2_CHIP_ID);
  2894. hw->phy_type = skge_read8(hw, B2_E_1) & 0xf;
  2895. pmd_type = skge_read8(hw, B2_PMD_TYP);
  2896. hw->copper = (pmd_type == 'T' || pmd_type == '1');
  2897. switch (hw->chip_id) {
  2898. case CHIP_ID_GENESIS:
  2899. switch (hw->phy_type) {
  2900. case SK_PHY_XMAC:
  2901. hw->phy_addr = PHY_ADDR_XMAC;
  2902. break;
  2903. case SK_PHY_BCOM:
  2904. hw->phy_addr = PHY_ADDR_BCOM;
  2905. break;
  2906. default:
  2907. dev_err(&hw->pdev->dev, "unsupported phy type 0x%x\n",
  2908. hw->phy_type);
  2909. return -EOPNOTSUPP;
  2910. }
  2911. break;
  2912. case CHIP_ID_YUKON:
  2913. case CHIP_ID_YUKON_LITE:
  2914. case CHIP_ID_YUKON_LP:
  2915. if (hw->phy_type < SK_PHY_MARV_COPPER && pmd_type != 'S')
  2916. hw->copper = 1;
  2917. hw->phy_addr = PHY_ADDR_MARV;
  2918. break;
  2919. default:
  2920. dev_err(&hw->pdev->dev, "unsupported chip type 0x%x\n",
  2921. hw->chip_id);
  2922. return -EOPNOTSUPP;
  2923. }
  2924. mac_cfg = skge_read8(hw, B2_MAC_CFG);
  2925. hw->ports = (mac_cfg & CFG_SNG_MAC) ? 1 : 2;
  2926. hw->chip_rev = (mac_cfg & CFG_CHIP_R_MSK) >> 4;
  2927. /* read the adapters RAM size */
  2928. t8 = skge_read8(hw, B2_E_0);
  2929. if (hw->chip_id == CHIP_ID_GENESIS) {
  2930. if (t8 == 3) {
  2931. /* special case: 4 x 64k x 36, offset = 0x80000 */
  2932. hw->ram_size = 0x100000;
  2933. hw->ram_offset = 0x80000;
  2934. } else
  2935. hw->ram_size = t8 * 512;
  2936. }
  2937. else if (t8 == 0)
  2938. hw->ram_size = 0x20000;
  2939. else
  2940. hw->ram_size = t8 * 4096;
  2941. hw->intr_mask = IS_HW_ERR;
  2942. /* Use PHY IRQ for all but fiber based Genesis board */
  2943. if (!(hw->chip_id == CHIP_ID_GENESIS && hw->phy_type == SK_PHY_XMAC))
  2944. hw->intr_mask |= IS_EXT_REG;
  2945. if (hw->chip_id == CHIP_ID_GENESIS)
  2946. genesis_init(hw);
  2947. else {
  2948. /* switch power to VCC (WA for VAUX problem) */
  2949. skge_write8(hw, B0_POWER_CTRL,
  2950. PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_OFF | PC_VCC_ON);
  2951. /* avoid boards with stuck Hardware error bits */
  2952. if ((skge_read32(hw, B0_ISRC) & IS_HW_ERR) &&
  2953. (skge_read32(hw, B0_HWE_ISRC) & IS_IRQ_SENSOR)) {
  2954. dev_warn(&hw->pdev->dev, "stuck hardware sensor bit\n");
  2955. hw->intr_mask &= ~IS_HW_ERR;
  2956. }
  2957. /* Clear PHY COMA */
  2958. skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
  2959. pci_read_config_dword(hw->pdev, PCI_DEV_REG1, &reg);
  2960. reg &= ~PCI_PHY_COMA;
  2961. pci_write_config_dword(hw->pdev, PCI_DEV_REG1, reg);
  2962. skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
  2963. for (i = 0; i < hw->ports; i++) {
  2964. skge_write16(hw, SK_REG(i, GMAC_LINK_CTRL), GMLC_RST_SET);
  2965. skge_write16(hw, SK_REG(i, GMAC_LINK_CTRL), GMLC_RST_CLR);
  2966. }
  2967. }
  2968. /* turn off hardware timer (unused) */
  2969. skge_write8(hw, B2_TI_CTRL, TIM_STOP);
  2970. skge_write8(hw, B2_TI_CTRL, TIM_CLR_IRQ);
  2971. skge_write8(hw, B0_LED, LED_STAT_ON);
  2972. /* enable the Tx Arbiters */
  2973. for (i = 0; i < hw->ports; i++)
  2974. skge_write8(hw, SK_REG(i, TXA_CTRL), TXA_ENA_ARB);
  2975. /* Initialize ram interface */
  2976. skge_write16(hw, B3_RI_CTRL, RI_RST_CLR);
  2977. skge_write8(hw, B3_RI_WTO_R1, SK_RI_TO_53);
  2978. skge_write8(hw, B3_RI_WTO_XA1, SK_RI_TO_53);
  2979. skge_write8(hw, B3_RI_WTO_XS1, SK_RI_TO_53);
  2980. skge_write8(hw, B3_RI_RTO_R1, SK_RI_TO_53);
  2981. skge_write8(hw, B3_RI_RTO_XA1, SK_RI_TO_53);
  2982. skge_write8(hw, B3_RI_RTO_XS1, SK_RI_TO_53);
  2983. skge_write8(hw, B3_RI_WTO_R2, SK_RI_TO_53);
  2984. skge_write8(hw, B3_RI_WTO_XA2, SK_RI_TO_53);
  2985. skge_write8(hw, B3_RI_WTO_XS2, SK_RI_TO_53);
  2986. skge_write8(hw, B3_RI_RTO_R2, SK_RI_TO_53);
  2987. skge_write8(hw, B3_RI_RTO_XA2, SK_RI_TO_53);
  2988. skge_write8(hw, B3_RI_RTO_XS2, SK_RI_TO_53);
  2989. skge_write32(hw, B0_HWE_IMSK, IS_ERR_MSK);
  2990. /* Set interrupt moderation for Transmit only
  2991. * Receive interrupts avoided by NAPI
  2992. */
  2993. skge_write32(hw, B2_IRQM_MSK, IS_XA1_F|IS_XA2_F);
  2994. skge_write32(hw, B2_IRQM_INI, skge_usecs2clk(hw, 100));
  2995. skge_write32(hw, B2_IRQM_CTRL, TIM_START);
  2996. skge_write32(hw, B0_IMSK, hw->intr_mask);
  2997. for (i = 0; i < hw->ports; i++) {
  2998. if (hw->chip_id == CHIP_ID_GENESIS)
  2999. genesis_reset(hw, i);
  3000. else
  3001. yukon_reset(hw, i);
  3002. }
  3003. return 0;
  3004. }
  3005. #ifdef CONFIG_SKGE_DEBUG
  3006. static struct dentry *skge_debug;
  3007. static int skge_debug_show(struct seq_file *seq, void *v)
  3008. {
  3009. struct net_device *dev = seq->private;
  3010. const struct skge_port *skge = netdev_priv(dev);
  3011. const struct skge_hw *hw = skge->hw;
  3012. const struct skge_element *e;
  3013. if (!netif_running(dev))
  3014. return -ENETDOWN;
  3015. seq_printf(seq, "IRQ src=%x mask=%x\n", skge_read32(hw, B0_ISRC),
  3016. skge_read32(hw, B0_IMSK));
  3017. seq_printf(seq, "Tx Ring: (%d)\n", skge_avail(&skge->tx_ring));
  3018. for (e = skge->tx_ring.to_clean; e != skge->tx_ring.to_use; e = e->next) {
  3019. const struct skge_tx_desc *t = e->desc;
  3020. seq_printf(seq, "%#x dma=%#x%08x %#x csum=%#x/%x/%x\n",
  3021. t->control, t->dma_hi, t->dma_lo, t->status,
  3022. t->csum_offs, t->csum_write, t->csum_start);
  3023. }
  3024. seq_printf(seq, "\nRx Ring: \n");
  3025. for (e = skge->rx_ring.to_clean; ; e = e->next) {
  3026. const struct skge_rx_desc *r = e->desc;
  3027. if (r->control & BMU_OWN)
  3028. break;
  3029. seq_printf(seq, "%#x dma=%#x%08x %#x %#x csum=%#x/%x\n",
  3030. r->control, r->dma_hi, r->dma_lo, r->status,
  3031. r->timestamp, r->csum1, r->csum1_start);
  3032. }
  3033. return 0;
  3034. }
  3035. static int skge_debug_open(struct inode *inode, struct file *file)
  3036. {
  3037. return single_open(file, skge_debug_show, inode->i_private);
  3038. }
  3039. static const struct file_operations skge_debug_fops = {
  3040. .owner = THIS_MODULE,
  3041. .open = skge_debug_open,
  3042. .read = seq_read,
  3043. .llseek = seq_lseek,
  3044. .release = single_release,
  3045. };
  3046. /*
  3047. * Use network device events to create/remove/rename
  3048. * debugfs file entries
  3049. */
  3050. static int skge_device_event(struct notifier_block *unused,
  3051. unsigned long event, void *ptr)
  3052. {
  3053. struct net_device *dev = ptr;
  3054. struct skge_port *skge;
  3055. struct dentry *d;
  3056. if (dev->open != &skge_up || !skge_debug)
  3057. goto done;
  3058. skge = netdev_priv(dev);
  3059. switch(event) {
  3060. case NETDEV_CHANGENAME:
  3061. if (skge->debugfs) {
  3062. d = debugfs_rename(skge_debug, skge->debugfs,
  3063. skge_debug, dev->name);
  3064. if (d)
  3065. skge->debugfs = d;
  3066. else {
  3067. pr_info(PFX "%s: rename failed\n", dev->name);
  3068. debugfs_remove(skge->debugfs);
  3069. }
  3070. }
  3071. break;
  3072. case NETDEV_GOING_DOWN:
  3073. if (skge->debugfs) {
  3074. debugfs_remove(skge->debugfs);
  3075. skge->debugfs = NULL;
  3076. }
  3077. break;
  3078. case NETDEV_UP:
  3079. d = debugfs_create_file(dev->name, S_IRUGO,
  3080. skge_debug, dev,
  3081. &skge_debug_fops);
  3082. if (!d || IS_ERR(d))
  3083. pr_info(PFX "%s: debugfs create failed\n",
  3084. dev->name);
  3085. else
  3086. skge->debugfs = d;
  3087. break;
  3088. }
  3089. done:
  3090. return NOTIFY_DONE;
  3091. }
  3092. static struct notifier_block skge_notifier = {
  3093. .notifier_call = skge_device_event,
  3094. };
  3095. static __init void skge_debug_init(void)
  3096. {
  3097. struct dentry *ent;
  3098. ent = debugfs_create_dir("skge", NULL);
  3099. if (!ent || IS_ERR(ent)) {
  3100. pr_info(PFX "debugfs create directory failed\n");
  3101. return;
  3102. }
  3103. skge_debug = ent;
  3104. register_netdevice_notifier(&skge_notifier);
  3105. }
  3106. static __exit void skge_debug_cleanup(void)
  3107. {
  3108. if (skge_debug) {
  3109. unregister_netdevice_notifier(&skge_notifier);
  3110. debugfs_remove(skge_debug);
  3111. skge_debug = NULL;
  3112. }
  3113. }
  3114. #else
  3115. #define skge_debug_init()
  3116. #define skge_debug_cleanup()
  3117. #endif
  3118. /* Initialize network device */
  3119. static struct net_device *skge_devinit(struct skge_hw *hw, int port,
  3120. int highmem)
  3121. {
  3122. struct skge_port *skge;
  3123. struct net_device *dev = alloc_etherdev(sizeof(*skge));
  3124. if (!dev) {
  3125. dev_err(&hw->pdev->dev, "etherdev alloc failed\n");
  3126. return NULL;
  3127. }
  3128. SET_NETDEV_DEV(dev, &hw->pdev->dev);
  3129. dev->open = skge_up;
  3130. dev->stop = skge_down;
  3131. dev->do_ioctl = skge_ioctl;
  3132. dev->hard_start_xmit = skge_xmit_frame;
  3133. dev->get_stats = skge_get_stats;
  3134. if (hw->chip_id == CHIP_ID_GENESIS)
  3135. dev->set_multicast_list = genesis_set_multicast;
  3136. else
  3137. dev->set_multicast_list = yukon_set_multicast;
  3138. dev->set_mac_address = skge_set_mac_address;
  3139. dev->change_mtu = skge_change_mtu;
  3140. SET_ETHTOOL_OPS(dev, &skge_ethtool_ops);
  3141. dev->tx_timeout = skge_tx_timeout;
  3142. dev->watchdog_timeo = TX_WATCHDOG;
  3143. #ifdef CONFIG_NET_POLL_CONTROLLER
  3144. dev->poll_controller = skge_netpoll;
  3145. #endif
  3146. dev->irq = hw->pdev->irq;
  3147. if (highmem)
  3148. dev->features |= NETIF_F_HIGHDMA;
  3149. skge = netdev_priv(dev);
  3150. netif_napi_add(dev, &skge->napi, skge_poll, NAPI_WEIGHT);
  3151. skge->netdev = dev;
  3152. skge->hw = hw;
  3153. skge->msg_enable = netif_msg_init(debug, default_msg);
  3154. skge->tx_ring.count = DEFAULT_TX_RING_SIZE;
  3155. skge->rx_ring.count = DEFAULT_RX_RING_SIZE;
  3156. /* Auto speed and flow control */
  3157. skge->autoneg = AUTONEG_ENABLE;
  3158. skge->flow_control = FLOW_MODE_SYM_OR_REM;
  3159. skge->duplex = -1;
  3160. skge->speed = -1;
  3161. skge->advertising = skge_supported_modes(hw);
  3162. if (pci_wake_enabled(hw->pdev))
  3163. skge->wol = wol_supported(hw) & WAKE_MAGIC;
  3164. hw->dev[port] = dev;
  3165. skge->port = port;
  3166. /* Only used for Genesis XMAC */
  3167. setup_timer(&skge->link_timer, xm_link_timer, (unsigned long) skge);
  3168. if (hw->chip_id != CHIP_ID_GENESIS) {
  3169. dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG;
  3170. skge->rx_csum = 1;
  3171. }
  3172. /* read the mac address */
  3173. memcpy_fromio(dev->dev_addr, hw->regs + B2_MAC_1 + port*8, ETH_ALEN);
  3174. memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
  3175. /* device is off until link detection */
  3176. netif_carrier_off(dev);
  3177. netif_stop_queue(dev);
  3178. return dev;
  3179. }
  3180. static void __devinit skge_show_addr(struct net_device *dev)
  3181. {
  3182. const struct skge_port *skge = netdev_priv(dev);
  3183. DECLARE_MAC_BUF(mac);
  3184. if (netif_msg_probe(skge))
  3185. printk(KERN_INFO PFX "%s: addr %s\n",
  3186. dev->name, print_mac(mac, dev->dev_addr));
  3187. }
  3188. static int __devinit skge_probe(struct pci_dev *pdev,
  3189. const struct pci_device_id *ent)
  3190. {
  3191. struct net_device *dev, *dev1;
  3192. struct skge_hw *hw;
  3193. int err, using_dac = 0;
  3194. err = pci_enable_device(pdev);
  3195. if (err) {
  3196. dev_err(&pdev->dev, "cannot enable PCI device\n");
  3197. goto err_out;
  3198. }
  3199. err = pci_request_regions(pdev, DRV_NAME);
  3200. if (err) {
  3201. dev_err(&pdev->dev, "cannot obtain PCI resources\n");
  3202. goto err_out_disable_pdev;
  3203. }
  3204. pci_set_master(pdev);
  3205. if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK)) {
  3206. using_dac = 1;
  3207. err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK);
  3208. } else if (!(err = pci_set_dma_mask(pdev, DMA_32BIT_MASK))) {
  3209. using_dac = 0;
  3210. err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
  3211. }
  3212. if (err) {
  3213. dev_err(&pdev->dev, "no usable DMA configuration\n");
  3214. goto err_out_free_regions;
  3215. }
  3216. #ifdef __BIG_ENDIAN
  3217. /* byte swap descriptors in hardware */
  3218. {
  3219. u32 reg;
  3220. pci_read_config_dword(pdev, PCI_DEV_REG2, &reg);
  3221. reg |= PCI_REV_DESC;
  3222. pci_write_config_dword(pdev, PCI_DEV_REG2, reg);
  3223. }
  3224. #endif
  3225. err = -ENOMEM;
  3226. hw = kzalloc(sizeof(*hw), GFP_KERNEL);
  3227. if (!hw) {
  3228. dev_err(&pdev->dev, "cannot allocate hardware struct\n");
  3229. goto err_out_free_regions;
  3230. }
  3231. hw->pdev = pdev;
  3232. spin_lock_init(&hw->hw_lock);
  3233. spin_lock_init(&hw->phy_lock);
  3234. tasklet_init(&hw->phy_task, &skge_extirq, (unsigned long) hw);
  3235. hw->regs = ioremap_nocache(pci_resource_start(pdev, 0), 0x4000);
  3236. if (!hw->regs) {
  3237. dev_err(&pdev->dev, "cannot map device registers\n");
  3238. goto err_out_free_hw;
  3239. }
  3240. err = skge_reset(hw);
  3241. if (err)
  3242. goto err_out_iounmap;
  3243. printk(KERN_INFO PFX DRV_VERSION " addr 0x%llx irq %d chip %s rev %d\n",
  3244. (unsigned long long)pci_resource_start(pdev, 0), pdev->irq,
  3245. skge_board_name(hw), hw->chip_rev);
  3246. dev = skge_devinit(hw, 0, using_dac);
  3247. if (!dev)
  3248. goto err_out_led_off;
  3249. /* Some motherboards are broken and has zero in ROM. */
  3250. if (!is_valid_ether_addr(dev->dev_addr))
  3251. dev_warn(&pdev->dev, "bad (zero?) ethernet address in rom\n");
  3252. err = register_netdev(dev);
  3253. if (err) {
  3254. dev_err(&pdev->dev, "cannot register net device\n");
  3255. goto err_out_free_netdev;
  3256. }
  3257. err = request_irq(pdev->irq, skge_intr, IRQF_SHARED, dev->name, hw);
  3258. if (err) {
  3259. dev_err(&pdev->dev, "%s: cannot assign irq %d\n",
  3260. dev->name, pdev->irq);
  3261. goto err_out_unregister;
  3262. }
  3263. skge_show_addr(dev);
  3264. if (hw->ports > 1 && (dev1 = skge_devinit(hw, 1, using_dac))) {
  3265. if (register_netdev(dev1) == 0)
  3266. skge_show_addr(dev1);
  3267. else {
  3268. /* Failure to register second port need not be fatal */
  3269. dev_warn(&pdev->dev, "register of second port failed\n");
  3270. hw->dev[1] = NULL;
  3271. free_netdev(dev1);
  3272. }
  3273. }
  3274. pci_set_drvdata(pdev, hw);
  3275. return 0;
  3276. err_out_unregister:
  3277. unregister_netdev(dev);
  3278. err_out_free_netdev:
  3279. free_netdev(dev);
  3280. err_out_led_off:
  3281. skge_write16(hw, B0_LED, LED_STAT_OFF);
  3282. err_out_iounmap:
  3283. iounmap(hw->regs);
  3284. err_out_free_hw:
  3285. kfree(hw);
  3286. err_out_free_regions:
  3287. pci_release_regions(pdev);
  3288. err_out_disable_pdev:
  3289. pci_disable_device(pdev);
  3290. pci_set_drvdata(pdev, NULL);
  3291. err_out:
  3292. return err;
  3293. }
  3294. static void __devexit skge_remove(struct pci_dev *pdev)
  3295. {
  3296. struct skge_hw *hw = pci_get_drvdata(pdev);
  3297. struct net_device *dev0, *dev1;
  3298. if (!hw)
  3299. return;
  3300. flush_scheduled_work();
  3301. if ((dev1 = hw->dev[1]))
  3302. unregister_netdev(dev1);
  3303. dev0 = hw->dev[0];
  3304. unregister_netdev(dev0);
  3305. tasklet_disable(&hw->phy_task);
  3306. spin_lock_irq(&hw->hw_lock);
  3307. hw->intr_mask = 0;
  3308. skge_write32(hw, B0_IMSK, 0);
  3309. skge_read32(hw, B0_IMSK);
  3310. spin_unlock_irq(&hw->hw_lock);
  3311. skge_write16(hw, B0_LED, LED_STAT_OFF);
  3312. skge_write8(hw, B0_CTST, CS_RST_SET);
  3313. free_irq(pdev->irq, hw);
  3314. pci_release_regions(pdev);
  3315. pci_disable_device(pdev);
  3316. if (dev1)
  3317. free_netdev(dev1);
  3318. free_netdev(dev0);
  3319. iounmap(hw->regs);
  3320. kfree(hw);
  3321. pci_set_drvdata(pdev, NULL);
  3322. }
  3323. #ifdef CONFIG_PM
  3324. static int skge_suspend(struct pci_dev *pdev, pm_message_t state)
  3325. {
  3326. struct skge_hw *hw = pci_get_drvdata(pdev);
  3327. int i, err, wol = 0;
  3328. if (!hw)
  3329. return 0;
  3330. err = pci_save_state(pdev);
  3331. if (err)
  3332. return err;
  3333. for (i = 0; i < hw->ports; i++) {
  3334. struct net_device *dev = hw->dev[i];
  3335. struct skge_port *skge = netdev_priv(dev);
  3336. if (netif_running(dev))
  3337. skge_down(dev);
  3338. if (skge->wol)
  3339. skge_wol_init(skge);
  3340. wol |= skge->wol;
  3341. }
  3342. skge_write32(hw, B0_IMSK, 0);
  3343. pci_enable_wake(pdev, pci_choose_state(pdev, state), wol);
  3344. pci_set_power_state(pdev, pci_choose_state(pdev, state));
  3345. return 0;
  3346. }
  3347. static int skge_resume(struct pci_dev *pdev)
  3348. {
  3349. struct skge_hw *hw = pci_get_drvdata(pdev);
  3350. int i, err;
  3351. if (!hw)
  3352. return 0;
  3353. err = pci_set_power_state(pdev, PCI_D0);
  3354. if (err)
  3355. goto out;
  3356. err = pci_restore_state(pdev);
  3357. if (err)
  3358. goto out;
  3359. pci_enable_wake(pdev, PCI_D0, 0);
  3360. err = skge_reset(hw);
  3361. if (err)
  3362. goto out;
  3363. for (i = 0; i < hw->ports; i++) {
  3364. struct net_device *dev = hw->dev[i];
  3365. if (netif_running(dev)) {
  3366. err = skge_up(dev);
  3367. if (err) {
  3368. printk(KERN_ERR PFX "%s: could not up: %d\n",
  3369. dev->name, err);
  3370. dev_close(dev);
  3371. goto out;
  3372. }
  3373. }
  3374. }
  3375. out:
  3376. return err;
  3377. }
  3378. #endif
  3379. static void skge_shutdown(struct pci_dev *pdev)
  3380. {
  3381. struct skge_hw *hw = pci_get_drvdata(pdev);
  3382. int i, wol = 0;
  3383. if (!hw)
  3384. return;
  3385. for (i = 0; i < hw->ports; i++) {
  3386. struct net_device *dev = hw->dev[i];
  3387. struct skge_port *skge = netdev_priv(dev);
  3388. if (skge->wol)
  3389. skge_wol_init(skge);
  3390. wol |= skge->wol;
  3391. }
  3392. pci_enable_wake(pdev, PCI_D3hot, wol);
  3393. pci_enable_wake(pdev, PCI_D3cold, wol);
  3394. pci_disable_device(pdev);
  3395. pci_set_power_state(pdev, PCI_D3hot);
  3396. }
  3397. static struct pci_driver skge_driver = {
  3398. .name = DRV_NAME,
  3399. .id_table = skge_id_table,
  3400. .probe = skge_probe,
  3401. .remove = __devexit_p(skge_remove),
  3402. #ifdef CONFIG_PM
  3403. .suspend = skge_suspend,
  3404. .resume = skge_resume,
  3405. #endif
  3406. .shutdown = skge_shutdown,
  3407. };
  3408. static int __init skge_init_module(void)
  3409. {
  3410. skge_debug_init();
  3411. return pci_register_driver(&skge_driver);
  3412. }
  3413. static void __exit skge_cleanup_module(void)
  3414. {
  3415. pci_unregister_driver(&skge_driver);
  3416. skge_debug_cleanup();
  3417. }
  3418. module_init(skge_init_module);
  3419. module_exit(skge_cleanup_module);