slub.c 87 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734
  1. /*
  2. * SLUB: A slab allocator that limits cache line use instead of queuing
  3. * objects in per cpu and per node lists.
  4. *
  5. * The allocator synchronizes using per slab locks and only
  6. * uses a centralized lock to manage a pool of partial slabs.
  7. *
  8. * (C) 2007 SGI, Christoph Lameter <clameter@sgi.com>
  9. */
  10. #include <linux/mm.h>
  11. #include <linux/module.h>
  12. #include <linux/bit_spinlock.h>
  13. #include <linux/interrupt.h>
  14. #include <linux/bitops.h>
  15. #include <linux/slab.h>
  16. #include <linux/seq_file.h>
  17. #include <linux/cpu.h>
  18. #include <linux/cpuset.h>
  19. #include <linux/mempolicy.h>
  20. #include <linux/ctype.h>
  21. #include <linux/kallsyms.h>
  22. /*
  23. * Lock order:
  24. * 1. slab_lock(page)
  25. * 2. slab->list_lock
  26. *
  27. * The slab_lock protects operations on the object of a particular
  28. * slab and its metadata in the page struct. If the slab lock
  29. * has been taken then no allocations nor frees can be performed
  30. * on the objects in the slab nor can the slab be added or removed
  31. * from the partial or full lists since this would mean modifying
  32. * the page_struct of the slab.
  33. *
  34. * The list_lock protects the partial and full list on each node and
  35. * the partial slab counter. If taken then no new slabs may be added or
  36. * removed from the lists nor make the number of partial slabs be modified.
  37. * (Note that the total number of slabs is an atomic value that may be
  38. * modified without taking the list lock).
  39. *
  40. * The list_lock is a centralized lock and thus we avoid taking it as
  41. * much as possible. As long as SLUB does not have to handle partial
  42. * slabs, operations can continue without any centralized lock. F.e.
  43. * allocating a long series of objects that fill up slabs does not require
  44. * the list lock.
  45. *
  46. * The lock order is sometimes inverted when we are trying to get a slab
  47. * off a list. We take the list_lock and then look for a page on the list
  48. * to use. While we do that objects in the slabs may be freed. We can
  49. * only operate on the slab if we have also taken the slab_lock. So we use
  50. * a slab_trylock() on the slab. If trylock was successful then no frees
  51. * can occur anymore and we can use the slab for allocations etc. If the
  52. * slab_trylock() does not succeed then frees are in progress in the slab and
  53. * we must stay away from it for a while since we may cause a bouncing
  54. * cacheline if we try to acquire the lock. So go onto the next slab.
  55. * If all pages are busy then we may allocate a new slab instead of reusing
  56. * a partial slab. A new slab has noone operating on it and thus there is
  57. * no danger of cacheline contention.
  58. *
  59. * Interrupts are disabled during allocation and deallocation in order to
  60. * make the slab allocator safe to use in the context of an irq. In addition
  61. * interrupts are disabled to ensure that the processor does not change
  62. * while handling per_cpu slabs, due to kernel preemption.
  63. *
  64. * SLUB assigns one slab for allocation to each processor.
  65. * Allocations only occur from these slabs called cpu slabs.
  66. *
  67. * Slabs with free elements are kept on a partial list and during regular
  68. * operations no list for full slabs is used. If an object in a full slab is
  69. * freed then the slab will show up again on the partial lists.
  70. * We track full slabs for debugging purposes though because otherwise we
  71. * cannot scan all objects.
  72. *
  73. * Slabs are freed when they become empty. Teardown and setup is
  74. * minimal so we rely on the page allocators per cpu caches for
  75. * fast frees and allocs.
  76. *
  77. * Overloading of page flags that are otherwise used for LRU management.
  78. *
  79. * PageActive The slab is frozen and exempt from list processing.
  80. * This means that the slab is dedicated to a purpose
  81. * such as satisfying allocations for a specific
  82. * processor. Objects may be freed in the slab while
  83. * it is frozen but slab_free will then skip the usual
  84. * list operations. It is up to the processor holding
  85. * the slab to integrate the slab into the slab lists
  86. * when the slab is no longer needed.
  87. *
  88. * One use of this flag is to mark slabs that are
  89. * used for allocations. Then such a slab becomes a cpu
  90. * slab. The cpu slab may be equipped with an additional
  91. * lockless_freelist that allows lockless access to
  92. * free objects in addition to the regular freelist
  93. * that requires the slab lock.
  94. *
  95. * PageError Slab requires special handling due to debug
  96. * options set. This moves slab handling out of
  97. * the fast path and disables lockless freelists.
  98. */
  99. #define FROZEN (1 << PG_active)
  100. #ifdef CONFIG_SLUB_DEBUG
  101. #define SLABDEBUG (1 << PG_error)
  102. #else
  103. #define SLABDEBUG 0
  104. #endif
  105. static inline int SlabFrozen(struct page *page)
  106. {
  107. return page->flags & FROZEN;
  108. }
  109. static inline void SetSlabFrozen(struct page *page)
  110. {
  111. page->flags |= FROZEN;
  112. }
  113. static inline void ClearSlabFrozen(struct page *page)
  114. {
  115. page->flags &= ~FROZEN;
  116. }
  117. static inline int SlabDebug(struct page *page)
  118. {
  119. return page->flags & SLABDEBUG;
  120. }
  121. static inline void SetSlabDebug(struct page *page)
  122. {
  123. page->flags |= SLABDEBUG;
  124. }
  125. static inline void ClearSlabDebug(struct page *page)
  126. {
  127. page->flags &= ~SLABDEBUG;
  128. }
  129. /*
  130. * Issues still to be resolved:
  131. *
  132. * - The per cpu array is updated for each new slab and and is a remote
  133. * cacheline for most nodes. This could become a bouncing cacheline given
  134. * enough frequent updates. There are 16 pointers in a cacheline, so at
  135. * max 16 cpus could compete for the cacheline which may be okay.
  136. *
  137. * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
  138. *
  139. * - Variable sizing of the per node arrays
  140. */
  141. /* Enable to test recovery from slab corruption on boot */
  142. #undef SLUB_RESILIENCY_TEST
  143. #if PAGE_SHIFT <= 12
  144. /*
  145. * Small page size. Make sure that we do not fragment memory
  146. */
  147. #define DEFAULT_MAX_ORDER 1
  148. #define DEFAULT_MIN_OBJECTS 4
  149. #else
  150. /*
  151. * Large page machines are customarily able to handle larger
  152. * page orders.
  153. */
  154. #define DEFAULT_MAX_ORDER 2
  155. #define DEFAULT_MIN_OBJECTS 8
  156. #endif
  157. /*
  158. * Mininum number of partial slabs. These will be left on the partial
  159. * lists even if they are empty. kmem_cache_shrink may reclaim them.
  160. */
  161. #define MIN_PARTIAL 2
  162. /*
  163. * Maximum number of desirable partial slabs.
  164. * The existence of more partial slabs makes kmem_cache_shrink
  165. * sort the partial list by the number of objects in the.
  166. */
  167. #define MAX_PARTIAL 10
  168. #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
  169. SLAB_POISON | SLAB_STORE_USER)
  170. /*
  171. * Set of flags that will prevent slab merging
  172. */
  173. #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
  174. SLAB_TRACE | SLAB_DESTROY_BY_RCU)
  175. #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
  176. SLAB_CACHE_DMA)
  177. #ifndef ARCH_KMALLOC_MINALIGN
  178. #define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
  179. #endif
  180. #ifndef ARCH_SLAB_MINALIGN
  181. #define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
  182. #endif
  183. /*
  184. * The page->inuse field is 16 bit thus we have this limitation
  185. */
  186. #define MAX_OBJECTS_PER_SLAB 65535
  187. /* Internal SLUB flags */
  188. #define __OBJECT_POISON 0x80000000 /* Poison object */
  189. /* Not all arches define cache_line_size */
  190. #ifndef cache_line_size
  191. #define cache_line_size() L1_CACHE_BYTES
  192. #endif
  193. static int kmem_size = sizeof(struct kmem_cache);
  194. #ifdef CONFIG_SMP
  195. static struct notifier_block slab_notifier;
  196. #endif
  197. static enum {
  198. DOWN, /* No slab functionality available */
  199. PARTIAL, /* kmem_cache_open() works but kmalloc does not */
  200. UP, /* Everything works but does not show up in sysfs */
  201. SYSFS /* Sysfs up */
  202. } slab_state = DOWN;
  203. /* A list of all slab caches on the system */
  204. static DECLARE_RWSEM(slub_lock);
  205. LIST_HEAD(slab_caches);
  206. /*
  207. * Tracking user of a slab.
  208. */
  209. struct track {
  210. void *addr; /* Called from address */
  211. int cpu; /* Was running on cpu */
  212. int pid; /* Pid context */
  213. unsigned long when; /* When did the operation occur */
  214. };
  215. enum track_item { TRACK_ALLOC, TRACK_FREE };
  216. #if defined(CONFIG_SYSFS) && defined(CONFIG_SLUB_DEBUG)
  217. static int sysfs_slab_add(struct kmem_cache *);
  218. static int sysfs_slab_alias(struct kmem_cache *, const char *);
  219. static void sysfs_slab_remove(struct kmem_cache *);
  220. #else
  221. static int sysfs_slab_add(struct kmem_cache *s) { return 0; }
  222. static int sysfs_slab_alias(struct kmem_cache *s, const char *p) { return 0; }
  223. static void sysfs_slab_remove(struct kmem_cache *s) {}
  224. #endif
  225. /********************************************************************
  226. * Core slab cache functions
  227. *******************************************************************/
  228. int slab_is_available(void)
  229. {
  230. return slab_state >= UP;
  231. }
  232. static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
  233. {
  234. #ifdef CONFIG_NUMA
  235. return s->node[node];
  236. #else
  237. return &s->local_node;
  238. #endif
  239. }
  240. static inline int check_valid_pointer(struct kmem_cache *s,
  241. struct page *page, const void *object)
  242. {
  243. void *base;
  244. if (!object)
  245. return 1;
  246. base = page_address(page);
  247. if (object < base || object >= base + s->objects * s->size ||
  248. (object - base) % s->size) {
  249. return 0;
  250. }
  251. return 1;
  252. }
  253. /*
  254. * Slow version of get and set free pointer.
  255. *
  256. * This version requires touching the cache lines of kmem_cache which
  257. * we avoid to do in the fast alloc free paths. There we obtain the offset
  258. * from the page struct.
  259. */
  260. static inline void *get_freepointer(struct kmem_cache *s, void *object)
  261. {
  262. return *(void **)(object + s->offset);
  263. }
  264. static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
  265. {
  266. *(void **)(object + s->offset) = fp;
  267. }
  268. /* Loop over all objects in a slab */
  269. #define for_each_object(__p, __s, __addr) \
  270. for (__p = (__addr); __p < (__addr) + (__s)->objects * (__s)->size;\
  271. __p += (__s)->size)
  272. /* Scan freelist */
  273. #define for_each_free_object(__p, __s, __free) \
  274. for (__p = (__free); __p; __p = get_freepointer((__s), __p))
  275. /* Determine object index from a given position */
  276. static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
  277. {
  278. return (p - addr) / s->size;
  279. }
  280. #ifdef CONFIG_SLUB_DEBUG
  281. /*
  282. * Debug settings:
  283. */
  284. #ifdef CONFIG_SLUB_DEBUG_ON
  285. static int slub_debug = DEBUG_DEFAULT_FLAGS;
  286. #else
  287. static int slub_debug;
  288. #endif
  289. static char *slub_debug_slabs;
  290. /*
  291. * Object debugging
  292. */
  293. static void print_section(char *text, u8 *addr, unsigned int length)
  294. {
  295. int i, offset;
  296. int newline = 1;
  297. char ascii[17];
  298. ascii[16] = 0;
  299. for (i = 0; i < length; i++) {
  300. if (newline) {
  301. printk(KERN_ERR "%8s 0x%p: ", text, addr + i);
  302. newline = 0;
  303. }
  304. printk(" %02x", addr[i]);
  305. offset = i % 16;
  306. ascii[offset] = isgraph(addr[i]) ? addr[i] : '.';
  307. if (offset == 15) {
  308. printk(" %s\n",ascii);
  309. newline = 1;
  310. }
  311. }
  312. if (!newline) {
  313. i %= 16;
  314. while (i < 16) {
  315. printk(" ");
  316. ascii[i] = ' ';
  317. i++;
  318. }
  319. printk(" %s\n", ascii);
  320. }
  321. }
  322. static struct track *get_track(struct kmem_cache *s, void *object,
  323. enum track_item alloc)
  324. {
  325. struct track *p;
  326. if (s->offset)
  327. p = object + s->offset + sizeof(void *);
  328. else
  329. p = object + s->inuse;
  330. return p + alloc;
  331. }
  332. static void set_track(struct kmem_cache *s, void *object,
  333. enum track_item alloc, void *addr)
  334. {
  335. struct track *p;
  336. if (s->offset)
  337. p = object + s->offset + sizeof(void *);
  338. else
  339. p = object + s->inuse;
  340. p += alloc;
  341. if (addr) {
  342. p->addr = addr;
  343. p->cpu = smp_processor_id();
  344. p->pid = current ? current->pid : -1;
  345. p->when = jiffies;
  346. } else
  347. memset(p, 0, sizeof(struct track));
  348. }
  349. static void init_tracking(struct kmem_cache *s, void *object)
  350. {
  351. if (!(s->flags & SLAB_STORE_USER))
  352. return;
  353. set_track(s, object, TRACK_FREE, NULL);
  354. set_track(s, object, TRACK_ALLOC, NULL);
  355. }
  356. static void print_track(const char *s, struct track *t)
  357. {
  358. if (!t->addr)
  359. return;
  360. printk(KERN_ERR "INFO: %s in ", s);
  361. __print_symbol("%s", (unsigned long)t->addr);
  362. printk(" age=%lu cpu=%u pid=%d\n", jiffies - t->when, t->cpu, t->pid);
  363. }
  364. static void print_tracking(struct kmem_cache *s, void *object)
  365. {
  366. if (!(s->flags & SLAB_STORE_USER))
  367. return;
  368. print_track("Allocated", get_track(s, object, TRACK_ALLOC));
  369. print_track("Freed", get_track(s, object, TRACK_FREE));
  370. }
  371. static void print_page_info(struct page *page)
  372. {
  373. printk(KERN_ERR "INFO: Slab 0x%p used=%u fp=0x%p flags=0x%04lx\n",
  374. page, page->inuse, page->freelist, page->flags);
  375. }
  376. static void slab_bug(struct kmem_cache *s, char *fmt, ...)
  377. {
  378. va_list args;
  379. char buf[100];
  380. va_start(args, fmt);
  381. vsnprintf(buf, sizeof(buf), fmt, args);
  382. va_end(args);
  383. printk(KERN_ERR "========================================"
  384. "=====================================\n");
  385. printk(KERN_ERR "BUG %s: %s\n", s->name, buf);
  386. printk(KERN_ERR "----------------------------------------"
  387. "-------------------------------------\n\n");
  388. }
  389. static void slab_fix(struct kmem_cache *s, char *fmt, ...)
  390. {
  391. va_list args;
  392. char buf[100];
  393. va_start(args, fmt);
  394. vsnprintf(buf, sizeof(buf), fmt, args);
  395. va_end(args);
  396. printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
  397. }
  398. static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
  399. {
  400. unsigned int off; /* Offset of last byte */
  401. u8 *addr = page_address(page);
  402. print_tracking(s, p);
  403. print_page_info(page);
  404. printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
  405. p, p - addr, get_freepointer(s, p));
  406. if (p > addr + 16)
  407. print_section("Bytes b4", p - 16, 16);
  408. print_section("Object", p, min(s->objsize, 128));
  409. if (s->flags & SLAB_RED_ZONE)
  410. print_section("Redzone", p + s->objsize,
  411. s->inuse - s->objsize);
  412. if (s->offset)
  413. off = s->offset + sizeof(void *);
  414. else
  415. off = s->inuse;
  416. if (s->flags & SLAB_STORE_USER)
  417. off += 2 * sizeof(struct track);
  418. if (off != s->size)
  419. /* Beginning of the filler is the free pointer */
  420. print_section("Padding", p + off, s->size - off);
  421. dump_stack();
  422. }
  423. static void object_err(struct kmem_cache *s, struct page *page,
  424. u8 *object, char *reason)
  425. {
  426. slab_bug(s, reason);
  427. print_trailer(s, page, object);
  428. }
  429. static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
  430. {
  431. va_list args;
  432. char buf[100];
  433. va_start(args, fmt);
  434. vsnprintf(buf, sizeof(buf), fmt, args);
  435. va_end(args);
  436. slab_bug(s, fmt);
  437. print_page_info(page);
  438. dump_stack();
  439. }
  440. static void init_object(struct kmem_cache *s, void *object, int active)
  441. {
  442. u8 *p = object;
  443. if (s->flags & __OBJECT_POISON) {
  444. memset(p, POISON_FREE, s->objsize - 1);
  445. p[s->objsize -1] = POISON_END;
  446. }
  447. if (s->flags & SLAB_RED_ZONE)
  448. memset(p + s->objsize,
  449. active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE,
  450. s->inuse - s->objsize);
  451. }
  452. static u8 *check_bytes(u8 *start, unsigned int value, unsigned int bytes)
  453. {
  454. while (bytes) {
  455. if (*start != (u8)value)
  456. return start;
  457. start++;
  458. bytes--;
  459. }
  460. return NULL;
  461. }
  462. static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
  463. void *from, void *to)
  464. {
  465. slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
  466. memset(from, data, to - from);
  467. }
  468. static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
  469. u8 *object, char *what,
  470. u8* start, unsigned int value, unsigned int bytes)
  471. {
  472. u8 *fault;
  473. u8 *end;
  474. fault = check_bytes(start, value, bytes);
  475. if (!fault)
  476. return 1;
  477. end = start + bytes;
  478. while (end > fault && end[-1] == value)
  479. end--;
  480. slab_bug(s, "%s overwritten", what);
  481. printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
  482. fault, end - 1, fault[0], value);
  483. print_trailer(s, page, object);
  484. restore_bytes(s, what, value, fault, end);
  485. return 0;
  486. }
  487. /*
  488. * Object layout:
  489. *
  490. * object address
  491. * Bytes of the object to be managed.
  492. * If the freepointer may overlay the object then the free
  493. * pointer is the first word of the object.
  494. *
  495. * Poisoning uses 0x6b (POISON_FREE) and the last byte is
  496. * 0xa5 (POISON_END)
  497. *
  498. * object + s->objsize
  499. * Padding to reach word boundary. This is also used for Redzoning.
  500. * Padding is extended by another word if Redzoning is enabled and
  501. * objsize == inuse.
  502. *
  503. * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
  504. * 0xcc (RED_ACTIVE) for objects in use.
  505. *
  506. * object + s->inuse
  507. * Meta data starts here.
  508. *
  509. * A. Free pointer (if we cannot overwrite object on free)
  510. * B. Tracking data for SLAB_STORE_USER
  511. * C. Padding to reach required alignment boundary or at mininum
  512. * one word if debuggin is on to be able to detect writes
  513. * before the word boundary.
  514. *
  515. * Padding is done using 0x5a (POISON_INUSE)
  516. *
  517. * object + s->size
  518. * Nothing is used beyond s->size.
  519. *
  520. * If slabcaches are merged then the objsize and inuse boundaries are mostly
  521. * ignored. And therefore no slab options that rely on these boundaries
  522. * may be used with merged slabcaches.
  523. */
  524. static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
  525. {
  526. unsigned long off = s->inuse; /* The end of info */
  527. if (s->offset)
  528. /* Freepointer is placed after the object. */
  529. off += sizeof(void *);
  530. if (s->flags & SLAB_STORE_USER)
  531. /* We also have user information there */
  532. off += 2 * sizeof(struct track);
  533. if (s->size == off)
  534. return 1;
  535. return check_bytes_and_report(s, page, p, "Object padding",
  536. p + off, POISON_INUSE, s->size - off);
  537. }
  538. static int slab_pad_check(struct kmem_cache *s, struct page *page)
  539. {
  540. u8 *start;
  541. u8 *fault;
  542. u8 *end;
  543. int length;
  544. int remainder;
  545. if (!(s->flags & SLAB_POISON))
  546. return 1;
  547. start = page_address(page);
  548. end = start + (PAGE_SIZE << s->order);
  549. length = s->objects * s->size;
  550. remainder = end - (start + length);
  551. if (!remainder)
  552. return 1;
  553. fault = check_bytes(start + length, POISON_INUSE, remainder);
  554. if (!fault)
  555. return 1;
  556. while (end > fault && end[-1] == POISON_INUSE)
  557. end--;
  558. slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
  559. print_section("Padding", start, length);
  560. restore_bytes(s, "slab padding", POISON_INUSE, start, end);
  561. return 0;
  562. }
  563. static int check_object(struct kmem_cache *s, struct page *page,
  564. void *object, int active)
  565. {
  566. u8 *p = object;
  567. u8 *endobject = object + s->objsize;
  568. if (s->flags & SLAB_RED_ZONE) {
  569. unsigned int red =
  570. active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE;
  571. if (!check_bytes_and_report(s, page, object, "Redzone",
  572. endobject, red, s->inuse - s->objsize))
  573. return 0;
  574. } else {
  575. if ((s->flags & SLAB_POISON) && s->objsize < s->inuse)
  576. check_bytes_and_report(s, page, p, "Alignment padding", endobject,
  577. POISON_INUSE, s->inuse - s->objsize);
  578. }
  579. if (s->flags & SLAB_POISON) {
  580. if (!active && (s->flags & __OBJECT_POISON) &&
  581. (!check_bytes_and_report(s, page, p, "Poison", p,
  582. POISON_FREE, s->objsize - 1) ||
  583. !check_bytes_and_report(s, page, p, "Poison",
  584. p + s->objsize -1, POISON_END, 1)))
  585. return 0;
  586. /*
  587. * check_pad_bytes cleans up on its own.
  588. */
  589. check_pad_bytes(s, page, p);
  590. }
  591. if (!s->offset && active)
  592. /*
  593. * Object and freepointer overlap. Cannot check
  594. * freepointer while object is allocated.
  595. */
  596. return 1;
  597. /* Check free pointer validity */
  598. if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
  599. object_err(s, page, p, "Freepointer corrupt");
  600. /*
  601. * No choice but to zap it and thus loose the remainder
  602. * of the free objects in this slab. May cause
  603. * another error because the object count is now wrong.
  604. */
  605. set_freepointer(s, p, NULL);
  606. return 0;
  607. }
  608. return 1;
  609. }
  610. static int check_slab(struct kmem_cache *s, struct page *page)
  611. {
  612. VM_BUG_ON(!irqs_disabled());
  613. if (!PageSlab(page)) {
  614. slab_err(s, page, "Not a valid slab page");
  615. return 0;
  616. }
  617. if (page->offset * sizeof(void *) != s->offset) {
  618. slab_err(s, page, "Corrupted offset %lu",
  619. (unsigned long)(page->offset * sizeof(void *)));
  620. return 0;
  621. }
  622. if (page->inuse > s->objects) {
  623. slab_err(s, page, "inuse %u > max %u",
  624. s->name, page->inuse, s->objects);
  625. return 0;
  626. }
  627. /* Slab_pad_check fixes things up after itself */
  628. slab_pad_check(s, page);
  629. return 1;
  630. }
  631. /*
  632. * Determine if a certain object on a page is on the freelist. Must hold the
  633. * slab lock to guarantee that the chains are in a consistent state.
  634. */
  635. static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
  636. {
  637. int nr = 0;
  638. void *fp = page->freelist;
  639. void *object = NULL;
  640. while (fp && nr <= s->objects) {
  641. if (fp == search)
  642. return 1;
  643. if (!check_valid_pointer(s, page, fp)) {
  644. if (object) {
  645. object_err(s, page, object,
  646. "Freechain corrupt");
  647. set_freepointer(s, object, NULL);
  648. break;
  649. } else {
  650. slab_err(s, page, "Freepointer corrupt");
  651. page->freelist = NULL;
  652. page->inuse = s->objects;
  653. slab_fix(s, "Freelist cleared");
  654. return 0;
  655. }
  656. break;
  657. }
  658. object = fp;
  659. fp = get_freepointer(s, object);
  660. nr++;
  661. }
  662. if (page->inuse != s->objects - nr) {
  663. slab_err(s, page, "Wrong object count. Counter is %d but "
  664. "counted were %d", page->inuse, s->objects - nr);
  665. page->inuse = s->objects - nr;
  666. slab_fix(s, "Object count adjusted.");
  667. }
  668. return search == NULL;
  669. }
  670. static void trace(struct kmem_cache *s, struct page *page, void *object, int alloc)
  671. {
  672. if (s->flags & SLAB_TRACE) {
  673. printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
  674. s->name,
  675. alloc ? "alloc" : "free",
  676. object, page->inuse,
  677. page->freelist);
  678. if (!alloc)
  679. print_section("Object", (void *)object, s->objsize);
  680. dump_stack();
  681. }
  682. }
  683. /*
  684. * Tracking of fully allocated slabs for debugging purposes.
  685. */
  686. static void add_full(struct kmem_cache_node *n, struct page *page)
  687. {
  688. spin_lock(&n->list_lock);
  689. list_add(&page->lru, &n->full);
  690. spin_unlock(&n->list_lock);
  691. }
  692. static void remove_full(struct kmem_cache *s, struct page *page)
  693. {
  694. struct kmem_cache_node *n;
  695. if (!(s->flags & SLAB_STORE_USER))
  696. return;
  697. n = get_node(s, page_to_nid(page));
  698. spin_lock(&n->list_lock);
  699. list_del(&page->lru);
  700. spin_unlock(&n->list_lock);
  701. }
  702. static void setup_object_debug(struct kmem_cache *s, struct page *page,
  703. void *object)
  704. {
  705. if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
  706. return;
  707. init_object(s, object, 0);
  708. init_tracking(s, object);
  709. }
  710. static int alloc_debug_processing(struct kmem_cache *s, struct page *page,
  711. void *object, void *addr)
  712. {
  713. if (!check_slab(s, page))
  714. goto bad;
  715. if (object && !on_freelist(s, page, object)) {
  716. object_err(s, page, object, "Object already allocated");
  717. goto bad;
  718. }
  719. if (!check_valid_pointer(s, page, object)) {
  720. object_err(s, page, object, "Freelist Pointer check fails");
  721. goto bad;
  722. }
  723. if (object && !check_object(s, page, object, 0))
  724. goto bad;
  725. /* Success perform special debug activities for allocs */
  726. if (s->flags & SLAB_STORE_USER)
  727. set_track(s, object, TRACK_ALLOC, addr);
  728. trace(s, page, object, 1);
  729. init_object(s, object, 1);
  730. return 1;
  731. bad:
  732. if (PageSlab(page)) {
  733. /*
  734. * If this is a slab page then lets do the best we can
  735. * to avoid issues in the future. Marking all objects
  736. * as used avoids touching the remaining objects.
  737. */
  738. slab_fix(s, "Marking all objects used");
  739. page->inuse = s->objects;
  740. page->freelist = NULL;
  741. /* Fix up fields that may be corrupted */
  742. page->offset = s->offset / sizeof(void *);
  743. }
  744. return 0;
  745. }
  746. static int free_debug_processing(struct kmem_cache *s, struct page *page,
  747. void *object, void *addr)
  748. {
  749. if (!check_slab(s, page))
  750. goto fail;
  751. if (!check_valid_pointer(s, page, object)) {
  752. slab_err(s, page, "Invalid object pointer 0x%p", object);
  753. goto fail;
  754. }
  755. if (on_freelist(s, page, object)) {
  756. object_err(s, page, object, "Object already free");
  757. goto fail;
  758. }
  759. if (!check_object(s, page, object, 1))
  760. return 0;
  761. if (unlikely(s != page->slab)) {
  762. if (!PageSlab(page))
  763. slab_err(s, page, "Attempt to free object(0x%p) "
  764. "outside of slab", object);
  765. else
  766. if (!page->slab) {
  767. printk(KERN_ERR
  768. "SLUB <none>: no slab for object 0x%p.\n",
  769. object);
  770. dump_stack();
  771. }
  772. else
  773. object_err(s, page, object,
  774. "page slab pointer corrupt.");
  775. goto fail;
  776. }
  777. /* Special debug activities for freeing objects */
  778. if (!SlabFrozen(page) && !page->freelist)
  779. remove_full(s, page);
  780. if (s->flags & SLAB_STORE_USER)
  781. set_track(s, object, TRACK_FREE, addr);
  782. trace(s, page, object, 0);
  783. init_object(s, object, 0);
  784. return 1;
  785. fail:
  786. slab_fix(s, "Object at 0x%p not freed", object);
  787. return 0;
  788. }
  789. static int __init setup_slub_debug(char *str)
  790. {
  791. slub_debug = DEBUG_DEFAULT_FLAGS;
  792. if (*str++ != '=' || !*str)
  793. /*
  794. * No options specified. Switch on full debugging.
  795. */
  796. goto out;
  797. if (*str == ',')
  798. /*
  799. * No options but restriction on slabs. This means full
  800. * debugging for slabs matching a pattern.
  801. */
  802. goto check_slabs;
  803. slub_debug = 0;
  804. if (*str == '-')
  805. /*
  806. * Switch off all debugging measures.
  807. */
  808. goto out;
  809. /*
  810. * Determine which debug features should be switched on
  811. */
  812. for ( ;*str && *str != ','; str++) {
  813. switch (tolower(*str)) {
  814. case 'f':
  815. slub_debug |= SLAB_DEBUG_FREE;
  816. break;
  817. case 'z':
  818. slub_debug |= SLAB_RED_ZONE;
  819. break;
  820. case 'p':
  821. slub_debug |= SLAB_POISON;
  822. break;
  823. case 'u':
  824. slub_debug |= SLAB_STORE_USER;
  825. break;
  826. case 't':
  827. slub_debug |= SLAB_TRACE;
  828. break;
  829. default:
  830. printk(KERN_ERR "slub_debug option '%c' "
  831. "unknown. skipped\n",*str);
  832. }
  833. }
  834. check_slabs:
  835. if (*str == ',')
  836. slub_debug_slabs = str + 1;
  837. out:
  838. return 1;
  839. }
  840. __setup("slub_debug", setup_slub_debug);
  841. static void kmem_cache_open_debug_check(struct kmem_cache *s)
  842. {
  843. /*
  844. * The page->offset field is only 16 bit wide. This is an offset
  845. * in units of words from the beginning of an object. If the slab
  846. * size is bigger then we cannot move the free pointer behind the
  847. * object anymore.
  848. *
  849. * On 32 bit platforms the limit is 256k. On 64bit platforms
  850. * the limit is 512k.
  851. *
  852. * Debugging or ctor may create a need to move the free
  853. * pointer. Fail if this happens.
  854. */
  855. if (s->objsize >= 65535 * sizeof(void *)) {
  856. BUG_ON(s->flags & (SLAB_RED_ZONE | SLAB_POISON |
  857. SLAB_STORE_USER | SLAB_DESTROY_BY_RCU));
  858. BUG_ON(s->ctor);
  859. }
  860. else
  861. /*
  862. * Enable debugging if selected on the kernel commandline.
  863. */
  864. if (slub_debug && (!slub_debug_slabs ||
  865. strncmp(slub_debug_slabs, s->name,
  866. strlen(slub_debug_slabs)) == 0))
  867. s->flags |= slub_debug;
  868. }
  869. #else
  870. static inline void setup_object_debug(struct kmem_cache *s,
  871. struct page *page, void *object) {}
  872. static inline int alloc_debug_processing(struct kmem_cache *s,
  873. struct page *page, void *object, void *addr) { return 0; }
  874. static inline int free_debug_processing(struct kmem_cache *s,
  875. struct page *page, void *object, void *addr) { return 0; }
  876. static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
  877. { return 1; }
  878. static inline int check_object(struct kmem_cache *s, struct page *page,
  879. void *object, int active) { return 1; }
  880. static inline void add_full(struct kmem_cache_node *n, struct page *page) {}
  881. static inline void kmem_cache_open_debug_check(struct kmem_cache *s) {}
  882. #define slub_debug 0
  883. #endif
  884. /*
  885. * Slab allocation and freeing
  886. */
  887. static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
  888. {
  889. struct page * page;
  890. int pages = 1 << s->order;
  891. if (s->order)
  892. flags |= __GFP_COMP;
  893. if (s->flags & SLAB_CACHE_DMA)
  894. flags |= SLUB_DMA;
  895. if (node == -1)
  896. page = alloc_pages(flags, s->order);
  897. else
  898. page = alloc_pages_node(node, flags, s->order);
  899. if (!page)
  900. return NULL;
  901. mod_zone_page_state(page_zone(page),
  902. (s->flags & SLAB_RECLAIM_ACCOUNT) ?
  903. NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
  904. pages);
  905. return page;
  906. }
  907. static void setup_object(struct kmem_cache *s, struct page *page,
  908. void *object)
  909. {
  910. setup_object_debug(s, page, object);
  911. if (unlikely(s->ctor))
  912. s->ctor(object, s, 0);
  913. }
  914. static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
  915. {
  916. struct page *page;
  917. struct kmem_cache_node *n;
  918. void *start;
  919. void *end;
  920. void *last;
  921. void *p;
  922. BUG_ON(flags & ~(GFP_DMA | __GFP_ZERO | GFP_LEVEL_MASK));
  923. if (flags & __GFP_WAIT)
  924. local_irq_enable();
  925. page = allocate_slab(s, flags & GFP_LEVEL_MASK, node);
  926. if (!page)
  927. goto out;
  928. n = get_node(s, page_to_nid(page));
  929. if (n)
  930. atomic_long_inc(&n->nr_slabs);
  931. page->offset = s->offset / sizeof(void *);
  932. page->slab = s;
  933. page->flags |= 1 << PG_slab;
  934. if (s->flags & (SLAB_DEBUG_FREE | SLAB_RED_ZONE | SLAB_POISON |
  935. SLAB_STORE_USER | SLAB_TRACE))
  936. SetSlabDebug(page);
  937. start = page_address(page);
  938. end = start + s->objects * s->size;
  939. if (unlikely(s->flags & SLAB_POISON))
  940. memset(start, POISON_INUSE, PAGE_SIZE << s->order);
  941. last = start;
  942. for_each_object(p, s, start) {
  943. setup_object(s, page, last);
  944. set_freepointer(s, last, p);
  945. last = p;
  946. }
  947. setup_object(s, page, last);
  948. set_freepointer(s, last, NULL);
  949. page->freelist = start;
  950. page->lockless_freelist = NULL;
  951. page->inuse = 0;
  952. out:
  953. if (flags & __GFP_WAIT)
  954. local_irq_disable();
  955. return page;
  956. }
  957. static void __free_slab(struct kmem_cache *s, struct page *page)
  958. {
  959. int pages = 1 << s->order;
  960. if (unlikely(SlabDebug(page))) {
  961. void *p;
  962. slab_pad_check(s, page);
  963. for_each_object(p, s, page_address(page))
  964. check_object(s, page, p, 0);
  965. }
  966. mod_zone_page_state(page_zone(page),
  967. (s->flags & SLAB_RECLAIM_ACCOUNT) ?
  968. NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
  969. - pages);
  970. page->mapping = NULL;
  971. __free_pages(page, s->order);
  972. }
  973. static void rcu_free_slab(struct rcu_head *h)
  974. {
  975. struct page *page;
  976. page = container_of((struct list_head *)h, struct page, lru);
  977. __free_slab(page->slab, page);
  978. }
  979. static void free_slab(struct kmem_cache *s, struct page *page)
  980. {
  981. if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
  982. /*
  983. * RCU free overloads the RCU head over the LRU
  984. */
  985. struct rcu_head *head = (void *)&page->lru;
  986. call_rcu(head, rcu_free_slab);
  987. } else
  988. __free_slab(s, page);
  989. }
  990. static void discard_slab(struct kmem_cache *s, struct page *page)
  991. {
  992. struct kmem_cache_node *n = get_node(s, page_to_nid(page));
  993. atomic_long_dec(&n->nr_slabs);
  994. reset_page_mapcount(page);
  995. ClearSlabDebug(page);
  996. __ClearPageSlab(page);
  997. free_slab(s, page);
  998. }
  999. /*
  1000. * Per slab locking using the pagelock
  1001. */
  1002. static __always_inline void slab_lock(struct page *page)
  1003. {
  1004. bit_spin_lock(PG_locked, &page->flags);
  1005. }
  1006. static __always_inline void slab_unlock(struct page *page)
  1007. {
  1008. bit_spin_unlock(PG_locked, &page->flags);
  1009. }
  1010. static __always_inline int slab_trylock(struct page *page)
  1011. {
  1012. int rc = 1;
  1013. rc = bit_spin_trylock(PG_locked, &page->flags);
  1014. return rc;
  1015. }
  1016. /*
  1017. * Management of partially allocated slabs
  1018. */
  1019. static void add_partial_tail(struct kmem_cache_node *n, struct page *page)
  1020. {
  1021. spin_lock(&n->list_lock);
  1022. n->nr_partial++;
  1023. list_add_tail(&page->lru, &n->partial);
  1024. spin_unlock(&n->list_lock);
  1025. }
  1026. static void add_partial(struct kmem_cache_node *n, struct page *page)
  1027. {
  1028. spin_lock(&n->list_lock);
  1029. n->nr_partial++;
  1030. list_add(&page->lru, &n->partial);
  1031. spin_unlock(&n->list_lock);
  1032. }
  1033. static void remove_partial(struct kmem_cache *s,
  1034. struct page *page)
  1035. {
  1036. struct kmem_cache_node *n = get_node(s, page_to_nid(page));
  1037. spin_lock(&n->list_lock);
  1038. list_del(&page->lru);
  1039. n->nr_partial--;
  1040. spin_unlock(&n->list_lock);
  1041. }
  1042. /*
  1043. * Lock slab and remove from the partial list.
  1044. *
  1045. * Must hold list_lock.
  1046. */
  1047. static inline int lock_and_freeze_slab(struct kmem_cache_node *n, struct page *page)
  1048. {
  1049. if (slab_trylock(page)) {
  1050. list_del(&page->lru);
  1051. n->nr_partial--;
  1052. SetSlabFrozen(page);
  1053. return 1;
  1054. }
  1055. return 0;
  1056. }
  1057. /*
  1058. * Try to allocate a partial slab from a specific node.
  1059. */
  1060. static struct page *get_partial_node(struct kmem_cache_node *n)
  1061. {
  1062. struct page *page;
  1063. /*
  1064. * Racy check. If we mistakenly see no partial slabs then we
  1065. * just allocate an empty slab. If we mistakenly try to get a
  1066. * partial slab and there is none available then get_partials()
  1067. * will return NULL.
  1068. */
  1069. if (!n || !n->nr_partial)
  1070. return NULL;
  1071. spin_lock(&n->list_lock);
  1072. list_for_each_entry(page, &n->partial, lru)
  1073. if (lock_and_freeze_slab(n, page))
  1074. goto out;
  1075. page = NULL;
  1076. out:
  1077. spin_unlock(&n->list_lock);
  1078. return page;
  1079. }
  1080. /*
  1081. * Get a page from somewhere. Search in increasing NUMA distances.
  1082. */
  1083. static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags)
  1084. {
  1085. #ifdef CONFIG_NUMA
  1086. struct zonelist *zonelist;
  1087. struct zone **z;
  1088. struct page *page;
  1089. /*
  1090. * The defrag ratio allows a configuration of the tradeoffs between
  1091. * inter node defragmentation and node local allocations. A lower
  1092. * defrag_ratio increases the tendency to do local allocations
  1093. * instead of attempting to obtain partial slabs from other nodes.
  1094. *
  1095. * If the defrag_ratio is set to 0 then kmalloc() always
  1096. * returns node local objects. If the ratio is higher then kmalloc()
  1097. * may return off node objects because partial slabs are obtained
  1098. * from other nodes and filled up.
  1099. *
  1100. * If /sys/slab/xx/defrag_ratio is set to 100 (which makes
  1101. * defrag_ratio = 1000) then every (well almost) allocation will
  1102. * first attempt to defrag slab caches on other nodes. This means
  1103. * scanning over all nodes to look for partial slabs which may be
  1104. * expensive if we do it every time we are trying to find a slab
  1105. * with available objects.
  1106. */
  1107. if (!s->defrag_ratio || get_cycles() % 1024 > s->defrag_ratio)
  1108. return NULL;
  1109. zonelist = &NODE_DATA(slab_node(current->mempolicy))
  1110. ->node_zonelists[gfp_zone(flags)];
  1111. for (z = zonelist->zones; *z; z++) {
  1112. struct kmem_cache_node *n;
  1113. n = get_node(s, zone_to_nid(*z));
  1114. if (n && cpuset_zone_allowed_hardwall(*z, flags) &&
  1115. n->nr_partial > MIN_PARTIAL) {
  1116. page = get_partial_node(n);
  1117. if (page)
  1118. return page;
  1119. }
  1120. }
  1121. #endif
  1122. return NULL;
  1123. }
  1124. /*
  1125. * Get a partial page, lock it and return it.
  1126. */
  1127. static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node)
  1128. {
  1129. struct page *page;
  1130. int searchnode = (node == -1) ? numa_node_id() : node;
  1131. page = get_partial_node(get_node(s, searchnode));
  1132. if (page || (flags & __GFP_THISNODE))
  1133. return page;
  1134. return get_any_partial(s, flags);
  1135. }
  1136. /*
  1137. * Move a page back to the lists.
  1138. *
  1139. * Must be called with the slab lock held.
  1140. *
  1141. * On exit the slab lock will have been dropped.
  1142. */
  1143. static void unfreeze_slab(struct kmem_cache *s, struct page *page)
  1144. {
  1145. struct kmem_cache_node *n = get_node(s, page_to_nid(page));
  1146. ClearSlabFrozen(page);
  1147. if (page->inuse) {
  1148. if (page->freelist)
  1149. add_partial(n, page);
  1150. else if (SlabDebug(page) && (s->flags & SLAB_STORE_USER))
  1151. add_full(n, page);
  1152. slab_unlock(page);
  1153. } else {
  1154. if (n->nr_partial < MIN_PARTIAL) {
  1155. /*
  1156. * Adding an empty slab to the partial slabs in order
  1157. * to avoid page allocator overhead. This slab needs
  1158. * to come after the other slabs with objects in
  1159. * order to fill them up. That way the size of the
  1160. * partial list stays small. kmem_cache_shrink can
  1161. * reclaim empty slabs from the partial list.
  1162. */
  1163. add_partial_tail(n, page);
  1164. slab_unlock(page);
  1165. } else {
  1166. slab_unlock(page);
  1167. discard_slab(s, page);
  1168. }
  1169. }
  1170. }
  1171. /*
  1172. * Remove the cpu slab
  1173. */
  1174. static void deactivate_slab(struct kmem_cache *s, struct page *page, int cpu)
  1175. {
  1176. /*
  1177. * Merge cpu freelist into freelist. Typically we get here
  1178. * because both freelists are empty. So this is unlikely
  1179. * to occur.
  1180. */
  1181. while (unlikely(page->lockless_freelist)) {
  1182. void **object;
  1183. /* Retrieve object from cpu_freelist */
  1184. object = page->lockless_freelist;
  1185. page->lockless_freelist = page->lockless_freelist[page->offset];
  1186. /* And put onto the regular freelist */
  1187. object[page->offset] = page->freelist;
  1188. page->freelist = object;
  1189. page->inuse--;
  1190. }
  1191. s->cpu_slab[cpu] = NULL;
  1192. unfreeze_slab(s, page);
  1193. }
  1194. static void flush_slab(struct kmem_cache *s, struct page *page, int cpu)
  1195. {
  1196. slab_lock(page);
  1197. deactivate_slab(s, page, cpu);
  1198. }
  1199. /*
  1200. * Flush cpu slab.
  1201. * Called from IPI handler with interrupts disabled.
  1202. */
  1203. static void __flush_cpu_slab(struct kmem_cache *s, int cpu)
  1204. {
  1205. struct page *page = s->cpu_slab[cpu];
  1206. if (likely(page))
  1207. flush_slab(s, page, cpu);
  1208. }
  1209. static void flush_cpu_slab(void *d)
  1210. {
  1211. struct kmem_cache *s = d;
  1212. int cpu = smp_processor_id();
  1213. __flush_cpu_slab(s, cpu);
  1214. }
  1215. static void flush_all(struct kmem_cache *s)
  1216. {
  1217. #ifdef CONFIG_SMP
  1218. on_each_cpu(flush_cpu_slab, s, 1, 1);
  1219. #else
  1220. unsigned long flags;
  1221. local_irq_save(flags);
  1222. flush_cpu_slab(s);
  1223. local_irq_restore(flags);
  1224. #endif
  1225. }
  1226. /*
  1227. * Slow path. The lockless freelist is empty or we need to perform
  1228. * debugging duties.
  1229. *
  1230. * Interrupts are disabled.
  1231. *
  1232. * Processing is still very fast if new objects have been freed to the
  1233. * regular freelist. In that case we simply take over the regular freelist
  1234. * as the lockless freelist and zap the regular freelist.
  1235. *
  1236. * If that is not working then we fall back to the partial lists. We take the
  1237. * first element of the freelist as the object to allocate now and move the
  1238. * rest of the freelist to the lockless freelist.
  1239. *
  1240. * And if we were unable to get a new slab from the partial slab lists then
  1241. * we need to allocate a new slab. This is slowest path since we may sleep.
  1242. */
  1243. static void *__slab_alloc(struct kmem_cache *s,
  1244. gfp_t gfpflags, int node, void *addr, struct page *page)
  1245. {
  1246. void **object;
  1247. int cpu = smp_processor_id();
  1248. if (!page)
  1249. goto new_slab;
  1250. slab_lock(page);
  1251. if (unlikely(node != -1 && page_to_nid(page) != node))
  1252. goto another_slab;
  1253. load_freelist:
  1254. object = page->freelist;
  1255. if (unlikely(!object))
  1256. goto another_slab;
  1257. if (unlikely(SlabDebug(page)))
  1258. goto debug;
  1259. object = page->freelist;
  1260. page->lockless_freelist = object[page->offset];
  1261. page->inuse = s->objects;
  1262. page->freelist = NULL;
  1263. slab_unlock(page);
  1264. return object;
  1265. another_slab:
  1266. deactivate_slab(s, page, cpu);
  1267. new_slab:
  1268. page = get_partial(s, gfpflags, node);
  1269. if (page) {
  1270. s->cpu_slab[cpu] = page;
  1271. goto load_freelist;
  1272. }
  1273. page = new_slab(s, gfpflags, node);
  1274. if (page) {
  1275. cpu = smp_processor_id();
  1276. if (s->cpu_slab[cpu]) {
  1277. /*
  1278. * Someone else populated the cpu_slab while we
  1279. * enabled interrupts, or we have gotten scheduled
  1280. * on another cpu. The page may not be on the
  1281. * requested node even if __GFP_THISNODE was
  1282. * specified. So we need to recheck.
  1283. */
  1284. if (node == -1 ||
  1285. page_to_nid(s->cpu_slab[cpu]) == node) {
  1286. /*
  1287. * Current cpuslab is acceptable and we
  1288. * want the current one since its cache hot
  1289. */
  1290. discard_slab(s, page);
  1291. page = s->cpu_slab[cpu];
  1292. slab_lock(page);
  1293. goto load_freelist;
  1294. }
  1295. /* New slab does not fit our expectations */
  1296. flush_slab(s, s->cpu_slab[cpu], cpu);
  1297. }
  1298. slab_lock(page);
  1299. SetSlabFrozen(page);
  1300. s->cpu_slab[cpu] = page;
  1301. goto load_freelist;
  1302. }
  1303. return NULL;
  1304. debug:
  1305. object = page->freelist;
  1306. if (!alloc_debug_processing(s, page, object, addr))
  1307. goto another_slab;
  1308. page->inuse++;
  1309. page->freelist = object[page->offset];
  1310. slab_unlock(page);
  1311. return object;
  1312. }
  1313. /*
  1314. * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
  1315. * have the fastpath folded into their functions. So no function call
  1316. * overhead for requests that can be satisfied on the fastpath.
  1317. *
  1318. * The fastpath works by first checking if the lockless freelist can be used.
  1319. * If not then __slab_alloc is called for slow processing.
  1320. *
  1321. * Otherwise we can simply pick the next object from the lockless free list.
  1322. */
  1323. static void __always_inline *slab_alloc(struct kmem_cache *s,
  1324. gfp_t gfpflags, int node, void *addr, int length)
  1325. {
  1326. struct page *page;
  1327. void **object;
  1328. unsigned long flags;
  1329. local_irq_save(flags);
  1330. page = s->cpu_slab[smp_processor_id()];
  1331. if (unlikely(!page || !page->lockless_freelist ||
  1332. (node != -1 && page_to_nid(page) != node)))
  1333. object = __slab_alloc(s, gfpflags, node, addr, page);
  1334. else {
  1335. object = page->lockless_freelist;
  1336. page->lockless_freelist = object[page->offset];
  1337. }
  1338. local_irq_restore(flags);
  1339. if (unlikely((gfpflags & __GFP_ZERO) && object))
  1340. memset(object, 0, length);
  1341. return object;
  1342. }
  1343. void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
  1344. {
  1345. return slab_alloc(s, gfpflags, -1,
  1346. __builtin_return_address(0), s->objsize);
  1347. }
  1348. EXPORT_SYMBOL(kmem_cache_alloc);
  1349. #ifdef CONFIG_NUMA
  1350. void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
  1351. {
  1352. return slab_alloc(s, gfpflags, node,
  1353. __builtin_return_address(0), s->objsize);
  1354. }
  1355. EXPORT_SYMBOL(kmem_cache_alloc_node);
  1356. #endif
  1357. /*
  1358. * Slow patch handling. This may still be called frequently since objects
  1359. * have a longer lifetime than the cpu slabs in most processing loads.
  1360. *
  1361. * So we still attempt to reduce cache line usage. Just take the slab
  1362. * lock and free the item. If there is no additional partial page
  1363. * handling required then we can return immediately.
  1364. */
  1365. static void __slab_free(struct kmem_cache *s, struct page *page,
  1366. void *x, void *addr)
  1367. {
  1368. void *prior;
  1369. void **object = (void *)x;
  1370. slab_lock(page);
  1371. if (unlikely(SlabDebug(page)))
  1372. goto debug;
  1373. checks_ok:
  1374. prior = object[page->offset] = page->freelist;
  1375. page->freelist = object;
  1376. page->inuse--;
  1377. if (unlikely(SlabFrozen(page)))
  1378. goto out_unlock;
  1379. if (unlikely(!page->inuse))
  1380. goto slab_empty;
  1381. /*
  1382. * Objects left in the slab. If it
  1383. * was not on the partial list before
  1384. * then add it.
  1385. */
  1386. if (unlikely(!prior))
  1387. add_partial(get_node(s, page_to_nid(page)), page);
  1388. out_unlock:
  1389. slab_unlock(page);
  1390. return;
  1391. slab_empty:
  1392. if (prior)
  1393. /*
  1394. * Slab still on the partial list.
  1395. */
  1396. remove_partial(s, page);
  1397. slab_unlock(page);
  1398. discard_slab(s, page);
  1399. return;
  1400. debug:
  1401. if (!free_debug_processing(s, page, x, addr))
  1402. goto out_unlock;
  1403. goto checks_ok;
  1404. }
  1405. /*
  1406. * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
  1407. * can perform fastpath freeing without additional function calls.
  1408. *
  1409. * The fastpath is only possible if we are freeing to the current cpu slab
  1410. * of this processor. This typically the case if we have just allocated
  1411. * the item before.
  1412. *
  1413. * If fastpath is not possible then fall back to __slab_free where we deal
  1414. * with all sorts of special processing.
  1415. */
  1416. static void __always_inline slab_free(struct kmem_cache *s,
  1417. struct page *page, void *x, void *addr)
  1418. {
  1419. void **object = (void *)x;
  1420. unsigned long flags;
  1421. local_irq_save(flags);
  1422. if (likely(page == s->cpu_slab[smp_processor_id()] &&
  1423. !SlabDebug(page))) {
  1424. object[page->offset] = page->lockless_freelist;
  1425. page->lockless_freelist = object;
  1426. } else
  1427. __slab_free(s, page, x, addr);
  1428. local_irq_restore(flags);
  1429. }
  1430. void kmem_cache_free(struct kmem_cache *s, void *x)
  1431. {
  1432. struct page *page;
  1433. page = virt_to_head_page(x);
  1434. slab_free(s, page, x, __builtin_return_address(0));
  1435. }
  1436. EXPORT_SYMBOL(kmem_cache_free);
  1437. /* Figure out on which slab object the object resides */
  1438. static struct page *get_object_page(const void *x)
  1439. {
  1440. struct page *page = virt_to_head_page(x);
  1441. if (!PageSlab(page))
  1442. return NULL;
  1443. return page;
  1444. }
  1445. /*
  1446. * Object placement in a slab is made very easy because we always start at
  1447. * offset 0. If we tune the size of the object to the alignment then we can
  1448. * get the required alignment by putting one properly sized object after
  1449. * another.
  1450. *
  1451. * Notice that the allocation order determines the sizes of the per cpu
  1452. * caches. Each processor has always one slab available for allocations.
  1453. * Increasing the allocation order reduces the number of times that slabs
  1454. * must be moved on and off the partial lists and is therefore a factor in
  1455. * locking overhead.
  1456. */
  1457. /*
  1458. * Mininum / Maximum order of slab pages. This influences locking overhead
  1459. * and slab fragmentation. A higher order reduces the number of partial slabs
  1460. * and increases the number of allocations possible without having to
  1461. * take the list_lock.
  1462. */
  1463. static int slub_min_order;
  1464. static int slub_max_order = DEFAULT_MAX_ORDER;
  1465. static int slub_min_objects = DEFAULT_MIN_OBJECTS;
  1466. /*
  1467. * Merge control. If this is set then no merging of slab caches will occur.
  1468. * (Could be removed. This was introduced to pacify the merge skeptics.)
  1469. */
  1470. static int slub_nomerge;
  1471. /*
  1472. * Calculate the order of allocation given an slab object size.
  1473. *
  1474. * The order of allocation has significant impact on performance and other
  1475. * system components. Generally order 0 allocations should be preferred since
  1476. * order 0 does not cause fragmentation in the page allocator. Larger objects
  1477. * be problematic to put into order 0 slabs because there may be too much
  1478. * unused space left. We go to a higher order if more than 1/8th of the slab
  1479. * would be wasted.
  1480. *
  1481. * In order to reach satisfactory performance we must ensure that a minimum
  1482. * number of objects is in one slab. Otherwise we may generate too much
  1483. * activity on the partial lists which requires taking the list_lock. This is
  1484. * less a concern for large slabs though which are rarely used.
  1485. *
  1486. * slub_max_order specifies the order where we begin to stop considering the
  1487. * number of objects in a slab as critical. If we reach slub_max_order then
  1488. * we try to keep the page order as low as possible. So we accept more waste
  1489. * of space in favor of a small page order.
  1490. *
  1491. * Higher order allocations also allow the placement of more objects in a
  1492. * slab and thereby reduce object handling overhead. If the user has
  1493. * requested a higher mininum order then we start with that one instead of
  1494. * the smallest order which will fit the object.
  1495. */
  1496. static inline int slab_order(int size, int min_objects,
  1497. int max_order, int fract_leftover)
  1498. {
  1499. int order;
  1500. int rem;
  1501. int min_order = slub_min_order;
  1502. /*
  1503. * If we would create too many object per slab then reduce
  1504. * the slab order even if it goes below slub_min_order.
  1505. */
  1506. while (min_order > 0 &&
  1507. (PAGE_SIZE << min_order) >= MAX_OBJECTS_PER_SLAB * size)
  1508. min_order--;
  1509. for (order = max(min_order,
  1510. fls(min_objects * size - 1) - PAGE_SHIFT);
  1511. order <= max_order; order++) {
  1512. unsigned long slab_size = PAGE_SIZE << order;
  1513. if (slab_size < min_objects * size)
  1514. continue;
  1515. rem = slab_size % size;
  1516. if (rem <= slab_size / fract_leftover)
  1517. break;
  1518. /* If the next size is too high then exit now */
  1519. if (slab_size * 2 >= MAX_OBJECTS_PER_SLAB * size)
  1520. break;
  1521. }
  1522. return order;
  1523. }
  1524. static inline int calculate_order(int size)
  1525. {
  1526. int order;
  1527. int min_objects;
  1528. int fraction;
  1529. /*
  1530. * Attempt to find best configuration for a slab. This
  1531. * works by first attempting to generate a layout with
  1532. * the best configuration and backing off gradually.
  1533. *
  1534. * First we reduce the acceptable waste in a slab. Then
  1535. * we reduce the minimum objects required in a slab.
  1536. */
  1537. min_objects = slub_min_objects;
  1538. while (min_objects > 1) {
  1539. fraction = 8;
  1540. while (fraction >= 4) {
  1541. order = slab_order(size, min_objects,
  1542. slub_max_order, fraction);
  1543. if (order <= slub_max_order)
  1544. return order;
  1545. fraction /= 2;
  1546. }
  1547. min_objects /= 2;
  1548. }
  1549. /*
  1550. * We were unable to place multiple objects in a slab. Now
  1551. * lets see if we can place a single object there.
  1552. */
  1553. order = slab_order(size, 1, slub_max_order, 1);
  1554. if (order <= slub_max_order)
  1555. return order;
  1556. /*
  1557. * Doh this slab cannot be placed using slub_max_order.
  1558. */
  1559. order = slab_order(size, 1, MAX_ORDER, 1);
  1560. if (order <= MAX_ORDER)
  1561. return order;
  1562. return -ENOSYS;
  1563. }
  1564. /*
  1565. * Figure out what the alignment of the objects will be.
  1566. */
  1567. static unsigned long calculate_alignment(unsigned long flags,
  1568. unsigned long align, unsigned long size)
  1569. {
  1570. /*
  1571. * If the user wants hardware cache aligned objects then
  1572. * follow that suggestion if the object is sufficiently
  1573. * large.
  1574. *
  1575. * The hardware cache alignment cannot override the
  1576. * specified alignment though. If that is greater
  1577. * then use it.
  1578. */
  1579. if ((flags & SLAB_HWCACHE_ALIGN) &&
  1580. size > cache_line_size() / 2)
  1581. return max_t(unsigned long, align, cache_line_size());
  1582. if (align < ARCH_SLAB_MINALIGN)
  1583. return ARCH_SLAB_MINALIGN;
  1584. return ALIGN(align, sizeof(void *));
  1585. }
  1586. static void init_kmem_cache_node(struct kmem_cache_node *n)
  1587. {
  1588. n->nr_partial = 0;
  1589. atomic_long_set(&n->nr_slabs, 0);
  1590. spin_lock_init(&n->list_lock);
  1591. INIT_LIST_HEAD(&n->partial);
  1592. INIT_LIST_HEAD(&n->full);
  1593. }
  1594. #ifdef CONFIG_NUMA
  1595. /*
  1596. * No kmalloc_node yet so do it by hand. We know that this is the first
  1597. * slab on the node for this slabcache. There are no concurrent accesses
  1598. * possible.
  1599. *
  1600. * Note that this function only works on the kmalloc_node_cache
  1601. * when allocating for the kmalloc_node_cache.
  1602. */
  1603. static struct kmem_cache_node * __init early_kmem_cache_node_alloc(gfp_t gfpflags,
  1604. int node)
  1605. {
  1606. struct page *page;
  1607. struct kmem_cache_node *n;
  1608. BUG_ON(kmalloc_caches->size < sizeof(struct kmem_cache_node));
  1609. page = new_slab(kmalloc_caches, gfpflags | GFP_THISNODE, node);
  1610. BUG_ON(!page);
  1611. n = page->freelist;
  1612. BUG_ON(!n);
  1613. page->freelist = get_freepointer(kmalloc_caches, n);
  1614. page->inuse++;
  1615. kmalloc_caches->node[node] = n;
  1616. init_object(kmalloc_caches, n, 1);
  1617. init_tracking(kmalloc_caches, n);
  1618. init_kmem_cache_node(n);
  1619. atomic_long_inc(&n->nr_slabs);
  1620. add_partial(n, page);
  1621. /*
  1622. * new_slab() disables interupts. If we do not reenable interrupts here
  1623. * then bootup would continue with interrupts disabled.
  1624. */
  1625. local_irq_enable();
  1626. return n;
  1627. }
  1628. static void free_kmem_cache_nodes(struct kmem_cache *s)
  1629. {
  1630. int node;
  1631. for_each_online_node(node) {
  1632. struct kmem_cache_node *n = s->node[node];
  1633. if (n && n != &s->local_node)
  1634. kmem_cache_free(kmalloc_caches, n);
  1635. s->node[node] = NULL;
  1636. }
  1637. }
  1638. static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
  1639. {
  1640. int node;
  1641. int local_node;
  1642. if (slab_state >= UP)
  1643. local_node = page_to_nid(virt_to_page(s));
  1644. else
  1645. local_node = 0;
  1646. for_each_online_node(node) {
  1647. struct kmem_cache_node *n;
  1648. if (local_node == node)
  1649. n = &s->local_node;
  1650. else {
  1651. if (slab_state == DOWN) {
  1652. n = early_kmem_cache_node_alloc(gfpflags,
  1653. node);
  1654. continue;
  1655. }
  1656. n = kmem_cache_alloc_node(kmalloc_caches,
  1657. gfpflags, node);
  1658. if (!n) {
  1659. free_kmem_cache_nodes(s);
  1660. return 0;
  1661. }
  1662. }
  1663. s->node[node] = n;
  1664. init_kmem_cache_node(n);
  1665. }
  1666. return 1;
  1667. }
  1668. #else
  1669. static void free_kmem_cache_nodes(struct kmem_cache *s)
  1670. {
  1671. }
  1672. static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
  1673. {
  1674. init_kmem_cache_node(&s->local_node);
  1675. return 1;
  1676. }
  1677. #endif
  1678. /*
  1679. * calculate_sizes() determines the order and the distribution of data within
  1680. * a slab object.
  1681. */
  1682. static int calculate_sizes(struct kmem_cache *s)
  1683. {
  1684. unsigned long flags = s->flags;
  1685. unsigned long size = s->objsize;
  1686. unsigned long align = s->align;
  1687. /*
  1688. * Determine if we can poison the object itself. If the user of
  1689. * the slab may touch the object after free or before allocation
  1690. * then we should never poison the object itself.
  1691. */
  1692. if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
  1693. !s->ctor)
  1694. s->flags |= __OBJECT_POISON;
  1695. else
  1696. s->flags &= ~__OBJECT_POISON;
  1697. /*
  1698. * Round up object size to the next word boundary. We can only
  1699. * place the free pointer at word boundaries and this determines
  1700. * the possible location of the free pointer.
  1701. */
  1702. size = ALIGN(size, sizeof(void *));
  1703. #ifdef CONFIG_SLUB_DEBUG
  1704. /*
  1705. * If we are Redzoning then check if there is some space between the
  1706. * end of the object and the free pointer. If not then add an
  1707. * additional word to have some bytes to store Redzone information.
  1708. */
  1709. if ((flags & SLAB_RED_ZONE) && size == s->objsize)
  1710. size += sizeof(void *);
  1711. #endif
  1712. /*
  1713. * With that we have determined the number of bytes in actual use
  1714. * by the object. This is the potential offset to the free pointer.
  1715. */
  1716. s->inuse = size;
  1717. if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
  1718. s->ctor)) {
  1719. /*
  1720. * Relocate free pointer after the object if it is not
  1721. * permitted to overwrite the first word of the object on
  1722. * kmem_cache_free.
  1723. *
  1724. * This is the case if we do RCU, have a constructor or
  1725. * destructor or are poisoning the objects.
  1726. */
  1727. s->offset = size;
  1728. size += sizeof(void *);
  1729. }
  1730. #ifdef CONFIG_SLUB_DEBUG
  1731. if (flags & SLAB_STORE_USER)
  1732. /*
  1733. * Need to store information about allocs and frees after
  1734. * the object.
  1735. */
  1736. size += 2 * sizeof(struct track);
  1737. if (flags & SLAB_RED_ZONE)
  1738. /*
  1739. * Add some empty padding so that we can catch
  1740. * overwrites from earlier objects rather than let
  1741. * tracking information or the free pointer be
  1742. * corrupted if an user writes before the start
  1743. * of the object.
  1744. */
  1745. size += sizeof(void *);
  1746. #endif
  1747. /*
  1748. * Determine the alignment based on various parameters that the
  1749. * user specified and the dynamic determination of cache line size
  1750. * on bootup.
  1751. */
  1752. align = calculate_alignment(flags, align, s->objsize);
  1753. /*
  1754. * SLUB stores one object immediately after another beginning from
  1755. * offset 0. In order to align the objects we have to simply size
  1756. * each object to conform to the alignment.
  1757. */
  1758. size = ALIGN(size, align);
  1759. s->size = size;
  1760. s->order = calculate_order(size);
  1761. if (s->order < 0)
  1762. return 0;
  1763. /*
  1764. * Determine the number of objects per slab
  1765. */
  1766. s->objects = (PAGE_SIZE << s->order) / size;
  1767. /*
  1768. * Verify that the number of objects is within permitted limits.
  1769. * The page->inuse field is only 16 bit wide! So we cannot have
  1770. * more than 64k objects per slab.
  1771. */
  1772. if (!s->objects || s->objects > MAX_OBJECTS_PER_SLAB)
  1773. return 0;
  1774. return 1;
  1775. }
  1776. static int kmem_cache_open(struct kmem_cache *s, gfp_t gfpflags,
  1777. const char *name, size_t size,
  1778. size_t align, unsigned long flags,
  1779. void (*ctor)(void *, struct kmem_cache *, unsigned long))
  1780. {
  1781. memset(s, 0, kmem_size);
  1782. s->name = name;
  1783. s->ctor = ctor;
  1784. s->objsize = size;
  1785. s->flags = flags;
  1786. s->align = align;
  1787. kmem_cache_open_debug_check(s);
  1788. if (!calculate_sizes(s))
  1789. goto error;
  1790. s->refcount = 1;
  1791. #ifdef CONFIG_NUMA
  1792. s->defrag_ratio = 100;
  1793. #endif
  1794. if (init_kmem_cache_nodes(s, gfpflags & ~SLUB_DMA))
  1795. return 1;
  1796. error:
  1797. if (flags & SLAB_PANIC)
  1798. panic("Cannot create slab %s size=%lu realsize=%u "
  1799. "order=%u offset=%u flags=%lx\n",
  1800. s->name, (unsigned long)size, s->size, s->order,
  1801. s->offset, flags);
  1802. return 0;
  1803. }
  1804. /*
  1805. * Check if a given pointer is valid
  1806. */
  1807. int kmem_ptr_validate(struct kmem_cache *s, const void *object)
  1808. {
  1809. struct page * page;
  1810. page = get_object_page(object);
  1811. if (!page || s != page->slab)
  1812. /* No slab or wrong slab */
  1813. return 0;
  1814. if (!check_valid_pointer(s, page, object))
  1815. return 0;
  1816. /*
  1817. * We could also check if the object is on the slabs freelist.
  1818. * But this would be too expensive and it seems that the main
  1819. * purpose of kmem_ptr_valid is to check if the object belongs
  1820. * to a certain slab.
  1821. */
  1822. return 1;
  1823. }
  1824. EXPORT_SYMBOL(kmem_ptr_validate);
  1825. /*
  1826. * Determine the size of a slab object
  1827. */
  1828. unsigned int kmem_cache_size(struct kmem_cache *s)
  1829. {
  1830. return s->objsize;
  1831. }
  1832. EXPORT_SYMBOL(kmem_cache_size);
  1833. const char *kmem_cache_name(struct kmem_cache *s)
  1834. {
  1835. return s->name;
  1836. }
  1837. EXPORT_SYMBOL(kmem_cache_name);
  1838. /*
  1839. * Attempt to free all slabs on a node. Return the number of slabs we
  1840. * were unable to free.
  1841. */
  1842. static int free_list(struct kmem_cache *s, struct kmem_cache_node *n,
  1843. struct list_head *list)
  1844. {
  1845. int slabs_inuse = 0;
  1846. unsigned long flags;
  1847. struct page *page, *h;
  1848. spin_lock_irqsave(&n->list_lock, flags);
  1849. list_for_each_entry_safe(page, h, list, lru)
  1850. if (!page->inuse) {
  1851. list_del(&page->lru);
  1852. discard_slab(s, page);
  1853. } else
  1854. slabs_inuse++;
  1855. spin_unlock_irqrestore(&n->list_lock, flags);
  1856. return slabs_inuse;
  1857. }
  1858. /*
  1859. * Release all resources used by a slab cache.
  1860. */
  1861. static int kmem_cache_close(struct kmem_cache *s)
  1862. {
  1863. int node;
  1864. flush_all(s);
  1865. /* Attempt to free all objects */
  1866. for_each_online_node(node) {
  1867. struct kmem_cache_node *n = get_node(s, node);
  1868. n->nr_partial -= free_list(s, n, &n->partial);
  1869. if (atomic_long_read(&n->nr_slabs))
  1870. return 1;
  1871. }
  1872. free_kmem_cache_nodes(s);
  1873. return 0;
  1874. }
  1875. /*
  1876. * Close a cache and release the kmem_cache structure
  1877. * (must be used for caches created using kmem_cache_create)
  1878. */
  1879. void kmem_cache_destroy(struct kmem_cache *s)
  1880. {
  1881. down_write(&slub_lock);
  1882. s->refcount--;
  1883. if (!s->refcount) {
  1884. list_del(&s->list);
  1885. if (kmem_cache_close(s))
  1886. WARN_ON(1);
  1887. sysfs_slab_remove(s);
  1888. kfree(s);
  1889. }
  1890. up_write(&slub_lock);
  1891. }
  1892. EXPORT_SYMBOL(kmem_cache_destroy);
  1893. /********************************************************************
  1894. * Kmalloc subsystem
  1895. *******************************************************************/
  1896. struct kmem_cache kmalloc_caches[KMALLOC_SHIFT_HIGH + 1] __cacheline_aligned;
  1897. EXPORT_SYMBOL(kmalloc_caches);
  1898. #ifdef CONFIG_ZONE_DMA
  1899. static struct kmem_cache *kmalloc_caches_dma[KMALLOC_SHIFT_HIGH + 1];
  1900. #endif
  1901. static int __init setup_slub_min_order(char *str)
  1902. {
  1903. get_option (&str, &slub_min_order);
  1904. return 1;
  1905. }
  1906. __setup("slub_min_order=", setup_slub_min_order);
  1907. static int __init setup_slub_max_order(char *str)
  1908. {
  1909. get_option (&str, &slub_max_order);
  1910. return 1;
  1911. }
  1912. __setup("slub_max_order=", setup_slub_max_order);
  1913. static int __init setup_slub_min_objects(char *str)
  1914. {
  1915. get_option (&str, &slub_min_objects);
  1916. return 1;
  1917. }
  1918. __setup("slub_min_objects=", setup_slub_min_objects);
  1919. static int __init setup_slub_nomerge(char *str)
  1920. {
  1921. slub_nomerge = 1;
  1922. return 1;
  1923. }
  1924. __setup("slub_nomerge", setup_slub_nomerge);
  1925. static struct kmem_cache *create_kmalloc_cache(struct kmem_cache *s,
  1926. const char *name, int size, gfp_t gfp_flags)
  1927. {
  1928. unsigned int flags = 0;
  1929. if (gfp_flags & SLUB_DMA)
  1930. flags = SLAB_CACHE_DMA;
  1931. down_write(&slub_lock);
  1932. if (!kmem_cache_open(s, gfp_flags, name, size, ARCH_KMALLOC_MINALIGN,
  1933. flags, NULL))
  1934. goto panic;
  1935. list_add(&s->list, &slab_caches);
  1936. up_write(&slub_lock);
  1937. if (sysfs_slab_add(s))
  1938. goto panic;
  1939. return s;
  1940. panic:
  1941. panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
  1942. }
  1943. static struct kmem_cache *get_slab(size_t size, gfp_t flags)
  1944. {
  1945. int index = kmalloc_index(size);
  1946. if (!index)
  1947. return ZERO_SIZE_PTR;
  1948. /* Allocation too large? */
  1949. if (index < 0)
  1950. return NULL;
  1951. #ifdef CONFIG_ZONE_DMA
  1952. if ((flags & SLUB_DMA)) {
  1953. struct kmem_cache *s;
  1954. struct kmem_cache *x;
  1955. char *text;
  1956. size_t realsize;
  1957. s = kmalloc_caches_dma[index];
  1958. if (s)
  1959. return s;
  1960. /* Dynamically create dma cache */
  1961. x = kmalloc(kmem_size, flags & ~SLUB_DMA);
  1962. if (!x)
  1963. panic("Unable to allocate memory for dma cache\n");
  1964. if (index <= KMALLOC_SHIFT_HIGH)
  1965. realsize = 1 << index;
  1966. else {
  1967. if (index == 1)
  1968. realsize = 96;
  1969. else
  1970. realsize = 192;
  1971. }
  1972. text = kasprintf(flags & ~SLUB_DMA, "kmalloc_dma-%d",
  1973. (unsigned int)realsize);
  1974. s = create_kmalloc_cache(x, text, realsize, flags);
  1975. kmalloc_caches_dma[index] = s;
  1976. return s;
  1977. }
  1978. #endif
  1979. return &kmalloc_caches[index];
  1980. }
  1981. void *__kmalloc(size_t size, gfp_t flags)
  1982. {
  1983. struct kmem_cache *s = get_slab(size, flags);
  1984. if (ZERO_OR_NULL_PTR(s))
  1985. return s;
  1986. return slab_alloc(s, flags, -1, __builtin_return_address(0), size);
  1987. }
  1988. EXPORT_SYMBOL(__kmalloc);
  1989. #ifdef CONFIG_NUMA
  1990. void *__kmalloc_node(size_t size, gfp_t flags, int node)
  1991. {
  1992. struct kmem_cache *s = get_slab(size, flags);
  1993. if (ZERO_OR_NULL_PTR(s))
  1994. return s;
  1995. return slab_alloc(s, flags, node, __builtin_return_address(0), size);
  1996. }
  1997. EXPORT_SYMBOL(__kmalloc_node);
  1998. #endif
  1999. size_t ksize(const void *object)
  2000. {
  2001. struct page *page;
  2002. struct kmem_cache *s;
  2003. if (object == ZERO_SIZE_PTR)
  2004. return 0;
  2005. page = get_object_page(object);
  2006. BUG_ON(!page);
  2007. s = page->slab;
  2008. BUG_ON(!s);
  2009. /*
  2010. * Debugging requires use of the padding between object
  2011. * and whatever may come after it.
  2012. */
  2013. if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
  2014. return s->objsize;
  2015. /*
  2016. * If we have the need to store the freelist pointer
  2017. * back there or track user information then we can
  2018. * only use the space before that information.
  2019. */
  2020. if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
  2021. return s->inuse;
  2022. /*
  2023. * Else we can use all the padding etc for the allocation
  2024. */
  2025. return s->size;
  2026. }
  2027. EXPORT_SYMBOL(ksize);
  2028. void kfree(const void *x)
  2029. {
  2030. struct kmem_cache *s;
  2031. struct page *page;
  2032. /*
  2033. * This has to be an unsigned comparison. According to Linus
  2034. * some gcc version treat a pointer as a signed entity. Then
  2035. * this comparison would be true for all "negative" pointers
  2036. * (which would cover the whole upper half of the address space).
  2037. */
  2038. if (ZERO_OR_NULL_PTR(x))
  2039. return;
  2040. page = virt_to_head_page(x);
  2041. s = page->slab;
  2042. slab_free(s, page, (void *)x, __builtin_return_address(0));
  2043. }
  2044. EXPORT_SYMBOL(kfree);
  2045. /*
  2046. * kmem_cache_shrink removes empty slabs from the partial lists and sorts
  2047. * the remaining slabs by the number of items in use. The slabs with the
  2048. * most items in use come first. New allocations will then fill those up
  2049. * and thus they can be removed from the partial lists.
  2050. *
  2051. * The slabs with the least items are placed last. This results in them
  2052. * being allocated from last increasing the chance that the last objects
  2053. * are freed in them.
  2054. */
  2055. int kmem_cache_shrink(struct kmem_cache *s)
  2056. {
  2057. int node;
  2058. int i;
  2059. struct kmem_cache_node *n;
  2060. struct page *page;
  2061. struct page *t;
  2062. struct list_head *slabs_by_inuse =
  2063. kmalloc(sizeof(struct list_head) * s->objects, GFP_KERNEL);
  2064. unsigned long flags;
  2065. if (!slabs_by_inuse)
  2066. return -ENOMEM;
  2067. flush_all(s);
  2068. for_each_online_node(node) {
  2069. n = get_node(s, node);
  2070. if (!n->nr_partial)
  2071. continue;
  2072. for (i = 0; i < s->objects; i++)
  2073. INIT_LIST_HEAD(slabs_by_inuse + i);
  2074. spin_lock_irqsave(&n->list_lock, flags);
  2075. /*
  2076. * Build lists indexed by the items in use in each slab.
  2077. *
  2078. * Note that concurrent frees may occur while we hold the
  2079. * list_lock. page->inuse here is the upper limit.
  2080. */
  2081. list_for_each_entry_safe(page, t, &n->partial, lru) {
  2082. if (!page->inuse && slab_trylock(page)) {
  2083. /*
  2084. * Must hold slab lock here because slab_free
  2085. * may have freed the last object and be
  2086. * waiting to release the slab.
  2087. */
  2088. list_del(&page->lru);
  2089. n->nr_partial--;
  2090. slab_unlock(page);
  2091. discard_slab(s, page);
  2092. } else {
  2093. if (n->nr_partial > MAX_PARTIAL)
  2094. list_move(&page->lru,
  2095. slabs_by_inuse + page->inuse);
  2096. }
  2097. }
  2098. if (n->nr_partial <= MAX_PARTIAL)
  2099. goto out;
  2100. /*
  2101. * Rebuild the partial list with the slabs filled up most
  2102. * first and the least used slabs at the end.
  2103. */
  2104. for (i = s->objects - 1; i >= 0; i--)
  2105. list_splice(slabs_by_inuse + i, n->partial.prev);
  2106. out:
  2107. spin_unlock_irqrestore(&n->list_lock, flags);
  2108. }
  2109. kfree(slabs_by_inuse);
  2110. return 0;
  2111. }
  2112. EXPORT_SYMBOL(kmem_cache_shrink);
  2113. /********************************************************************
  2114. * Basic setup of slabs
  2115. *******************************************************************/
  2116. void __init kmem_cache_init(void)
  2117. {
  2118. int i;
  2119. int caches = 0;
  2120. #ifdef CONFIG_NUMA
  2121. /*
  2122. * Must first have the slab cache available for the allocations of the
  2123. * struct kmem_cache_node's. There is special bootstrap code in
  2124. * kmem_cache_open for slab_state == DOWN.
  2125. */
  2126. create_kmalloc_cache(&kmalloc_caches[0], "kmem_cache_node",
  2127. sizeof(struct kmem_cache_node), GFP_KERNEL);
  2128. kmalloc_caches[0].refcount = -1;
  2129. caches++;
  2130. #endif
  2131. /* Able to allocate the per node structures */
  2132. slab_state = PARTIAL;
  2133. /* Caches that are not of the two-to-the-power-of size */
  2134. if (KMALLOC_MIN_SIZE <= 64) {
  2135. create_kmalloc_cache(&kmalloc_caches[1],
  2136. "kmalloc-96", 96, GFP_KERNEL);
  2137. caches++;
  2138. }
  2139. if (KMALLOC_MIN_SIZE <= 128) {
  2140. create_kmalloc_cache(&kmalloc_caches[2],
  2141. "kmalloc-192", 192, GFP_KERNEL);
  2142. caches++;
  2143. }
  2144. for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++) {
  2145. create_kmalloc_cache(&kmalloc_caches[i],
  2146. "kmalloc", 1 << i, GFP_KERNEL);
  2147. caches++;
  2148. }
  2149. slab_state = UP;
  2150. /* Provide the correct kmalloc names now that the caches are up */
  2151. for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++)
  2152. kmalloc_caches[i]. name =
  2153. kasprintf(GFP_KERNEL, "kmalloc-%d", 1 << i);
  2154. #ifdef CONFIG_SMP
  2155. register_cpu_notifier(&slab_notifier);
  2156. #endif
  2157. kmem_size = offsetof(struct kmem_cache, cpu_slab) +
  2158. nr_cpu_ids * sizeof(struct page *);
  2159. printk(KERN_INFO "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
  2160. " CPUs=%d, Nodes=%d\n",
  2161. caches, cache_line_size(),
  2162. slub_min_order, slub_max_order, slub_min_objects,
  2163. nr_cpu_ids, nr_node_ids);
  2164. }
  2165. /*
  2166. * Find a mergeable slab cache
  2167. */
  2168. static int slab_unmergeable(struct kmem_cache *s)
  2169. {
  2170. if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
  2171. return 1;
  2172. if (s->ctor)
  2173. return 1;
  2174. /*
  2175. * We may have set a slab to be unmergeable during bootstrap.
  2176. */
  2177. if (s->refcount < 0)
  2178. return 1;
  2179. return 0;
  2180. }
  2181. static struct kmem_cache *find_mergeable(size_t size,
  2182. size_t align, unsigned long flags,
  2183. void (*ctor)(void *, struct kmem_cache *, unsigned long))
  2184. {
  2185. struct kmem_cache *s;
  2186. if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
  2187. return NULL;
  2188. if (ctor)
  2189. return NULL;
  2190. size = ALIGN(size, sizeof(void *));
  2191. align = calculate_alignment(flags, align, size);
  2192. size = ALIGN(size, align);
  2193. list_for_each_entry(s, &slab_caches, list) {
  2194. if (slab_unmergeable(s))
  2195. continue;
  2196. if (size > s->size)
  2197. continue;
  2198. if (((flags | slub_debug) & SLUB_MERGE_SAME) !=
  2199. (s->flags & SLUB_MERGE_SAME))
  2200. continue;
  2201. /*
  2202. * Check if alignment is compatible.
  2203. * Courtesy of Adrian Drzewiecki
  2204. */
  2205. if ((s->size & ~(align -1)) != s->size)
  2206. continue;
  2207. if (s->size - size >= sizeof(void *))
  2208. continue;
  2209. return s;
  2210. }
  2211. return NULL;
  2212. }
  2213. struct kmem_cache *kmem_cache_create(const char *name, size_t size,
  2214. size_t align, unsigned long flags,
  2215. void (*ctor)(void *, struct kmem_cache *, unsigned long),
  2216. void (*dtor)(void *, struct kmem_cache *, unsigned long))
  2217. {
  2218. struct kmem_cache *s;
  2219. BUG_ON(dtor);
  2220. down_write(&slub_lock);
  2221. s = find_mergeable(size, align, flags, ctor);
  2222. if (s) {
  2223. s->refcount++;
  2224. /*
  2225. * Adjust the object sizes so that we clear
  2226. * the complete object on kzalloc.
  2227. */
  2228. s->objsize = max(s->objsize, (int)size);
  2229. s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
  2230. if (sysfs_slab_alias(s, name))
  2231. goto err;
  2232. } else {
  2233. s = kmalloc(kmem_size, GFP_KERNEL);
  2234. if (s && kmem_cache_open(s, GFP_KERNEL, name,
  2235. size, align, flags, ctor)) {
  2236. if (sysfs_slab_add(s)) {
  2237. kfree(s);
  2238. goto err;
  2239. }
  2240. list_add(&s->list, &slab_caches);
  2241. } else
  2242. kfree(s);
  2243. }
  2244. up_write(&slub_lock);
  2245. return s;
  2246. err:
  2247. up_write(&slub_lock);
  2248. if (flags & SLAB_PANIC)
  2249. panic("Cannot create slabcache %s\n", name);
  2250. else
  2251. s = NULL;
  2252. return s;
  2253. }
  2254. EXPORT_SYMBOL(kmem_cache_create);
  2255. void *kmem_cache_zalloc(struct kmem_cache *s, gfp_t flags)
  2256. {
  2257. void *x;
  2258. x = slab_alloc(s, flags, -1, __builtin_return_address(0), 0);
  2259. if (x)
  2260. memset(x, 0, s->objsize);
  2261. return x;
  2262. }
  2263. EXPORT_SYMBOL(kmem_cache_zalloc);
  2264. #ifdef CONFIG_SMP
  2265. /*
  2266. * Use the cpu notifier to insure that the cpu slabs are flushed when
  2267. * necessary.
  2268. */
  2269. static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
  2270. unsigned long action, void *hcpu)
  2271. {
  2272. long cpu = (long)hcpu;
  2273. struct kmem_cache *s;
  2274. unsigned long flags;
  2275. switch (action) {
  2276. case CPU_UP_CANCELED:
  2277. case CPU_UP_CANCELED_FROZEN:
  2278. case CPU_DEAD:
  2279. case CPU_DEAD_FROZEN:
  2280. down_read(&slub_lock);
  2281. list_for_each_entry(s, &slab_caches, list) {
  2282. local_irq_save(flags);
  2283. __flush_cpu_slab(s, cpu);
  2284. local_irq_restore(flags);
  2285. }
  2286. up_read(&slub_lock);
  2287. break;
  2288. default:
  2289. break;
  2290. }
  2291. return NOTIFY_OK;
  2292. }
  2293. static struct notifier_block __cpuinitdata slab_notifier =
  2294. { &slab_cpuup_callback, NULL, 0 };
  2295. #endif
  2296. void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, void *caller)
  2297. {
  2298. struct kmem_cache *s = get_slab(size, gfpflags);
  2299. if (ZERO_OR_NULL_PTR(s))
  2300. return s;
  2301. return slab_alloc(s, gfpflags, -1, caller, size);
  2302. }
  2303. void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
  2304. int node, void *caller)
  2305. {
  2306. struct kmem_cache *s = get_slab(size, gfpflags);
  2307. if (ZERO_OR_NULL_PTR(s))
  2308. return s;
  2309. return slab_alloc(s, gfpflags, node, caller, size);
  2310. }
  2311. #if defined(CONFIG_SYSFS) && defined(CONFIG_SLUB_DEBUG)
  2312. static int validate_slab(struct kmem_cache *s, struct page *page)
  2313. {
  2314. void *p;
  2315. void *addr = page_address(page);
  2316. DECLARE_BITMAP(map, s->objects);
  2317. if (!check_slab(s, page) ||
  2318. !on_freelist(s, page, NULL))
  2319. return 0;
  2320. /* Now we know that a valid freelist exists */
  2321. bitmap_zero(map, s->objects);
  2322. for_each_free_object(p, s, page->freelist) {
  2323. set_bit(slab_index(p, s, addr), map);
  2324. if (!check_object(s, page, p, 0))
  2325. return 0;
  2326. }
  2327. for_each_object(p, s, addr)
  2328. if (!test_bit(slab_index(p, s, addr), map))
  2329. if (!check_object(s, page, p, 1))
  2330. return 0;
  2331. return 1;
  2332. }
  2333. static void validate_slab_slab(struct kmem_cache *s, struct page *page)
  2334. {
  2335. if (slab_trylock(page)) {
  2336. validate_slab(s, page);
  2337. slab_unlock(page);
  2338. } else
  2339. printk(KERN_INFO "SLUB %s: Skipped busy slab 0x%p\n",
  2340. s->name, page);
  2341. if (s->flags & DEBUG_DEFAULT_FLAGS) {
  2342. if (!SlabDebug(page))
  2343. printk(KERN_ERR "SLUB %s: SlabDebug not set "
  2344. "on slab 0x%p\n", s->name, page);
  2345. } else {
  2346. if (SlabDebug(page))
  2347. printk(KERN_ERR "SLUB %s: SlabDebug set on "
  2348. "slab 0x%p\n", s->name, page);
  2349. }
  2350. }
  2351. static int validate_slab_node(struct kmem_cache *s, struct kmem_cache_node *n)
  2352. {
  2353. unsigned long count = 0;
  2354. struct page *page;
  2355. unsigned long flags;
  2356. spin_lock_irqsave(&n->list_lock, flags);
  2357. list_for_each_entry(page, &n->partial, lru) {
  2358. validate_slab_slab(s, page);
  2359. count++;
  2360. }
  2361. if (count != n->nr_partial)
  2362. printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
  2363. "counter=%ld\n", s->name, count, n->nr_partial);
  2364. if (!(s->flags & SLAB_STORE_USER))
  2365. goto out;
  2366. list_for_each_entry(page, &n->full, lru) {
  2367. validate_slab_slab(s, page);
  2368. count++;
  2369. }
  2370. if (count != atomic_long_read(&n->nr_slabs))
  2371. printk(KERN_ERR "SLUB: %s %ld slabs counted but "
  2372. "counter=%ld\n", s->name, count,
  2373. atomic_long_read(&n->nr_slabs));
  2374. out:
  2375. spin_unlock_irqrestore(&n->list_lock, flags);
  2376. return count;
  2377. }
  2378. static unsigned long validate_slab_cache(struct kmem_cache *s)
  2379. {
  2380. int node;
  2381. unsigned long count = 0;
  2382. flush_all(s);
  2383. for_each_online_node(node) {
  2384. struct kmem_cache_node *n = get_node(s, node);
  2385. count += validate_slab_node(s, n);
  2386. }
  2387. return count;
  2388. }
  2389. #ifdef SLUB_RESILIENCY_TEST
  2390. static void resiliency_test(void)
  2391. {
  2392. u8 *p;
  2393. printk(KERN_ERR "SLUB resiliency testing\n");
  2394. printk(KERN_ERR "-----------------------\n");
  2395. printk(KERN_ERR "A. Corruption after allocation\n");
  2396. p = kzalloc(16, GFP_KERNEL);
  2397. p[16] = 0x12;
  2398. printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
  2399. " 0x12->0x%p\n\n", p + 16);
  2400. validate_slab_cache(kmalloc_caches + 4);
  2401. /* Hmmm... The next two are dangerous */
  2402. p = kzalloc(32, GFP_KERNEL);
  2403. p[32 + sizeof(void *)] = 0x34;
  2404. printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
  2405. " 0x34 -> -0x%p\n", p);
  2406. printk(KERN_ERR "If allocated object is overwritten then not detectable\n\n");
  2407. validate_slab_cache(kmalloc_caches + 5);
  2408. p = kzalloc(64, GFP_KERNEL);
  2409. p += 64 + (get_cycles() & 0xff) * sizeof(void *);
  2410. *p = 0x56;
  2411. printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
  2412. p);
  2413. printk(KERN_ERR "If allocated object is overwritten then not detectable\n\n");
  2414. validate_slab_cache(kmalloc_caches + 6);
  2415. printk(KERN_ERR "\nB. Corruption after free\n");
  2416. p = kzalloc(128, GFP_KERNEL);
  2417. kfree(p);
  2418. *p = 0x78;
  2419. printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
  2420. validate_slab_cache(kmalloc_caches + 7);
  2421. p = kzalloc(256, GFP_KERNEL);
  2422. kfree(p);
  2423. p[50] = 0x9a;
  2424. printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p);
  2425. validate_slab_cache(kmalloc_caches + 8);
  2426. p = kzalloc(512, GFP_KERNEL);
  2427. kfree(p);
  2428. p[512] = 0xab;
  2429. printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
  2430. validate_slab_cache(kmalloc_caches + 9);
  2431. }
  2432. #else
  2433. static void resiliency_test(void) {};
  2434. #endif
  2435. /*
  2436. * Generate lists of code addresses where slabcache objects are allocated
  2437. * and freed.
  2438. */
  2439. struct location {
  2440. unsigned long count;
  2441. void *addr;
  2442. long long sum_time;
  2443. long min_time;
  2444. long max_time;
  2445. long min_pid;
  2446. long max_pid;
  2447. cpumask_t cpus;
  2448. nodemask_t nodes;
  2449. };
  2450. struct loc_track {
  2451. unsigned long max;
  2452. unsigned long count;
  2453. struct location *loc;
  2454. };
  2455. static void free_loc_track(struct loc_track *t)
  2456. {
  2457. if (t->max)
  2458. free_pages((unsigned long)t->loc,
  2459. get_order(sizeof(struct location) * t->max));
  2460. }
  2461. static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
  2462. {
  2463. struct location *l;
  2464. int order;
  2465. order = get_order(sizeof(struct location) * max);
  2466. l = (void *)__get_free_pages(flags, order);
  2467. if (!l)
  2468. return 0;
  2469. if (t->count) {
  2470. memcpy(l, t->loc, sizeof(struct location) * t->count);
  2471. free_loc_track(t);
  2472. }
  2473. t->max = max;
  2474. t->loc = l;
  2475. return 1;
  2476. }
  2477. static int add_location(struct loc_track *t, struct kmem_cache *s,
  2478. const struct track *track)
  2479. {
  2480. long start, end, pos;
  2481. struct location *l;
  2482. void *caddr;
  2483. unsigned long age = jiffies - track->when;
  2484. start = -1;
  2485. end = t->count;
  2486. for ( ; ; ) {
  2487. pos = start + (end - start + 1) / 2;
  2488. /*
  2489. * There is nothing at "end". If we end up there
  2490. * we need to add something to before end.
  2491. */
  2492. if (pos == end)
  2493. break;
  2494. caddr = t->loc[pos].addr;
  2495. if (track->addr == caddr) {
  2496. l = &t->loc[pos];
  2497. l->count++;
  2498. if (track->when) {
  2499. l->sum_time += age;
  2500. if (age < l->min_time)
  2501. l->min_time = age;
  2502. if (age > l->max_time)
  2503. l->max_time = age;
  2504. if (track->pid < l->min_pid)
  2505. l->min_pid = track->pid;
  2506. if (track->pid > l->max_pid)
  2507. l->max_pid = track->pid;
  2508. cpu_set(track->cpu, l->cpus);
  2509. }
  2510. node_set(page_to_nid(virt_to_page(track)), l->nodes);
  2511. return 1;
  2512. }
  2513. if (track->addr < caddr)
  2514. end = pos;
  2515. else
  2516. start = pos;
  2517. }
  2518. /*
  2519. * Not found. Insert new tracking element.
  2520. */
  2521. if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
  2522. return 0;
  2523. l = t->loc + pos;
  2524. if (pos < t->count)
  2525. memmove(l + 1, l,
  2526. (t->count - pos) * sizeof(struct location));
  2527. t->count++;
  2528. l->count = 1;
  2529. l->addr = track->addr;
  2530. l->sum_time = age;
  2531. l->min_time = age;
  2532. l->max_time = age;
  2533. l->min_pid = track->pid;
  2534. l->max_pid = track->pid;
  2535. cpus_clear(l->cpus);
  2536. cpu_set(track->cpu, l->cpus);
  2537. nodes_clear(l->nodes);
  2538. node_set(page_to_nid(virt_to_page(track)), l->nodes);
  2539. return 1;
  2540. }
  2541. static void process_slab(struct loc_track *t, struct kmem_cache *s,
  2542. struct page *page, enum track_item alloc)
  2543. {
  2544. void *addr = page_address(page);
  2545. DECLARE_BITMAP(map, s->objects);
  2546. void *p;
  2547. bitmap_zero(map, s->objects);
  2548. for_each_free_object(p, s, page->freelist)
  2549. set_bit(slab_index(p, s, addr), map);
  2550. for_each_object(p, s, addr)
  2551. if (!test_bit(slab_index(p, s, addr), map))
  2552. add_location(t, s, get_track(s, p, alloc));
  2553. }
  2554. static int list_locations(struct kmem_cache *s, char *buf,
  2555. enum track_item alloc)
  2556. {
  2557. int n = 0;
  2558. unsigned long i;
  2559. struct loc_track t = { 0, 0, NULL };
  2560. int node;
  2561. if (!alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
  2562. GFP_KERNEL))
  2563. return sprintf(buf, "Out of memory\n");
  2564. /* Push back cpu slabs */
  2565. flush_all(s);
  2566. for_each_online_node(node) {
  2567. struct kmem_cache_node *n = get_node(s, node);
  2568. unsigned long flags;
  2569. struct page *page;
  2570. if (!atomic_read(&n->nr_slabs))
  2571. continue;
  2572. spin_lock_irqsave(&n->list_lock, flags);
  2573. list_for_each_entry(page, &n->partial, lru)
  2574. process_slab(&t, s, page, alloc);
  2575. list_for_each_entry(page, &n->full, lru)
  2576. process_slab(&t, s, page, alloc);
  2577. spin_unlock_irqrestore(&n->list_lock, flags);
  2578. }
  2579. for (i = 0; i < t.count; i++) {
  2580. struct location *l = &t.loc[i];
  2581. if (n > PAGE_SIZE - 100)
  2582. break;
  2583. n += sprintf(buf + n, "%7ld ", l->count);
  2584. if (l->addr)
  2585. n += sprint_symbol(buf + n, (unsigned long)l->addr);
  2586. else
  2587. n += sprintf(buf + n, "<not-available>");
  2588. if (l->sum_time != l->min_time) {
  2589. unsigned long remainder;
  2590. n += sprintf(buf + n, " age=%ld/%ld/%ld",
  2591. l->min_time,
  2592. div_long_long_rem(l->sum_time, l->count, &remainder),
  2593. l->max_time);
  2594. } else
  2595. n += sprintf(buf + n, " age=%ld",
  2596. l->min_time);
  2597. if (l->min_pid != l->max_pid)
  2598. n += sprintf(buf + n, " pid=%ld-%ld",
  2599. l->min_pid, l->max_pid);
  2600. else
  2601. n += sprintf(buf + n, " pid=%ld",
  2602. l->min_pid);
  2603. if (num_online_cpus() > 1 && !cpus_empty(l->cpus) &&
  2604. n < PAGE_SIZE - 60) {
  2605. n += sprintf(buf + n, " cpus=");
  2606. n += cpulist_scnprintf(buf + n, PAGE_SIZE - n - 50,
  2607. l->cpus);
  2608. }
  2609. if (num_online_nodes() > 1 && !nodes_empty(l->nodes) &&
  2610. n < PAGE_SIZE - 60) {
  2611. n += sprintf(buf + n, " nodes=");
  2612. n += nodelist_scnprintf(buf + n, PAGE_SIZE - n - 50,
  2613. l->nodes);
  2614. }
  2615. n += sprintf(buf + n, "\n");
  2616. }
  2617. free_loc_track(&t);
  2618. if (!t.count)
  2619. n += sprintf(buf, "No data\n");
  2620. return n;
  2621. }
  2622. static unsigned long count_partial(struct kmem_cache_node *n)
  2623. {
  2624. unsigned long flags;
  2625. unsigned long x = 0;
  2626. struct page *page;
  2627. spin_lock_irqsave(&n->list_lock, flags);
  2628. list_for_each_entry(page, &n->partial, lru)
  2629. x += page->inuse;
  2630. spin_unlock_irqrestore(&n->list_lock, flags);
  2631. return x;
  2632. }
  2633. enum slab_stat_type {
  2634. SL_FULL,
  2635. SL_PARTIAL,
  2636. SL_CPU,
  2637. SL_OBJECTS
  2638. };
  2639. #define SO_FULL (1 << SL_FULL)
  2640. #define SO_PARTIAL (1 << SL_PARTIAL)
  2641. #define SO_CPU (1 << SL_CPU)
  2642. #define SO_OBJECTS (1 << SL_OBJECTS)
  2643. static unsigned long slab_objects(struct kmem_cache *s,
  2644. char *buf, unsigned long flags)
  2645. {
  2646. unsigned long total = 0;
  2647. int cpu;
  2648. int node;
  2649. int x;
  2650. unsigned long *nodes;
  2651. unsigned long *per_cpu;
  2652. nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
  2653. per_cpu = nodes + nr_node_ids;
  2654. for_each_possible_cpu(cpu) {
  2655. struct page *page = s->cpu_slab[cpu];
  2656. int node;
  2657. if (page) {
  2658. node = page_to_nid(page);
  2659. if (flags & SO_CPU) {
  2660. int x = 0;
  2661. if (flags & SO_OBJECTS)
  2662. x = page->inuse;
  2663. else
  2664. x = 1;
  2665. total += x;
  2666. nodes[node] += x;
  2667. }
  2668. per_cpu[node]++;
  2669. }
  2670. }
  2671. for_each_online_node(node) {
  2672. struct kmem_cache_node *n = get_node(s, node);
  2673. if (flags & SO_PARTIAL) {
  2674. if (flags & SO_OBJECTS)
  2675. x = count_partial(n);
  2676. else
  2677. x = n->nr_partial;
  2678. total += x;
  2679. nodes[node] += x;
  2680. }
  2681. if (flags & SO_FULL) {
  2682. int full_slabs = atomic_read(&n->nr_slabs)
  2683. - per_cpu[node]
  2684. - n->nr_partial;
  2685. if (flags & SO_OBJECTS)
  2686. x = full_slabs * s->objects;
  2687. else
  2688. x = full_slabs;
  2689. total += x;
  2690. nodes[node] += x;
  2691. }
  2692. }
  2693. x = sprintf(buf, "%lu", total);
  2694. #ifdef CONFIG_NUMA
  2695. for_each_online_node(node)
  2696. if (nodes[node])
  2697. x += sprintf(buf + x, " N%d=%lu",
  2698. node, nodes[node]);
  2699. #endif
  2700. kfree(nodes);
  2701. return x + sprintf(buf + x, "\n");
  2702. }
  2703. static int any_slab_objects(struct kmem_cache *s)
  2704. {
  2705. int node;
  2706. int cpu;
  2707. for_each_possible_cpu(cpu)
  2708. if (s->cpu_slab[cpu])
  2709. return 1;
  2710. for_each_node(node) {
  2711. struct kmem_cache_node *n = get_node(s, node);
  2712. if (n->nr_partial || atomic_read(&n->nr_slabs))
  2713. return 1;
  2714. }
  2715. return 0;
  2716. }
  2717. #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
  2718. #define to_slab(n) container_of(n, struct kmem_cache, kobj);
  2719. struct slab_attribute {
  2720. struct attribute attr;
  2721. ssize_t (*show)(struct kmem_cache *s, char *buf);
  2722. ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
  2723. };
  2724. #define SLAB_ATTR_RO(_name) \
  2725. static struct slab_attribute _name##_attr = __ATTR_RO(_name)
  2726. #define SLAB_ATTR(_name) \
  2727. static struct slab_attribute _name##_attr = \
  2728. __ATTR(_name, 0644, _name##_show, _name##_store)
  2729. static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
  2730. {
  2731. return sprintf(buf, "%d\n", s->size);
  2732. }
  2733. SLAB_ATTR_RO(slab_size);
  2734. static ssize_t align_show(struct kmem_cache *s, char *buf)
  2735. {
  2736. return sprintf(buf, "%d\n", s->align);
  2737. }
  2738. SLAB_ATTR_RO(align);
  2739. static ssize_t object_size_show(struct kmem_cache *s, char *buf)
  2740. {
  2741. return sprintf(buf, "%d\n", s->objsize);
  2742. }
  2743. SLAB_ATTR_RO(object_size);
  2744. static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
  2745. {
  2746. return sprintf(buf, "%d\n", s->objects);
  2747. }
  2748. SLAB_ATTR_RO(objs_per_slab);
  2749. static ssize_t order_show(struct kmem_cache *s, char *buf)
  2750. {
  2751. return sprintf(buf, "%d\n", s->order);
  2752. }
  2753. SLAB_ATTR_RO(order);
  2754. static ssize_t ctor_show(struct kmem_cache *s, char *buf)
  2755. {
  2756. if (s->ctor) {
  2757. int n = sprint_symbol(buf, (unsigned long)s->ctor);
  2758. return n + sprintf(buf + n, "\n");
  2759. }
  2760. return 0;
  2761. }
  2762. SLAB_ATTR_RO(ctor);
  2763. static ssize_t aliases_show(struct kmem_cache *s, char *buf)
  2764. {
  2765. return sprintf(buf, "%d\n", s->refcount - 1);
  2766. }
  2767. SLAB_ATTR_RO(aliases);
  2768. static ssize_t slabs_show(struct kmem_cache *s, char *buf)
  2769. {
  2770. return slab_objects(s, buf, SO_FULL|SO_PARTIAL|SO_CPU);
  2771. }
  2772. SLAB_ATTR_RO(slabs);
  2773. static ssize_t partial_show(struct kmem_cache *s, char *buf)
  2774. {
  2775. return slab_objects(s, buf, SO_PARTIAL);
  2776. }
  2777. SLAB_ATTR_RO(partial);
  2778. static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
  2779. {
  2780. return slab_objects(s, buf, SO_CPU);
  2781. }
  2782. SLAB_ATTR_RO(cpu_slabs);
  2783. static ssize_t objects_show(struct kmem_cache *s, char *buf)
  2784. {
  2785. return slab_objects(s, buf, SO_FULL|SO_PARTIAL|SO_CPU|SO_OBJECTS);
  2786. }
  2787. SLAB_ATTR_RO(objects);
  2788. static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
  2789. {
  2790. return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
  2791. }
  2792. static ssize_t sanity_checks_store(struct kmem_cache *s,
  2793. const char *buf, size_t length)
  2794. {
  2795. s->flags &= ~SLAB_DEBUG_FREE;
  2796. if (buf[0] == '1')
  2797. s->flags |= SLAB_DEBUG_FREE;
  2798. return length;
  2799. }
  2800. SLAB_ATTR(sanity_checks);
  2801. static ssize_t trace_show(struct kmem_cache *s, char *buf)
  2802. {
  2803. return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
  2804. }
  2805. static ssize_t trace_store(struct kmem_cache *s, const char *buf,
  2806. size_t length)
  2807. {
  2808. s->flags &= ~SLAB_TRACE;
  2809. if (buf[0] == '1')
  2810. s->flags |= SLAB_TRACE;
  2811. return length;
  2812. }
  2813. SLAB_ATTR(trace);
  2814. static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
  2815. {
  2816. return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
  2817. }
  2818. static ssize_t reclaim_account_store(struct kmem_cache *s,
  2819. const char *buf, size_t length)
  2820. {
  2821. s->flags &= ~SLAB_RECLAIM_ACCOUNT;
  2822. if (buf[0] == '1')
  2823. s->flags |= SLAB_RECLAIM_ACCOUNT;
  2824. return length;
  2825. }
  2826. SLAB_ATTR(reclaim_account);
  2827. static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
  2828. {
  2829. return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
  2830. }
  2831. SLAB_ATTR_RO(hwcache_align);
  2832. #ifdef CONFIG_ZONE_DMA
  2833. static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
  2834. {
  2835. return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
  2836. }
  2837. SLAB_ATTR_RO(cache_dma);
  2838. #endif
  2839. static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
  2840. {
  2841. return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
  2842. }
  2843. SLAB_ATTR_RO(destroy_by_rcu);
  2844. static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
  2845. {
  2846. return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
  2847. }
  2848. static ssize_t red_zone_store(struct kmem_cache *s,
  2849. const char *buf, size_t length)
  2850. {
  2851. if (any_slab_objects(s))
  2852. return -EBUSY;
  2853. s->flags &= ~SLAB_RED_ZONE;
  2854. if (buf[0] == '1')
  2855. s->flags |= SLAB_RED_ZONE;
  2856. calculate_sizes(s);
  2857. return length;
  2858. }
  2859. SLAB_ATTR(red_zone);
  2860. static ssize_t poison_show(struct kmem_cache *s, char *buf)
  2861. {
  2862. return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
  2863. }
  2864. static ssize_t poison_store(struct kmem_cache *s,
  2865. const char *buf, size_t length)
  2866. {
  2867. if (any_slab_objects(s))
  2868. return -EBUSY;
  2869. s->flags &= ~SLAB_POISON;
  2870. if (buf[0] == '1')
  2871. s->flags |= SLAB_POISON;
  2872. calculate_sizes(s);
  2873. return length;
  2874. }
  2875. SLAB_ATTR(poison);
  2876. static ssize_t store_user_show(struct kmem_cache *s, char *buf)
  2877. {
  2878. return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
  2879. }
  2880. static ssize_t store_user_store(struct kmem_cache *s,
  2881. const char *buf, size_t length)
  2882. {
  2883. if (any_slab_objects(s))
  2884. return -EBUSY;
  2885. s->flags &= ~SLAB_STORE_USER;
  2886. if (buf[0] == '1')
  2887. s->flags |= SLAB_STORE_USER;
  2888. calculate_sizes(s);
  2889. return length;
  2890. }
  2891. SLAB_ATTR(store_user);
  2892. static ssize_t validate_show(struct kmem_cache *s, char *buf)
  2893. {
  2894. return 0;
  2895. }
  2896. static ssize_t validate_store(struct kmem_cache *s,
  2897. const char *buf, size_t length)
  2898. {
  2899. if (buf[0] == '1')
  2900. validate_slab_cache(s);
  2901. else
  2902. return -EINVAL;
  2903. return length;
  2904. }
  2905. SLAB_ATTR(validate);
  2906. static ssize_t shrink_show(struct kmem_cache *s, char *buf)
  2907. {
  2908. return 0;
  2909. }
  2910. static ssize_t shrink_store(struct kmem_cache *s,
  2911. const char *buf, size_t length)
  2912. {
  2913. if (buf[0] == '1') {
  2914. int rc = kmem_cache_shrink(s);
  2915. if (rc)
  2916. return rc;
  2917. } else
  2918. return -EINVAL;
  2919. return length;
  2920. }
  2921. SLAB_ATTR(shrink);
  2922. static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
  2923. {
  2924. if (!(s->flags & SLAB_STORE_USER))
  2925. return -ENOSYS;
  2926. return list_locations(s, buf, TRACK_ALLOC);
  2927. }
  2928. SLAB_ATTR_RO(alloc_calls);
  2929. static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
  2930. {
  2931. if (!(s->flags & SLAB_STORE_USER))
  2932. return -ENOSYS;
  2933. return list_locations(s, buf, TRACK_FREE);
  2934. }
  2935. SLAB_ATTR_RO(free_calls);
  2936. #ifdef CONFIG_NUMA
  2937. static ssize_t defrag_ratio_show(struct kmem_cache *s, char *buf)
  2938. {
  2939. return sprintf(buf, "%d\n", s->defrag_ratio / 10);
  2940. }
  2941. static ssize_t defrag_ratio_store(struct kmem_cache *s,
  2942. const char *buf, size_t length)
  2943. {
  2944. int n = simple_strtoul(buf, NULL, 10);
  2945. if (n < 100)
  2946. s->defrag_ratio = n * 10;
  2947. return length;
  2948. }
  2949. SLAB_ATTR(defrag_ratio);
  2950. #endif
  2951. static struct attribute * slab_attrs[] = {
  2952. &slab_size_attr.attr,
  2953. &object_size_attr.attr,
  2954. &objs_per_slab_attr.attr,
  2955. &order_attr.attr,
  2956. &objects_attr.attr,
  2957. &slabs_attr.attr,
  2958. &partial_attr.attr,
  2959. &cpu_slabs_attr.attr,
  2960. &ctor_attr.attr,
  2961. &aliases_attr.attr,
  2962. &align_attr.attr,
  2963. &sanity_checks_attr.attr,
  2964. &trace_attr.attr,
  2965. &hwcache_align_attr.attr,
  2966. &reclaim_account_attr.attr,
  2967. &destroy_by_rcu_attr.attr,
  2968. &red_zone_attr.attr,
  2969. &poison_attr.attr,
  2970. &store_user_attr.attr,
  2971. &validate_attr.attr,
  2972. &shrink_attr.attr,
  2973. &alloc_calls_attr.attr,
  2974. &free_calls_attr.attr,
  2975. #ifdef CONFIG_ZONE_DMA
  2976. &cache_dma_attr.attr,
  2977. #endif
  2978. #ifdef CONFIG_NUMA
  2979. &defrag_ratio_attr.attr,
  2980. #endif
  2981. NULL
  2982. };
  2983. static struct attribute_group slab_attr_group = {
  2984. .attrs = slab_attrs,
  2985. };
  2986. static ssize_t slab_attr_show(struct kobject *kobj,
  2987. struct attribute *attr,
  2988. char *buf)
  2989. {
  2990. struct slab_attribute *attribute;
  2991. struct kmem_cache *s;
  2992. int err;
  2993. attribute = to_slab_attr(attr);
  2994. s = to_slab(kobj);
  2995. if (!attribute->show)
  2996. return -EIO;
  2997. err = attribute->show(s, buf);
  2998. return err;
  2999. }
  3000. static ssize_t slab_attr_store(struct kobject *kobj,
  3001. struct attribute *attr,
  3002. const char *buf, size_t len)
  3003. {
  3004. struct slab_attribute *attribute;
  3005. struct kmem_cache *s;
  3006. int err;
  3007. attribute = to_slab_attr(attr);
  3008. s = to_slab(kobj);
  3009. if (!attribute->store)
  3010. return -EIO;
  3011. err = attribute->store(s, buf, len);
  3012. return err;
  3013. }
  3014. static struct sysfs_ops slab_sysfs_ops = {
  3015. .show = slab_attr_show,
  3016. .store = slab_attr_store,
  3017. };
  3018. static struct kobj_type slab_ktype = {
  3019. .sysfs_ops = &slab_sysfs_ops,
  3020. };
  3021. static int uevent_filter(struct kset *kset, struct kobject *kobj)
  3022. {
  3023. struct kobj_type *ktype = get_ktype(kobj);
  3024. if (ktype == &slab_ktype)
  3025. return 1;
  3026. return 0;
  3027. }
  3028. static struct kset_uevent_ops slab_uevent_ops = {
  3029. .filter = uevent_filter,
  3030. };
  3031. decl_subsys(slab, &slab_ktype, &slab_uevent_ops);
  3032. #define ID_STR_LENGTH 64
  3033. /* Create a unique string id for a slab cache:
  3034. * format
  3035. * :[flags-]size:[memory address of kmemcache]
  3036. */
  3037. static char *create_unique_id(struct kmem_cache *s)
  3038. {
  3039. char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
  3040. char *p = name;
  3041. BUG_ON(!name);
  3042. *p++ = ':';
  3043. /*
  3044. * First flags affecting slabcache operations. We will only
  3045. * get here for aliasable slabs so we do not need to support
  3046. * too many flags. The flags here must cover all flags that
  3047. * are matched during merging to guarantee that the id is
  3048. * unique.
  3049. */
  3050. if (s->flags & SLAB_CACHE_DMA)
  3051. *p++ = 'd';
  3052. if (s->flags & SLAB_RECLAIM_ACCOUNT)
  3053. *p++ = 'a';
  3054. if (s->flags & SLAB_DEBUG_FREE)
  3055. *p++ = 'F';
  3056. if (p != name + 1)
  3057. *p++ = '-';
  3058. p += sprintf(p, "%07d", s->size);
  3059. BUG_ON(p > name + ID_STR_LENGTH - 1);
  3060. return name;
  3061. }
  3062. static int sysfs_slab_add(struct kmem_cache *s)
  3063. {
  3064. int err;
  3065. const char *name;
  3066. int unmergeable;
  3067. if (slab_state < SYSFS)
  3068. /* Defer until later */
  3069. return 0;
  3070. unmergeable = slab_unmergeable(s);
  3071. if (unmergeable) {
  3072. /*
  3073. * Slabcache can never be merged so we can use the name proper.
  3074. * This is typically the case for debug situations. In that
  3075. * case we can catch duplicate names easily.
  3076. */
  3077. sysfs_remove_link(&slab_subsys.kobj, s->name);
  3078. name = s->name;
  3079. } else {
  3080. /*
  3081. * Create a unique name for the slab as a target
  3082. * for the symlinks.
  3083. */
  3084. name = create_unique_id(s);
  3085. }
  3086. kobj_set_kset_s(s, slab_subsys);
  3087. kobject_set_name(&s->kobj, name);
  3088. kobject_init(&s->kobj);
  3089. err = kobject_add(&s->kobj);
  3090. if (err)
  3091. return err;
  3092. err = sysfs_create_group(&s->kobj, &slab_attr_group);
  3093. if (err)
  3094. return err;
  3095. kobject_uevent(&s->kobj, KOBJ_ADD);
  3096. if (!unmergeable) {
  3097. /* Setup first alias */
  3098. sysfs_slab_alias(s, s->name);
  3099. kfree(name);
  3100. }
  3101. return 0;
  3102. }
  3103. static void sysfs_slab_remove(struct kmem_cache *s)
  3104. {
  3105. kobject_uevent(&s->kobj, KOBJ_REMOVE);
  3106. kobject_del(&s->kobj);
  3107. }
  3108. /*
  3109. * Need to buffer aliases during bootup until sysfs becomes
  3110. * available lest we loose that information.
  3111. */
  3112. struct saved_alias {
  3113. struct kmem_cache *s;
  3114. const char *name;
  3115. struct saved_alias *next;
  3116. };
  3117. struct saved_alias *alias_list;
  3118. static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
  3119. {
  3120. struct saved_alias *al;
  3121. if (slab_state == SYSFS) {
  3122. /*
  3123. * If we have a leftover link then remove it.
  3124. */
  3125. sysfs_remove_link(&slab_subsys.kobj, name);
  3126. return sysfs_create_link(&slab_subsys.kobj,
  3127. &s->kobj, name);
  3128. }
  3129. al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
  3130. if (!al)
  3131. return -ENOMEM;
  3132. al->s = s;
  3133. al->name = name;
  3134. al->next = alias_list;
  3135. alias_list = al;
  3136. return 0;
  3137. }
  3138. static int __init slab_sysfs_init(void)
  3139. {
  3140. struct kmem_cache *s;
  3141. int err;
  3142. err = subsystem_register(&slab_subsys);
  3143. if (err) {
  3144. printk(KERN_ERR "Cannot register slab subsystem.\n");
  3145. return -ENOSYS;
  3146. }
  3147. slab_state = SYSFS;
  3148. list_for_each_entry(s, &slab_caches, list) {
  3149. err = sysfs_slab_add(s);
  3150. BUG_ON(err);
  3151. }
  3152. while (alias_list) {
  3153. struct saved_alias *al = alias_list;
  3154. alias_list = alias_list->next;
  3155. err = sysfs_slab_alias(al->s, al->name);
  3156. BUG_ON(err);
  3157. kfree(al);
  3158. }
  3159. resiliency_test();
  3160. return 0;
  3161. }
  3162. __initcall(slab_sysfs_init);
  3163. #endif