pch_can.c 33 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290
  1. /*
  2. * Copyright (C) 1999 - 2010 Intel Corporation.
  3. * Copyright (C) 2010 OKI SEMICONDUCTOR CO., LTD.
  4. *
  5. * This program is free software; you can redistribute it and/or modify
  6. * it under the terms of the GNU General Public License as published by
  7. * the Free Software Foundation; version 2 of the License.
  8. *
  9. * This program is distributed in the hope that it will be useful,
  10. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. * GNU General Public License for more details.
  13. *
  14. * You should have received a copy of the GNU General Public License
  15. * along with this program; if not, write to the Free Software
  16. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307, USA.
  17. */
  18. #include <linux/interrupt.h>
  19. #include <linux/delay.h>
  20. #include <linux/io.h>
  21. #include <linux/module.h>
  22. #include <linux/sched.h>
  23. #include <linux/pci.h>
  24. #include <linux/init.h>
  25. #include <linux/kernel.h>
  26. #include <linux/types.h>
  27. #include <linux/errno.h>
  28. #include <linux/netdevice.h>
  29. #include <linux/skbuff.h>
  30. #include <linux/can.h>
  31. #include <linux/can/dev.h>
  32. #include <linux/can/error.h>
  33. #define PCH_CTRL_INIT BIT(0) /* The INIT bit of CANCONT register. */
  34. #define PCH_CTRL_IE BIT(1) /* The IE bit of CAN control register */
  35. #define PCH_CTRL_IE_SIE_EIE (BIT(3) | BIT(2) | BIT(1))
  36. #define PCH_CTRL_CCE BIT(6)
  37. #define PCH_CTRL_OPT BIT(7) /* The OPT bit of CANCONT register. */
  38. #define PCH_OPT_SILENT BIT(3) /* The Silent bit of CANOPT reg. */
  39. #define PCH_OPT_LBACK BIT(4) /* The LoopBack bit of CANOPT reg. */
  40. #define PCH_CMASK_RX_TX_SET 0x00f3
  41. #define PCH_CMASK_RX_TX_GET 0x0073
  42. #define PCH_CMASK_ALL 0xff
  43. #define PCH_CMASK_NEWDAT BIT(2)
  44. #define PCH_CMASK_CLRINTPND BIT(3)
  45. #define PCH_CMASK_CTRL BIT(4)
  46. #define PCH_CMASK_ARB BIT(5)
  47. #define PCH_CMASK_MASK BIT(6)
  48. #define PCH_CMASK_RDWR BIT(7)
  49. #define PCH_IF_MCONT_NEWDAT BIT(15)
  50. #define PCH_IF_MCONT_MSGLOST BIT(14)
  51. #define PCH_IF_MCONT_INTPND BIT(13)
  52. #define PCH_IF_MCONT_UMASK BIT(12)
  53. #define PCH_IF_MCONT_TXIE BIT(11)
  54. #define PCH_IF_MCONT_RXIE BIT(10)
  55. #define PCH_IF_MCONT_RMTEN BIT(9)
  56. #define PCH_IF_MCONT_TXRQXT BIT(8)
  57. #define PCH_IF_MCONT_EOB BIT(7)
  58. #define PCH_IF_MCONT_DLC (BIT(0) | BIT(1) | BIT(2) | BIT(3))
  59. #define PCH_MASK2_MDIR_MXTD (BIT(14) | BIT(15))
  60. #define PCH_ID2_DIR BIT(13)
  61. #define PCH_ID2_XTD BIT(14)
  62. #define PCH_ID_MSGVAL BIT(15)
  63. #define PCH_IF_CREQ_BUSY BIT(15)
  64. #define PCH_STATUS_INT 0x8000
  65. #define PCH_REC 0x00007f00
  66. #define PCH_TEC 0x000000ff
  67. #define PCH_TX_OK BIT(3)
  68. #define PCH_RX_OK BIT(4)
  69. #define PCH_EPASSIV BIT(5)
  70. #define PCH_EWARN BIT(6)
  71. #define PCH_BUS_OFF BIT(7)
  72. /* bit position of certain controller bits. */
  73. #define PCH_BIT_BRP_SHIFT 0
  74. #define PCH_BIT_SJW_SHIFT 6
  75. #define PCH_BIT_TSEG1_SHIFT 8
  76. #define PCH_BIT_TSEG2_SHIFT 12
  77. #define PCH_BIT_BRPE_BRPE_SHIFT 6
  78. #define PCH_MSK_BITT_BRP 0x3f
  79. #define PCH_MSK_BRPE_BRPE 0x3c0
  80. #define PCH_MSK_CTRL_IE_SIE_EIE 0x07
  81. #define PCH_COUNTER_LIMIT 10
  82. #define PCH_CAN_CLK 50000000 /* 50MHz */
  83. /*
  84. * Define the number of message object.
  85. * PCH CAN communications are done via Message RAM.
  86. * The Message RAM consists of 32 message objects.
  87. */
  88. #define PCH_RX_OBJ_NUM 26
  89. #define PCH_TX_OBJ_NUM 6
  90. #define PCH_RX_OBJ_START 1
  91. #define PCH_RX_OBJ_END PCH_RX_OBJ_NUM
  92. #define PCH_TX_OBJ_START (PCH_RX_OBJ_END + 1)
  93. #define PCH_TX_OBJ_END (PCH_RX_OBJ_NUM + PCH_TX_OBJ_NUM)
  94. #define PCH_FIFO_THRESH 16
  95. /* TxRqst2 show status of MsgObjNo.17~32 */
  96. #define PCH_TREQ2_TX_MASK (((1 << PCH_TX_OBJ_NUM) - 1) <<\
  97. (PCH_RX_OBJ_END - 16))
  98. enum pch_ifreg {
  99. PCH_RX_IFREG,
  100. PCH_TX_IFREG,
  101. };
  102. enum pch_can_err {
  103. PCH_STUF_ERR = 1,
  104. PCH_FORM_ERR,
  105. PCH_ACK_ERR,
  106. PCH_BIT1_ERR,
  107. PCH_BIT0_ERR,
  108. PCH_CRC_ERR,
  109. PCH_LEC_ALL,
  110. };
  111. enum pch_can_mode {
  112. PCH_CAN_ENABLE,
  113. PCH_CAN_DISABLE,
  114. PCH_CAN_ALL,
  115. PCH_CAN_NONE,
  116. PCH_CAN_STOP,
  117. PCH_CAN_RUN,
  118. };
  119. struct pch_can_if_regs {
  120. u32 creq;
  121. u32 cmask;
  122. u32 mask1;
  123. u32 mask2;
  124. u32 id1;
  125. u32 id2;
  126. u32 mcont;
  127. u32 data[4];
  128. u32 rsv[13];
  129. };
  130. struct pch_can_regs {
  131. u32 cont;
  132. u32 stat;
  133. u32 errc;
  134. u32 bitt;
  135. u32 intr;
  136. u32 opt;
  137. u32 brpe;
  138. u32 reserve;
  139. struct pch_can_if_regs ifregs[2]; /* [0]=if1 [1]=if2 */
  140. u32 reserve1[8];
  141. u32 treq1;
  142. u32 treq2;
  143. u32 reserve2[6];
  144. u32 data1;
  145. u32 data2;
  146. u32 reserve3[6];
  147. u32 canipend1;
  148. u32 canipend2;
  149. u32 reserve4[6];
  150. u32 canmval1;
  151. u32 canmval2;
  152. u32 reserve5[37];
  153. u32 srst;
  154. };
  155. struct pch_can_priv {
  156. struct can_priv can;
  157. struct pci_dev *dev;
  158. u32 tx_enable[PCH_TX_OBJ_END];
  159. u32 rx_enable[PCH_TX_OBJ_END];
  160. u32 rx_link[PCH_TX_OBJ_END];
  161. u32 int_enables;
  162. struct net_device *ndev;
  163. struct pch_can_regs __iomem *regs;
  164. struct napi_struct napi;
  165. int tx_obj; /* Point next Tx Obj index */
  166. int use_msi;
  167. };
  168. static struct can_bittiming_const pch_can_bittiming_const = {
  169. .name = KBUILD_MODNAME,
  170. .tseg1_min = 1,
  171. .tseg1_max = 16,
  172. .tseg2_min = 1,
  173. .tseg2_max = 8,
  174. .sjw_max = 4,
  175. .brp_min = 1,
  176. .brp_max = 1024, /* 6bit + extended 4bit */
  177. .brp_inc = 1,
  178. };
  179. static DEFINE_PCI_DEVICE_TABLE(pch_pci_tbl) = {
  180. {PCI_VENDOR_ID_INTEL, 0x8818, PCI_ANY_ID, PCI_ANY_ID,},
  181. {0,}
  182. };
  183. MODULE_DEVICE_TABLE(pci, pch_pci_tbl);
  184. static inline void pch_can_bit_set(void __iomem *addr, u32 mask)
  185. {
  186. iowrite32(ioread32(addr) | mask, addr);
  187. }
  188. static inline void pch_can_bit_clear(void __iomem *addr, u32 mask)
  189. {
  190. iowrite32(ioread32(addr) & ~mask, addr);
  191. }
  192. static void pch_can_set_run_mode(struct pch_can_priv *priv,
  193. enum pch_can_mode mode)
  194. {
  195. switch (mode) {
  196. case PCH_CAN_RUN:
  197. pch_can_bit_clear(&priv->regs->cont, PCH_CTRL_INIT);
  198. break;
  199. case PCH_CAN_STOP:
  200. pch_can_bit_set(&priv->regs->cont, PCH_CTRL_INIT);
  201. break;
  202. default:
  203. netdev_err(priv->ndev, "%s -> Invalid Mode.\n", __func__);
  204. break;
  205. }
  206. }
  207. static void pch_can_set_optmode(struct pch_can_priv *priv)
  208. {
  209. u32 reg_val = ioread32(&priv->regs->opt);
  210. if (priv->can.ctrlmode & CAN_CTRLMODE_LISTENONLY)
  211. reg_val |= PCH_OPT_SILENT;
  212. if (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK)
  213. reg_val |= PCH_OPT_LBACK;
  214. pch_can_bit_set(&priv->regs->cont, PCH_CTRL_OPT);
  215. iowrite32(reg_val, &priv->regs->opt);
  216. }
  217. static void pch_can_rw_msg_obj(void __iomem *creq_addr, u32 num)
  218. {
  219. int counter = PCH_COUNTER_LIMIT;
  220. u32 ifx_creq;
  221. iowrite32(num, creq_addr);
  222. while (counter) {
  223. ifx_creq = ioread32(creq_addr) & PCH_IF_CREQ_BUSY;
  224. if (!ifx_creq)
  225. break;
  226. counter--;
  227. udelay(1);
  228. }
  229. if (!counter)
  230. pr_err("%s:IF1 BUSY Flag is set forever.\n", __func__);
  231. }
  232. static void pch_can_set_int_enables(struct pch_can_priv *priv,
  233. enum pch_can_mode interrupt_no)
  234. {
  235. switch (interrupt_no) {
  236. case PCH_CAN_DISABLE:
  237. pch_can_bit_clear(&priv->regs->cont, PCH_CTRL_IE);
  238. break;
  239. case PCH_CAN_ALL:
  240. pch_can_bit_set(&priv->regs->cont, PCH_CTRL_IE_SIE_EIE);
  241. break;
  242. case PCH_CAN_NONE:
  243. pch_can_bit_clear(&priv->regs->cont, PCH_CTRL_IE_SIE_EIE);
  244. break;
  245. default:
  246. netdev_err(priv->ndev, "Invalid interrupt number.\n");
  247. break;
  248. }
  249. }
  250. static void pch_can_set_rxtx(struct pch_can_priv *priv, u32 buff_num,
  251. int set, enum pch_ifreg dir)
  252. {
  253. u32 ie;
  254. if (dir)
  255. ie = PCH_IF_MCONT_TXIE;
  256. else
  257. ie = PCH_IF_MCONT_RXIE;
  258. /* Reading the receive buffer data from RAM to Interface1/2 registers */
  259. iowrite32(PCH_CMASK_RX_TX_GET, &priv->regs->ifregs[dir].cmask);
  260. pch_can_rw_msg_obj(&priv->regs->ifregs[dir].creq, buff_num);
  261. /* Setting the IF1/2MASK1 register to access MsgVal and RxIE bits */
  262. iowrite32(PCH_CMASK_RDWR | PCH_CMASK_ARB | PCH_CMASK_CTRL,
  263. &priv->regs->ifregs[dir].cmask);
  264. if (set) {
  265. /* Setting the MsgVal and RxIE/TxIE bits */
  266. pch_can_bit_set(&priv->regs->ifregs[dir].mcont, ie);
  267. pch_can_bit_set(&priv->regs->ifregs[dir].id2, PCH_ID_MSGVAL);
  268. } else {
  269. /* Clearing the MsgVal and RxIE/TxIE bits */
  270. pch_can_bit_clear(&priv->regs->ifregs[dir].mcont, ie);
  271. pch_can_bit_clear(&priv->regs->ifregs[dir].id2, PCH_ID_MSGVAL);
  272. }
  273. pch_can_rw_msg_obj(&priv->regs->ifregs[dir].creq, buff_num);
  274. }
  275. static void pch_can_set_rx_all(struct pch_can_priv *priv, int set)
  276. {
  277. int i;
  278. /* Traversing to obtain the object configured as receivers. */
  279. for (i = PCH_RX_OBJ_START; i <= PCH_RX_OBJ_END; i++)
  280. pch_can_set_rxtx(priv, i, set, PCH_RX_IFREG);
  281. }
  282. static void pch_can_set_tx_all(struct pch_can_priv *priv, int set)
  283. {
  284. int i;
  285. /* Traversing to obtain the object configured as transmit object. */
  286. for (i = PCH_TX_OBJ_START; i <= PCH_TX_OBJ_END; i++)
  287. pch_can_set_rxtx(priv, i, set, PCH_TX_IFREG);
  288. }
  289. static u32 pch_can_int_pending(struct pch_can_priv *priv)
  290. {
  291. return ioread32(&priv->regs->intr) & 0xffff;
  292. }
  293. static void pch_can_clear_if_buffers(struct pch_can_priv *priv)
  294. {
  295. int i; /* Msg Obj ID (1~32) */
  296. for (i = PCH_RX_OBJ_START; i <= PCH_TX_OBJ_END; i++) {
  297. iowrite32(PCH_CMASK_RX_TX_SET, &priv->regs->ifregs[0].cmask);
  298. iowrite32(0xffff, &priv->regs->ifregs[0].mask1);
  299. iowrite32(0xffff, &priv->regs->ifregs[0].mask2);
  300. iowrite32(0x0, &priv->regs->ifregs[0].id1);
  301. iowrite32(0x0, &priv->regs->ifregs[0].id2);
  302. iowrite32(0x0, &priv->regs->ifregs[0].mcont);
  303. iowrite32(0x0, &priv->regs->ifregs[0].data[0]);
  304. iowrite32(0x0, &priv->regs->ifregs[0].data[1]);
  305. iowrite32(0x0, &priv->regs->ifregs[0].data[2]);
  306. iowrite32(0x0, &priv->regs->ifregs[0].data[3]);
  307. iowrite32(PCH_CMASK_RDWR | PCH_CMASK_MASK |
  308. PCH_CMASK_ARB | PCH_CMASK_CTRL,
  309. &priv->regs->ifregs[0].cmask);
  310. pch_can_rw_msg_obj(&priv->regs->ifregs[0].creq, i);
  311. }
  312. }
  313. static void pch_can_config_rx_tx_buffers(struct pch_can_priv *priv)
  314. {
  315. int i;
  316. for (i = PCH_RX_OBJ_START; i <= PCH_RX_OBJ_END; i++) {
  317. iowrite32(PCH_CMASK_RX_TX_GET, &priv->regs->ifregs[0].cmask);
  318. pch_can_rw_msg_obj(&priv->regs->ifregs[0].creq, i);
  319. iowrite32(0x0, &priv->regs->ifregs[0].id1);
  320. iowrite32(0x0, &priv->regs->ifregs[0].id2);
  321. pch_can_bit_set(&priv->regs->ifregs[0].mcont,
  322. PCH_IF_MCONT_UMASK);
  323. /* In case FIFO mode, Last EoB of Rx Obj must be 1 */
  324. if (i == PCH_RX_OBJ_END)
  325. pch_can_bit_set(&priv->regs->ifregs[0].mcont,
  326. PCH_IF_MCONT_EOB);
  327. else
  328. pch_can_bit_clear(&priv->regs->ifregs[0].mcont,
  329. PCH_IF_MCONT_EOB);
  330. iowrite32(0, &priv->regs->ifregs[0].mask1);
  331. pch_can_bit_clear(&priv->regs->ifregs[0].mask2,
  332. 0x1fff | PCH_MASK2_MDIR_MXTD);
  333. /* Setting CMASK for writing */
  334. iowrite32(PCH_CMASK_RDWR | PCH_CMASK_MASK | PCH_CMASK_ARB |
  335. PCH_CMASK_CTRL, &priv->regs->ifregs[0].cmask);
  336. pch_can_rw_msg_obj(&priv->regs->ifregs[0].creq, i);
  337. }
  338. for (i = PCH_TX_OBJ_START; i <= PCH_TX_OBJ_END; i++) {
  339. iowrite32(PCH_CMASK_RX_TX_GET, &priv->regs->ifregs[1].cmask);
  340. pch_can_rw_msg_obj(&priv->regs->ifregs[1].creq, i);
  341. /* Resetting DIR bit for reception */
  342. iowrite32(0x0, &priv->regs->ifregs[1].id1);
  343. iowrite32(PCH_ID2_DIR, &priv->regs->ifregs[1].id2);
  344. /* Setting EOB bit for transmitter */
  345. iowrite32(PCH_IF_MCONT_EOB | PCH_IF_MCONT_UMASK,
  346. &priv->regs->ifregs[1].mcont);
  347. iowrite32(0, &priv->regs->ifregs[1].mask1);
  348. pch_can_bit_clear(&priv->regs->ifregs[1].mask2, 0x1fff);
  349. /* Setting CMASK for writing */
  350. iowrite32(PCH_CMASK_RDWR | PCH_CMASK_MASK | PCH_CMASK_ARB |
  351. PCH_CMASK_CTRL, &priv->regs->ifregs[1].cmask);
  352. pch_can_rw_msg_obj(&priv->regs->ifregs[1].creq, i);
  353. }
  354. }
  355. static void pch_can_init(struct pch_can_priv *priv)
  356. {
  357. /* Stopping the Can device. */
  358. pch_can_set_run_mode(priv, PCH_CAN_STOP);
  359. /* Clearing all the message object buffers. */
  360. pch_can_clear_if_buffers(priv);
  361. /* Configuring the respective message object as either rx/tx object. */
  362. pch_can_config_rx_tx_buffers(priv);
  363. /* Enabling the interrupts. */
  364. pch_can_set_int_enables(priv, PCH_CAN_ALL);
  365. }
  366. static void pch_can_release(struct pch_can_priv *priv)
  367. {
  368. /* Stooping the CAN device. */
  369. pch_can_set_run_mode(priv, PCH_CAN_STOP);
  370. /* Disabling the interrupts. */
  371. pch_can_set_int_enables(priv, PCH_CAN_NONE);
  372. /* Disabling all the receive object. */
  373. pch_can_set_rx_all(priv, 0);
  374. /* Disabling all the transmit object. */
  375. pch_can_set_tx_all(priv, 0);
  376. }
  377. /* This function clears interrupt(s) from the CAN device. */
  378. static void pch_can_int_clr(struct pch_can_priv *priv, u32 mask)
  379. {
  380. /* Clear interrupt for transmit object */
  381. if ((mask >= PCH_RX_OBJ_START) && (mask <= PCH_RX_OBJ_END)) {
  382. /* Setting CMASK for clearing the reception interrupts. */
  383. iowrite32(PCH_CMASK_RDWR | PCH_CMASK_CTRL | PCH_CMASK_ARB,
  384. &priv->regs->ifregs[0].cmask);
  385. /* Clearing the Dir bit. */
  386. pch_can_bit_clear(&priv->regs->ifregs[0].id2, PCH_ID2_DIR);
  387. /* Clearing NewDat & IntPnd */
  388. pch_can_bit_clear(&priv->regs->ifregs[0].mcont,
  389. PCH_IF_MCONT_NEWDAT | PCH_IF_MCONT_INTPND);
  390. pch_can_rw_msg_obj(&priv->regs->ifregs[0].creq, mask);
  391. } else if ((mask >= PCH_TX_OBJ_START) && (mask <= PCH_TX_OBJ_END)) {
  392. /*
  393. * Setting CMASK for clearing interrupts for frame transmission.
  394. */
  395. iowrite32(PCH_CMASK_RDWR | PCH_CMASK_CTRL | PCH_CMASK_ARB,
  396. &priv->regs->ifregs[1].cmask);
  397. /* Resetting the ID registers. */
  398. pch_can_bit_set(&priv->regs->ifregs[1].id2,
  399. PCH_ID2_DIR | (0x7ff << 2));
  400. iowrite32(0x0, &priv->regs->ifregs[1].id1);
  401. /* Claring NewDat, TxRqst & IntPnd */
  402. pch_can_bit_clear(&priv->regs->ifregs[1].mcont,
  403. PCH_IF_MCONT_NEWDAT | PCH_IF_MCONT_INTPND |
  404. PCH_IF_MCONT_TXRQXT);
  405. pch_can_rw_msg_obj(&priv->regs->ifregs[1].creq, mask);
  406. }
  407. }
  408. static void pch_can_reset(struct pch_can_priv *priv)
  409. {
  410. /* write to sw reset register */
  411. iowrite32(1, &priv->regs->srst);
  412. iowrite32(0, &priv->regs->srst);
  413. }
  414. static void pch_can_error(struct net_device *ndev, u32 status)
  415. {
  416. struct sk_buff *skb;
  417. struct pch_can_priv *priv = netdev_priv(ndev);
  418. struct can_frame *cf;
  419. u32 errc, lec;
  420. struct net_device_stats *stats = &(priv->ndev->stats);
  421. enum can_state state = priv->can.state;
  422. skb = alloc_can_err_skb(ndev, &cf);
  423. if (!skb)
  424. return;
  425. if (status & PCH_BUS_OFF) {
  426. pch_can_set_tx_all(priv, 0);
  427. pch_can_set_rx_all(priv, 0);
  428. state = CAN_STATE_BUS_OFF;
  429. cf->can_id |= CAN_ERR_BUSOFF;
  430. can_bus_off(ndev);
  431. }
  432. errc = ioread32(&priv->regs->errc);
  433. /* Warning interrupt. */
  434. if (status & PCH_EWARN) {
  435. state = CAN_STATE_ERROR_WARNING;
  436. priv->can.can_stats.error_warning++;
  437. cf->can_id |= CAN_ERR_CRTL;
  438. if (((errc & PCH_REC) >> 8) > 96)
  439. cf->data[1] |= CAN_ERR_CRTL_RX_WARNING;
  440. if ((errc & PCH_TEC) > 96)
  441. cf->data[1] |= CAN_ERR_CRTL_TX_WARNING;
  442. netdev_dbg(ndev,
  443. "%s -> Error Counter is more than 96.\n", __func__);
  444. }
  445. /* Error passive interrupt. */
  446. if (status & PCH_EPASSIV) {
  447. priv->can.can_stats.error_passive++;
  448. state = CAN_STATE_ERROR_PASSIVE;
  449. cf->can_id |= CAN_ERR_CRTL;
  450. if (((errc & PCH_REC) >> 8) > 127)
  451. cf->data[1] |= CAN_ERR_CRTL_RX_PASSIVE;
  452. if ((errc & PCH_TEC) > 127)
  453. cf->data[1] |= CAN_ERR_CRTL_TX_PASSIVE;
  454. netdev_dbg(ndev,
  455. "%s -> CAN controller is ERROR PASSIVE .\n", __func__);
  456. }
  457. lec = status & PCH_LEC_ALL;
  458. switch (lec) {
  459. case PCH_STUF_ERR:
  460. cf->data[2] |= CAN_ERR_PROT_STUFF;
  461. priv->can.can_stats.bus_error++;
  462. stats->rx_errors++;
  463. break;
  464. case PCH_FORM_ERR:
  465. cf->data[2] |= CAN_ERR_PROT_FORM;
  466. priv->can.can_stats.bus_error++;
  467. stats->rx_errors++;
  468. break;
  469. case PCH_ACK_ERR:
  470. cf->can_id |= CAN_ERR_ACK;
  471. priv->can.can_stats.bus_error++;
  472. stats->rx_errors++;
  473. break;
  474. case PCH_BIT1_ERR:
  475. case PCH_BIT0_ERR:
  476. cf->data[2] |= CAN_ERR_PROT_BIT;
  477. priv->can.can_stats.bus_error++;
  478. stats->rx_errors++;
  479. break;
  480. case PCH_CRC_ERR:
  481. cf->data[2] |= CAN_ERR_PROT_LOC_CRC_SEQ |
  482. CAN_ERR_PROT_LOC_CRC_DEL;
  483. priv->can.can_stats.bus_error++;
  484. stats->rx_errors++;
  485. break;
  486. case PCH_LEC_ALL: /* Written by CPU. No error status */
  487. break;
  488. }
  489. priv->can.state = state;
  490. netif_rx(skb);
  491. stats->rx_packets++;
  492. stats->rx_bytes += cf->can_dlc;
  493. }
  494. static irqreturn_t pch_can_interrupt(int irq, void *dev_id)
  495. {
  496. struct net_device *ndev = (struct net_device *)dev_id;
  497. struct pch_can_priv *priv = netdev_priv(ndev);
  498. pch_can_set_int_enables(priv, PCH_CAN_NONE);
  499. napi_schedule(&priv->napi);
  500. return IRQ_HANDLED;
  501. }
  502. static void pch_fifo_thresh(struct pch_can_priv *priv, int obj_id)
  503. {
  504. if (obj_id < PCH_FIFO_THRESH) {
  505. iowrite32(PCH_CMASK_RDWR | PCH_CMASK_CTRL |
  506. PCH_CMASK_ARB, &priv->regs->ifregs[0].cmask);
  507. /* Clearing the Dir bit. */
  508. pch_can_bit_clear(&priv->regs->ifregs[0].id2, PCH_ID2_DIR);
  509. /* Clearing NewDat & IntPnd */
  510. pch_can_bit_clear(&priv->regs->ifregs[0].mcont,
  511. PCH_IF_MCONT_INTPND);
  512. pch_can_rw_msg_obj(&priv->regs->ifregs[0].creq, obj_id);
  513. } else if (obj_id > PCH_FIFO_THRESH) {
  514. pch_can_int_clr(priv, obj_id);
  515. } else if (obj_id == PCH_FIFO_THRESH) {
  516. int cnt;
  517. for (cnt = 0; cnt < PCH_FIFO_THRESH; cnt++)
  518. pch_can_int_clr(priv, cnt + 1);
  519. }
  520. }
  521. static void pch_can_rx_msg_lost(struct net_device *ndev, int obj_id)
  522. {
  523. struct pch_can_priv *priv = netdev_priv(ndev);
  524. struct net_device_stats *stats = &(priv->ndev->stats);
  525. struct sk_buff *skb;
  526. struct can_frame *cf;
  527. netdev_dbg(priv->ndev, "Msg Obj is overwritten.\n");
  528. pch_can_bit_clear(&priv->regs->ifregs[0].mcont,
  529. PCH_IF_MCONT_MSGLOST);
  530. iowrite32(PCH_CMASK_RDWR | PCH_CMASK_CTRL,
  531. &priv->regs->ifregs[0].cmask);
  532. pch_can_rw_msg_obj(&priv->regs->ifregs[0].creq, obj_id);
  533. skb = alloc_can_err_skb(ndev, &cf);
  534. if (!skb)
  535. return;
  536. cf->can_id |= CAN_ERR_CRTL;
  537. cf->data[1] = CAN_ERR_CRTL_RX_OVERFLOW;
  538. stats->rx_over_errors++;
  539. stats->rx_errors++;
  540. netif_receive_skb(skb);
  541. }
  542. static int pch_can_rx_normal(struct net_device *ndev, u32 obj_num, int quota)
  543. {
  544. u32 reg;
  545. canid_t id;
  546. int rcv_pkts = 0;
  547. struct sk_buff *skb;
  548. struct can_frame *cf;
  549. struct pch_can_priv *priv = netdev_priv(ndev);
  550. struct net_device_stats *stats = &(priv->ndev->stats);
  551. int i;
  552. u32 id2;
  553. u16 data_reg;
  554. do {
  555. /* Reading the messsage object from the Message RAM */
  556. iowrite32(PCH_CMASK_RX_TX_GET, &priv->regs->ifregs[0].cmask);
  557. pch_can_rw_msg_obj(&priv->regs->ifregs[0].creq, obj_num);
  558. /* Reading the MCONT register. */
  559. reg = ioread32(&priv->regs->ifregs[0].mcont);
  560. if (reg & PCH_IF_MCONT_EOB)
  561. break;
  562. /* If MsgLost bit set. */
  563. if (reg & PCH_IF_MCONT_MSGLOST) {
  564. pch_can_rx_msg_lost(ndev, obj_num);
  565. rcv_pkts++;
  566. quota--;
  567. obj_num++;
  568. continue;
  569. } else if (!(reg & PCH_IF_MCONT_NEWDAT)) {
  570. obj_num++;
  571. continue;
  572. }
  573. skb = alloc_can_skb(priv->ndev, &cf);
  574. if (!skb)
  575. return -ENOMEM;
  576. /* Get Received data */
  577. id2 = ioread32(&priv->regs->ifregs[0].id2);
  578. if (id2 & PCH_ID2_XTD) {
  579. id = (ioread32(&priv->regs->ifregs[0].id1) & 0xffff);
  580. id |= (((id2) & 0x1fff) << 16);
  581. cf->can_id = id | CAN_EFF_FLAG;
  582. } else {
  583. id = (id2 >> 2) & CAN_SFF_MASK;
  584. cf->can_id = id;
  585. }
  586. if (id2 & PCH_ID2_DIR)
  587. cf->can_id |= CAN_RTR_FLAG;
  588. cf->can_dlc = get_can_dlc((ioread32(&priv->regs->
  589. ifregs[0].mcont)) & 0xF);
  590. for (i = 0; i < cf->can_dlc; i += 2) {
  591. data_reg = ioread16(&priv->regs->ifregs[0].data[i / 2]);
  592. cf->data[i] = data_reg;
  593. cf->data[i + 1] = data_reg >> 8;
  594. }
  595. netif_receive_skb(skb);
  596. rcv_pkts++;
  597. stats->rx_packets++;
  598. quota--;
  599. stats->rx_bytes += cf->can_dlc;
  600. pch_fifo_thresh(priv, obj_num);
  601. obj_num++;
  602. } while (quota > 0);
  603. return rcv_pkts;
  604. }
  605. static void pch_can_tx_complete(struct net_device *ndev, u32 int_stat)
  606. {
  607. struct pch_can_priv *priv = netdev_priv(ndev);
  608. struct net_device_stats *stats = &(priv->ndev->stats);
  609. u32 dlc;
  610. can_get_echo_skb(ndev, int_stat - PCH_RX_OBJ_END - 1);
  611. iowrite32(PCH_CMASK_RX_TX_GET | PCH_CMASK_CLRINTPND,
  612. &priv->regs->ifregs[1].cmask);
  613. pch_can_rw_msg_obj(&priv->regs->ifregs[1].creq, int_stat);
  614. dlc = get_can_dlc(ioread32(&priv->regs->ifregs[1].mcont) &
  615. PCH_IF_MCONT_DLC);
  616. stats->tx_bytes += dlc;
  617. stats->tx_packets++;
  618. if (int_stat == PCH_TX_OBJ_END)
  619. netif_wake_queue(ndev);
  620. }
  621. static int pch_can_poll(struct napi_struct *napi, int quota)
  622. {
  623. struct net_device *ndev = napi->dev;
  624. struct pch_can_priv *priv = netdev_priv(ndev);
  625. u32 int_stat;
  626. int rcv_pkts = 0;
  627. u32 reg_stat;
  628. int_stat = pch_can_int_pending(priv);
  629. if (!int_stat)
  630. goto end;
  631. if (int_stat == PCH_STATUS_INT) {
  632. reg_stat = ioread32(&priv->regs->stat);
  633. if (reg_stat & (PCH_BUS_OFF | PCH_LEC_ALL)) {
  634. if (reg_stat & PCH_BUS_OFF ||
  635. (reg_stat & PCH_LEC_ALL) != PCH_LEC_ALL) {
  636. pch_can_error(ndev, reg_stat);
  637. quota--;
  638. }
  639. }
  640. if (reg_stat & PCH_TX_OK)
  641. pch_can_bit_clear(&priv->regs->stat, PCH_TX_OK);
  642. if (reg_stat & PCH_RX_OK)
  643. pch_can_bit_clear(&priv->regs->stat, PCH_RX_OK);
  644. int_stat = pch_can_int_pending(priv);
  645. }
  646. if (quota == 0)
  647. goto end;
  648. if ((int_stat >= PCH_RX_OBJ_START) && (int_stat <= PCH_RX_OBJ_END)) {
  649. rcv_pkts += pch_can_rx_normal(ndev, int_stat, quota);
  650. quota -= rcv_pkts;
  651. if (quota < 0)
  652. goto end;
  653. } else if ((int_stat >= PCH_TX_OBJ_START) &&
  654. (int_stat <= PCH_TX_OBJ_END)) {
  655. /* Handle transmission interrupt */
  656. pch_can_tx_complete(ndev, int_stat);
  657. }
  658. end:
  659. napi_complete(napi);
  660. pch_can_set_int_enables(priv, PCH_CAN_ALL);
  661. return rcv_pkts;
  662. }
  663. static int pch_set_bittiming(struct net_device *ndev)
  664. {
  665. struct pch_can_priv *priv = netdev_priv(ndev);
  666. const struct can_bittiming *bt = &priv->can.bittiming;
  667. u32 canbit;
  668. u32 bepe;
  669. /* Setting the CCE bit for accessing the Can Timing register. */
  670. pch_can_bit_set(&priv->regs->cont, PCH_CTRL_CCE);
  671. canbit = (bt->brp - 1) & PCH_MSK_BITT_BRP;
  672. canbit |= (bt->sjw - 1) << PCH_BIT_SJW_SHIFT;
  673. canbit |= (bt->phase_seg1 + bt->prop_seg - 1) << PCH_BIT_TSEG1_SHIFT;
  674. canbit |= (bt->phase_seg2 - 1) << PCH_BIT_TSEG2_SHIFT;
  675. bepe = ((bt->brp - 1) & PCH_MSK_BRPE_BRPE) >> PCH_BIT_BRPE_BRPE_SHIFT;
  676. iowrite32(canbit, &priv->regs->bitt);
  677. iowrite32(bepe, &priv->regs->brpe);
  678. pch_can_bit_clear(&priv->regs->cont, PCH_CTRL_CCE);
  679. return 0;
  680. }
  681. static void pch_can_start(struct net_device *ndev)
  682. {
  683. struct pch_can_priv *priv = netdev_priv(ndev);
  684. if (priv->can.state != CAN_STATE_STOPPED)
  685. pch_can_reset(priv);
  686. pch_set_bittiming(ndev);
  687. pch_can_set_optmode(priv);
  688. pch_can_set_tx_all(priv, 1);
  689. pch_can_set_rx_all(priv, 1);
  690. /* Setting the CAN to run mode. */
  691. pch_can_set_run_mode(priv, PCH_CAN_RUN);
  692. priv->can.state = CAN_STATE_ERROR_ACTIVE;
  693. return;
  694. }
  695. static int pch_can_do_set_mode(struct net_device *ndev, enum can_mode mode)
  696. {
  697. int ret = 0;
  698. switch (mode) {
  699. case CAN_MODE_START:
  700. pch_can_start(ndev);
  701. netif_wake_queue(ndev);
  702. break;
  703. default:
  704. ret = -EOPNOTSUPP;
  705. break;
  706. }
  707. return ret;
  708. }
  709. static int pch_can_open(struct net_device *ndev)
  710. {
  711. struct pch_can_priv *priv = netdev_priv(ndev);
  712. int retval;
  713. retval = pci_enable_msi(priv->dev);
  714. if (retval) {
  715. netdev_err(ndev, "PCH CAN opened without MSI\n");
  716. priv->use_msi = 0;
  717. } else {
  718. netdev_err(ndev, "PCH CAN opened with MSI\n");
  719. priv->use_msi = 1;
  720. }
  721. /* Regsitering the interrupt. */
  722. retval = request_irq(priv->dev->irq, pch_can_interrupt, IRQF_SHARED,
  723. ndev->name, ndev);
  724. if (retval) {
  725. netdev_err(ndev, "request_irq failed.\n");
  726. goto req_irq_err;
  727. }
  728. /* Open common can device */
  729. retval = open_candev(ndev);
  730. if (retval) {
  731. netdev_err(ndev, "open_candev() failed %d\n", retval);
  732. goto err_open_candev;
  733. }
  734. pch_can_init(priv);
  735. pch_can_start(ndev);
  736. napi_enable(&priv->napi);
  737. netif_start_queue(ndev);
  738. return 0;
  739. err_open_candev:
  740. free_irq(priv->dev->irq, ndev);
  741. req_irq_err:
  742. if (priv->use_msi)
  743. pci_disable_msi(priv->dev);
  744. pch_can_release(priv);
  745. return retval;
  746. }
  747. static int pch_close(struct net_device *ndev)
  748. {
  749. struct pch_can_priv *priv = netdev_priv(ndev);
  750. netif_stop_queue(ndev);
  751. napi_disable(&priv->napi);
  752. pch_can_release(priv);
  753. free_irq(priv->dev->irq, ndev);
  754. if (priv->use_msi)
  755. pci_disable_msi(priv->dev);
  756. close_candev(ndev);
  757. priv->can.state = CAN_STATE_STOPPED;
  758. return 0;
  759. }
  760. static netdev_tx_t pch_xmit(struct sk_buff *skb, struct net_device *ndev)
  761. {
  762. struct pch_can_priv *priv = netdev_priv(ndev);
  763. struct can_frame *cf = (struct can_frame *)skb->data;
  764. int tx_obj_no;
  765. int i;
  766. u32 id2;
  767. if (can_dropped_invalid_skb(ndev, skb))
  768. return NETDEV_TX_OK;
  769. if (priv->tx_obj == PCH_TX_OBJ_END) {
  770. if (ioread32(&priv->regs->treq2) & PCH_TREQ2_TX_MASK)
  771. netif_stop_queue(ndev);
  772. tx_obj_no = priv->tx_obj;
  773. priv->tx_obj = PCH_TX_OBJ_START;
  774. } else {
  775. tx_obj_no = priv->tx_obj;
  776. priv->tx_obj++;
  777. }
  778. /* Setting the CMASK register. */
  779. pch_can_bit_set(&priv->regs->ifregs[1].cmask, PCH_CMASK_ALL);
  780. /* If ID extended is set. */
  781. if (cf->can_id & CAN_EFF_FLAG) {
  782. iowrite32(cf->can_id & 0xffff, &priv->regs->ifregs[1].id1);
  783. id2 = ((cf->can_id >> 16) & 0x1fff) | PCH_ID2_XTD;
  784. } else {
  785. iowrite32(0, &priv->regs->ifregs[1].id1);
  786. id2 = (cf->can_id & CAN_SFF_MASK) << 2;
  787. }
  788. id2 |= PCH_ID_MSGVAL;
  789. /* If remote frame has to be transmitted.. */
  790. if (cf->can_id & CAN_RTR_FLAG)
  791. id2 &= ~PCH_ID2_DIR;
  792. else
  793. id2 |= PCH_ID2_DIR;
  794. iowrite32(id2, &priv->regs->ifregs[1].id2);
  795. /* Copy data to register */
  796. for (i = 0; i < cf->can_dlc; i += 2) {
  797. iowrite16(cf->data[i] | (cf->data[i + 1] << 8),
  798. &priv->regs->ifregs[1].data[i / 2]);
  799. }
  800. can_put_echo_skb(skb, ndev, tx_obj_no - PCH_RX_OBJ_END - 1);
  801. /* Updating the size of the data. */
  802. iowrite32(cf->can_dlc | PCH_IF_MCONT_NEWDAT | PCH_IF_MCONT_TXRQXT |
  803. PCH_IF_MCONT_TXIE, &priv->regs->ifregs[1].mcont);
  804. pch_can_rw_msg_obj(&priv->regs->ifregs[1].creq, tx_obj_no);
  805. return NETDEV_TX_OK;
  806. }
  807. static const struct net_device_ops pch_can_netdev_ops = {
  808. .ndo_open = pch_can_open,
  809. .ndo_stop = pch_close,
  810. .ndo_start_xmit = pch_xmit,
  811. };
  812. static void __devexit pch_can_remove(struct pci_dev *pdev)
  813. {
  814. struct net_device *ndev = pci_get_drvdata(pdev);
  815. struct pch_can_priv *priv = netdev_priv(ndev);
  816. unregister_candev(priv->ndev);
  817. free_candev(priv->ndev);
  818. pci_iounmap(pdev, priv->regs);
  819. pci_release_regions(pdev);
  820. pci_disable_device(pdev);
  821. pci_set_drvdata(pdev, NULL);
  822. pch_can_reset(priv);
  823. }
  824. #ifdef CONFIG_PM
  825. static void pch_can_set_int_custom(struct pch_can_priv *priv)
  826. {
  827. /* Clearing the IE, SIE and EIE bits of Can control register. */
  828. pch_can_bit_clear(&priv->regs->cont, PCH_CTRL_IE_SIE_EIE);
  829. /* Appropriately setting them. */
  830. pch_can_bit_set(&priv->regs->cont,
  831. ((priv->int_enables & PCH_MSK_CTRL_IE_SIE_EIE) << 1));
  832. }
  833. /* This function retrieves interrupt enabled for the CAN device. */
  834. static u32 pch_can_get_int_enables(struct pch_can_priv *priv)
  835. {
  836. /* Obtaining the status of IE, SIE and EIE interrupt bits. */
  837. return (ioread32(&priv->regs->cont) & PCH_CTRL_IE_SIE_EIE) >> 1;
  838. }
  839. static u32 pch_can_get_rxtx_ir(struct pch_can_priv *priv, u32 buff_num,
  840. enum pch_ifreg dir)
  841. {
  842. u32 ie, enable;
  843. if (dir)
  844. ie = PCH_IF_MCONT_RXIE;
  845. else
  846. ie = PCH_IF_MCONT_TXIE;
  847. iowrite32(PCH_CMASK_RX_TX_GET, &priv->regs->ifregs[dir].cmask);
  848. pch_can_rw_msg_obj(&priv->regs->ifregs[dir].creq, buff_num);
  849. if (((ioread32(&priv->regs->ifregs[dir].id2)) & PCH_ID_MSGVAL) &&
  850. ((ioread32(&priv->regs->ifregs[dir].mcont)) & ie))
  851. enable = 1;
  852. else
  853. enable = 0;
  854. return enable;
  855. }
  856. static void pch_can_set_rx_buffer_link(struct pch_can_priv *priv,
  857. u32 buffer_num, int set)
  858. {
  859. iowrite32(PCH_CMASK_RX_TX_GET, &priv->regs->ifregs[0].cmask);
  860. pch_can_rw_msg_obj(&priv->regs->ifregs[0].creq, buffer_num);
  861. iowrite32(PCH_CMASK_RDWR | PCH_CMASK_CTRL,
  862. &priv->regs->ifregs[0].cmask);
  863. if (set)
  864. pch_can_bit_clear(&priv->regs->ifregs[0].mcont,
  865. PCH_IF_MCONT_EOB);
  866. else
  867. pch_can_bit_set(&priv->regs->ifregs[0].mcont, PCH_IF_MCONT_EOB);
  868. pch_can_rw_msg_obj(&priv->regs->ifregs[0].creq, buffer_num);
  869. }
  870. static u32 pch_can_get_rx_buffer_link(struct pch_can_priv *priv, u32 buffer_num)
  871. {
  872. u32 link;
  873. iowrite32(PCH_CMASK_RX_TX_GET, &priv->regs->ifregs[0].cmask);
  874. pch_can_rw_msg_obj(&priv->regs->ifregs[0].creq, buffer_num);
  875. if (ioread32(&priv->regs->ifregs[0].mcont) & PCH_IF_MCONT_EOB)
  876. link = 0;
  877. else
  878. link = 1;
  879. return link;
  880. }
  881. static int pch_can_get_buffer_status(struct pch_can_priv *priv)
  882. {
  883. return (ioread32(&priv->regs->treq1) & 0xffff) |
  884. (ioread32(&priv->regs->treq2) << 16);
  885. }
  886. static int pch_can_suspend(struct pci_dev *pdev, pm_message_t state)
  887. {
  888. int i; /* Counter variable. */
  889. int retval; /* Return value. */
  890. u32 buf_stat; /* Variable for reading the transmit buffer status. */
  891. int counter = PCH_COUNTER_LIMIT;
  892. struct net_device *dev = pci_get_drvdata(pdev);
  893. struct pch_can_priv *priv = netdev_priv(dev);
  894. /* Stop the CAN controller */
  895. pch_can_set_run_mode(priv, PCH_CAN_STOP);
  896. /* Indicate that we are aboutto/in suspend */
  897. priv->can.state = CAN_STATE_STOPPED;
  898. /* Waiting for all transmission to complete. */
  899. while (counter) {
  900. buf_stat = pch_can_get_buffer_status(priv);
  901. if (!buf_stat)
  902. break;
  903. counter--;
  904. udelay(1);
  905. }
  906. if (!counter)
  907. dev_err(&pdev->dev, "%s -> Transmission time out.\n", __func__);
  908. /* Save interrupt configuration and then disable them */
  909. priv->int_enables = pch_can_get_int_enables(priv);
  910. pch_can_set_int_enables(priv, PCH_CAN_DISABLE);
  911. /* Save Tx buffer enable state */
  912. for (i = PCH_TX_OBJ_START; i <= PCH_TX_OBJ_END; i++)
  913. priv->tx_enable[i] = pch_can_get_rxtx_ir(priv, i, PCH_TX_IFREG);
  914. /* Disable all Transmit buffers */
  915. pch_can_set_tx_all(priv, 0);
  916. /* Save Rx buffer enable state */
  917. for (i = PCH_RX_OBJ_START; i <= PCH_RX_OBJ_END; i++) {
  918. priv->rx_enable[i] = pch_can_get_rxtx_ir(priv, i, PCH_RX_IFREG);
  919. priv->rx_link[i] = pch_can_get_rx_buffer_link(priv, i);
  920. }
  921. /* Disable all Receive buffers */
  922. pch_can_set_rx_all(priv, 0);
  923. retval = pci_save_state(pdev);
  924. if (retval) {
  925. dev_err(&pdev->dev, "pci_save_state failed.\n");
  926. } else {
  927. pci_enable_wake(pdev, PCI_D3hot, 0);
  928. pci_disable_device(pdev);
  929. pci_set_power_state(pdev, pci_choose_state(pdev, state));
  930. }
  931. return retval;
  932. }
  933. static int pch_can_resume(struct pci_dev *pdev)
  934. {
  935. int i; /* Counter variable. */
  936. int retval; /* Return variable. */
  937. struct net_device *dev = pci_get_drvdata(pdev);
  938. struct pch_can_priv *priv = netdev_priv(dev);
  939. pci_set_power_state(pdev, PCI_D0);
  940. pci_restore_state(pdev);
  941. retval = pci_enable_device(pdev);
  942. if (retval) {
  943. dev_err(&pdev->dev, "pci_enable_device failed.\n");
  944. return retval;
  945. }
  946. pci_enable_wake(pdev, PCI_D3hot, 0);
  947. priv->can.state = CAN_STATE_ERROR_ACTIVE;
  948. /* Disabling all interrupts. */
  949. pch_can_set_int_enables(priv, PCH_CAN_DISABLE);
  950. /* Setting the CAN device in Stop Mode. */
  951. pch_can_set_run_mode(priv, PCH_CAN_STOP);
  952. /* Configuring the transmit and receive buffers. */
  953. pch_can_config_rx_tx_buffers(priv);
  954. /* Restore the CAN state */
  955. pch_set_bittiming(dev);
  956. /* Listen/Active */
  957. pch_can_set_optmode(priv);
  958. /* Enabling the transmit buffer. */
  959. for (i = PCH_TX_OBJ_START; i <= PCH_TX_OBJ_END; i++)
  960. pch_can_set_rxtx(priv, i, priv->tx_enable[i], PCH_TX_IFREG);
  961. /* Configuring the receive buffer and enabling them. */
  962. for (i = PCH_RX_OBJ_START; i <= PCH_RX_OBJ_END; i++) {
  963. /* Restore buffer link */
  964. pch_can_set_rx_buffer_link(priv, i, priv->rx_link[i]);
  965. /* Restore buffer enables */
  966. pch_can_set_rxtx(priv, i, priv->rx_enable[i], PCH_RX_IFREG);
  967. }
  968. /* Enable CAN Interrupts */
  969. pch_can_set_int_custom(priv);
  970. /* Restore Run Mode */
  971. pch_can_set_run_mode(priv, PCH_CAN_RUN);
  972. return retval;
  973. }
  974. #else
  975. #define pch_can_suspend NULL
  976. #define pch_can_resume NULL
  977. #endif
  978. static int pch_can_get_berr_counter(const struct net_device *dev,
  979. struct can_berr_counter *bec)
  980. {
  981. struct pch_can_priv *priv = netdev_priv(dev);
  982. u32 errc = ioread32(&priv->regs->errc);
  983. bec->txerr = errc & PCH_TEC;
  984. bec->rxerr = (errc & PCH_REC) >> 8;
  985. return 0;
  986. }
  987. static int __devinit pch_can_probe(struct pci_dev *pdev,
  988. const struct pci_device_id *id)
  989. {
  990. struct net_device *ndev;
  991. struct pch_can_priv *priv;
  992. int rc;
  993. void __iomem *addr;
  994. rc = pci_enable_device(pdev);
  995. if (rc) {
  996. dev_err(&pdev->dev, "Failed pci_enable_device %d\n", rc);
  997. goto probe_exit_endev;
  998. }
  999. rc = pci_request_regions(pdev, KBUILD_MODNAME);
  1000. if (rc) {
  1001. dev_err(&pdev->dev, "Failed pci_request_regions %d\n", rc);
  1002. goto probe_exit_pcireq;
  1003. }
  1004. addr = pci_iomap(pdev, 1, 0);
  1005. if (!addr) {
  1006. rc = -EIO;
  1007. dev_err(&pdev->dev, "Failed pci_iomap\n");
  1008. goto probe_exit_ipmap;
  1009. }
  1010. ndev = alloc_candev(sizeof(struct pch_can_priv), PCH_TX_OBJ_END);
  1011. if (!ndev) {
  1012. rc = -ENOMEM;
  1013. dev_err(&pdev->dev, "Failed alloc_candev\n");
  1014. goto probe_exit_alloc_candev;
  1015. }
  1016. priv = netdev_priv(ndev);
  1017. priv->ndev = ndev;
  1018. priv->regs = addr;
  1019. priv->dev = pdev;
  1020. priv->can.bittiming_const = &pch_can_bittiming_const;
  1021. priv->can.do_set_mode = pch_can_do_set_mode;
  1022. priv->can.do_get_berr_counter = pch_can_get_berr_counter;
  1023. priv->can.ctrlmode_supported = CAN_CTRLMODE_LISTENONLY |
  1024. CAN_CTRLMODE_LOOPBACK;
  1025. priv->tx_obj = PCH_TX_OBJ_START; /* Point head of Tx Obj */
  1026. ndev->irq = pdev->irq;
  1027. ndev->flags |= IFF_ECHO;
  1028. pci_set_drvdata(pdev, ndev);
  1029. SET_NETDEV_DEV(ndev, &pdev->dev);
  1030. ndev->netdev_ops = &pch_can_netdev_ops;
  1031. priv->can.clock.freq = PCH_CAN_CLK; /* Hz */
  1032. netif_napi_add(ndev, &priv->napi, pch_can_poll, PCH_RX_OBJ_END);
  1033. rc = register_candev(ndev);
  1034. if (rc) {
  1035. dev_err(&pdev->dev, "Failed register_candev %d\n", rc);
  1036. goto probe_exit_reg_candev;
  1037. }
  1038. return 0;
  1039. probe_exit_reg_candev:
  1040. free_candev(ndev);
  1041. probe_exit_alloc_candev:
  1042. pci_iounmap(pdev, addr);
  1043. probe_exit_ipmap:
  1044. pci_release_regions(pdev);
  1045. probe_exit_pcireq:
  1046. pci_disable_device(pdev);
  1047. probe_exit_endev:
  1048. return rc;
  1049. }
  1050. static struct pci_driver pch_can_pci_driver = {
  1051. .name = "pch_can",
  1052. .id_table = pch_pci_tbl,
  1053. .probe = pch_can_probe,
  1054. .remove = __devexit_p(pch_can_remove),
  1055. .suspend = pch_can_suspend,
  1056. .resume = pch_can_resume,
  1057. };
  1058. static int __init pch_can_pci_init(void)
  1059. {
  1060. return pci_register_driver(&pch_can_pci_driver);
  1061. }
  1062. module_init(pch_can_pci_init);
  1063. static void __exit pch_can_pci_exit(void)
  1064. {
  1065. pci_unregister_driver(&pch_can_pci_driver);
  1066. }
  1067. module_exit(pch_can_pci_exit);
  1068. MODULE_DESCRIPTION("Intel EG20T PCH CAN(Controller Area Network) Driver");
  1069. MODULE_LICENSE("GPL v2");
  1070. MODULE_VERSION("0.94");