huge_memory.c 74 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799
  1. /*
  2. * Copyright (C) 2009 Red Hat, Inc.
  3. *
  4. * This work is licensed under the terms of the GNU GPL, version 2. See
  5. * the COPYING file in the top-level directory.
  6. */
  7. #include <linux/mm.h>
  8. #include <linux/sched.h>
  9. #include <linux/highmem.h>
  10. #include <linux/hugetlb.h>
  11. #include <linux/mmu_notifier.h>
  12. #include <linux/rmap.h>
  13. #include <linux/swap.h>
  14. #include <linux/shrinker.h>
  15. #include <linux/mm_inline.h>
  16. #include <linux/kthread.h>
  17. #include <linux/khugepaged.h>
  18. #include <linux/freezer.h>
  19. #include <linux/mman.h>
  20. #include <linux/pagemap.h>
  21. #include <linux/migrate.h>
  22. #include <linux/hashtable.h>
  23. #include <asm/tlb.h>
  24. #include <asm/pgalloc.h>
  25. #include "internal.h"
  26. /*
  27. * By default transparent hugepage support is enabled for all mappings
  28. * and khugepaged scans all mappings. Defrag is only invoked by
  29. * khugepaged hugepage allocations and by page faults inside
  30. * MADV_HUGEPAGE regions to avoid the risk of slowing down short lived
  31. * allocations.
  32. */
  33. unsigned long transparent_hugepage_flags __read_mostly =
  34. #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
  35. (1<<TRANSPARENT_HUGEPAGE_FLAG)|
  36. #endif
  37. #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
  38. (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
  39. #endif
  40. (1<<TRANSPARENT_HUGEPAGE_DEFRAG_FLAG)|
  41. (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
  42. (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
  43. /* default scan 8*512 pte (or vmas) every 30 second */
  44. static unsigned int khugepaged_pages_to_scan __read_mostly = HPAGE_PMD_NR*8;
  45. static unsigned int khugepaged_pages_collapsed;
  46. static unsigned int khugepaged_full_scans;
  47. static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
  48. /* during fragmentation poll the hugepage allocator once every minute */
  49. static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
  50. static struct task_struct *khugepaged_thread __read_mostly;
  51. static DEFINE_MUTEX(khugepaged_mutex);
  52. static DEFINE_SPINLOCK(khugepaged_mm_lock);
  53. static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
  54. /*
  55. * default collapse hugepages if there is at least one pte mapped like
  56. * it would have happened if the vma was large enough during page
  57. * fault.
  58. */
  59. static unsigned int khugepaged_max_ptes_none __read_mostly = HPAGE_PMD_NR-1;
  60. static int khugepaged(void *none);
  61. static int khugepaged_slab_init(void);
  62. #define MM_SLOTS_HASH_BITS 10
  63. static __read_mostly DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
  64. static struct kmem_cache *mm_slot_cache __read_mostly;
  65. /**
  66. * struct mm_slot - hash lookup from mm to mm_slot
  67. * @hash: hash collision list
  68. * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
  69. * @mm: the mm that this information is valid for
  70. */
  71. struct mm_slot {
  72. struct hlist_node hash;
  73. struct list_head mm_node;
  74. struct mm_struct *mm;
  75. };
  76. /**
  77. * struct khugepaged_scan - cursor for scanning
  78. * @mm_head: the head of the mm list to scan
  79. * @mm_slot: the current mm_slot we are scanning
  80. * @address: the next address inside that to be scanned
  81. *
  82. * There is only the one khugepaged_scan instance of this cursor structure.
  83. */
  84. struct khugepaged_scan {
  85. struct list_head mm_head;
  86. struct mm_slot *mm_slot;
  87. unsigned long address;
  88. };
  89. static struct khugepaged_scan khugepaged_scan = {
  90. .mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
  91. };
  92. static int set_recommended_min_free_kbytes(void)
  93. {
  94. struct zone *zone;
  95. int nr_zones = 0;
  96. unsigned long recommended_min;
  97. if (!khugepaged_enabled())
  98. return 0;
  99. for_each_populated_zone(zone)
  100. nr_zones++;
  101. /* Make sure at least 2 hugepages are free for MIGRATE_RESERVE */
  102. recommended_min = pageblock_nr_pages * nr_zones * 2;
  103. /*
  104. * Make sure that on average at least two pageblocks are almost free
  105. * of another type, one for a migratetype to fall back to and a
  106. * second to avoid subsequent fallbacks of other types There are 3
  107. * MIGRATE_TYPES we care about.
  108. */
  109. recommended_min += pageblock_nr_pages * nr_zones *
  110. MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
  111. /* don't ever allow to reserve more than 5% of the lowmem */
  112. recommended_min = min(recommended_min,
  113. (unsigned long) nr_free_buffer_pages() / 20);
  114. recommended_min <<= (PAGE_SHIFT-10);
  115. if (recommended_min > min_free_kbytes)
  116. min_free_kbytes = recommended_min;
  117. setup_per_zone_wmarks();
  118. return 0;
  119. }
  120. late_initcall(set_recommended_min_free_kbytes);
  121. static int start_khugepaged(void)
  122. {
  123. int err = 0;
  124. if (khugepaged_enabled()) {
  125. if (!khugepaged_thread)
  126. khugepaged_thread = kthread_run(khugepaged, NULL,
  127. "khugepaged");
  128. if (unlikely(IS_ERR(khugepaged_thread))) {
  129. printk(KERN_ERR
  130. "khugepaged: kthread_run(khugepaged) failed\n");
  131. err = PTR_ERR(khugepaged_thread);
  132. khugepaged_thread = NULL;
  133. }
  134. if (!list_empty(&khugepaged_scan.mm_head))
  135. wake_up_interruptible(&khugepaged_wait);
  136. set_recommended_min_free_kbytes();
  137. } else if (khugepaged_thread) {
  138. kthread_stop(khugepaged_thread);
  139. khugepaged_thread = NULL;
  140. }
  141. return err;
  142. }
  143. static atomic_t huge_zero_refcount;
  144. static struct page *huge_zero_page __read_mostly;
  145. static inline bool is_huge_zero_page(struct page *page)
  146. {
  147. return ACCESS_ONCE(huge_zero_page) == page;
  148. }
  149. static inline bool is_huge_zero_pmd(pmd_t pmd)
  150. {
  151. return is_huge_zero_page(pmd_page(pmd));
  152. }
  153. static struct page *get_huge_zero_page(void)
  154. {
  155. struct page *zero_page;
  156. retry:
  157. if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
  158. return ACCESS_ONCE(huge_zero_page);
  159. zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
  160. HPAGE_PMD_ORDER);
  161. if (!zero_page) {
  162. count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
  163. return NULL;
  164. }
  165. count_vm_event(THP_ZERO_PAGE_ALLOC);
  166. preempt_disable();
  167. if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
  168. preempt_enable();
  169. __free_page(zero_page);
  170. goto retry;
  171. }
  172. /* We take additional reference here. It will be put back by shrinker */
  173. atomic_set(&huge_zero_refcount, 2);
  174. preempt_enable();
  175. return ACCESS_ONCE(huge_zero_page);
  176. }
  177. static void put_huge_zero_page(void)
  178. {
  179. /*
  180. * Counter should never go to zero here. Only shrinker can put
  181. * last reference.
  182. */
  183. BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
  184. }
  185. static int shrink_huge_zero_page(struct shrinker *shrink,
  186. struct shrink_control *sc)
  187. {
  188. if (!sc->nr_to_scan)
  189. /* we can free zero page only if last reference remains */
  190. return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
  191. if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
  192. struct page *zero_page = xchg(&huge_zero_page, NULL);
  193. BUG_ON(zero_page == NULL);
  194. __free_page(zero_page);
  195. }
  196. return 0;
  197. }
  198. static struct shrinker huge_zero_page_shrinker = {
  199. .shrink = shrink_huge_zero_page,
  200. .seeks = DEFAULT_SEEKS,
  201. };
  202. #ifdef CONFIG_SYSFS
  203. static ssize_t double_flag_show(struct kobject *kobj,
  204. struct kobj_attribute *attr, char *buf,
  205. enum transparent_hugepage_flag enabled,
  206. enum transparent_hugepage_flag req_madv)
  207. {
  208. if (test_bit(enabled, &transparent_hugepage_flags)) {
  209. VM_BUG_ON(test_bit(req_madv, &transparent_hugepage_flags));
  210. return sprintf(buf, "[always] madvise never\n");
  211. } else if (test_bit(req_madv, &transparent_hugepage_flags))
  212. return sprintf(buf, "always [madvise] never\n");
  213. else
  214. return sprintf(buf, "always madvise [never]\n");
  215. }
  216. static ssize_t double_flag_store(struct kobject *kobj,
  217. struct kobj_attribute *attr,
  218. const char *buf, size_t count,
  219. enum transparent_hugepage_flag enabled,
  220. enum transparent_hugepage_flag req_madv)
  221. {
  222. if (!memcmp("always", buf,
  223. min(sizeof("always")-1, count))) {
  224. set_bit(enabled, &transparent_hugepage_flags);
  225. clear_bit(req_madv, &transparent_hugepage_flags);
  226. } else if (!memcmp("madvise", buf,
  227. min(sizeof("madvise")-1, count))) {
  228. clear_bit(enabled, &transparent_hugepage_flags);
  229. set_bit(req_madv, &transparent_hugepage_flags);
  230. } else if (!memcmp("never", buf,
  231. min(sizeof("never")-1, count))) {
  232. clear_bit(enabled, &transparent_hugepage_flags);
  233. clear_bit(req_madv, &transparent_hugepage_flags);
  234. } else
  235. return -EINVAL;
  236. return count;
  237. }
  238. static ssize_t enabled_show(struct kobject *kobj,
  239. struct kobj_attribute *attr, char *buf)
  240. {
  241. return double_flag_show(kobj, attr, buf,
  242. TRANSPARENT_HUGEPAGE_FLAG,
  243. TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
  244. }
  245. static ssize_t enabled_store(struct kobject *kobj,
  246. struct kobj_attribute *attr,
  247. const char *buf, size_t count)
  248. {
  249. ssize_t ret;
  250. ret = double_flag_store(kobj, attr, buf, count,
  251. TRANSPARENT_HUGEPAGE_FLAG,
  252. TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
  253. if (ret > 0) {
  254. int err;
  255. mutex_lock(&khugepaged_mutex);
  256. err = start_khugepaged();
  257. mutex_unlock(&khugepaged_mutex);
  258. if (err)
  259. ret = err;
  260. }
  261. return ret;
  262. }
  263. static struct kobj_attribute enabled_attr =
  264. __ATTR(enabled, 0644, enabled_show, enabled_store);
  265. static ssize_t single_flag_show(struct kobject *kobj,
  266. struct kobj_attribute *attr, char *buf,
  267. enum transparent_hugepage_flag flag)
  268. {
  269. return sprintf(buf, "%d\n",
  270. !!test_bit(flag, &transparent_hugepage_flags));
  271. }
  272. static ssize_t single_flag_store(struct kobject *kobj,
  273. struct kobj_attribute *attr,
  274. const char *buf, size_t count,
  275. enum transparent_hugepage_flag flag)
  276. {
  277. unsigned long value;
  278. int ret;
  279. ret = kstrtoul(buf, 10, &value);
  280. if (ret < 0)
  281. return ret;
  282. if (value > 1)
  283. return -EINVAL;
  284. if (value)
  285. set_bit(flag, &transparent_hugepage_flags);
  286. else
  287. clear_bit(flag, &transparent_hugepage_flags);
  288. return count;
  289. }
  290. /*
  291. * Currently defrag only disables __GFP_NOWAIT for allocation. A blind
  292. * __GFP_REPEAT is too aggressive, it's never worth swapping tons of
  293. * memory just to allocate one more hugepage.
  294. */
  295. static ssize_t defrag_show(struct kobject *kobj,
  296. struct kobj_attribute *attr, char *buf)
  297. {
  298. return double_flag_show(kobj, attr, buf,
  299. TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
  300. TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
  301. }
  302. static ssize_t defrag_store(struct kobject *kobj,
  303. struct kobj_attribute *attr,
  304. const char *buf, size_t count)
  305. {
  306. return double_flag_store(kobj, attr, buf, count,
  307. TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
  308. TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
  309. }
  310. static struct kobj_attribute defrag_attr =
  311. __ATTR(defrag, 0644, defrag_show, defrag_store);
  312. static ssize_t use_zero_page_show(struct kobject *kobj,
  313. struct kobj_attribute *attr, char *buf)
  314. {
  315. return single_flag_show(kobj, attr, buf,
  316. TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
  317. }
  318. static ssize_t use_zero_page_store(struct kobject *kobj,
  319. struct kobj_attribute *attr, const char *buf, size_t count)
  320. {
  321. return single_flag_store(kobj, attr, buf, count,
  322. TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
  323. }
  324. static struct kobj_attribute use_zero_page_attr =
  325. __ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
  326. #ifdef CONFIG_DEBUG_VM
  327. static ssize_t debug_cow_show(struct kobject *kobj,
  328. struct kobj_attribute *attr, char *buf)
  329. {
  330. return single_flag_show(kobj, attr, buf,
  331. TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
  332. }
  333. static ssize_t debug_cow_store(struct kobject *kobj,
  334. struct kobj_attribute *attr,
  335. const char *buf, size_t count)
  336. {
  337. return single_flag_store(kobj, attr, buf, count,
  338. TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
  339. }
  340. static struct kobj_attribute debug_cow_attr =
  341. __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
  342. #endif /* CONFIG_DEBUG_VM */
  343. static struct attribute *hugepage_attr[] = {
  344. &enabled_attr.attr,
  345. &defrag_attr.attr,
  346. &use_zero_page_attr.attr,
  347. #ifdef CONFIG_DEBUG_VM
  348. &debug_cow_attr.attr,
  349. #endif
  350. NULL,
  351. };
  352. static struct attribute_group hugepage_attr_group = {
  353. .attrs = hugepage_attr,
  354. };
  355. static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
  356. struct kobj_attribute *attr,
  357. char *buf)
  358. {
  359. return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs);
  360. }
  361. static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
  362. struct kobj_attribute *attr,
  363. const char *buf, size_t count)
  364. {
  365. unsigned long msecs;
  366. int err;
  367. err = strict_strtoul(buf, 10, &msecs);
  368. if (err || msecs > UINT_MAX)
  369. return -EINVAL;
  370. khugepaged_scan_sleep_millisecs = msecs;
  371. wake_up_interruptible(&khugepaged_wait);
  372. return count;
  373. }
  374. static struct kobj_attribute scan_sleep_millisecs_attr =
  375. __ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
  376. scan_sleep_millisecs_store);
  377. static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
  378. struct kobj_attribute *attr,
  379. char *buf)
  380. {
  381. return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
  382. }
  383. static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
  384. struct kobj_attribute *attr,
  385. const char *buf, size_t count)
  386. {
  387. unsigned long msecs;
  388. int err;
  389. err = strict_strtoul(buf, 10, &msecs);
  390. if (err || msecs > UINT_MAX)
  391. return -EINVAL;
  392. khugepaged_alloc_sleep_millisecs = msecs;
  393. wake_up_interruptible(&khugepaged_wait);
  394. return count;
  395. }
  396. static struct kobj_attribute alloc_sleep_millisecs_attr =
  397. __ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
  398. alloc_sleep_millisecs_store);
  399. static ssize_t pages_to_scan_show(struct kobject *kobj,
  400. struct kobj_attribute *attr,
  401. char *buf)
  402. {
  403. return sprintf(buf, "%u\n", khugepaged_pages_to_scan);
  404. }
  405. static ssize_t pages_to_scan_store(struct kobject *kobj,
  406. struct kobj_attribute *attr,
  407. const char *buf, size_t count)
  408. {
  409. int err;
  410. unsigned long pages;
  411. err = strict_strtoul(buf, 10, &pages);
  412. if (err || !pages || pages > UINT_MAX)
  413. return -EINVAL;
  414. khugepaged_pages_to_scan = pages;
  415. return count;
  416. }
  417. static struct kobj_attribute pages_to_scan_attr =
  418. __ATTR(pages_to_scan, 0644, pages_to_scan_show,
  419. pages_to_scan_store);
  420. static ssize_t pages_collapsed_show(struct kobject *kobj,
  421. struct kobj_attribute *attr,
  422. char *buf)
  423. {
  424. return sprintf(buf, "%u\n", khugepaged_pages_collapsed);
  425. }
  426. static struct kobj_attribute pages_collapsed_attr =
  427. __ATTR_RO(pages_collapsed);
  428. static ssize_t full_scans_show(struct kobject *kobj,
  429. struct kobj_attribute *attr,
  430. char *buf)
  431. {
  432. return sprintf(buf, "%u\n", khugepaged_full_scans);
  433. }
  434. static struct kobj_attribute full_scans_attr =
  435. __ATTR_RO(full_scans);
  436. static ssize_t khugepaged_defrag_show(struct kobject *kobj,
  437. struct kobj_attribute *attr, char *buf)
  438. {
  439. return single_flag_show(kobj, attr, buf,
  440. TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
  441. }
  442. static ssize_t khugepaged_defrag_store(struct kobject *kobj,
  443. struct kobj_attribute *attr,
  444. const char *buf, size_t count)
  445. {
  446. return single_flag_store(kobj, attr, buf, count,
  447. TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
  448. }
  449. static struct kobj_attribute khugepaged_defrag_attr =
  450. __ATTR(defrag, 0644, khugepaged_defrag_show,
  451. khugepaged_defrag_store);
  452. /*
  453. * max_ptes_none controls if khugepaged should collapse hugepages over
  454. * any unmapped ptes in turn potentially increasing the memory
  455. * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
  456. * reduce the available free memory in the system as it
  457. * runs. Increasing max_ptes_none will instead potentially reduce the
  458. * free memory in the system during the khugepaged scan.
  459. */
  460. static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
  461. struct kobj_attribute *attr,
  462. char *buf)
  463. {
  464. return sprintf(buf, "%u\n", khugepaged_max_ptes_none);
  465. }
  466. static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
  467. struct kobj_attribute *attr,
  468. const char *buf, size_t count)
  469. {
  470. int err;
  471. unsigned long max_ptes_none;
  472. err = strict_strtoul(buf, 10, &max_ptes_none);
  473. if (err || max_ptes_none > HPAGE_PMD_NR-1)
  474. return -EINVAL;
  475. khugepaged_max_ptes_none = max_ptes_none;
  476. return count;
  477. }
  478. static struct kobj_attribute khugepaged_max_ptes_none_attr =
  479. __ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
  480. khugepaged_max_ptes_none_store);
  481. static struct attribute *khugepaged_attr[] = {
  482. &khugepaged_defrag_attr.attr,
  483. &khugepaged_max_ptes_none_attr.attr,
  484. &pages_to_scan_attr.attr,
  485. &pages_collapsed_attr.attr,
  486. &full_scans_attr.attr,
  487. &scan_sleep_millisecs_attr.attr,
  488. &alloc_sleep_millisecs_attr.attr,
  489. NULL,
  490. };
  491. static struct attribute_group khugepaged_attr_group = {
  492. .attrs = khugepaged_attr,
  493. .name = "khugepaged",
  494. };
  495. static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
  496. {
  497. int err;
  498. *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
  499. if (unlikely(!*hugepage_kobj)) {
  500. printk(KERN_ERR "hugepage: failed to create transparent hugepage kobject\n");
  501. return -ENOMEM;
  502. }
  503. err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
  504. if (err) {
  505. printk(KERN_ERR "hugepage: failed to register transparent hugepage group\n");
  506. goto delete_obj;
  507. }
  508. err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
  509. if (err) {
  510. printk(KERN_ERR "hugepage: failed to register transparent hugepage group\n");
  511. goto remove_hp_group;
  512. }
  513. return 0;
  514. remove_hp_group:
  515. sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
  516. delete_obj:
  517. kobject_put(*hugepage_kobj);
  518. return err;
  519. }
  520. static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
  521. {
  522. sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
  523. sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
  524. kobject_put(hugepage_kobj);
  525. }
  526. #else
  527. static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
  528. {
  529. return 0;
  530. }
  531. static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
  532. {
  533. }
  534. #endif /* CONFIG_SYSFS */
  535. static int __init hugepage_init(void)
  536. {
  537. int err;
  538. struct kobject *hugepage_kobj;
  539. if (!has_transparent_hugepage()) {
  540. transparent_hugepage_flags = 0;
  541. return -EINVAL;
  542. }
  543. err = hugepage_init_sysfs(&hugepage_kobj);
  544. if (err)
  545. return err;
  546. err = khugepaged_slab_init();
  547. if (err)
  548. goto out;
  549. register_shrinker(&huge_zero_page_shrinker);
  550. /*
  551. * By default disable transparent hugepages on smaller systems,
  552. * where the extra memory used could hurt more than TLB overhead
  553. * is likely to save. The admin can still enable it through /sys.
  554. */
  555. if (totalram_pages < (512 << (20 - PAGE_SHIFT)))
  556. transparent_hugepage_flags = 0;
  557. start_khugepaged();
  558. return 0;
  559. out:
  560. hugepage_exit_sysfs(hugepage_kobj);
  561. return err;
  562. }
  563. module_init(hugepage_init)
  564. static int __init setup_transparent_hugepage(char *str)
  565. {
  566. int ret = 0;
  567. if (!str)
  568. goto out;
  569. if (!strcmp(str, "always")) {
  570. set_bit(TRANSPARENT_HUGEPAGE_FLAG,
  571. &transparent_hugepage_flags);
  572. clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
  573. &transparent_hugepage_flags);
  574. ret = 1;
  575. } else if (!strcmp(str, "madvise")) {
  576. clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
  577. &transparent_hugepage_flags);
  578. set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
  579. &transparent_hugepage_flags);
  580. ret = 1;
  581. } else if (!strcmp(str, "never")) {
  582. clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
  583. &transparent_hugepage_flags);
  584. clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
  585. &transparent_hugepage_flags);
  586. ret = 1;
  587. }
  588. out:
  589. if (!ret)
  590. printk(KERN_WARNING
  591. "transparent_hugepage= cannot parse, ignored\n");
  592. return ret;
  593. }
  594. __setup("transparent_hugepage=", setup_transparent_hugepage);
  595. pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
  596. {
  597. if (likely(vma->vm_flags & VM_WRITE))
  598. pmd = pmd_mkwrite(pmd);
  599. return pmd;
  600. }
  601. static inline pmd_t mk_huge_pmd(struct page *page, struct vm_area_struct *vma)
  602. {
  603. pmd_t entry;
  604. entry = mk_pmd(page, vma->vm_page_prot);
  605. entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
  606. entry = pmd_mkhuge(entry);
  607. return entry;
  608. }
  609. static int __do_huge_pmd_anonymous_page(struct mm_struct *mm,
  610. struct vm_area_struct *vma,
  611. unsigned long haddr, pmd_t *pmd,
  612. struct page *page)
  613. {
  614. pgtable_t pgtable;
  615. VM_BUG_ON(!PageCompound(page));
  616. pgtable = pte_alloc_one(mm, haddr);
  617. if (unlikely(!pgtable))
  618. return VM_FAULT_OOM;
  619. clear_huge_page(page, haddr, HPAGE_PMD_NR);
  620. /*
  621. * The memory barrier inside __SetPageUptodate makes sure that
  622. * clear_huge_page writes become visible before the set_pmd_at()
  623. * write.
  624. */
  625. __SetPageUptodate(page);
  626. spin_lock(&mm->page_table_lock);
  627. if (unlikely(!pmd_none(*pmd))) {
  628. spin_unlock(&mm->page_table_lock);
  629. mem_cgroup_uncharge_page(page);
  630. put_page(page);
  631. pte_free(mm, pgtable);
  632. } else {
  633. pmd_t entry;
  634. entry = mk_huge_pmd(page, vma);
  635. page_add_new_anon_rmap(page, vma, haddr);
  636. pgtable_trans_huge_deposit(mm, pmd, pgtable);
  637. set_pmd_at(mm, haddr, pmd, entry);
  638. add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
  639. mm->nr_ptes++;
  640. spin_unlock(&mm->page_table_lock);
  641. }
  642. return 0;
  643. }
  644. static inline gfp_t alloc_hugepage_gfpmask(int defrag, gfp_t extra_gfp)
  645. {
  646. return (GFP_TRANSHUGE & ~(defrag ? 0 : __GFP_WAIT)) | extra_gfp;
  647. }
  648. static inline struct page *alloc_hugepage_vma(int defrag,
  649. struct vm_area_struct *vma,
  650. unsigned long haddr, int nd,
  651. gfp_t extra_gfp)
  652. {
  653. return alloc_pages_vma(alloc_hugepage_gfpmask(defrag, extra_gfp),
  654. HPAGE_PMD_ORDER, vma, haddr, nd);
  655. }
  656. #ifndef CONFIG_NUMA
  657. static inline struct page *alloc_hugepage(int defrag)
  658. {
  659. return alloc_pages(alloc_hugepage_gfpmask(defrag, 0),
  660. HPAGE_PMD_ORDER);
  661. }
  662. #endif
  663. static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
  664. struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
  665. struct page *zero_page)
  666. {
  667. pmd_t entry;
  668. if (!pmd_none(*pmd))
  669. return false;
  670. entry = mk_pmd(zero_page, vma->vm_page_prot);
  671. entry = pmd_wrprotect(entry);
  672. entry = pmd_mkhuge(entry);
  673. pgtable_trans_huge_deposit(mm, pmd, pgtable);
  674. set_pmd_at(mm, haddr, pmd, entry);
  675. mm->nr_ptes++;
  676. return true;
  677. }
  678. int do_huge_pmd_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
  679. unsigned long address, pmd_t *pmd,
  680. unsigned int flags)
  681. {
  682. struct page *page;
  683. unsigned long haddr = address & HPAGE_PMD_MASK;
  684. pte_t *pte;
  685. if (haddr >= vma->vm_start && haddr + HPAGE_PMD_SIZE <= vma->vm_end) {
  686. if (unlikely(anon_vma_prepare(vma)))
  687. return VM_FAULT_OOM;
  688. if (unlikely(khugepaged_enter(vma)))
  689. return VM_FAULT_OOM;
  690. if (!(flags & FAULT_FLAG_WRITE) &&
  691. transparent_hugepage_use_zero_page()) {
  692. pgtable_t pgtable;
  693. struct page *zero_page;
  694. bool set;
  695. pgtable = pte_alloc_one(mm, haddr);
  696. if (unlikely(!pgtable))
  697. return VM_FAULT_OOM;
  698. zero_page = get_huge_zero_page();
  699. if (unlikely(!zero_page)) {
  700. pte_free(mm, pgtable);
  701. count_vm_event(THP_FAULT_FALLBACK);
  702. goto out;
  703. }
  704. spin_lock(&mm->page_table_lock);
  705. set = set_huge_zero_page(pgtable, mm, vma, haddr, pmd,
  706. zero_page);
  707. spin_unlock(&mm->page_table_lock);
  708. if (!set) {
  709. pte_free(mm, pgtable);
  710. put_huge_zero_page();
  711. }
  712. return 0;
  713. }
  714. page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
  715. vma, haddr, numa_node_id(), 0);
  716. if (unlikely(!page)) {
  717. count_vm_event(THP_FAULT_FALLBACK);
  718. goto out;
  719. }
  720. count_vm_event(THP_FAULT_ALLOC);
  721. if (unlikely(mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))) {
  722. put_page(page);
  723. goto out;
  724. }
  725. if (unlikely(__do_huge_pmd_anonymous_page(mm, vma, haddr, pmd,
  726. page))) {
  727. mem_cgroup_uncharge_page(page);
  728. put_page(page);
  729. goto out;
  730. }
  731. return 0;
  732. }
  733. out:
  734. /*
  735. * Use __pte_alloc instead of pte_alloc_map, because we can't
  736. * run pte_offset_map on the pmd, if an huge pmd could
  737. * materialize from under us from a different thread.
  738. */
  739. if (unlikely(pmd_none(*pmd)) &&
  740. unlikely(__pte_alloc(mm, vma, pmd, address)))
  741. return VM_FAULT_OOM;
  742. /* if an huge pmd materialized from under us just retry later */
  743. if (unlikely(pmd_trans_huge(*pmd)))
  744. return 0;
  745. /*
  746. * A regular pmd is established and it can't morph into a huge pmd
  747. * from under us anymore at this point because we hold the mmap_sem
  748. * read mode and khugepaged takes it in write mode. So now it's
  749. * safe to run pte_offset_map().
  750. */
  751. pte = pte_offset_map(pmd, address);
  752. return handle_pte_fault(mm, vma, address, pte, pmd, flags);
  753. }
  754. int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  755. pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
  756. struct vm_area_struct *vma)
  757. {
  758. struct page *src_page;
  759. pmd_t pmd;
  760. pgtable_t pgtable;
  761. int ret;
  762. ret = -ENOMEM;
  763. pgtable = pte_alloc_one(dst_mm, addr);
  764. if (unlikely(!pgtable))
  765. goto out;
  766. spin_lock(&dst_mm->page_table_lock);
  767. spin_lock_nested(&src_mm->page_table_lock, SINGLE_DEPTH_NESTING);
  768. ret = -EAGAIN;
  769. pmd = *src_pmd;
  770. if (unlikely(!pmd_trans_huge(pmd))) {
  771. pte_free(dst_mm, pgtable);
  772. goto out_unlock;
  773. }
  774. /*
  775. * mm->page_table_lock is enough to be sure that huge zero pmd is not
  776. * under splitting since we don't split the page itself, only pmd to
  777. * a page table.
  778. */
  779. if (is_huge_zero_pmd(pmd)) {
  780. struct page *zero_page;
  781. bool set;
  782. /*
  783. * get_huge_zero_page() will never allocate a new page here,
  784. * since we already have a zero page to copy. It just takes a
  785. * reference.
  786. */
  787. zero_page = get_huge_zero_page();
  788. set = set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
  789. zero_page);
  790. BUG_ON(!set); /* unexpected !pmd_none(dst_pmd) */
  791. ret = 0;
  792. goto out_unlock;
  793. }
  794. if (unlikely(pmd_trans_splitting(pmd))) {
  795. /* split huge page running from under us */
  796. spin_unlock(&src_mm->page_table_lock);
  797. spin_unlock(&dst_mm->page_table_lock);
  798. pte_free(dst_mm, pgtable);
  799. wait_split_huge_page(vma->anon_vma, src_pmd); /* src_vma */
  800. goto out;
  801. }
  802. src_page = pmd_page(pmd);
  803. VM_BUG_ON(!PageHead(src_page));
  804. get_page(src_page);
  805. page_dup_rmap(src_page);
  806. add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
  807. pmdp_set_wrprotect(src_mm, addr, src_pmd);
  808. pmd = pmd_mkold(pmd_wrprotect(pmd));
  809. pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
  810. set_pmd_at(dst_mm, addr, dst_pmd, pmd);
  811. dst_mm->nr_ptes++;
  812. ret = 0;
  813. out_unlock:
  814. spin_unlock(&src_mm->page_table_lock);
  815. spin_unlock(&dst_mm->page_table_lock);
  816. out:
  817. return ret;
  818. }
  819. void huge_pmd_set_accessed(struct mm_struct *mm,
  820. struct vm_area_struct *vma,
  821. unsigned long address,
  822. pmd_t *pmd, pmd_t orig_pmd,
  823. int dirty)
  824. {
  825. pmd_t entry;
  826. unsigned long haddr;
  827. spin_lock(&mm->page_table_lock);
  828. if (unlikely(!pmd_same(*pmd, orig_pmd)))
  829. goto unlock;
  830. entry = pmd_mkyoung(orig_pmd);
  831. haddr = address & HPAGE_PMD_MASK;
  832. if (pmdp_set_access_flags(vma, haddr, pmd, entry, dirty))
  833. update_mmu_cache_pmd(vma, address, pmd);
  834. unlock:
  835. spin_unlock(&mm->page_table_lock);
  836. }
  837. static int do_huge_pmd_wp_zero_page_fallback(struct mm_struct *mm,
  838. struct vm_area_struct *vma, unsigned long address,
  839. pmd_t *pmd, pmd_t orig_pmd, unsigned long haddr)
  840. {
  841. pgtable_t pgtable;
  842. pmd_t _pmd;
  843. struct page *page;
  844. int i, ret = 0;
  845. unsigned long mmun_start; /* For mmu_notifiers */
  846. unsigned long mmun_end; /* For mmu_notifiers */
  847. page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
  848. if (!page) {
  849. ret |= VM_FAULT_OOM;
  850. goto out;
  851. }
  852. if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL)) {
  853. put_page(page);
  854. ret |= VM_FAULT_OOM;
  855. goto out;
  856. }
  857. clear_user_highpage(page, address);
  858. __SetPageUptodate(page);
  859. mmun_start = haddr;
  860. mmun_end = haddr + HPAGE_PMD_SIZE;
  861. mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
  862. spin_lock(&mm->page_table_lock);
  863. if (unlikely(!pmd_same(*pmd, orig_pmd)))
  864. goto out_free_page;
  865. pmdp_clear_flush(vma, haddr, pmd);
  866. /* leave pmd empty until pte is filled */
  867. pgtable = pgtable_trans_huge_withdraw(mm, pmd);
  868. pmd_populate(mm, &_pmd, pgtable);
  869. for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
  870. pte_t *pte, entry;
  871. if (haddr == (address & PAGE_MASK)) {
  872. entry = mk_pte(page, vma->vm_page_prot);
  873. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  874. page_add_new_anon_rmap(page, vma, haddr);
  875. } else {
  876. entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
  877. entry = pte_mkspecial(entry);
  878. }
  879. pte = pte_offset_map(&_pmd, haddr);
  880. VM_BUG_ON(!pte_none(*pte));
  881. set_pte_at(mm, haddr, pte, entry);
  882. pte_unmap(pte);
  883. }
  884. smp_wmb(); /* make pte visible before pmd */
  885. pmd_populate(mm, pmd, pgtable);
  886. spin_unlock(&mm->page_table_lock);
  887. put_huge_zero_page();
  888. inc_mm_counter(mm, MM_ANONPAGES);
  889. mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
  890. ret |= VM_FAULT_WRITE;
  891. out:
  892. return ret;
  893. out_free_page:
  894. spin_unlock(&mm->page_table_lock);
  895. mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
  896. mem_cgroup_uncharge_page(page);
  897. put_page(page);
  898. goto out;
  899. }
  900. static int do_huge_pmd_wp_page_fallback(struct mm_struct *mm,
  901. struct vm_area_struct *vma,
  902. unsigned long address,
  903. pmd_t *pmd, pmd_t orig_pmd,
  904. struct page *page,
  905. unsigned long haddr)
  906. {
  907. pgtable_t pgtable;
  908. pmd_t _pmd;
  909. int ret = 0, i;
  910. struct page **pages;
  911. unsigned long mmun_start; /* For mmu_notifiers */
  912. unsigned long mmun_end; /* For mmu_notifiers */
  913. pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
  914. GFP_KERNEL);
  915. if (unlikely(!pages)) {
  916. ret |= VM_FAULT_OOM;
  917. goto out;
  918. }
  919. for (i = 0; i < HPAGE_PMD_NR; i++) {
  920. pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE |
  921. __GFP_OTHER_NODE,
  922. vma, address, page_to_nid(page));
  923. if (unlikely(!pages[i] ||
  924. mem_cgroup_newpage_charge(pages[i], mm,
  925. GFP_KERNEL))) {
  926. if (pages[i])
  927. put_page(pages[i]);
  928. mem_cgroup_uncharge_start();
  929. while (--i >= 0) {
  930. mem_cgroup_uncharge_page(pages[i]);
  931. put_page(pages[i]);
  932. }
  933. mem_cgroup_uncharge_end();
  934. kfree(pages);
  935. ret |= VM_FAULT_OOM;
  936. goto out;
  937. }
  938. }
  939. for (i = 0; i < HPAGE_PMD_NR; i++) {
  940. copy_user_highpage(pages[i], page + i,
  941. haddr + PAGE_SIZE * i, vma);
  942. __SetPageUptodate(pages[i]);
  943. cond_resched();
  944. }
  945. mmun_start = haddr;
  946. mmun_end = haddr + HPAGE_PMD_SIZE;
  947. mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
  948. spin_lock(&mm->page_table_lock);
  949. if (unlikely(!pmd_same(*pmd, orig_pmd)))
  950. goto out_free_pages;
  951. VM_BUG_ON(!PageHead(page));
  952. pmdp_clear_flush(vma, haddr, pmd);
  953. /* leave pmd empty until pte is filled */
  954. pgtable = pgtable_trans_huge_withdraw(mm, pmd);
  955. pmd_populate(mm, &_pmd, pgtable);
  956. for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
  957. pte_t *pte, entry;
  958. entry = mk_pte(pages[i], vma->vm_page_prot);
  959. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  960. page_add_new_anon_rmap(pages[i], vma, haddr);
  961. pte = pte_offset_map(&_pmd, haddr);
  962. VM_BUG_ON(!pte_none(*pte));
  963. set_pte_at(mm, haddr, pte, entry);
  964. pte_unmap(pte);
  965. }
  966. kfree(pages);
  967. smp_wmb(); /* make pte visible before pmd */
  968. pmd_populate(mm, pmd, pgtable);
  969. page_remove_rmap(page);
  970. spin_unlock(&mm->page_table_lock);
  971. mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
  972. ret |= VM_FAULT_WRITE;
  973. put_page(page);
  974. out:
  975. return ret;
  976. out_free_pages:
  977. spin_unlock(&mm->page_table_lock);
  978. mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
  979. mem_cgroup_uncharge_start();
  980. for (i = 0; i < HPAGE_PMD_NR; i++) {
  981. mem_cgroup_uncharge_page(pages[i]);
  982. put_page(pages[i]);
  983. }
  984. mem_cgroup_uncharge_end();
  985. kfree(pages);
  986. goto out;
  987. }
  988. int do_huge_pmd_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
  989. unsigned long address, pmd_t *pmd, pmd_t orig_pmd)
  990. {
  991. int ret = 0;
  992. struct page *page = NULL, *new_page;
  993. unsigned long haddr;
  994. unsigned long mmun_start; /* For mmu_notifiers */
  995. unsigned long mmun_end; /* For mmu_notifiers */
  996. VM_BUG_ON(!vma->anon_vma);
  997. haddr = address & HPAGE_PMD_MASK;
  998. if (is_huge_zero_pmd(orig_pmd))
  999. goto alloc;
  1000. spin_lock(&mm->page_table_lock);
  1001. if (unlikely(!pmd_same(*pmd, orig_pmd)))
  1002. goto out_unlock;
  1003. page = pmd_page(orig_pmd);
  1004. VM_BUG_ON(!PageCompound(page) || !PageHead(page));
  1005. if (page_mapcount(page) == 1) {
  1006. pmd_t entry;
  1007. entry = pmd_mkyoung(orig_pmd);
  1008. entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
  1009. if (pmdp_set_access_flags(vma, haddr, pmd, entry, 1))
  1010. update_mmu_cache_pmd(vma, address, pmd);
  1011. ret |= VM_FAULT_WRITE;
  1012. goto out_unlock;
  1013. }
  1014. get_page(page);
  1015. spin_unlock(&mm->page_table_lock);
  1016. alloc:
  1017. if (transparent_hugepage_enabled(vma) &&
  1018. !transparent_hugepage_debug_cow())
  1019. new_page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
  1020. vma, haddr, numa_node_id(), 0);
  1021. else
  1022. new_page = NULL;
  1023. if (unlikely(!new_page)) {
  1024. count_vm_event(THP_FAULT_FALLBACK);
  1025. if (is_huge_zero_pmd(orig_pmd)) {
  1026. ret = do_huge_pmd_wp_zero_page_fallback(mm, vma,
  1027. address, pmd, orig_pmd, haddr);
  1028. } else {
  1029. ret = do_huge_pmd_wp_page_fallback(mm, vma, address,
  1030. pmd, orig_pmd, page, haddr);
  1031. if (ret & VM_FAULT_OOM)
  1032. split_huge_page(page);
  1033. put_page(page);
  1034. }
  1035. goto out;
  1036. }
  1037. count_vm_event(THP_FAULT_ALLOC);
  1038. if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))) {
  1039. put_page(new_page);
  1040. if (page) {
  1041. split_huge_page(page);
  1042. put_page(page);
  1043. }
  1044. ret |= VM_FAULT_OOM;
  1045. goto out;
  1046. }
  1047. if (is_huge_zero_pmd(orig_pmd))
  1048. clear_huge_page(new_page, haddr, HPAGE_PMD_NR);
  1049. else
  1050. copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
  1051. __SetPageUptodate(new_page);
  1052. mmun_start = haddr;
  1053. mmun_end = haddr + HPAGE_PMD_SIZE;
  1054. mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
  1055. spin_lock(&mm->page_table_lock);
  1056. if (page)
  1057. put_page(page);
  1058. if (unlikely(!pmd_same(*pmd, orig_pmd))) {
  1059. spin_unlock(&mm->page_table_lock);
  1060. mem_cgroup_uncharge_page(new_page);
  1061. put_page(new_page);
  1062. goto out_mn;
  1063. } else {
  1064. pmd_t entry;
  1065. entry = mk_huge_pmd(new_page, vma);
  1066. pmdp_clear_flush(vma, haddr, pmd);
  1067. page_add_new_anon_rmap(new_page, vma, haddr);
  1068. set_pmd_at(mm, haddr, pmd, entry);
  1069. update_mmu_cache_pmd(vma, address, pmd);
  1070. if (is_huge_zero_pmd(orig_pmd)) {
  1071. add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
  1072. put_huge_zero_page();
  1073. } else {
  1074. VM_BUG_ON(!PageHead(page));
  1075. page_remove_rmap(page);
  1076. put_page(page);
  1077. }
  1078. ret |= VM_FAULT_WRITE;
  1079. }
  1080. spin_unlock(&mm->page_table_lock);
  1081. out_mn:
  1082. mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
  1083. out:
  1084. return ret;
  1085. out_unlock:
  1086. spin_unlock(&mm->page_table_lock);
  1087. return ret;
  1088. }
  1089. struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
  1090. unsigned long addr,
  1091. pmd_t *pmd,
  1092. unsigned int flags)
  1093. {
  1094. struct mm_struct *mm = vma->vm_mm;
  1095. struct page *page = NULL;
  1096. assert_spin_locked(&mm->page_table_lock);
  1097. if (flags & FOLL_WRITE && !pmd_write(*pmd))
  1098. goto out;
  1099. /* Avoid dumping huge zero page */
  1100. if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
  1101. return ERR_PTR(-EFAULT);
  1102. page = pmd_page(*pmd);
  1103. VM_BUG_ON(!PageHead(page));
  1104. if (flags & FOLL_TOUCH) {
  1105. pmd_t _pmd;
  1106. /*
  1107. * We should set the dirty bit only for FOLL_WRITE but
  1108. * for now the dirty bit in the pmd is meaningless.
  1109. * And if the dirty bit will become meaningful and
  1110. * we'll only set it with FOLL_WRITE, an atomic
  1111. * set_bit will be required on the pmd to set the
  1112. * young bit, instead of the current set_pmd_at.
  1113. */
  1114. _pmd = pmd_mkyoung(pmd_mkdirty(*pmd));
  1115. if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
  1116. pmd, _pmd, 1))
  1117. update_mmu_cache_pmd(vma, addr, pmd);
  1118. }
  1119. if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
  1120. if (page->mapping && trylock_page(page)) {
  1121. lru_add_drain();
  1122. if (page->mapping)
  1123. mlock_vma_page(page);
  1124. unlock_page(page);
  1125. }
  1126. }
  1127. page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
  1128. VM_BUG_ON(!PageCompound(page));
  1129. if (flags & FOLL_GET)
  1130. get_page_foll(page);
  1131. out:
  1132. return page;
  1133. }
  1134. /* NUMA hinting page fault entry point for trans huge pmds */
  1135. int do_huge_pmd_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
  1136. unsigned long addr, pmd_t pmd, pmd_t *pmdp)
  1137. {
  1138. struct page *page;
  1139. unsigned long haddr = addr & HPAGE_PMD_MASK;
  1140. int target_nid;
  1141. int current_nid = -1;
  1142. bool migrated;
  1143. spin_lock(&mm->page_table_lock);
  1144. if (unlikely(!pmd_same(pmd, *pmdp)))
  1145. goto out_unlock;
  1146. page = pmd_page(pmd);
  1147. get_page(page);
  1148. current_nid = page_to_nid(page);
  1149. count_vm_numa_event(NUMA_HINT_FAULTS);
  1150. if (current_nid == numa_node_id())
  1151. count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
  1152. target_nid = mpol_misplaced(page, vma, haddr);
  1153. if (target_nid == -1) {
  1154. put_page(page);
  1155. goto clear_pmdnuma;
  1156. }
  1157. /* Acquire the page lock to serialise THP migrations */
  1158. spin_unlock(&mm->page_table_lock);
  1159. lock_page(page);
  1160. /* Confirm the PTE did not while locked */
  1161. spin_lock(&mm->page_table_lock);
  1162. if (unlikely(!pmd_same(pmd, *pmdp))) {
  1163. unlock_page(page);
  1164. put_page(page);
  1165. goto out_unlock;
  1166. }
  1167. spin_unlock(&mm->page_table_lock);
  1168. /* Migrate the THP to the requested node */
  1169. migrated = migrate_misplaced_transhuge_page(mm, vma,
  1170. pmdp, pmd, addr, page, target_nid);
  1171. if (!migrated)
  1172. goto check_same;
  1173. task_numa_fault(target_nid, HPAGE_PMD_NR, true);
  1174. return 0;
  1175. check_same:
  1176. spin_lock(&mm->page_table_lock);
  1177. if (unlikely(!pmd_same(pmd, *pmdp)))
  1178. goto out_unlock;
  1179. clear_pmdnuma:
  1180. pmd = pmd_mknonnuma(pmd);
  1181. set_pmd_at(mm, haddr, pmdp, pmd);
  1182. VM_BUG_ON(pmd_numa(*pmdp));
  1183. update_mmu_cache_pmd(vma, addr, pmdp);
  1184. out_unlock:
  1185. spin_unlock(&mm->page_table_lock);
  1186. if (current_nid != -1)
  1187. task_numa_fault(current_nid, HPAGE_PMD_NR, false);
  1188. return 0;
  1189. }
  1190. int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
  1191. pmd_t *pmd, unsigned long addr)
  1192. {
  1193. int ret = 0;
  1194. if (__pmd_trans_huge_lock(pmd, vma) == 1) {
  1195. struct page *page;
  1196. pgtable_t pgtable;
  1197. pmd_t orig_pmd;
  1198. /*
  1199. * For architectures like ppc64 we look at deposited pgtable
  1200. * when calling pmdp_get_and_clear. So do the
  1201. * pgtable_trans_huge_withdraw after finishing pmdp related
  1202. * operations.
  1203. */
  1204. orig_pmd = pmdp_get_and_clear(tlb->mm, addr, pmd);
  1205. tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
  1206. pgtable = pgtable_trans_huge_withdraw(tlb->mm, pmd);
  1207. if (is_huge_zero_pmd(orig_pmd)) {
  1208. tlb->mm->nr_ptes--;
  1209. spin_unlock(&tlb->mm->page_table_lock);
  1210. put_huge_zero_page();
  1211. } else {
  1212. page = pmd_page(orig_pmd);
  1213. page_remove_rmap(page);
  1214. VM_BUG_ON(page_mapcount(page) < 0);
  1215. add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
  1216. VM_BUG_ON(!PageHead(page));
  1217. tlb->mm->nr_ptes--;
  1218. spin_unlock(&tlb->mm->page_table_lock);
  1219. tlb_remove_page(tlb, page);
  1220. }
  1221. pte_free(tlb->mm, pgtable);
  1222. ret = 1;
  1223. }
  1224. return ret;
  1225. }
  1226. int mincore_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
  1227. unsigned long addr, unsigned long end,
  1228. unsigned char *vec)
  1229. {
  1230. int ret = 0;
  1231. if (__pmd_trans_huge_lock(pmd, vma) == 1) {
  1232. /*
  1233. * All logical pages in the range are present
  1234. * if backed by a huge page.
  1235. */
  1236. spin_unlock(&vma->vm_mm->page_table_lock);
  1237. memset(vec, 1, (end - addr) >> PAGE_SHIFT);
  1238. ret = 1;
  1239. }
  1240. return ret;
  1241. }
  1242. int move_huge_pmd(struct vm_area_struct *vma, struct vm_area_struct *new_vma,
  1243. unsigned long old_addr,
  1244. unsigned long new_addr, unsigned long old_end,
  1245. pmd_t *old_pmd, pmd_t *new_pmd)
  1246. {
  1247. int ret = 0;
  1248. pmd_t pmd;
  1249. struct mm_struct *mm = vma->vm_mm;
  1250. if ((old_addr & ~HPAGE_PMD_MASK) ||
  1251. (new_addr & ~HPAGE_PMD_MASK) ||
  1252. old_end - old_addr < HPAGE_PMD_SIZE ||
  1253. (new_vma->vm_flags & VM_NOHUGEPAGE))
  1254. goto out;
  1255. /*
  1256. * The destination pmd shouldn't be established, free_pgtables()
  1257. * should have release it.
  1258. */
  1259. if (WARN_ON(!pmd_none(*new_pmd))) {
  1260. VM_BUG_ON(pmd_trans_huge(*new_pmd));
  1261. goto out;
  1262. }
  1263. ret = __pmd_trans_huge_lock(old_pmd, vma);
  1264. if (ret == 1) {
  1265. pmd = pmdp_get_and_clear(mm, old_addr, old_pmd);
  1266. VM_BUG_ON(!pmd_none(*new_pmd));
  1267. set_pmd_at(mm, new_addr, new_pmd, pmd_mksoft_dirty(pmd));
  1268. spin_unlock(&mm->page_table_lock);
  1269. }
  1270. out:
  1271. return ret;
  1272. }
  1273. int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
  1274. unsigned long addr, pgprot_t newprot, int prot_numa)
  1275. {
  1276. struct mm_struct *mm = vma->vm_mm;
  1277. int ret = 0;
  1278. if (__pmd_trans_huge_lock(pmd, vma) == 1) {
  1279. pmd_t entry;
  1280. entry = pmdp_get_and_clear(mm, addr, pmd);
  1281. if (!prot_numa) {
  1282. entry = pmd_modify(entry, newprot);
  1283. BUG_ON(pmd_write(entry));
  1284. } else {
  1285. struct page *page = pmd_page(*pmd);
  1286. /* only check non-shared pages */
  1287. if (page_mapcount(page) == 1 &&
  1288. !pmd_numa(*pmd)) {
  1289. entry = pmd_mknuma(entry);
  1290. }
  1291. }
  1292. set_pmd_at(mm, addr, pmd, entry);
  1293. spin_unlock(&vma->vm_mm->page_table_lock);
  1294. ret = 1;
  1295. }
  1296. return ret;
  1297. }
  1298. /*
  1299. * Returns 1 if a given pmd maps a stable (not under splitting) thp.
  1300. * Returns -1 if it maps a thp under splitting. Returns 0 otherwise.
  1301. *
  1302. * Note that if it returns 1, this routine returns without unlocking page
  1303. * table locks. So callers must unlock them.
  1304. */
  1305. int __pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
  1306. {
  1307. spin_lock(&vma->vm_mm->page_table_lock);
  1308. if (likely(pmd_trans_huge(*pmd))) {
  1309. if (unlikely(pmd_trans_splitting(*pmd))) {
  1310. spin_unlock(&vma->vm_mm->page_table_lock);
  1311. wait_split_huge_page(vma->anon_vma, pmd);
  1312. return -1;
  1313. } else {
  1314. /* Thp mapped by 'pmd' is stable, so we can
  1315. * handle it as it is. */
  1316. return 1;
  1317. }
  1318. }
  1319. spin_unlock(&vma->vm_mm->page_table_lock);
  1320. return 0;
  1321. }
  1322. pmd_t *page_check_address_pmd(struct page *page,
  1323. struct mm_struct *mm,
  1324. unsigned long address,
  1325. enum page_check_address_pmd_flag flag)
  1326. {
  1327. pmd_t *pmd, *ret = NULL;
  1328. if (address & ~HPAGE_PMD_MASK)
  1329. goto out;
  1330. pmd = mm_find_pmd(mm, address);
  1331. if (!pmd)
  1332. goto out;
  1333. if (pmd_none(*pmd))
  1334. goto out;
  1335. if (pmd_page(*pmd) != page)
  1336. goto out;
  1337. /*
  1338. * split_vma() may create temporary aliased mappings. There is
  1339. * no risk as long as all huge pmd are found and have their
  1340. * splitting bit set before __split_huge_page_refcount
  1341. * runs. Finding the same huge pmd more than once during the
  1342. * same rmap walk is not a problem.
  1343. */
  1344. if (flag == PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG &&
  1345. pmd_trans_splitting(*pmd))
  1346. goto out;
  1347. if (pmd_trans_huge(*pmd)) {
  1348. VM_BUG_ON(flag == PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG &&
  1349. !pmd_trans_splitting(*pmd));
  1350. ret = pmd;
  1351. }
  1352. out:
  1353. return ret;
  1354. }
  1355. static int __split_huge_page_splitting(struct page *page,
  1356. struct vm_area_struct *vma,
  1357. unsigned long address)
  1358. {
  1359. struct mm_struct *mm = vma->vm_mm;
  1360. pmd_t *pmd;
  1361. int ret = 0;
  1362. /* For mmu_notifiers */
  1363. const unsigned long mmun_start = address;
  1364. const unsigned long mmun_end = address + HPAGE_PMD_SIZE;
  1365. mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
  1366. spin_lock(&mm->page_table_lock);
  1367. pmd = page_check_address_pmd(page, mm, address,
  1368. PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG);
  1369. if (pmd) {
  1370. /*
  1371. * We can't temporarily set the pmd to null in order
  1372. * to split it, the pmd must remain marked huge at all
  1373. * times or the VM won't take the pmd_trans_huge paths
  1374. * and it won't wait on the anon_vma->root->rwsem to
  1375. * serialize against split_huge_page*.
  1376. */
  1377. pmdp_splitting_flush(vma, address, pmd);
  1378. ret = 1;
  1379. }
  1380. spin_unlock(&mm->page_table_lock);
  1381. mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
  1382. return ret;
  1383. }
  1384. static void __split_huge_page_refcount(struct page *page,
  1385. struct list_head *list)
  1386. {
  1387. int i;
  1388. struct zone *zone = page_zone(page);
  1389. struct lruvec *lruvec;
  1390. int tail_count = 0;
  1391. /* prevent PageLRU to go away from under us, and freeze lru stats */
  1392. spin_lock_irq(&zone->lru_lock);
  1393. lruvec = mem_cgroup_page_lruvec(page, zone);
  1394. compound_lock(page);
  1395. /* complete memcg works before add pages to LRU */
  1396. mem_cgroup_split_huge_fixup(page);
  1397. for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
  1398. struct page *page_tail = page + i;
  1399. /* tail_page->_mapcount cannot change */
  1400. BUG_ON(page_mapcount(page_tail) < 0);
  1401. tail_count += page_mapcount(page_tail);
  1402. /* check for overflow */
  1403. BUG_ON(tail_count < 0);
  1404. BUG_ON(atomic_read(&page_tail->_count) != 0);
  1405. /*
  1406. * tail_page->_count is zero and not changing from
  1407. * under us. But get_page_unless_zero() may be running
  1408. * from under us on the tail_page. If we used
  1409. * atomic_set() below instead of atomic_add(), we
  1410. * would then run atomic_set() concurrently with
  1411. * get_page_unless_zero(), and atomic_set() is
  1412. * implemented in C not using locked ops. spin_unlock
  1413. * on x86 sometime uses locked ops because of PPro
  1414. * errata 66, 92, so unless somebody can guarantee
  1415. * atomic_set() here would be safe on all archs (and
  1416. * not only on x86), it's safer to use atomic_add().
  1417. */
  1418. atomic_add(page_mapcount(page) + page_mapcount(page_tail) + 1,
  1419. &page_tail->_count);
  1420. /* after clearing PageTail the gup refcount can be released */
  1421. smp_mb();
  1422. /*
  1423. * retain hwpoison flag of the poisoned tail page:
  1424. * fix for the unsuitable process killed on Guest Machine(KVM)
  1425. * by the memory-failure.
  1426. */
  1427. page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP | __PG_HWPOISON;
  1428. page_tail->flags |= (page->flags &
  1429. ((1L << PG_referenced) |
  1430. (1L << PG_swapbacked) |
  1431. (1L << PG_mlocked) |
  1432. (1L << PG_uptodate)));
  1433. page_tail->flags |= (1L << PG_dirty);
  1434. /* clear PageTail before overwriting first_page */
  1435. smp_wmb();
  1436. /*
  1437. * __split_huge_page_splitting() already set the
  1438. * splitting bit in all pmd that could map this
  1439. * hugepage, that will ensure no CPU can alter the
  1440. * mapcount on the head page. The mapcount is only
  1441. * accounted in the head page and it has to be
  1442. * transferred to all tail pages in the below code. So
  1443. * for this code to be safe, the split the mapcount
  1444. * can't change. But that doesn't mean userland can't
  1445. * keep changing and reading the page contents while
  1446. * we transfer the mapcount, so the pmd splitting
  1447. * status is achieved setting a reserved bit in the
  1448. * pmd, not by clearing the present bit.
  1449. */
  1450. page_tail->_mapcount = page->_mapcount;
  1451. BUG_ON(page_tail->mapping);
  1452. page_tail->mapping = page->mapping;
  1453. page_tail->index = page->index + i;
  1454. page_nid_xchg_last(page_tail, page_nid_last(page));
  1455. BUG_ON(!PageAnon(page_tail));
  1456. BUG_ON(!PageUptodate(page_tail));
  1457. BUG_ON(!PageDirty(page_tail));
  1458. BUG_ON(!PageSwapBacked(page_tail));
  1459. lru_add_page_tail(page, page_tail, lruvec, list);
  1460. }
  1461. atomic_sub(tail_count, &page->_count);
  1462. BUG_ON(atomic_read(&page->_count) <= 0);
  1463. __mod_zone_page_state(zone, NR_ANON_TRANSPARENT_HUGEPAGES, -1);
  1464. __mod_zone_page_state(zone, NR_ANON_PAGES, HPAGE_PMD_NR);
  1465. ClearPageCompound(page);
  1466. compound_unlock(page);
  1467. spin_unlock_irq(&zone->lru_lock);
  1468. for (i = 1; i < HPAGE_PMD_NR; i++) {
  1469. struct page *page_tail = page + i;
  1470. BUG_ON(page_count(page_tail) <= 0);
  1471. /*
  1472. * Tail pages may be freed if there wasn't any mapping
  1473. * like if add_to_swap() is running on a lru page that
  1474. * had its mapping zapped. And freeing these pages
  1475. * requires taking the lru_lock so we do the put_page
  1476. * of the tail pages after the split is complete.
  1477. */
  1478. put_page(page_tail);
  1479. }
  1480. /*
  1481. * Only the head page (now become a regular page) is required
  1482. * to be pinned by the caller.
  1483. */
  1484. BUG_ON(page_count(page) <= 0);
  1485. }
  1486. static int __split_huge_page_map(struct page *page,
  1487. struct vm_area_struct *vma,
  1488. unsigned long address)
  1489. {
  1490. struct mm_struct *mm = vma->vm_mm;
  1491. pmd_t *pmd, _pmd;
  1492. int ret = 0, i;
  1493. pgtable_t pgtable;
  1494. unsigned long haddr;
  1495. spin_lock(&mm->page_table_lock);
  1496. pmd = page_check_address_pmd(page, mm, address,
  1497. PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG);
  1498. if (pmd) {
  1499. pgtable = pgtable_trans_huge_withdraw(mm, pmd);
  1500. pmd_populate(mm, &_pmd, pgtable);
  1501. haddr = address;
  1502. for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
  1503. pte_t *pte, entry;
  1504. BUG_ON(PageCompound(page+i));
  1505. entry = mk_pte(page + i, vma->vm_page_prot);
  1506. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  1507. if (!pmd_write(*pmd))
  1508. entry = pte_wrprotect(entry);
  1509. else
  1510. BUG_ON(page_mapcount(page) != 1);
  1511. if (!pmd_young(*pmd))
  1512. entry = pte_mkold(entry);
  1513. if (pmd_numa(*pmd))
  1514. entry = pte_mknuma(entry);
  1515. pte = pte_offset_map(&_pmd, haddr);
  1516. BUG_ON(!pte_none(*pte));
  1517. set_pte_at(mm, haddr, pte, entry);
  1518. pte_unmap(pte);
  1519. }
  1520. smp_wmb(); /* make pte visible before pmd */
  1521. /*
  1522. * Up to this point the pmd is present and huge and
  1523. * userland has the whole access to the hugepage
  1524. * during the split (which happens in place). If we
  1525. * overwrite the pmd with the not-huge version
  1526. * pointing to the pte here (which of course we could
  1527. * if all CPUs were bug free), userland could trigger
  1528. * a small page size TLB miss on the small sized TLB
  1529. * while the hugepage TLB entry is still established
  1530. * in the huge TLB. Some CPU doesn't like that. See
  1531. * http://support.amd.com/us/Processor_TechDocs/41322.pdf,
  1532. * Erratum 383 on page 93. Intel should be safe but is
  1533. * also warns that it's only safe if the permission
  1534. * and cache attributes of the two entries loaded in
  1535. * the two TLB is identical (which should be the case
  1536. * here). But it is generally safer to never allow
  1537. * small and huge TLB entries for the same virtual
  1538. * address to be loaded simultaneously. So instead of
  1539. * doing "pmd_populate(); flush_tlb_range();" we first
  1540. * mark the current pmd notpresent (atomically because
  1541. * here the pmd_trans_huge and pmd_trans_splitting
  1542. * must remain set at all times on the pmd until the
  1543. * split is complete for this pmd), then we flush the
  1544. * SMP TLB and finally we write the non-huge version
  1545. * of the pmd entry with pmd_populate.
  1546. */
  1547. pmdp_invalidate(vma, address, pmd);
  1548. pmd_populate(mm, pmd, pgtable);
  1549. ret = 1;
  1550. }
  1551. spin_unlock(&mm->page_table_lock);
  1552. return ret;
  1553. }
  1554. /* must be called with anon_vma->root->rwsem held */
  1555. static void __split_huge_page(struct page *page,
  1556. struct anon_vma *anon_vma,
  1557. struct list_head *list)
  1558. {
  1559. int mapcount, mapcount2;
  1560. pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
  1561. struct anon_vma_chain *avc;
  1562. BUG_ON(!PageHead(page));
  1563. BUG_ON(PageTail(page));
  1564. mapcount = 0;
  1565. anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
  1566. struct vm_area_struct *vma = avc->vma;
  1567. unsigned long addr = vma_address(page, vma);
  1568. BUG_ON(is_vma_temporary_stack(vma));
  1569. mapcount += __split_huge_page_splitting(page, vma, addr);
  1570. }
  1571. /*
  1572. * It is critical that new vmas are added to the tail of the
  1573. * anon_vma list. This guarantes that if copy_huge_pmd() runs
  1574. * and establishes a child pmd before
  1575. * __split_huge_page_splitting() freezes the parent pmd (so if
  1576. * we fail to prevent copy_huge_pmd() from running until the
  1577. * whole __split_huge_page() is complete), we will still see
  1578. * the newly established pmd of the child later during the
  1579. * walk, to be able to set it as pmd_trans_splitting too.
  1580. */
  1581. if (mapcount != page_mapcount(page))
  1582. printk(KERN_ERR "mapcount %d page_mapcount %d\n",
  1583. mapcount, page_mapcount(page));
  1584. BUG_ON(mapcount != page_mapcount(page));
  1585. __split_huge_page_refcount(page, list);
  1586. mapcount2 = 0;
  1587. anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
  1588. struct vm_area_struct *vma = avc->vma;
  1589. unsigned long addr = vma_address(page, vma);
  1590. BUG_ON(is_vma_temporary_stack(vma));
  1591. mapcount2 += __split_huge_page_map(page, vma, addr);
  1592. }
  1593. if (mapcount != mapcount2)
  1594. printk(KERN_ERR "mapcount %d mapcount2 %d page_mapcount %d\n",
  1595. mapcount, mapcount2, page_mapcount(page));
  1596. BUG_ON(mapcount != mapcount2);
  1597. }
  1598. /*
  1599. * Split a hugepage into normal pages. This doesn't change the position of head
  1600. * page. If @list is null, tail pages will be added to LRU list, otherwise, to
  1601. * @list. Both head page and tail pages will inherit mapping, flags, and so on
  1602. * from the hugepage.
  1603. * Return 0 if the hugepage is split successfully otherwise return 1.
  1604. */
  1605. int split_huge_page_to_list(struct page *page, struct list_head *list)
  1606. {
  1607. struct anon_vma *anon_vma;
  1608. int ret = 1;
  1609. BUG_ON(is_huge_zero_page(page));
  1610. BUG_ON(!PageAnon(page));
  1611. /*
  1612. * The caller does not necessarily hold an mmap_sem that would prevent
  1613. * the anon_vma disappearing so we first we take a reference to it
  1614. * and then lock the anon_vma for write. This is similar to
  1615. * page_lock_anon_vma_read except the write lock is taken to serialise
  1616. * against parallel split or collapse operations.
  1617. */
  1618. anon_vma = page_get_anon_vma(page);
  1619. if (!anon_vma)
  1620. goto out;
  1621. anon_vma_lock_write(anon_vma);
  1622. ret = 0;
  1623. if (!PageCompound(page))
  1624. goto out_unlock;
  1625. BUG_ON(!PageSwapBacked(page));
  1626. __split_huge_page(page, anon_vma, list);
  1627. count_vm_event(THP_SPLIT);
  1628. BUG_ON(PageCompound(page));
  1629. out_unlock:
  1630. anon_vma_unlock_write(anon_vma);
  1631. put_anon_vma(anon_vma);
  1632. out:
  1633. return ret;
  1634. }
  1635. #define VM_NO_THP (VM_SPECIAL|VM_MIXEDMAP|VM_HUGETLB|VM_SHARED|VM_MAYSHARE)
  1636. int hugepage_madvise(struct vm_area_struct *vma,
  1637. unsigned long *vm_flags, int advice)
  1638. {
  1639. struct mm_struct *mm = vma->vm_mm;
  1640. switch (advice) {
  1641. case MADV_HUGEPAGE:
  1642. /*
  1643. * Be somewhat over-protective like KSM for now!
  1644. */
  1645. if (*vm_flags & (VM_HUGEPAGE | VM_NO_THP))
  1646. return -EINVAL;
  1647. if (mm->def_flags & VM_NOHUGEPAGE)
  1648. return -EINVAL;
  1649. *vm_flags &= ~VM_NOHUGEPAGE;
  1650. *vm_flags |= VM_HUGEPAGE;
  1651. /*
  1652. * If the vma become good for khugepaged to scan,
  1653. * register it here without waiting a page fault that
  1654. * may not happen any time soon.
  1655. */
  1656. if (unlikely(khugepaged_enter_vma_merge(vma)))
  1657. return -ENOMEM;
  1658. break;
  1659. case MADV_NOHUGEPAGE:
  1660. /*
  1661. * Be somewhat over-protective like KSM for now!
  1662. */
  1663. if (*vm_flags & (VM_NOHUGEPAGE | VM_NO_THP))
  1664. return -EINVAL;
  1665. *vm_flags &= ~VM_HUGEPAGE;
  1666. *vm_flags |= VM_NOHUGEPAGE;
  1667. /*
  1668. * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
  1669. * this vma even if we leave the mm registered in khugepaged if
  1670. * it got registered before VM_NOHUGEPAGE was set.
  1671. */
  1672. break;
  1673. }
  1674. return 0;
  1675. }
  1676. static int __init khugepaged_slab_init(void)
  1677. {
  1678. mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
  1679. sizeof(struct mm_slot),
  1680. __alignof__(struct mm_slot), 0, NULL);
  1681. if (!mm_slot_cache)
  1682. return -ENOMEM;
  1683. return 0;
  1684. }
  1685. static inline struct mm_slot *alloc_mm_slot(void)
  1686. {
  1687. if (!mm_slot_cache) /* initialization failed */
  1688. return NULL;
  1689. return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
  1690. }
  1691. static inline void free_mm_slot(struct mm_slot *mm_slot)
  1692. {
  1693. kmem_cache_free(mm_slot_cache, mm_slot);
  1694. }
  1695. static struct mm_slot *get_mm_slot(struct mm_struct *mm)
  1696. {
  1697. struct mm_slot *mm_slot;
  1698. hash_for_each_possible(mm_slots_hash, mm_slot, hash, (unsigned long)mm)
  1699. if (mm == mm_slot->mm)
  1700. return mm_slot;
  1701. return NULL;
  1702. }
  1703. static void insert_to_mm_slots_hash(struct mm_struct *mm,
  1704. struct mm_slot *mm_slot)
  1705. {
  1706. mm_slot->mm = mm;
  1707. hash_add(mm_slots_hash, &mm_slot->hash, (long)mm);
  1708. }
  1709. static inline int khugepaged_test_exit(struct mm_struct *mm)
  1710. {
  1711. return atomic_read(&mm->mm_users) == 0;
  1712. }
  1713. int __khugepaged_enter(struct mm_struct *mm)
  1714. {
  1715. struct mm_slot *mm_slot;
  1716. int wakeup;
  1717. mm_slot = alloc_mm_slot();
  1718. if (!mm_slot)
  1719. return -ENOMEM;
  1720. /* __khugepaged_exit() must not run from under us */
  1721. VM_BUG_ON(khugepaged_test_exit(mm));
  1722. if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
  1723. free_mm_slot(mm_slot);
  1724. return 0;
  1725. }
  1726. spin_lock(&khugepaged_mm_lock);
  1727. insert_to_mm_slots_hash(mm, mm_slot);
  1728. /*
  1729. * Insert just behind the scanning cursor, to let the area settle
  1730. * down a little.
  1731. */
  1732. wakeup = list_empty(&khugepaged_scan.mm_head);
  1733. list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
  1734. spin_unlock(&khugepaged_mm_lock);
  1735. atomic_inc(&mm->mm_count);
  1736. if (wakeup)
  1737. wake_up_interruptible(&khugepaged_wait);
  1738. return 0;
  1739. }
  1740. int khugepaged_enter_vma_merge(struct vm_area_struct *vma)
  1741. {
  1742. unsigned long hstart, hend;
  1743. if (!vma->anon_vma)
  1744. /*
  1745. * Not yet faulted in so we will register later in the
  1746. * page fault if needed.
  1747. */
  1748. return 0;
  1749. if (vma->vm_ops)
  1750. /* khugepaged not yet working on file or special mappings */
  1751. return 0;
  1752. VM_BUG_ON(vma->vm_flags & VM_NO_THP);
  1753. hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
  1754. hend = vma->vm_end & HPAGE_PMD_MASK;
  1755. if (hstart < hend)
  1756. return khugepaged_enter(vma);
  1757. return 0;
  1758. }
  1759. void __khugepaged_exit(struct mm_struct *mm)
  1760. {
  1761. struct mm_slot *mm_slot;
  1762. int free = 0;
  1763. spin_lock(&khugepaged_mm_lock);
  1764. mm_slot = get_mm_slot(mm);
  1765. if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
  1766. hash_del(&mm_slot->hash);
  1767. list_del(&mm_slot->mm_node);
  1768. free = 1;
  1769. }
  1770. spin_unlock(&khugepaged_mm_lock);
  1771. if (free) {
  1772. clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
  1773. free_mm_slot(mm_slot);
  1774. mmdrop(mm);
  1775. } else if (mm_slot) {
  1776. /*
  1777. * This is required to serialize against
  1778. * khugepaged_test_exit() (which is guaranteed to run
  1779. * under mmap sem read mode). Stop here (after we
  1780. * return all pagetables will be destroyed) until
  1781. * khugepaged has finished working on the pagetables
  1782. * under the mmap_sem.
  1783. */
  1784. down_write(&mm->mmap_sem);
  1785. up_write(&mm->mmap_sem);
  1786. }
  1787. }
  1788. static void release_pte_page(struct page *page)
  1789. {
  1790. /* 0 stands for page_is_file_cache(page) == false */
  1791. dec_zone_page_state(page, NR_ISOLATED_ANON + 0);
  1792. unlock_page(page);
  1793. putback_lru_page(page);
  1794. }
  1795. static void release_pte_pages(pte_t *pte, pte_t *_pte)
  1796. {
  1797. while (--_pte >= pte) {
  1798. pte_t pteval = *_pte;
  1799. if (!pte_none(pteval))
  1800. release_pte_page(pte_page(pteval));
  1801. }
  1802. }
  1803. static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
  1804. unsigned long address,
  1805. pte_t *pte)
  1806. {
  1807. struct page *page;
  1808. pte_t *_pte;
  1809. int referenced = 0, none = 0;
  1810. for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
  1811. _pte++, address += PAGE_SIZE) {
  1812. pte_t pteval = *_pte;
  1813. if (pte_none(pteval)) {
  1814. if (++none <= khugepaged_max_ptes_none)
  1815. continue;
  1816. else
  1817. goto out;
  1818. }
  1819. if (!pte_present(pteval) || !pte_write(pteval))
  1820. goto out;
  1821. page = vm_normal_page(vma, address, pteval);
  1822. if (unlikely(!page))
  1823. goto out;
  1824. VM_BUG_ON(PageCompound(page));
  1825. BUG_ON(!PageAnon(page));
  1826. VM_BUG_ON(!PageSwapBacked(page));
  1827. /* cannot use mapcount: can't collapse if there's a gup pin */
  1828. if (page_count(page) != 1)
  1829. goto out;
  1830. /*
  1831. * We can do it before isolate_lru_page because the
  1832. * page can't be freed from under us. NOTE: PG_lock
  1833. * is needed to serialize against split_huge_page
  1834. * when invoked from the VM.
  1835. */
  1836. if (!trylock_page(page))
  1837. goto out;
  1838. /*
  1839. * Isolate the page to avoid collapsing an hugepage
  1840. * currently in use by the VM.
  1841. */
  1842. if (isolate_lru_page(page)) {
  1843. unlock_page(page);
  1844. goto out;
  1845. }
  1846. /* 0 stands for page_is_file_cache(page) == false */
  1847. inc_zone_page_state(page, NR_ISOLATED_ANON + 0);
  1848. VM_BUG_ON(!PageLocked(page));
  1849. VM_BUG_ON(PageLRU(page));
  1850. /* If there is no mapped pte young don't collapse the page */
  1851. if (pte_young(pteval) || PageReferenced(page) ||
  1852. mmu_notifier_test_young(vma->vm_mm, address))
  1853. referenced = 1;
  1854. }
  1855. if (likely(referenced))
  1856. return 1;
  1857. out:
  1858. release_pte_pages(pte, _pte);
  1859. return 0;
  1860. }
  1861. static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
  1862. struct vm_area_struct *vma,
  1863. unsigned long address,
  1864. spinlock_t *ptl)
  1865. {
  1866. pte_t *_pte;
  1867. for (_pte = pte; _pte < pte+HPAGE_PMD_NR; _pte++) {
  1868. pte_t pteval = *_pte;
  1869. struct page *src_page;
  1870. if (pte_none(pteval)) {
  1871. clear_user_highpage(page, address);
  1872. add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
  1873. } else {
  1874. src_page = pte_page(pteval);
  1875. copy_user_highpage(page, src_page, address, vma);
  1876. VM_BUG_ON(page_mapcount(src_page) != 1);
  1877. release_pte_page(src_page);
  1878. /*
  1879. * ptl mostly unnecessary, but preempt has to
  1880. * be disabled to update the per-cpu stats
  1881. * inside page_remove_rmap().
  1882. */
  1883. spin_lock(ptl);
  1884. /*
  1885. * paravirt calls inside pte_clear here are
  1886. * superfluous.
  1887. */
  1888. pte_clear(vma->vm_mm, address, _pte);
  1889. page_remove_rmap(src_page);
  1890. spin_unlock(ptl);
  1891. free_page_and_swap_cache(src_page);
  1892. }
  1893. address += PAGE_SIZE;
  1894. page++;
  1895. }
  1896. }
  1897. static void khugepaged_alloc_sleep(void)
  1898. {
  1899. wait_event_freezable_timeout(khugepaged_wait, false,
  1900. msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
  1901. }
  1902. #ifdef CONFIG_NUMA
  1903. static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
  1904. {
  1905. if (IS_ERR(*hpage)) {
  1906. if (!*wait)
  1907. return false;
  1908. *wait = false;
  1909. *hpage = NULL;
  1910. khugepaged_alloc_sleep();
  1911. } else if (*hpage) {
  1912. put_page(*hpage);
  1913. *hpage = NULL;
  1914. }
  1915. return true;
  1916. }
  1917. static struct page
  1918. *khugepaged_alloc_page(struct page **hpage, struct mm_struct *mm,
  1919. struct vm_area_struct *vma, unsigned long address,
  1920. int node)
  1921. {
  1922. VM_BUG_ON(*hpage);
  1923. /*
  1924. * Allocate the page while the vma is still valid and under
  1925. * the mmap_sem read mode so there is no memory allocation
  1926. * later when we take the mmap_sem in write mode. This is more
  1927. * friendly behavior (OTOH it may actually hide bugs) to
  1928. * filesystems in userland with daemons allocating memory in
  1929. * the userland I/O paths. Allocating memory with the
  1930. * mmap_sem in read mode is good idea also to allow greater
  1931. * scalability.
  1932. */
  1933. *hpage = alloc_hugepage_vma(khugepaged_defrag(), vma, address,
  1934. node, __GFP_OTHER_NODE);
  1935. /*
  1936. * After allocating the hugepage, release the mmap_sem read lock in
  1937. * preparation for taking it in write mode.
  1938. */
  1939. up_read(&mm->mmap_sem);
  1940. if (unlikely(!*hpage)) {
  1941. count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
  1942. *hpage = ERR_PTR(-ENOMEM);
  1943. return NULL;
  1944. }
  1945. count_vm_event(THP_COLLAPSE_ALLOC);
  1946. return *hpage;
  1947. }
  1948. #else
  1949. static struct page *khugepaged_alloc_hugepage(bool *wait)
  1950. {
  1951. struct page *hpage;
  1952. do {
  1953. hpage = alloc_hugepage(khugepaged_defrag());
  1954. if (!hpage) {
  1955. count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
  1956. if (!*wait)
  1957. return NULL;
  1958. *wait = false;
  1959. khugepaged_alloc_sleep();
  1960. } else
  1961. count_vm_event(THP_COLLAPSE_ALLOC);
  1962. } while (unlikely(!hpage) && likely(khugepaged_enabled()));
  1963. return hpage;
  1964. }
  1965. static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
  1966. {
  1967. if (!*hpage)
  1968. *hpage = khugepaged_alloc_hugepage(wait);
  1969. if (unlikely(!*hpage))
  1970. return false;
  1971. return true;
  1972. }
  1973. static struct page
  1974. *khugepaged_alloc_page(struct page **hpage, struct mm_struct *mm,
  1975. struct vm_area_struct *vma, unsigned long address,
  1976. int node)
  1977. {
  1978. up_read(&mm->mmap_sem);
  1979. VM_BUG_ON(!*hpage);
  1980. return *hpage;
  1981. }
  1982. #endif
  1983. static bool hugepage_vma_check(struct vm_area_struct *vma)
  1984. {
  1985. if ((!(vma->vm_flags & VM_HUGEPAGE) && !khugepaged_always()) ||
  1986. (vma->vm_flags & VM_NOHUGEPAGE))
  1987. return false;
  1988. if (!vma->anon_vma || vma->vm_ops)
  1989. return false;
  1990. if (is_vma_temporary_stack(vma))
  1991. return false;
  1992. VM_BUG_ON(vma->vm_flags & VM_NO_THP);
  1993. return true;
  1994. }
  1995. static void collapse_huge_page(struct mm_struct *mm,
  1996. unsigned long address,
  1997. struct page **hpage,
  1998. struct vm_area_struct *vma,
  1999. int node)
  2000. {
  2001. pmd_t *pmd, _pmd;
  2002. pte_t *pte;
  2003. pgtable_t pgtable;
  2004. struct page *new_page;
  2005. spinlock_t *ptl;
  2006. int isolated;
  2007. unsigned long hstart, hend;
  2008. unsigned long mmun_start; /* For mmu_notifiers */
  2009. unsigned long mmun_end; /* For mmu_notifiers */
  2010. VM_BUG_ON(address & ~HPAGE_PMD_MASK);
  2011. /* release the mmap_sem read lock. */
  2012. new_page = khugepaged_alloc_page(hpage, mm, vma, address, node);
  2013. if (!new_page)
  2014. return;
  2015. if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL)))
  2016. return;
  2017. /*
  2018. * Prevent all access to pagetables with the exception of
  2019. * gup_fast later hanlded by the ptep_clear_flush and the VM
  2020. * handled by the anon_vma lock + PG_lock.
  2021. */
  2022. down_write(&mm->mmap_sem);
  2023. if (unlikely(khugepaged_test_exit(mm)))
  2024. goto out;
  2025. vma = find_vma(mm, address);
  2026. hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
  2027. hend = vma->vm_end & HPAGE_PMD_MASK;
  2028. if (address < hstart || address + HPAGE_PMD_SIZE > hend)
  2029. goto out;
  2030. if (!hugepage_vma_check(vma))
  2031. goto out;
  2032. pmd = mm_find_pmd(mm, address);
  2033. if (!pmd)
  2034. goto out;
  2035. if (pmd_trans_huge(*pmd))
  2036. goto out;
  2037. anon_vma_lock_write(vma->anon_vma);
  2038. pte = pte_offset_map(pmd, address);
  2039. ptl = pte_lockptr(mm, pmd);
  2040. mmun_start = address;
  2041. mmun_end = address + HPAGE_PMD_SIZE;
  2042. mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
  2043. spin_lock(&mm->page_table_lock); /* probably unnecessary */
  2044. /*
  2045. * After this gup_fast can't run anymore. This also removes
  2046. * any huge TLB entry from the CPU so we won't allow
  2047. * huge and small TLB entries for the same virtual address
  2048. * to avoid the risk of CPU bugs in that area.
  2049. */
  2050. _pmd = pmdp_clear_flush(vma, address, pmd);
  2051. spin_unlock(&mm->page_table_lock);
  2052. mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
  2053. spin_lock(ptl);
  2054. isolated = __collapse_huge_page_isolate(vma, address, pte);
  2055. spin_unlock(ptl);
  2056. if (unlikely(!isolated)) {
  2057. pte_unmap(pte);
  2058. spin_lock(&mm->page_table_lock);
  2059. BUG_ON(!pmd_none(*pmd));
  2060. /*
  2061. * We can only use set_pmd_at when establishing
  2062. * hugepmds and never for establishing regular pmds that
  2063. * points to regular pagetables. Use pmd_populate for that
  2064. */
  2065. pmd_populate(mm, pmd, pmd_pgtable(_pmd));
  2066. spin_unlock(&mm->page_table_lock);
  2067. anon_vma_unlock_write(vma->anon_vma);
  2068. goto out;
  2069. }
  2070. /*
  2071. * All pages are isolated and locked so anon_vma rmap
  2072. * can't run anymore.
  2073. */
  2074. anon_vma_unlock_write(vma->anon_vma);
  2075. __collapse_huge_page_copy(pte, new_page, vma, address, ptl);
  2076. pte_unmap(pte);
  2077. __SetPageUptodate(new_page);
  2078. pgtable = pmd_pgtable(_pmd);
  2079. _pmd = mk_huge_pmd(new_page, vma);
  2080. /*
  2081. * spin_lock() below is not the equivalent of smp_wmb(), so
  2082. * this is needed to avoid the copy_huge_page writes to become
  2083. * visible after the set_pmd_at() write.
  2084. */
  2085. smp_wmb();
  2086. spin_lock(&mm->page_table_lock);
  2087. BUG_ON(!pmd_none(*pmd));
  2088. page_add_new_anon_rmap(new_page, vma, address);
  2089. pgtable_trans_huge_deposit(mm, pmd, pgtable);
  2090. set_pmd_at(mm, address, pmd, _pmd);
  2091. update_mmu_cache_pmd(vma, address, pmd);
  2092. spin_unlock(&mm->page_table_lock);
  2093. *hpage = NULL;
  2094. khugepaged_pages_collapsed++;
  2095. out_up_write:
  2096. up_write(&mm->mmap_sem);
  2097. return;
  2098. out:
  2099. mem_cgroup_uncharge_page(new_page);
  2100. goto out_up_write;
  2101. }
  2102. static int khugepaged_scan_pmd(struct mm_struct *mm,
  2103. struct vm_area_struct *vma,
  2104. unsigned long address,
  2105. struct page **hpage)
  2106. {
  2107. pmd_t *pmd;
  2108. pte_t *pte, *_pte;
  2109. int ret = 0, referenced = 0, none = 0;
  2110. struct page *page;
  2111. unsigned long _address;
  2112. spinlock_t *ptl;
  2113. int node = NUMA_NO_NODE;
  2114. VM_BUG_ON(address & ~HPAGE_PMD_MASK);
  2115. pmd = mm_find_pmd(mm, address);
  2116. if (!pmd)
  2117. goto out;
  2118. if (pmd_trans_huge(*pmd))
  2119. goto out;
  2120. pte = pte_offset_map_lock(mm, pmd, address, &ptl);
  2121. for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
  2122. _pte++, _address += PAGE_SIZE) {
  2123. pte_t pteval = *_pte;
  2124. if (pte_none(pteval)) {
  2125. if (++none <= khugepaged_max_ptes_none)
  2126. continue;
  2127. else
  2128. goto out_unmap;
  2129. }
  2130. if (!pte_present(pteval) || !pte_write(pteval))
  2131. goto out_unmap;
  2132. page = vm_normal_page(vma, _address, pteval);
  2133. if (unlikely(!page))
  2134. goto out_unmap;
  2135. /*
  2136. * Chose the node of the first page. This could
  2137. * be more sophisticated and look at more pages,
  2138. * but isn't for now.
  2139. */
  2140. if (node == NUMA_NO_NODE)
  2141. node = page_to_nid(page);
  2142. VM_BUG_ON(PageCompound(page));
  2143. if (!PageLRU(page) || PageLocked(page) || !PageAnon(page))
  2144. goto out_unmap;
  2145. /* cannot use mapcount: can't collapse if there's a gup pin */
  2146. if (page_count(page) != 1)
  2147. goto out_unmap;
  2148. if (pte_young(pteval) || PageReferenced(page) ||
  2149. mmu_notifier_test_young(vma->vm_mm, address))
  2150. referenced = 1;
  2151. }
  2152. if (referenced)
  2153. ret = 1;
  2154. out_unmap:
  2155. pte_unmap_unlock(pte, ptl);
  2156. if (ret)
  2157. /* collapse_huge_page will return with the mmap_sem released */
  2158. collapse_huge_page(mm, address, hpage, vma, node);
  2159. out:
  2160. return ret;
  2161. }
  2162. static void collect_mm_slot(struct mm_slot *mm_slot)
  2163. {
  2164. struct mm_struct *mm = mm_slot->mm;
  2165. VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
  2166. if (khugepaged_test_exit(mm)) {
  2167. /* free mm_slot */
  2168. hash_del(&mm_slot->hash);
  2169. list_del(&mm_slot->mm_node);
  2170. /*
  2171. * Not strictly needed because the mm exited already.
  2172. *
  2173. * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
  2174. */
  2175. /* khugepaged_mm_lock actually not necessary for the below */
  2176. free_mm_slot(mm_slot);
  2177. mmdrop(mm);
  2178. }
  2179. }
  2180. static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
  2181. struct page **hpage)
  2182. __releases(&khugepaged_mm_lock)
  2183. __acquires(&khugepaged_mm_lock)
  2184. {
  2185. struct mm_slot *mm_slot;
  2186. struct mm_struct *mm;
  2187. struct vm_area_struct *vma;
  2188. int progress = 0;
  2189. VM_BUG_ON(!pages);
  2190. VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
  2191. if (khugepaged_scan.mm_slot)
  2192. mm_slot = khugepaged_scan.mm_slot;
  2193. else {
  2194. mm_slot = list_entry(khugepaged_scan.mm_head.next,
  2195. struct mm_slot, mm_node);
  2196. khugepaged_scan.address = 0;
  2197. khugepaged_scan.mm_slot = mm_slot;
  2198. }
  2199. spin_unlock(&khugepaged_mm_lock);
  2200. mm = mm_slot->mm;
  2201. down_read(&mm->mmap_sem);
  2202. if (unlikely(khugepaged_test_exit(mm)))
  2203. vma = NULL;
  2204. else
  2205. vma = find_vma(mm, khugepaged_scan.address);
  2206. progress++;
  2207. for (; vma; vma = vma->vm_next) {
  2208. unsigned long hstart, hend;
  2209. cond_resched();
  2210. if (unlikely(khugepaged_test_exit(mm))) {
  2211. progress++;
  2212. break;
  2213. }
  2214. if (!hugepage_vma_check(vma)) {
  2215. skip:
  2216. progress++;
  2217. continue;
  2218. }
  2219. hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
  2220. hend = vma->vm_end & HPAGE_PMD_MASK;
  2221. if (hstart >= hend)
  2222. goto skip;
  2223. if (khugepaged_scan.address > hend)
  2224. goto skip;
  2225. if (khugepaged_scan.address < hstart)
  2226. khugepaged_scan.address = hstart;
  2227. VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
  2228. while (khugepaged_scan.address < hend) {
  2229. int ret;
  2230. cond_resched();
  2231. if (unlikely(khugepaged_test_exit(mm)))
  2232. goto breakouterloop;
  2233. VM_BUG_ON(khugepaged_scan.address < hstart ||
  2234. khugepaged_scan.address + HPAGE_PMD_SIZE >
  2235. hend);
  2236. ret = khugepaged_scan_pmd(mm, vma,
  2237. khugepaged_scan.address,
  2238. hpage);
  2239. /* move to next address */
  2240. khugepaged_scan.address += HPAGE_PMD_SIZE;
  2241. progress += HPAGE_PMD_NR;
  2242. if (ret)
  2243. /* we released mmap_sem so break loop */
  2244. goto breakouterloop_mmap_sem;
  2245. if (progress >= pages)
  2246. goto breakouterloop;
  2247. }
  2248. }
  2249. breakouterloop:
  2250. up_read(&mm->mmap_sem); /* exit_mmap will destroy ptes after this */
  2251. breakouterloop_mmap_sem:
  2252. spin_lock(&khugepaged_mm_lock);
  2253. VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
  2254. /*
  2255. * Release the current mm_slot if this mm is about to die, or
  2256. * if we scanned all vmas of this mm.
  2257. */
  2258. if (khugepaged_test_exit(mm) || !vma) {
  2259. /*
  2260. * Make sure that if mm_users is reaching zero while
  2261. * khugepaged runs here, khugepaged_exit will find
  2262. * mm_slot not pointing to the exiting mm.
  2263. */
  2264. if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
  2265. khugepaged_scan.mm_slot = list_entry(
  2266. mm_slot->mm_node.next,
  2267. struct mm_slot, mm_node);
  2268. khugepaged_scan.address = 0;
  2269. } else {
  2270. khugepaged_scan.mm_slot = NULL;
  2271. khugepaged_full_scans++;
  2272. }
  2273. collect_mm_slot(mm_slot);
  2274. }
  2275. return progress;
  2276. }
  2277. static int khugepaged_has_work(void)
  2278. {
  2279. return !list_empty(&khugepaged_scan.mm_head) &&
  2280. khugepaged_enabled();
  2281. }
  2282. static int khugepaged_wait_event(void)
  2283. {
  2284. return !list_empty(&khugepaged_scan.mm_head) ||
  2285. kthread_should_stop();
  2286. }
  2287. static void khugepaged_do_scan(void)
  2288. {
  2289. struct page *hpage = NULL;
  2290. unsigned int progress = 0, pass_through_head = 0;
  2291. unsigned int pages = khugepaged_pages_to_scan;
  2292. bool wait = true;
  2293. barrier(); /* write khugepaged_pages_to_scan to local stack */
  2294. while (progress < pages) {
  2295. if (!khugepaged_prealloc_page(&hpage, &wait))
  2296. break;
  2297. cond_resched();
  2298. if (unlikely(kthread_should_stop() || freezing(current)))
  2299. break;
  2300. spin_lock(&khugepaged_mm_lock);
  2301. if (!khugepaged_scan.mm_slot)
  2302. pass_through_head++;
  2303. if (khugepaged_has_work() &&
  2304. pass_through_head < 2)
  2305. progress += khugepaged_scan_mm_slot(pages - progress,
  2306. &hpage);
  2307. else
  2308. progress = pages;
  2309. spin_unlock(&khugepaged_mm_lock);
  2310. }
  2311. if (!IS_ERR_OR_NULL(hpage))
  2312. put_page(hpage);
  2313. }
  2314. static void khugepaged_wait_work(void)
  2315. {
  2316. try_to_freeze();
  2317. if (khugepaged_has_work()) {
  2318. if (!khugepaged_scan_sleep_millisecs)
  2319. return;
  2320. wait_event_freezable_timeout(khugepaged_wait,
  2321. kthread_should_stop(),
  2322. msecs_to_jiffies(khugepaged_scan_sleep_millisecs));
  2323. return;
  2324. }
  2325. if (khugepaged_enabled())
  2326. wait_event_freezable(khugepaged_wait, khugepaged_wait_event());
  2327. }
  2328. static int khugepaged(void *none)
  2329. {
  2330. struct mm_slot *mm_slot;
  2331. set_freezable();
  2332. set_user_nice(current, 19);
  2333. while (!kthread_should_stop()) {
  2334. khugepaged_do_scan();
  2335. khugepaged_wait_work();
  2336. }
  2337. spin_lock(&khugepaged_mm_lock);
  2338. mm_slot = khugepaged_scan.mm_slot;
  2339. khugepaged_scan.mm_slot = NULL;
  2340. if (mm_slot)
  2341. collect_mm_slot(mm_slot);
  2342. spin_unlock(&khugepaged_mm_lock);
  2343. return 0;
  2344. }
  2345. static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
  2346. unsigned long haddr, pmd_t *pmd)
  2347. {
  2348. struct mm_struct *mm = vma->vm_mm;
  2349. pgtable_t pgtable;
  2350. pmd_t _pmd;
  2351. int i;
  2352. pmdp_clear_flush(vma, haddr, pmd);
  2353. /* leave pmd empty until pte is filled */
  2354. pgtable = pgtable_trans_huge_withdraw(mm, pmd);
  2355. pmd_populate(mm, &_pmd, pgtable);
  2356. for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
  2357. pte_t *pte, entry;
  2358. entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
  2359. entry = pte_mkspecial(entry);
  2360. pte = pte_offset_map(&_pmd, haddr);
  2361. VM_BUG_ON(!pte_none(*pte));
  2362. set_pte_at(mm, haddr, pte, entry);
  2363. pte_unmap(pte);
  2364. }
  2365. smp_wmb(); /* make pte visible before pmd */
  2366. pmd_populate(mm, pmd, pgtable);
  2367. put_huge_zero_page();
  2368. }
  2369. void __split_huge_page_pmd(struct vm_area_struct *vma, unsigned long address,
  2370. pmd_t *pmd)
  2371. {
  2372. struct page *page;
  2373. struct mm_struct *mm = vma->vm_mm;
  2374. unsigned long haddr = address & HPAGE_PMD_MASK;
  2375. unsigned long mmun_start; /* For mmu_notifiers */
  2376. unsigned long mmun_end; /* For mmu_notifiers */
  2377. BUG_ON(vma->vm_start > haddr || vma->vm_end < haddr + HPAGE_PMD_SIZE);
  2378. mmun_start = haddr;
  2379. mmun_end = haddr + HPAGE_PMD_SIZE;
  2380. mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
  2381. spin_lock(&mm->page_table_lock);
  2382. if (unlikely(!pmd_trans_huge(*pmd))) {
  2383. spin_unlock(&mm->page_table_lock);
  2384. mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
  2385. return;
  2386. }
  2387. if (is_huge_zero_pmd(*pmd)) {
  2388. __split_huge_zero_page_pmd(vma, haddr, pmd);
  2389. spin_unlock(&mm->page_table_lock);
  2390. mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
  2391. return;
  2392. }
  2393. page = pmd_page(*pmd);
  2394. VM_BUG_ON(!page_count(page));
  2395. get_page(page);
  2396. spin_unlock(&mm->page_table_lock);
  2397. mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
  2398. split_huge_page(page);
  2399. put_page(page);
  2400. BUG_ON(pmd_trans_huge(*pmd));
  2401. }
  2402. void split_huge_page_pmd_mm(struct mm_struct *mm, unsigned long address,
  2403. pmd_t *pmd)
  2404. {
  2405. struct vm_area_struct *vma;
  2406. vma = find_vma(mm, address);
  2407. BUG_ON(vma == NULL);
  2408. split_huge_page_pmd(vma, address, pmd);
  2409. }
  2410. static void split_huge_page_address(struct mm_struct *mm,
  2411. unsigned long address)
  2412. {
  2413. pmd_t *pmd;
  2414. VM_BUG_ON(!(address & ~HPAGE_PMD_MASK));
  2415. pmd = mm_find_pmd(mm, address);
  2416. if (!pmd)
  2417. return;
  2418. /*
  2419. * Caller holds the mmap_sem write mode, so a huge pmd cannot
  2420. * materialize from under us.
  2421. */
  2422. split_huge_page_pmd_mm(mm, address, pmd);
  2423. }
  2424. void __vma_adjust_trans_huge(struct vm_area_struct *vma,
  2425. unsigned long start,
  2426. unsigned long end,
  2427. long adjust_next)
  2428. {
  2429. /*
  2430. * If the new start address isn't hpage aligned and it could
  2431. * previously contain an hugepage: check if we need to split
  2432. * an huge pmd.
  2433. */
  2434. if (start & ~HPAGE_PMD_MASK &&
  2435. (start & HPAGE_PMD_MASK) >= vma->vm_start &&
  2436. (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
  2437. split_huge_page_address(vma->vm_mm, start);
  2438. /*
  2439. * If the new end address isn't hpage aligned and it could
  2440. * previously contain an hugepage: check if we need to split
  2441. * an huge pmd.
  2442. */
  2443. if (end & ~HPAGE_PMD_MASK &&
  2444. (end & HPAGE_PMD_MASK) >= vma->vm_start &&
  2445. (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
  2446. split_huge_page_address(vma->vm_mm, end);
  2447. /*
  2448. * If we're also updating the vma->vm_next->vm_start, if the new
  2449. * vm_next->vm_start isn't page aligned and it could previously
  2450. * contain an hugepage: check if we need to split an huge pmd.
  2451. */
  2452. if (adjust_next > 0) {
  2453. struct vm_area_struct *next = vma->vm_next;
  2454. unsigned long nstart = next->vm_start;
  2455. nstart += adjust_next << PAGE_SHIFT;
  2456. if (nstart & ~HPAGE_PMD_MASK &&
  2457. (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
  2458. (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
  2459. split_huge_page_address(next->vm_mm, nstart);
  2460. }
  2461. }