cpuset.c 78 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753
  1. /*
  2. * kernel/cpuset.c
  3. *
  4. * Processor and Memory placement constraints for sets of tasks.
  5. *
  6. * Copyright (C) 2003 BULL SA.
  7. * Copyright (C) 2004-2007 Silicon Graphics, Inc.
  8. * Copyright (C) 2006 Google, Inc
  9. *
  10. * Portions derived from Patrick Mochel's sysfs code.
  11. * sysfs is Copyright (c) 2001-3 Patrick Mochel
  12. *
  13. * 2003-10-10 Written by Simon Derr.
  14. * 2003-10-22 Updates by Stephen Hemminger.
  15. * 2004 May-July Rework by Paul Jackson.
  16. * 2006 Rework by Paul Menage to use generic cgroups
  17. * 2008 Rework of the scheduler domains and CPU hotplug handling
  18. * by Max Krasnyansky
  19. *
  20. * This file is subject to the terms and conditions of the GNU General Public
  21. * License. See the file COPYING in the main directory of the Linux
  22. * distribution for more details.
  23. */
  24. #include <linux/cpu.h>
  25. #include <linux/cpumask.h>
  26. #include <linux/cpuset.h>
  27. #include <linux/err.h>
  28. #include <linux/errno.h>
  29. #include <linux/file.h>
  30. #include <linux/fs.h>
  31. #include <linux/init.h>
  32. #include <linux/interrupt.h>
  33. #include <linux/kernel.h>
  34. #include <linux/kmod.h>
  35. #include <linux/list.h>
  36. #include <linux/mempolicy.h>
  37. #include <linux/mm.h>
  38. #include <linux/memory.h>
  39. #include <linux/export.h>
  40. #include <linux/mount.h>
  41. #include <linux/namei.h>
  42. #include <linux/pagemap.h>
  43. #include <linux/proc_fs.h>
  44. #include <linux/rcupdate.h>
  45. #include <linux/sched.h>
  46. #include <linux/seq_file.h>
  47. #include <linux/security.h>
  48. #include <linux/slab.h>
  49. #include <linux/spinlock.h>
  50. #include <linux/stat.h>
  51. #include <linux/string.h>
  52. #include <linux/time.h>
  53. #include <linux/backing-dev.h>
  54. #include <linux/sort.h>
  55. #include <asm/uaccess.h>
  56. #include <linux/atomic.h>
  57. #include <linux/mutex.h>
  58. #include <linux/workqueue.h>
  59. #include <linux/cgroup.h>
  60. #include <linux/wait.h>
  61. /*
  62. * Tracks how many cpusets are currently defined in system.
  63. * When there is only one cpuset (the root cpuset) we can
  64. * short circuit some hooks.
  65. */
  66. int number_of_cpusets __read_mostly;
  67. /* Forward declare cgroup structures */
  68. struct cgroup_subsys cpuset_subsys;
  69. struct cpuset;
  70. /* See "Frequency meter" comments, below. */
  71. struct fmeter {
  72. int cnt; /* unprocessed events count */
  73. int val; /* most recent output value */
  74. time_t time; /* clock (secs) when val computed */
  75. spinlock_t lock; /* guards read or write of above */
  76. };
  77. struct cpuset {
  78. struct cgroup_subsys_state css;
  79. unsigned long flags; /* "unsigned long" so bitops work */
  80. cpumask_var_t cpus_allowed; /* CPUs allowed to tasks in cpuset */
  81. nodemask_t mems_allowed; /* Memory Nodes allowed to tasks */
  82. /*
  83. * This is old Memory Nodes tasks took on.
  84. *
  85. * - top_cpuset.old_mems_allowed is initialized to mems_allowed.
  86. * - A new cpuset's old_mems_allowed is initialized when some
  87. * task is moved into it.
  88. * - old_mems_allowed is used in cpuset_migrate_mm() when we change
  89. * cpuset.mems_allowed and have tasks' nodemask updated, and
  90. * then old_mems_allowed is updated to mems_allowed.
  91. */
  92. nodemask_t old_mems_allowed;
  93. struct fmeter fmeter; /* memory_pressure filter */
  94. /*
  95. * Tasks are being attached to this cpuset. Used to prevent
  96. * zeroing cpus/mems_allowed between ->can_attach() and ->attach().
  97. */
  98. int attach_in_progress;
  99. /* partition number for rebuild_sched_domains() */
  100. int pn;
  101. /* for custom sched domain */
  102. int relax_domain_level;
  103. };
  104. /* Retrieve the cpuset for a cgroup */
  105. static inline struct cpuset *cgroup_cs(struct cgroup *cgrp)
  106. {
  107. return container_of(cgroup_subsys_state(cgrp, cpuset_subsys_id),
  108. struct cpuset, css);
  109. }
  110. /* Retrieve the cpuset for a task */
  111. static inline struct cpuset *task_cs(struct task_struct *task)
  112. {
  113. return container_of(task_subsys_state(task, cpuset_subsys_id),
  114. struct cpuset, css);
  115. }
  116. static inline struct cpuset *parent_cs(const struct cpuset *cs)
  117. {
  118. struct cgroup *pcgrp = cs->css.cgroup->parent;
  119. if (pcgrp)
  120. return cgroup_cs(pcgrp);
  121. return NULL;
  122. }
  123. #ifdef CONFIG_NUMA
  124. static inline bool task_has_mempolicy(struct task_struct *task)
  125. {
  126. return task->mempolicy;
  127. }
  128. #else
  129. static inline bool task_has_mempolicy(struct task_struct *task)
  130. {
  131. return false;
  132. }
  133. #endif
  134. /* bits in struct cpuset flags field */
  135. typedef enum {
  136. CS_ONLINE,
  137. CS_CPU_EXCLUSIVE,
  138. CS_MEM_EXCLUSIVE,
  139. CS_MEM_HARDWALL,
  140. CS_MEMORY_MIGRATE,
  141. CS_SCHED_LOAD_BALANCE,
  142. CS_SPREAD_PAGE,
  143. CS_SPREAD_SLAB,
  144. } cpuset_flagbits_t;
  145. /* convenient tests for these bits */
  146. static inline bool is_cpuset_online(const struct cpuset *cs)
  147. {
  148. return test_bit(CS_ONLINE, &cs->flags);
  149. }
  150. static inline int is_cpu_exclusive(const struct cpuset *cs)
  151. {
  152. return test_bit(CS_CPU_EXCLUSIVE, &cs->flags);
  153. }
  154. static inline int is_mem_exclusive(const struct cpuset *cs)
  155. {
  156. return test_bit(CS_MEM_EXCLUSIVE, &cs->flags);
  157. }
  158. static inline int is_mem_hardwall(const struct cpuset *cs)
  159. {
  160. return test_bit(CS_MEM_HARDWALL, &cs->flags);
  161. }
  162. static inline int is_sched_load_balance(const struct cpuset *cs)
  163. {
  164. return test_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
  165. }
  166. static inline int is_memory_migrate(const struct cpuset *cs)
  167. {
  168. return test_bit(CS_MEMORY_MIGRATE, &cs->flags);
  169. }
  170. static inline int is_spread_page(const struct cpuset *cs)
  171. {
  172. return test_bit(CS_SPREAD_PAGE, &cs->flags);
  173. }
  174. static inline int is_spread_slab(const struct cpuset *cs)
  175. {
  176. return test_bit(CS_SPREAD_SLAB, &cs->flags);
  177. }
  178. static struct cpuset top_cpuset = {
  179. .flags = ((1 << CS_ONLINE) | (1 << CS_CPU_EXCLUSIVE) |
  180. (1 << CS_MEM_EXCLUSIVE)),
  181. };
  182. /**
  183. * cpuset_for_each_child - traverse online children of a cpuset
  184. * @child_cs: loop cursor pointing to the current child
  185. * @pos_cgrp: used for iteration
  186. * @parent_cs: target cpuset to walk children of
  187. *
  188. * Walk @child_cs through the online children of @parent_cs. Must be used
  189. * with RCU read locked.
  190. */
  191. #define cpuset_for_each_child(child_cs, pos_cgrp, parent_cs) \
  192. cgroup_for_each_child((pos_cgrp), (parent_cs)->css.cgroup) \
  193. if (is_cpuset_online(((child_cs) = cgroup_cs((pos_cgrp)))))
  194. /**
  195. * cpuset_for_each_descendant_pre - pre-order walk of a cpuset's descendants
  196. * @des_cs: loop cursor pointing to the current descendant
  197. * @pos_cgrp: used for iteration
  198. * @root_cs: target cpuset to walk ancestor of
  199. *
  200. * Walk @des_cs through the online descendants of @root_cs. Must be used
  201. * with RCU read locked. The caller may modify @pos_cgrp by calling
  202. * cgroup_rightmost_descendant() to skip subtree.
  203. */
  204. #define cpuset_for_each_descendant_pre(des_cs, pos_cgrp, root_cs) \
  205. cgroup_for_each_descendant_pre((pos_cgrp), (root_cs)->css.cgroup) \
  206. if (is_cpuset_online(((des_cs) = cgroup_cs((pos_cgrp)))))
  207. /*
  208. * There are two global mutexes guarding cpuset structures - cpuset_mutex
  209. * and callback_mutex. The latter may nest inside the former. We also
  210. * require taking task_lock() when dereferencing a task's cpuset pointer.
  211. * See "The task_lock() exception", at the end of this comment.
  212. *
  213. * A task must hold both mutexes to modify cpusets. If a task holds
  214. * cpuset_mutex, then it blocks others wanting that mutex, ensuring that it
  215. * is the only task able to also acquire callback_mutex and be able to
  216. * modify cpusets. It can perform various checks on the cpuset structure
  217. * first, knowing nothing will change. It can also allocate memory while
  218. * just holding cpuset_mutex. While it is performing these checks, various
  219. * callback routines can briefly acquire callback_mutex to query cpusets.
  220. * Once it is ready to make the changes, it takes callback_mutex, blocking
  221. * everyone else.
  222. *
  223. * Calls to the kernel memory allocator can not be made while holding
  224. * callback_mutex, as that would risk double tripping on callback_mutex
  225. * from one of the callbacks into the cpuset code from within
  226. * __alloc_pages().
  227. *
  228. * If a task is only holding callback_mutex, then it has read-only
  229. * access to cpusets.
  230. *
  231. * Now, the task_struct fields mems_allowed and mempolicy may be changed
  232. * by other task, we use alloc_lock in the task_struct fields to protect
  233. * them.
  234. *
  235. * The cpuset_common_file_read() handlers only hold callback_mutex across
  236. * small pieces of code, such as when reading out possibly multi-word
  237. * cpumasks and nodemasks.
  238. *
  239. * Accessing a task's cpuset should be done in accordance with the
  240. * guidelines for accessing subsystem state in kernel/cgroup.c
  241. */
  242. static DEFINE_MUTEX(cpuset_mutex);
  243. static DEFINE_MUTEX(callback_mutex);
  244. /*
  245. * CPU / memory hotplug is handled asynchronously.
  246. */
  247. static void cpuset_hotplug_workfn(struct work_struct *work);
  248. static DECLARE_WORK(cpuset_hotplug_work, cpuset_hotplug_workfn);
  249. static DECLARE_WAIT_QUEUE_HEAD(cpuset_attach_wq);
  250. /*
  251. * This is ugly, but preserves the userspace API for existing cpuset
  252. * users. If someone tries to mount the "cpuset" filesystem, we
  253. * silently switch it to mount "cgroup" instead
  254. */
  255. static struct dentry *cpuset_mount(struct file_system_type *fs_type,
  256. int flags, const char *unused_dev_name, void *data)
  257. {
  258. struct file_system_type *cgroup_fs = get_fs_type("cgroup");
  259. struct dentry *ret = ERR_PTR(-ENODEV);
  260. if (cgroup_fs) {
  261. char mountopts[] =
  262. "cpuset,noprefix,"
  263. "release_agent=/sbin/cpuset_release_agent";
  264. ret = cgroup_fs->mount(cgroup_fs, flags,
  265. unused_dev_name, mountopts);
  266. put_filesystem(cgroup_fs);
  267. }
  268. return ret;
  269. }
  270. static struct file_system_type cpuset_fs_type = {
  271. .name = "cpuset",
  272. .mount = cpuset_mount,
  273. };
  274. /*
  275. * Return in pmask the portion of a cpusets's cpus_allowed that
  276. * are online. If none are online, walk up the cpuset hierarchy
  277. * until we find one that does have some online cpus. The top
  278. * cpuset always has some cpus online.
  279. *
  280. * One way or another, we guarantee to return some non-empty subset
  281. * of cpu_online_mask.
  282. *
  283. * Call with callback_mutex held.
  284. */
  285. static void guarantee_online_cpus(const struct cpuset *cs,
  286. struct cpumask *pmask)
  287. {
  288. while (!cpumask_intersects(cs->cpus_allowed, cpu_online_mask))
  289. cs = parent_cs(cs);
  290. cpumask_and(pmask, cs->cpus_allowed, cpu_online_mask);
  291. }
  292. /*
  293. * Return in *pmask the portion of a cpusets's mems_allowed that
  294. * are online, with memory. If none are online with memory, walk
  295. * up the cpuset hierarchy until we find one that does have some
  296. * online mems. The top cpuset always has some mems online.
  297. *
  298. * One way or another, we guarantee to return some non-empty subset
  299. * of node_states[N_MEMORY].
  300. *
  301. * Call with callback_mutex held.
  302. */
  303. static void guarantee_online_mems(const struct cpuset *cs, nodemask_t *pmask)
  304. {
  305. while (!nodes_intersects(cs->mems_allowed, node_states[N_MEMORY]))
  306. cs = parent_cs(cs);
  307. nodes_and(*pmask, cs->mems_allowed, node_states[N_MEMORY]);
  308. }
  309. /*
  310. * update task's spread flag if cpuset's page/slab spread flag is set
  311. *
  312. * Called with callback_mutex/cpuset_mutex held
  313. */
  314. static void cpuset_update_task_spread_flag(struct cpuset *cs,
  315. struct task_struct *tsk)
  316. {
  317. if (is_spread_page(cs))
  318. tsk->flags |= PF_SPREAD_PAGE;
  319. else
  320. tsk->flags &= ~PF_SPREAD_PAGE;
  321. if (is_spread_slab(cs))
  322. tsk->flags |= PF_SPREAD_SLAB;
  323. else
  324. tsk->flags &= ~PF_SPREAD_SLAB;
  325. }
  326. /*
  327. * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q?
  328. *
  329. * One cpuset is a subset of another if all its allowed CPUs and
  330. * Memory Nodes are a subset of the other, and its exclusive flags
  331. * are only set if the other's are set. Call holding cpuset_mutex.
  332. */
  333. static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q)
  334. {
  335. return cpumask_subset(p->cpus_allowed, q->cpus_allowed) &&
  336. nodes_subset(p->mems_allowed, q->mems_allowed) &&
  337. is_cpu_exclusive(p) <= is_cpu_exclusive(q) &&
  338. is_mem_exclusive(p) <= is_mem_exclusive(q);
  339. }
  340. /**
  341. * alloc_trial_cpuset - allocate a trial cpuset
  342. * @cs: the cpuset that the trial cpuset duplicates
  343. */
  344. static struct cpuset *alloc_trial_cpuset(const struct cpuset *cs)
  345. {
  346. struct cpuset *trial;
  347. trial = kmemdup(cs, sizeof(*cs), GFP_KERNEL);
  348. if (!trial)
  349. return NULL;
  350. if (!alloc_cpumask_var(&trial->cpus_allowed, GFP_KERNEL)) {
  351. kfree(trial);
  352. return NULL;
  353. }
  354. cpumask_copy(trial->cpus_allowed, cs->cpus_allowed);
  355. return trial;
  356. }
  357. /**
  358. * free_trial_cpuset - free the trial cpuset
  359. * @trial: the trial cpuset to be freed
  360. */
  361. static void free_trial_cpuset(struct cpuset *trial)
  362. {
  363. free_cpumask_var(trial->cpus_allowed);
  364. kfree(trial);
  365. }
  366. /*
  367. * validate_change() - Used to validate that any proposed cpuset change
  368. * follows the structural rules for cpusets.
  369. *
  370. * If we replaced the flag and mask values of the current cpuset
  371. * (cur) with those values in the trial cpuset (trial), would
  372. * our various subset and exclusive rules still be valid? Presumes
  373. * cpuset_mutex held.
  374. *
  375. * 'cur' is the address of an actual, in-use cpuset. Operations
  376. * such as list traversal that depend on the actual address of the
  377. * cpuset in the list must use cur below, not trial.
  378. *
  379. * 'trial' is the address of bulk structure copy of cur, with
  380. * perhaps one or more of the fields cpus_allowed, mems_allowed,
  381. * or flags changed to new, trial values.
  382. *
  383. * Return 0 if valid, -errno if not.
  384. */
  385. static int validate_change(const struct cpuset *cur, const struct cpuset *trial)
  386. {
  387. struct cgroup *cgrp;
  388. struct cpuset *c, *par;
  389. int ret;
  390. rcu_read_lock();
  391. /* Each of our child cpusets must be a subset of us */
  392. ret = -EBUSY;
  393. cpuset_for_each_child(c, cgrp, cur)
  394. if (!is_cpuset_subset(c, trial))
  395. goto out;
  396. /* Remaining checks don't apply to root cpuset */
  397. ret = 0;
  398. if (cur == &top_cpuset)
  399. goto out;
  400. par = parent_cs(cur);
  401. /* We must be a subset of our parent cpuset */
  402. ret = -EACCES;
  403. if (!is_cpuset_subset(trial, par))
  404. goto out;
  405. /*
  406. * If either I or some sibling (!= me) is exclusive, we can't
  407. * overlap
  408. */
  409. ret = -EINVAL;
  410. cpuset_for_each_child(c, cgrp, par) {
  411. if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) &&
  412. c != cur &&
  413. cpumask_intersects(trial->cpus_allowed, c->cpus_allowed))
  414. goto out;
  415. if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) &&
  416. c != cur &&
  417. nodes_intersects(trial->mems_allowed, c->mems_allowed))
  418. goto out;
  419. }
  420. /*
  421. * Cpusets with tasks - existing or newly being attached - can't
  422. * have empty cpus_allowed or mems_allowed.
  423. */
  424. ret = -ENOSPC;
  425. if ((cgroup_task_count(cur->css.cgroup) || cur->attach_in_progress) &&
  426. (cpumask_empty(trial->cpus_allowed) &&
  427. nodes_empty(trial->mems_allowed)))
  428. goto out;
  429. ret = 0;
  430. out:
  431. rcu_read_unlock();
  432. return ret;
  433. }
  434. #ifdef CONFIG_SMP
  435. /*
  436. * Helper routine for generate_sched_domains().
  437. * Do cpusets a, b have overlapping cpus_allowed masks?
  438. */
  439. static int cpusets_overlap(struct cpuset *a, struct cpuset *b)
  440. {
  441. return cpumask_intersects(a->cpus_allowed, b->cpus_allowed);
  442. }
  443. static void
  444. update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c)
  445. {
  446. if (dattr->relax_domain_level < c->relax_domain_level)
  447. dattr->relax_domain_level = c->relax_domain_level;
  448. return;
  449. }
  450. static void update_domain_attr_tree(struct sched_domain_attr *dattr,
  451. struct cpuset *root_cs)
  452. {
  453. struct cpuset *cp;
  454. struct cgroup *pos_cgrp;
  455. rcu_read_lock();
  456. cpuset_for_each_descendant_pre(cp, pos_cgrp, root_cs) {
  457. /* skip the whole subtree if @cp doesn't have any CPU */
  458. if (cpumask_empty(cp->cpus_allowed)) {
  459. pos_cgrp = cgroup_rightmost_descendant(pos_cgrp);
  460. continue;
  461. }
  462. if (is_sched_load_balance(cp))
  463. update_domain_attr(dattr, cp);
  464. }
  465. rcu_read_unlock();
  466. }
  467. /*
  468. * generate_sched_domains()
  469. *
  470. * This function builds a partial partition of the systems CPUs
  471. * A 'partial partition' is a set of non-overlapping subsets whose
  472. * union is a subset of that set.
  473. * The output of this function needs to be passed to kernel/sched/core.c
  474. * partition_sched_domains() routine, which will rebuild the scheduler's
  475. * load balancing domains (sched domains) as specified by that partial
  476. * partition.
  477. *
  478. * See "What is sched_load_balance" in Documentation/cgroups/cpusets.txt
  479. * for a background explanation of this.
  480. *
  481. * Does not return errors, on the theory that the callers of this
  482. * routine would rather not worry about failures to rebuild sched
  483. * domains when operating in the severe memory shortage situations
  484. * that could cause allocation failures below.
  485. *
  486. * Must be called with cpuset_mutex held.
  487. *
  488. * The three key local variables below are:
  489. * q - a linked-list queue of cpuset pointers, used to implement a
  490. * top-down scan of all cpusets. This scan loads a pointer
  491. * to each cpuset marked is_sched_load_balance into the
  492. * array 'csa'. For our purposes, rebuilding the schedulers
  493. * sched domains, we can ignore !is_sched_load_balance cpusets.
  494. * csa - (for CpuSet Array) Array of pointers to all the cpusets
  495. * that need to be load balanced, for convenient iterative
  496. * access by the subsequent code that finds the best partition,
  497. * i.e the set of domains (subsets) of CPUs such that the
  498. * cpus_allowed of every cpuset marked is_sched_load_balance
  499. * is a subset of one of these domains, while there are as
  500. * many such domains as possible, each as small as possible.
  501. * doms - Conversion of 'csa' to an array of cpumasks, for passing to
  502. * the kernel/sched/core.c routine partition_sched_domains() in a
  503. * convenient format, that can be easily compared to the prior
  504. * value to determine what partition elements (sched domains)
  505. * were changed (added or removed.)
  506. *
  507. * Finding the best partition (set of domains):
  508. * The triple nested loops below over i, j, k scan over the
  509. * load balanced cpusets (using the array of cpuset pointers in
  510. * csa[]) looking for pairs of cpusets that have overlapping
  511. * cpus_allowed, but which don't have the same 'pn' partition
  512. * number and gives them in the same partition number. It keeps
  513. * looping on the 'restart' label until it can no longer find
  514. * any such pairs.
  515. *
  516. * The union of the cpus_allowed masks from the set of
  517. * all cpusets having the same 'pn' value then form the one
  518. * element of the partition (one sched domain) to be passed to
  519. * partition_sched_domains().
  520. */
  521. static int generate_sched_domains(cpumask_var_t **domains,
  522. struct sched_domain_attr **attributes)
  523. {
  524. struct cpuset *cp; /* scans q */
  525. struct cpuset **csa; /* array of all cpuset ptrs */
  526. int csn; /* how many cpuset ptrs in csa so far */
  527. int i, j, k; /* indices for partition finding loops */
  528. cpumask_var_t *doms; /* resulting partition; i.e. sched domains */
  529. struct sched_domain_attr *dattr; /* attributes for custom domains */
  530. int ndoms = 0; /* number of sched domains in result */
  531. int nslot; /* next empty doms[] struct cpumask slot */
  532. struct cgroup *pos_cgrp;
  533. doms = NULL;
  534. dattr = NULL;
  535. csa = NULL;
  536. /* Special case for the 99% of systems with one, full, sched domain */
  537. if (is_sched_load_balance(&top_cpuset)) {
  538. ndoms = 1;
  539. doms = alloc_sched_domains(ndoms);
  540. if (!doms)
  541. goto done;
  542. dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL);
  543. if (dattr) {
  544. *dattr = SD_ATTR_INIT;
  545. update_domain_attr_tree(dattr, &top_cpuset);
  546. }
  547. cpumask_copy(doms[0], top_cpuset.cpus_allowed);
  548. goto done;
  549. }
  550. csa = kmalloc(number_of_cpusets * sizeof(cp), GFP_KERNEL);
  551. if (!csa)
  552. goto done;
  553. csn = 0;
  554. rcu_read_lock();
  555. cpuset_for_each_descendant_pre(cp, pos_cgrp, &top_cpuset) {
  556. /*
  557. * Continue traversing beyond @cp iff @cp has some CPUs and
  558. * isn't load balancing. The former is obvious. The
  559. * latter: All child cpusets contain a subset of the
  560. * parent's cpus, so just skip them, and then we call
  561. * update_domain_attr_tree() to calc relax_domain_level of
  562. * the corresponding sched domain.
  563. */
  564. if (!cpumask_empty(cp->cpus_allowed) &&
  565. !is_sched_load_balance(cp))
  566. continue;
  567. if (is_sched_load_balance(cp))
  568. csa[csn++] = cp;
  569. /* skip @cp's subtree */
  570. pos_cgrp = cgroup_rightmost_descendant(pos_cgrp);
  571. }
  572. rcu_read_unlock();
  573. for (i = 0; i < csn; i++)
  574. csa[i]->pn = i;
  575. ndoms = csn;
  576. restart:
  577. /* Find the best partition (set of sched domains) */
  578. for (i = 0; i < csn; i++) {
  579. struct cpuset *a = csa[i];
  580. int apn = a->pn;
  581. for (j = 0; j < csn; j++) {
  582. struct cpuset *b = csa[j];
  583. int bpn = b->pn;
  584. if (apn != bpn && cpusets_overlap(a, b)) {
  585. for (k = 0; k < csn; k++) {
  586. struct cpuset *c = csa[k];
  587. if (c->pn == bpn)
  588. c->pn = apn;
  589. }
  590. ndoms--; /* one less element */
  591. goto restart;
  592. }
  593. }
  594. }
  595. /*
  596. * Now we know how many domains to create.
  597. * Convert <csn, csa> to <ndoms, doms> and populate cpu masks.
  598. */
  599. doms = alloc_sched_domains(ndoms);
  600. if (!doms)
  601. goto done;
  602. /*
  603. * The rest of the code, including the scheduler, can deal with
  604. * dattr==NULL case. No need to abort if alloc fails.
  605. */
  606. dattr = kmalloc(ndoms * sizeof(struct sched_domain_attr), GFP_KERNEL);
  607. for (nslot = 0, i = 0; i < csn; i++) {
  608. struct cpuset *a = csa[i];
  609. struct cpumask *dp;
  610. int apn = a->pn;
  611. if (apn < 0) {
  612. /* Skip completed partitions */
  613. continue;
  614. }
  615. dp = doms[nslot];
  616. if (nslot == ndoms) {
  617. static int warnings = 10;
  618. if (warnings) {
  619. printk(KERN_WARNING
  620. "rebuild_sched_domains confused:"
  621. " nslot %d, ndoms %d, csn %d, i %d,"
  622. " apn %d\n",
  623. nslot, ndoms, csn, i, apn);
  624. warnings--;
  625. }
  626. continue;
  627. }
  628. cpumask_clear(dp);
  629. if (dattr)
  630. *(dattr + nslot) = SD_ATTR_INIT;
  631. for (j = i; j < csn; j++) {
  632. struct cpuset *b = csa[j];
  633. if (apn == b->pn) {
  634. cpumask_or(dp, dp, b->cpus_allowed);
  635. if (dattr)
  636. update_domain_attr_tree(dattr + nslot, b);
  637. /* Done with this partition */
  638. b->pn = -1;
  639. }
  640. }
  641. nslot++;
  642. }
  643. BUG_ON(nslot != ndoms);
  644. done:
  645. kfree(csa);
  646. /*
  647. * Fallback to the default domain if kmalloc() failed.
  648. * See comments in partition_sched_domains().
  649. */
  650. if (doms == NULL)
  651. ndoms = 1;
  652. *domains = doms;
  653. *attributes = dattr;
  654. return ndoms;
  655. }
  656. /*
  657. * Rebuild scheduler domains.
  658. *
  659. * If the flag 'sched_load_balance' of any cpuset with non-empty
  660. * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset
  661. * which has that flag enabled, or if any cpuset with a non-empty
  662. * 'cpus' is removed, then call this routine to rebuild the
  663. * scheduler's dynamic sched domains.
  664. *
  665. * Call with cpuset_mutex held. Takes get_online_cpus().
  666. */
  667. static void rebuild_sched_domains_locked(void)
  668. {
  669. struct sched_domain_attr *attr;
  670. cpumask_var_t *doms;
  671. int ndoms;
  672. lockdep_assert_held(&cpuset_mutex);
  673. get_online_cpus();
  674. /*
  675. * We have raced with CPU hotplug. Don't do anything to avoid
  676. * passing doms with offlined cpu to partition_sched_domains().
  677. * Anyways, hotplug work item will rebuild sched domains.
  678. */
  679. if (!cpumask_equal(top_cpuset.cpus_allowed, cpu_active_mask))
  680. goto out;
  681. /* Generate domain masks and attrs */
  682. ndoms = generate_sched_domains(&doms, &attr);
  683. /* Have scheduler rebuild the domains */
  684. partition_sched_domains(ndoms, doms, attr);
  685. out:
  686. put_online_cpus();
  687. }
  688. #else /* !CONFIG_SMP */
  689. static void rebuild_sched_domains_locked(void)
  690. {
  691. }
  692. #endif /* CONFIG_SMP */
  693. void rebuild_sched_domains(void)
  694. {
  695. mutex_lock(&cpuset_mutex);
  696. rebuild_sched_domains_locked();
  697. mutex_unlock(&cpuset_mutex);
  698. }
  699. /*
  700. * effective_cpumask_cpuset - return nearest ancestor with non-empty cpus
  701. * @cs: the cpuset in interest
  702. *
  703. * A cpuset's effective cpumask is the cpumask of the nearest ancestor
  704. * with non-empty cpus. We use effective cpumask whenever:
  705. * - we update tasks' cpus_allowed. (they take on the ancestor's cpumask
  706. * if the cpuset they reside in has no cpus)
  707. * - we want to retrieve task_cs(tsk)'s cpus_allowed.
  708. *
  709. * Called with cpuset_mutex held. cpuset_cpus_allowed_fallback() is an
  710. * exception. See comments there.
  711. */
  712. static struct cpuset *effective_cpumask_cpuset(struct cpuset *cs)
  713. {
  714. while (cpumask_empty(cs->cpus_allowed))
  715. cs = parent_cs(cs);
  716. return cs;
  717. }
  718. /*
  719. * effective_nodemask_cpuset - return nearest ancestor with non-empty mems
  720. * @cs: the cpuset in interest
  721. *
  722. * A cpuset's effective nodemask is the nodemask of the nearest ancestor
  723. * with non-empty memss. We use effective nodemask whenever:
  724. * - we update tasks' mems_allowed. (they take on the ancestor's nodemask
  725. * if the cpuset they reside in has no mems)
  726. * - we want to retrieve task_cs(tsk)'s mems_allowed.
  727. *
  728. * Called with cpuset_mutex held.
  729. */
  730. static struct cpuset *effective_nodemask_cpuset(struct cpuset *cs)
  731. {
  732. while (nodes_empty(cs->mems_allowed))
  733. cs = parent_cs(cs);
  734. return cs;
  735. }
  736. /**
  737. * cpuset_change_cpumask - make a task's cpus_allowed the same as its cpuset's
  738. * @tsk: task to test
  739. * @scan: struct cgroup_scanner containing the cgroup of the task
  740. *
  741. * Called by cgroup_scan_tasks() for each task in a cgroup whose
  742. * cpus_allowed mask needs to be changed.
  743. *
  744. * We don't need to re-check for the cgroup/cpuset membership, since we're
  745. * holding cpuset_mutex at this point.
  746. */
  747. static void cpuset_change_cpumask(struct task_struct *tsk,
  748. struct cgroup_scanner *scan)
  749. {
  750. struct cpuset *cpus_cs;
  751. cpus_cs = effective_cpumask_cpuset(cgroup_cs(scan->cg));
  752. set_cpus_allowed_ptr(tsk, cpus_cs->cpus_allowed);
  753. }
  754. /**
  755. * update_tasks_cpumask - Update the cpumasks of tasks in the cpuset.
  756. * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed
  757. * @heap: if NULL, defer allocating heap memory to cgroup_scan_tasks()
  758. *
  759. * Called with cpuset_mutex held
  760. *
  761. * The cgroup_scan_tasks() function will scan all the tasks in a cgroup,
  762. * calling callback functions for each.
  763. *
  764. * No return value. It's guaranteed that cgroup_scan_tasks() always returns 0
  765. * if @heap != NULL.
  766. */
  767. static void update_tasks_cpumask(struct cpuset *cs, struct ptr_heap *heap)
  768. {
  769. struct cgroup_scanner scan;
  770. scan.cg = cs->css.cgroup;
  771. scan.test_task = NULL;
  772. scan.process_task = cpuset_change_cpumask;
  773. scan.heap = heap;
  774. cgroup_scan_tasks(&scan);
  775. }
  776. /*
  777. * update_tasks_cpumask_hier - Update the cpumasks of tasks in the hierarchy.
  778. * @root_cs: the root cpuset of the hierarchy
  779. * @update_root: update root cpuset or not?
  780. * @heap: the heap used by cgroup_scan_tasks()
  781. *
  782. * This will update cpumasks of tasks in @root_cs and all other empty cpusets
  783. * which take on cpumask of @root_cs.
  784. *
  785. * Called with cpuset_mutex held
  786. */
  787. static void update_tasks_cpumask_hier(struct cpuset *root_cs,
  788. bool update_root, struct ptr_heap *heap)
  789. {
  790. struct cpuset *cp;
  791. struct cgroup *pos_cgrp;
  792. if (update_root)
  793. update_tasks_cpumask(root_cs, heap);
  794. rcu_read_lock();
  795. cpuset_for_each_descendant_pre(cp, pos_cgrp, root_cs) {
  796. /* skip the whole subtree if @cp have some CPU */
  797. if (!cpumask_empty(cp->cpus_allowed)) {
  798. pos_cgrp = cgroup_rightmost_descendant(pos_cgrp);
  799. continue;
  800. }
  801. if (!css_tryget(&cp->css))
  802. continue;
  803. rcu_read_unlock();
  804. update_tasks_cpumask(cp, heap);
  805. rcu_read_lock();
  806. css_put(&cp->css);
  807. }
  808. rcu_read_unlock();
  809. }
  810. /**
  811. * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it
  812. * @cs: the cpuset to consider
  813. * @buf: buffer of cpu numbers written to this cpuset
  814. */
  815. static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs,
  816. const char *buf)
  817. {
  818. struct ptr_heap heap;
  819. int retval;
  820. int is_load_balanced;
  821. /* top_cpuset.cpus_allowed tracks cpu_online_mask; it's read-only */
  822. if (cs == &top_cpuset)
  823. return -EACCES;
  824. /*
  825. * An empty cpus_allowed is ok only if the cpuset has no tasks.
  826. * Since cpulist_parse() fails on an empty mask, we special case
  827. * that parsing. The validate_change() call ensures that cpusets
  828. * with tasks have cpus.
  829. */
  830. if (!*buf) {
  831. cpumask_clear(trialcs->cpus_allowed);
  832. } else {
  833. retval = cpulist_parse(buf, trialcs->cpus_allowed);
  834. if (retval < 0)
  835. return retval;
  836. if (!cpumask_subset(trialcs->cpus_allowed, cpu_active_mask))
  837. return -EINVAL;
  838. }
  839. /* Nothing to do if the cpus didn't change */
  840. if (cpumask_equal(cs->cpus_allowed, trialcs->cpus_allowed))
  841. return 0;
  842. retval = validate_change(cs, trialcs);
  843. if (retval < 0)
  844. return retval;
  845. retval = heap_init(&heap, PAGE_SIZE, GFP_KERNEL, NULL);
  846. if (retval)
  847. return retval;
  848. is_load_balanced = is_sched_load_balance(trialcs);
  849. mutex_lock(&callback_mutex);
  850. cpumask_copy(cs->cpus_allowed, trialcs->cpus_allowed);
  851. mutex_unlock(&callback_mutex);
  852. update_tasks_cpumask_hier(cs, true, &heap);
  853. heap_free(&heap);
  854. if (is_load_balanced)
  855. rebuild_sched_domains_locked();
  856. return 0;
  857. }
  858. /*
  859. * cpuset_migrate_mm
  860. *
  861. * Migrate memory region from one set of nodes to another.
  862. *
  863. * Temporarilly set tasks mems_allowed to target nodes of migration,
  864. * so that the migration code can allocate pages on these nodes.
  865. *
  866. * Call holding cpuset_mutex, so current's cpuset won't change
  867. * during this call, as manage_mutex holds off any cpuset_attach()
  868. * calls. Therefore we don't need to take task_lock around the
  869. * call to guarantee_online_mems(), as we know no one is changing
  870. * our task's cpuset.
  871. *
  872. * While the mm_struct we are migrating is typically from some
  873. * other task, the task_struct mems_allowed that we are hacking
  874. * is for our current task, which must allocate new pages for that
  875. * migrating memory region.
  876. */
  877. static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from,
  878. const nodemask_t *to)
  879. {
  880. struct task_struct *tsk = current;
  881. struct cpuset *mems_cs;
  882. tsk->mems_allowed = *to;
  883. do_migrate_pages(mm, from, to, MPOL_MF_MOVE_ALL);
  884. mems_cs = effective_nodemask_cpuset(task_cs(tsk));
  885. guarantee_online_mems(mems_cs, &tsk->mems_allowed);
  886. }
  887. /*
  888. * cpuset_change_task_nodemask - change task's mems_allowed and mempolicy
  889. * @tsk: the task to change
  890. * @newmems: new nodes that the task will be set
  891. *
  892. * In order to avoid seeing no nodes if the old and new nodes are disjoint,
  893. * we structure updates as setting all new allowed nodes, then clearing newly
  894. * disallowed ones.
  895. */
  896. static void cpuset_change_task_nodemask(struct task_struct *tsk,
  897. nodemask_t *newmems)
  898. {
  899. bool need_loop;
  900. /*
  901. * Allow tasks that have access to memory reserves because they have
  902. * been OOM killed to get memory anywhere.
  903. */
  904. if (unlikely(test_thread_flag(TIF_MEMDIE)))
  905. return;
  906. if (current->flags & PF_EXITING) /* Let dying task have memory */
  907. return;
  908. task_lock(tsk);
  909. /*
  910. * Determine if a loop is necessary if another thread is doing
  911. * get_mems_allowed(). If at least one node remains unchanged and
  912. * tsk does not have a mempolicy, then an empty nodemask will not be
  913. * possible when mems_allowed is larger than a word.
  914. */
  915. need_loop = task_has_mempolicy(tsk) ||
  916. !nodes_intersects(*newmems, tsk->mems_allowed);
  917. if (need_loop)
  918. write_seqcount_begin(&tsk->mems_allowed_seq);
  919. nodes_or(tsk->mems_allowed, tsk->mems_allowed, *newmems);
  920. mpol_rebind_task(tsk, newmems, MPOL_REBIND_STEP1);
  921. mpol_rebind_task(tsk, newmems, MPOL_REBIND_STEP2);
  922. tsk->mems_allowed = *newmems;
  923. if (need_loop)
  924. write_seqcount_end(&tsk->mems_allowed_seq);
  925. task_unlock(tsk);
  926. }
  927. /*
  928. * Update task's mems_allowed and rebind its mempolicy and vmas' mempolicy
  929. * of it to cpuset's new mems_allowed, and migrate pages to new nodes if
  930. * memory_migrate flag is set. Called with cpuset_mutex held.
  931. */
  932. static void cpuset_change_nodemask(struct task_struct *p,
  933. struct cgroup_scanner *scan)
  934. {
  935. struct cpuset *cs = cgroup_cs(scan->cg);
  936. struct mm_struct *mm;
  937. int migrate;
  938. nodemask_t *newmems = scan->data;
  939. cpuset_change_task_nodemask(p, newmems);
  940. mm = get_task_mm(p);
  941. if (!mm)
  942. return;
  943. migrate = is_memory_migrate(cs);
  944. mpol_rebind_mm(mm, &cs->mems_allowed);
  945. if (migrate)
  946. cpuset_migrate_mm(mm, &cs->old_mems_allowed, newmems);
  947. mmput(mm);
  948. }
  949. static void *cpuset_being_rebound;
  950. /**
  951. * update_tasks_nodemask - Update the nodemasks of tasks in the cpuset.
  952. * @cs: the cpuset in which each task's mems_allowed mask needs to be changed
  953. * @heap: if NULL, defer allocating heap memory to cgroup_scan_tasks()
  954. *
  955. * Called with cpuset_mutex held
  956. * No return value. It's guaranteed that cgroup_scan_tasks() always returns 0
  957. * if @heap != NULL.
  958. */
  959. static void update_tasks_nodemask(struct cpuset *cs, struct ptr_heap *heap)
  960. {
  961. static nodemask_t newmems; /* protected by cpuset_mutex */
  962. struct cgroup_scanner scan;
  963. struct cpuset *mems_cs = effective_nodemask_cpuset(cs);
  964. cpuset_being_rebound = cs; /* causes mpol_dup() rebind */
  965. guarantee_online_mems(mems_cs, &newmems);
  966. scan.cg = cs->css.cgroup;
  967. scan.test_task = NULL;
  968. scan.process_task = cpuset_change_nodemask;
  969. scan.heap = heap;
  970. scan.data = &newmems;
  971. /*
  972. * The mpol_rebind_mm() call takes mmap_sem, which we couldn't
  973. * take while holding tasklist_lock. Forks can happen - the
  974. * mpol_dup() cpuset_being_rebound check will catch such forks,
  975. * and rebind their vma mempolicies too. Because we still hold
  976. * the global cpuset_mutex, we know that no other rebind effort
  977. * will be contending for the global variable cpuset_being_rebound.
  978. * It's ok if we rebind the same mm twice; mpol_rebind_mm()
  979. * is idempotent. Also migrate pages in each mm to new nodes.
  980. */
  981. cgroup_scan_tasks(&scan);
  982. /*
  983. * All the tasks' nodemasks have been updated, update
  984. * cs->old_mems_allowed.
  985. */
  986. cs->old_mems_allowed = newmems;
  987. /* We're done rebinding vmas to this cpuset's new mems_allowed. */
  988. cpuset_being_rebound = NULL;
  989. }
  990. /*
  991. * update_tasks_nodemask_hier - Update the nodemasks of tasks in the hierarchy.
  992. * @cs: the root cpuset of the hierarchy
  993. * @update_root: update the root cpuset or not?
  994. * @heap: the heap used by cgroup_scan_tasks()
  995. *
  996. * This will update nodemasks of tasks in @root_cs and all other empty cpusets
  997. * which take on nodemask of @root_cs.
  998. *
  999. * Called with cpuset_mutex held
  1000. */
  1001. static void update_tasks_nodemask_hier(struct cpuset *root_cs,
  1002. bool update_root, struct ptr_heap *heap)
  1003. {
  1004. struct cpuset *cp;
  1005. struct cgroup *pos_cgrp;
  1006. if (update_root)
  1007. update_tasks_nodemask(root_cs, heap);
  1008. rcu_read_lock();
  1009. cpuset_for_each_descendant_pre(cp, pos_cgrp, root_cs) {
  1010. /* skip the whole subtree if @cp have some CPU */
  1011. if (!nodes_empty(cp->mems_allowed)) {
  1012. pos_cgrp = cgroup_rightmost_descendant(pos_cgrp);
  1013. continue;
  1014. }
  1015. if (!css_tryget(&cp->css))
  1016. continue;
  1017. rcu_read_unlock();
  1018. update_tasks_nodemask(cp, heap);
  1019. rcu_read_lock();
  1020. css_put(&cp->css);
  1021. }
  1022. rcu_read_unlock();
  1023. }
  1024. /*
  1025. * Handle user request to change the 'mems' memory placement
  1026. * of a cpuset. Needs to validate the request, update the
  1027. * cpusets mems_allowed, and for each task in the cpuset,
  1028. * update mems_allowed and rebind task's mempolicy and any vma
  1029. * mempolicies and if the cpuset is marked 'memory_migrate',
  1030. * migrate the tasks pages to the new memory.
  1031. *
  1032. * Call with cpuset_mutex held. May take callback_mutex during call.
  1033. * Will take tasklist_lock, scan tasklist for tasks in cpuset cs,
  1034. * lock each such tasks mm->mmap_sem, scan its vma's and rebind
  1035. * their mempolicies to the cpusets new mems_allowed.
  1036. */
  1037. static int update_nodemask(struct cpuset *cs, struct cpuset *trialcs,
  1038. const char *buf)
  1039. {
  1040. int retval;
  1041. struct ptr_heap heap;
  1042. /*
  1043. * top_cpuset.mems_allowed tracks node_stats[N_MEMORY];
  1044. * it's read-only
  1045. */
  1046. if (cs == &top_cpuset) {
  1047. retval = -EACCES;
  1048. goto done;
  1049. }
  1050. /*
  1051. * An empty mems_allowed is ok iff there are no tasks in the cpuset.
  1052. * Since nodelist_parse() fails on an empty mask, we special case
  1053. * that parsing. The validate_change() call ensures that cpusets
  1054. * with tasks have memory.
  1055. */
  1056. if (!*buf) {
  1057. nodes_clear(trialcs->mems_allowed);
  1058. } else {
  1059. retval = nodelist_parse(buf, trialcs->mems_allowed);
  1060. if (retval < 0)
  1061. goto done;
  1062. if (!nodes_subset(trialcs->mems_allowed,
  1063. node_states[N_MEMORY])) {
  1064. retval = -EINVAL;
  1065. goto done;
  1066. }
  1067. }
  1068. if (nodes_equal(cs->mems_allowed, trialcs->mems_allowed)) {
  1069. retval = 0; /* Too easy - nothing to do */
  1070. goto done;
  1071. }
  1072. retval = validate_change(cs, trialcs);
  1073. if (retval < 0)
  1074. goto done;
  1075. retval = heap_init(&heap, PAGE_SIZE, GFP_KERNEL, NULL);
  1076. if (retval < 0)
  1077. goto done;
  1078. mutex_lock(&callback_mutex);
  1079. cs->mems_allowed = trialcs->mems_allowed;
  1080. mutex_unlock(&callback_mutex);
  1081. update_tasks_nodemask_hier(cs, true, &heap);
  1082. heap_free(&heap);
  1083. done:
  1084. return retval;
  1085. }
  1086. int current_cpuset_is_being_rebound(void)
  1087. {
  1088. return task_cs(current) == cpuset_being_rebound;
  1089. }
  1090. static int update_relax_domain_level(struct cpuset *cs, s64 val)
  1091. {
  1092. #ifdef CONFIG_SMP
  1093. if (val < -1 || val >= sched_domain_level_max)
  1094. return -EINVAL;
  1095. #endif
  1096. if (val != cs->relax_domain_level) {
  1097. cs->relax_domain_level = val;
  1098. if (!cpumask_empty(cs->cpus_allowed) &&
  1099. is_sched_load_balance(cs))
  1100. rebuild_sched_domains_locked();
  1101. }
  1102. return 0;
  1103. }
  1104. /*
  1105. * cpuset_change_flag - make a task's spread flags the same as its cpuset's
  1106. * @tsk: task to be updated
  1107. * @scan: struct cgroup_scanner containing the cgroup of the task
  1108. *
  1109. * Called by cgroup_scan_tasks() for each task in a cgroup.
  1110. *
  1111. * We don't need to re-check for the cgroup/cpuset membership, since we're
  1112. * holding cpuset_mutex at this point.
  1113. */
  1114. static void cpuset_change_flag(struct task_struct *tsk,
  1115. struct cgroup_scanner *scan)
  1116. {
  1117. cpuset_update_task_spread_flag(cgroup_cs(scan->cg), tsk);
  1118. }
  1119. /*
  1120. * update_tasks_flags - update the spread flags of tasks in the cpuset.
  1121. * @cs: the cpuset in which each task's spread flags needs to be changed
  1122. * @heap: if NULL, defer allocating heap memory to cgroup_scan_tasks()
  1123. *
  1124. * Called with cpuset_mutex held
  1125. *
  1126. * The cgroup_scan_tasks() function will scan all the tasks in a cgroup,
  1127. * calling callback functions for each.
  1128. *
  1129. * No return value. It's guaranteed that cgroup_scan_tasks() always returns 0
  1130. * if @heap != NULL.
  1131. */
  1132. static void update_tasks_flags(struct cpuset *cs, struct ptr_heap *heap)
  1133. {
  1134. struct cgroup_scanner scan;
  1135. scan.cg = cs->css.cgroup;
  1136. scan.test_task = NULL;
  1137. scan.process_task = cpuset_change_flag;
  1138. scan.heap = heap;
  1139. cgroup_scan_tasks(&scan);
  1140. }
  1141. /*
  1142. * update_flag - read a 0 or a 1 in a file and update associated flag
  1143. * bit: the bit to update (see cpuset_flagbits_t)
  1144. * cs: the cpuset to update
  1145. * turning_on: whether the flag is being set or cleared
  1146. *
  1147. * Call with cpuset_mutex held.
  1148. */
  1149. static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs,
  1150. int turning_on)
  1151. {
  1152. struct cpuset *trialcs;
  1153. int balance_flag_changed;
  1154. int spread_flag_changed;
  1155. struct ptr_heap heap;
  1156. int err;
  1157. trialcs = alloc_trial_cpuset(cs);
  1158. if (!trialcs)
  1159. return -ENOMEM;
  1160. if (turning_on)
  1161. set_bit(bit, &trialcs->flags);
  1162. else
  1163. clear_bit(bit, &trialcs->flags);
  1164. err = validate_change(cs, trialcs);
  1165. if (err < 0)
  1166. goto out;
  1167. err = heap_init(&heap, PAGE_SIZE, GFP_KERNEL, NULL);
  1168. if (err < 0)
  1169. goto out;
  1170. balance_flag_changed = (is_sched_load_balance(cs) !=
  1171. is_sched_load_balance(trialcs));
  1172. spread_flag_changed = ((is_spread_slab(cs) != is_spread_slab(trialcs))
  1173. || (is_spread_page(cs) != is_spread_page(trialcs)));
  1174. mutex_lock(&callback_mutex);
  1175. cs->flags = trialcs->flags;
  1176. mutex_unlock(&callback_mutex);
  1177. if (!cpumask_empty(trialcs->cpus_allowed) && balance_flag_changed)
  1178. rebuild_sched_domains_locked();
  1179. if (spread_flag_changed)
  1180. update_tasks_flags(cs, &heap);
  1181. heap_free(&heap);
  1182. out:
  1183. free_trial_cpuset(trialcs);
  1184. return err;
  1185. }
  1186. /*
  1187. * Frequency meter - How fast is some event occurring?
  1188. *
  1189. * These routines manage a digitally filtered, constant time based,
  1190. * event frequency meter. There are four routines:
  1191. * fmeter_init() - initialize a frequency meter.
  1192. * fmeter_markevent() - called each time the event happens.
  1193. * fmeter_getrate() - returns the recent rate of such events.
  1194. * fmeter_update() - internal routine used to update fmeter.
  1195. *
  1196. * A common data structure is passed to each of these routines,
  1197. * which is used to keep track of the state required to manage the
  1198. * frequency meter and its digital filter.
  1199. *
  1200. * The filter works on the number of events marked per unit time.
  1201. * The filter is single-pole low-pass recursive (IIR). The time unit
  1202. * is 1 second. Arithmetic is done using 32-bit integers scaled to
  1203. * simulate 3 decimal digits of precision (multiplied by 1000).
  1204. *
  1205. * With an FM_COEF of 933, and a time base of 1 second, the filter
  1206. * has a half-life of 10 seconds, meaning that if the events quit
  1207. * happening, then the rate returned from the fmeter_getrate()
  1208. * will be cut in half each 10 seconds, until it converges to zero.
  1209. *
  1210. * It is not worth doing a real infinitely recursive filter. If more
  1211. * than FM_MAXTICKS ticks have elapsed since the last filter event,
  1212. * just compute FM_MAXTICKS ticks worth, by which point the level
  1213. * will be stable.
  1214. *
  1215. * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid
  1216. * arithmetic overflow in the fmeter_update() routine.
  1217. *
  1218. * Given the simple 32 bit integer arithmetic used, this meter works
  1219. * best for reporting rates between one per millisecond (msec) and
  1220. * one per 32 (approx) seconds. At constant rates faster than one
  1221. * per msec it maxes out at values just under 1,000,000. At constant
  1222. * rates between one per msec, and one per second it will stabilize
  1223. * to a value N*1000, where N is the rate of events per second.
  1224. * At constant rates between one per second and one per 32 seconds,
  1225. * it will be choppy, moving up on the seconds that have an event,
  1226. * and then decaying until the next event. At rates slower than
  1227. * about one in 32 seconds, it decays all the way back to zero between
  1228. * each event.
  1229. */
  1230. #define FM_COEF 933 /* coefficient for half-life of 10 secs */
  1231. #define FM_MAXTICKS ((time_t)99) /* useless computing more ticks than this */
  1232. #define FM_MAXCNT 1000000 /* limit cnt to avoid overflow */
  1233. #define FM_SCALE 1000 /* faux fixed point scale */
  1234. /* Initialize a frequency meter */
  1235. static void fmeter_init(struct fmeter *fmp)
  1236. {
  1237. fmp->cnt = 0;
  1238. fmp->val = 0;
  1239. fmp->time = 0;
  1240. spin_lock_init(&fmp->lock);
  1241. }
  1242. /* Internal meter update - process cnt events and update value */
  1243. static void fmeter_update(struct fmeter *fmp)
  1244. {
  1245. time_t now = get_seconds();
  1246. time_t ticks = now - fmp->time;
  1247. if (ticks == 0)
  1248. return;
  1249. ticks = min(FM_MAXTICKS, ticks);
  1250. while (ticks-- > 0)
  1251. fmp->val = (FM_COEF * fmp->val) / FM_SCALE;
  1252. fmp->time = now;
  1253. fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE;
  1254. fmp->cnt = 0;
  1255. }
  1256. /* Process any previous ticks, then bump cnt by one (times scale). */
  1257. static void fmeter_markevent(struct fmeter *fmp)
  1258. {
  1259. spin_lock(&fmp->lock);
  1260. fmeter_update(fmp);
  1261. fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE);
  1262. spin_unlock(&fmp->lock);
  1263. }
  1264. /* Process any previous ticks, then return current value. */
  1265. static int fmeter_getrate(struct fmeter *fmp)
  1266. {
  1267. int val;
  1268. spin_lock(&fmp->lock);
  1269. fmeter_update(fmp);
  1270. val = fmp->val;
  1271. spin_unlock(&fmp->lock);
  1272. return val;
  1273. }
  1274. /* Called by cgroups to determine if a cpuset is usable; cpuset_mutex held */
  1275. static int cpuset_can_attach(struct cgroup *cgrp, struct cgroup_taskset *tset)
  1276. {
  1277. struct cpuset *cs = cgroup_cs(cgrp);
  1278. struct task_struct *task;
  1279. int ret;
  1280. mutex_lock(&cpuset_mutex);
  1281. /*
  1282. * We allow to move tasks into an empty cpuset if sane_behavior
  1283. * flag is set.
  1284. */
  1285. ret = -ENOSPC;
  1286. if (!cgroup_sane_behavior(cgrp) &&
  1287. (cpumask_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed)))
  1288. goto out_unlock;
  1289. cgroup_taskset_for_each(task, cgrp, tset) {
  1290. /*
  1291. * Kthreads which disallow setaffinity shouldn't be moved
  1292. * to a new cpuset; we don't want to change their cpu
  1293. * affinity and isolating such threads by their set of
  1294. * allowed nodes is unnecessary. Thus, cpusets are not
  1295. * applicable for such threads. This prevents checking for
  1296. * success of set_cpus_allowed_ptr() on all attached tasks
  1297. * before cpus_allowed may be changed.
  1298. */
  1299. ret = -EINVAL;
  1300. if (task->flags & PF_NO_SETAFFINITY)
  1301. goto out_unlock;
  1302. ret = security_task_setscheduler(task);
  1303. if (ret)
  1304. goto out_unlock;
  1305. }
  1306. /*
  1307. * Mark attach is in progress. This makes validate_change() fail
  1308. * changes which zero cpus/mems_allowed.
  1309. */
  1310. cs->attach_in_progress++;
  1311. ret = 0;
  1312. out_unlock:
  1313. mutex_unlock(&cpuset_mutex);
  1314. return ret;
  1315. }
  1316. static void cpuset_cancel_attach(struct cgroup *cgrp,
  1317. struct cgroup_taskset *tset)
  1318. {
  1319. mutex_lock(&cpuset_mutex);
  1320. cgroup_cs(cgrp)->attach_in_progress--;
  1321. mutex_unlock(&cpuset_mutex);
  1322. }
  1323. /*
  1324. * Protected by cpuset_mutex. cpus_attach is used only by cpuset_attach()
  1325. * but we can't allocate it dynamically there. Define it global and
  1326. * allocate from cpuset_init().
  1327. */
  1328. static cpumask_var_t cpus_attach;
  1329. static void cpuset_attach(struct cgroup *cgrp, struct cgroup_taskset *tset)
  1330. {
  1331. /* static buf protected by cpuset_mutex */
  1332. static nodemask_t cpuset_attach_nodemask_to;
  1333. struct mm_struct *mm;
  1334. struct task_struct *task;
  1335. struct task_struct *leader = cgroup_taskset_first(tset);
  1336. struct cgroup *oldcgrp = cgroup_taskset_cur_cgroup(tset);
  1337. struct cpuset *cs = cgroup_cs(cgrp);
  1338. struct cpuset *oldcs = cgroup_cs(oldcgrp);
  1339. struct cpuset *cpus_cs = effective_cpumask_cpuset(cs);
  1340. struct cpuset *mems_cs = effective_nodemask_cpuset(cs);
  1341. mutex_lock(&cpuset_mutex);
  1342. /* prepare for attach */
  1343. if (cs == &top_cpuset)
  1344. cpumask_copy(cpus_attach, cpu_possible_mask);
  1345. else
  1346. guarantee_online_cpus(cpus_cs, cpus_attach);
  1347. guarantee_online_mems(mems_cs, &cpuset_attach_nodemask_to);
  1348. cgroup_taskset_for_each(task, cgrp, tset) {
  1349. /*
  1350. * can_attach beforehand should guarantee that this doesn't
  1351. * fail. TODO: have a better way to handle failure here
  1352. */
  1353. WARN_ON_ONCE(set_cpus_allowed_ptr(task, cpus_attach));
  1354. cpuset_change_task_nodemask(task, &cpuset_attach_nodemask_to);
  1355. cpuset_update_task_spread_flag(cs, task);
  1356. }
  1357. /*
  1358. * Change mm, possibly for multiple threads in a threadgroup. This is
  1359. * expensive and may sleep.
  1360. */
  1361. cpuset_attach_nodemask_to = cs->mems_allowed;
  1362. mm = get_task_mm(leader);
  1363. if (mm) {
  1364. struct cpuset *mems_oldcs = effective_nodemask_cpuset(oldcs);
  1365. mpol_rebind_mm(mm, &cpuset_attach_nodemask_to);
  1366. /*
  1367. * old_mems_allowed is the same with mems_allowed here, except
  1368. * if this task is being moved automatically due to hotplug.
  1369. * In that case @mems_allowed has been updated and is empty,
  1370. * so @old_mems_allowed is the right nodesets that we migrate
  1371. * mm from.
  1372. */
  1373. if (is_memory_migrate(cs)) {
  1374. cpuset_migrate_mm(mm, &mems_oldcs->old_mems_allowed,
  1375. &cpuset_attach_nodemask_to);
  1376. }
  1377. mmput(mm);
  1378. }
  1379. cs->old_mems_allowed = cpuset_attach_nodemask_to;
  1380. cs->attach_in_progress--;
  1381. if (!cs->attach_in_progress)
  1382. wake_up(&cpuset_attach_wq);
  1383. mutex_unlock(&cpuset_mutex);
  1384. }
  1385. /* The various types of files and directories in a cpuset file system */
  1386. typedef enum {
  1387. FILE_MEMORY_MIGRATE,
  1388. FILE_CPULIST,
  1389. FILE_MEMLIST,
  1390. FILE_CPU_EXCLUSIVE,
  1391. FILE_MEM_EXCLUSIVE,
  1392. FILE_MEM_HARDWALL,
  1393. FILE_SCHED_LOAD_BALANCE,
  1394. FILE_SCHED_RELAX_DOMAIN_LEVEL,
  1395. FILE_MEMORY_PRESSURE_ENABLED,
  1396. FILE_MEMORY_PRESSURE,
  1397. FILE_SPREAD_PAGE,
  1398. FILE_SPREAD_SLAB,
  1399. } cpuset_filetype_t;
  1400. static int cpuset_write_u64(struct cgroup *cgrp, struct cftype *cft, u64 val)
  1401. {
  1402. struct cpuset *cs = cgroup_cs(cgrp);
  1403. cpuset_filetype_t type = cft->private;
  1404. int retval = -ENODEV;
  1405. mutex_lock(&cpuset_mutex);
  1406. if (!is_cpuset_online(cs))
  1407. goto out_unlock;
  1408. switch (type) {
  1409. case FILE_CPU_EXCLUSIVE:
  1410. retval = update_flag(CS_CPU_EXCLUSIVE, cs, val);
  1411. break;
  1412. case FILE_MEM_EXCLUSIVE:
  1413. retval = update_flag(CS_MEM_EXCLUSIVE, cs, val);
  1414. break;
  1415. case FILE_MEM_HARDWALL:
  1416. retval = update_flag(CS_MEM_HARDWALL, cs, val);
  1417. break;
  1418. case FILE_SCHED_LOAD_BALANCE:
  1419. retval = update_flag(CS_SCHED_LOAD_BALANCE, cs, val);
  1420. break;
  1421. case FILE_MEMORY_MIGRATE:
  1422. retval = update_flag(CS_MEMORY_MIGRATE, cs, val);
  1423. break;
  1424. case FILE_MEMORY_PRESSURE_ENABLED:
  1425. cpuset_memory_pressure_enabled = !!val;
  1426. break;
  1427. case FILE_MEMORY_PRESSURE:
  1428. retval = -EACCES;
  1429. break;
  1430. case FILE_SPREAD_PAGE:
  1431. retval = update_flag(CS_SPREAD_PAGE, cs, val);
  1432. break;
  1433. case FILE_SPREAD_SLAB:
  1434. retval = update_flag(CS_SPREAD_SLAB, cs, val);
  1435. break;
  1436. default:
  1437. retval = -EINVAL;
  1438. break;
  1439. }
  1440. out_unlock:
  1441. mutex_unlock(&cpuset_mutex);
  1442. return retval;
  1443. }
  1444. static int cpuset_write_s64(struct cgroup *cgrp, struct cftype *cft, s64 val)
  1445. {
  1446. struct cpuset *cs = cgroup_cs(cgrp);
  1447. cpuset_filetype_t type = cft->private;
  1448. int retval = -ENODEV;
  1449. mutex_lock(&cpuset_mutex);
  1450. if (!is_cpuset_online(cs))
  1451. goto out_unlock;
  1452. switch (type) {
  1453. case FILE_SCHED_RELAX_DOMAIN_LEVEL:
  1454. retval = update_relax_domain_level(cs, val);
  1455. break;
  1456. default:
  1457. retval = -EINVAL;
  1458. break;
  1459. }
  1460. out_unlock:
  1461. mutex_unlock(&cpuset_mutex);
  1462. return retval;
  1463. }
  1464. /*
  1465. * Common handling for a write to a "cpus" or "mems" file.
  1466. */
  1467. static int cpuset_write_resmask(struct cgroup *cgrp, struct cftype *cft,
  1468. const char *buf)
  1469. {
  1470. struct cpuset *cs = cgroup_cs(cgrp);
  1471. struct cpuset *trialcs;
  1472. int retval = -ENODEV;
  1473. /*
  1474. * CPU or memory hotunplug may leave @cs w/o any execution
  1475. * resources, in which case the hotplug code asynchronously updates
  1476. * configuration and transfers all tasks to the nearest ancestor
  1477. * which can execute.
  1478. *
  1479. * As writes to "cpus" or "mems" may restore @cs's execution
  1480. * resources, wait for the previously scheduled operations before
  1481. * proceeding, so that we don't end up keep removing tasks added
  1482. * after execution capability is restored.
  1483. */
  1484. flush_work(&cpuset_hotplug_work);
  1485. mutex_lock(&cpuset_mutex);
  1486. if (!is_cpuset_online(cs))
  1487. goto out_unlock;
  1488. trialcs = alloc_trial_cpuset(cs);
  1489. if (!trialcs) {
  1490. retval = -ENOMEM;
  1491. goto out_unlock;
  1492. }
  1493. switch (cft->private) {
  1494. case FILE_CPULIST:
  1495. retval = update_cpumask(cs, trialcs, buf);
  1496. break;
  1497. case FILE_MEMLIST:
  1498. retval = update_nodemask(cs, trialcs, buf);
  1499. break;
  1500. default:
  1501. retval = -EINVAL;
  1502. break;
  1503. }
  1504. free_trial_cpuset(trialcs);
  1505. out_unlock:
  1506. mutex_unlock(&cpuset_mutex);
  1507. return retval;
  1508. }
  1509. /*
  1510. * These ascii lists should be read in a single call, by using a user
  1511. * buffer large enough to hold the entire map. If read in smaller
  1512. * chunks, there is no guarantee of atomicity. Since the display format
  1513. * used, list of ranges of sequential numbers, is variable length,
  1514. * and since these maps can change value dynamically, one could read
  1515. * gibberish by doing partial reads while a list was changing.
  1516. * A single large read to a buffer that crosses a page boundary is
  1517. * ok, because the result being copied to user land is not recomputed
  1518. * across a page fault.
  1519. */
  1520. static size_t cpuset_sprintf_cpulist(char *page, struct cpuset *cs)
  1521. {
  1522. size_t count;
  1523. mutex_lock(&callback_mutex);
  1524. count = cpulist_scnprintf(page, PAGE_SIZE, cs->cpus_allowed);
  1525. mutex_unlock(&callback_mutex);
  1526. return count;
  1527. }
  1528. static size_t cpuset_sprintf_memlist(char *page, struct cpuset *cs)
  1529. {
  1530. size_t count;
  1531. mutex_lock(&callback_mutex);
  1532. count = nodelist_scnprintf(page, PAGE_SIZE, cs->mems_allowed);
  1533. mutex_unlock(&callback_mutex);
  1534. return count;
  1535. }
  1536. static ssize_t cpuset_common_file_read(struct cgroup *cgrp,
  1537. struct cftype *cft,
  1538. struct file *file,
  1539. char __user *buf,
  1540. size_t nbytes, loff_t *ppos)
  1541. {
  1542. struct cpuset *cs = cgroup_cs(cgrp);
  1543. cpuset_filetype_t type = cft->private;
  1544. char *page;
  1545. ssize_t retval = 0;
  1546. char *s;
  1547. if (!(page = (char *)__get_free_page(GFP_TEMPORARY)))
  1548. return -ENOMEM;
  1549. s = page;
  1550. switch (type) {
  1551. case FILE_CPULIST:
  1552. s += cpuset_sprintf_cpulist(s, cs);
  1553. break;
  1554. case FILE_MEMLIST:
  1555. s += cpuset_sprintf_memlist(s, cs);
  1556. break;
  1557. default:
  1558. retval = -EINVAL;
  1559. goto out;
  1560. }
  1561. *s++ = '\n';
  1562. retval = simple_read_from_buffer(buf, nbytes, ppos, page, s - page);
  1563. out:
  1564. free_page((unsigned long)page);
  1565. return retval;
  1566. }
  1567. static u64 cpuset_read_u64(struct cgroup *cgrp, struct cftype *cft)
  1568. {
  1569. struct cpuset *cs = cgroup_cs(cgrp);
  1570. cpuset_filetype_t type = cft->private;
  1571. switch (type) {
  1572. case FILE_CPU_EXCLUSIVE:
  1573. return is_cpu_exclusive(cs);
  1574. case FILE_MEM_EXCLUSIVE:
  1575. return is_mem_exclusive(cs);
  1576. case FILE_MEM_HARDWALL:
  1577. return is_mem_hardwall(cs);
  1578. case FILE_SCHED_LOAD_BALANCE:
  1579. return is_sched_load_balance(cs);
  1580. case FILE_MEMORY_MIGRATE:
  1581. return is_memory_migrate(cs);
  1582. case FILE_MEMORY_PRESSURE_ENABLED:
  1583. return cpuset_memory_pressure_enabled;
  1584. case FILE_MEMORY_PRESSURE:
  1585. return fmeter_getrate(&cs->fmeter);
  1586. case FILE_SPREAD_PAGE:
  1587. return is_spread_page(cs);
  1588. case FILE_SPREAD_SLAB:
  1589. return is_spread_slab(cs);
  1590. default:
  1591. BUG();
  1592. }
  1593. /* Unreachable but makes gcc happy */
  1594. return 0;
  1595. }
  1596. static s64 cpuset_read_s64(struct cgroup *cgrp, struct cftype *cft)
  1597. {
  1598. struct cpuset *cs = cgroup_cs(cgrp);
  1599. cpuset_filetype_t type = cft->private;
  1600. switch (type) {
  1601. case FILE_SCHED_RELAX_DOMAIN_LEVEL:
  1602. return cs->relax_domain_level;
  1603. default:
  1604. BUG();
  1605. }
  1606. /* Unrechable but makes gcc happy */
  1607. return 0;
  1608. }
  1609. /*
  1610. * for the common functions, 'private' gives the type of file
  1611. */
  1612. static struct cftype files[] = {
  1613. {
  1614. .name = "cpus",
  1615. .read = cpuset_common_file_read,
  1616. .write_string = cpuset_write_resmask,
  1617. .max_write_len = (100U + 6 * NR_CPUS),
  1618. .private = FILE_CPULIST,
  1619. },
  1620. {
  1621. .name = "mems",
  1622. .read = cpuset_common_file_read,
  1623. .write_string = cpuset_write_resmask,
  1624. .max_write_len = (100U + 6 * MAX_NUMNODES),
  1625. .private = FILE_MEMLIST,
  1626. },
  1627. {
  1628. .name = "cpu_exclusive",
  1629. .read_u64 = cpuset_read_u64,
  1630. .write_u64 = cpuset_write_u64,
  1631. .private = FILE_CPU_EXCLUSIVE,
  1632. },
  1633. {
  1634. .name = "mem_exclusive",
  1635. .read_u64 = cpuset_read_u64,
  1636. .write_u64 = cpuset_write_u64,
  1637. .private = FILE_MEM_EXCLUSIVE,
  1638. },
  1639. {
  1640. .name = "mem_hardwall",
  1641. .read_u64 = cpuset_read_u64,
  1642. .write_u64 = cpuset_write_u64,
  1643. .private = FILE_MEM_HARDWALL,
  1644. },
  1645. {
  1646. .name = "sched_load_balance",
  1647. .read_u64 = cpuset_read_u64,
  1648. .write_u64 = cpuset_write_u64,
  1649. .private = FILE_SCHED_LOAD_BALANCE,
  1650. },
  1651. {
  1652. .name = "sched_relax_domain_level",
  1653. .read_s64 = cpuset_read_s64,
  1654. .write_s64 = cpuset_write_s64,
  1655. .private = FILE_SCHED_RELAX_DOMAIN_LEVEL,
  1656. },
  1657. {
  1658. .name = "memory_migrate",
  1659. .read_u64 = cpuset_read_u64,
  1660. .write_u64 = cpuset_write_u64,
  1661. .private = FILE_MEMORY_MIGRATE,
  1662. },
  1663. {
  1664. .name = "memory_pressure",
  1665. .read_u64 = cpuset_read_u64,
  1666. .write_u64 = cpuset_write_u64,
  1667. .private = FILE_MEMORY_PRESSURE,
  1668. .mode = S_IRUGO,
  1669. },
  1670. {
  1671. .name = "memory_spread_page",
  1672. .read_u64 = cpuset_read_u64,
  1673. .write_u64 = cpuset_write_u64,
  1674. .private = FILE_SPREAD_PAGE,
  1675. },
  1676. {
  1677. .name = "memory_spread_slab",
  1678. .read_u64 = cpuset_read_u64,
  1679. .write_u64 = cpuset_write_u64,
  1680. .private = FILE_SPREAD_SLAB,
  1681. },
  1682. {
  1683. .name = "memory_pressure_enabled",
  1684. .flags = CFTYPE_ONLY_ON_ROOT,
  1685. .read_u64 = cpuset_read_u64,
  1686. .write_u64 = cpuset_write_u64,
  1687. .private = FILE_MEMORY_PRESSURE_ENABLED,
  1688. },
  1689. { } /* terminate */
  1690. };
  1691. /*
  1692. * cpuset_css_alloc - allocate a cpuset css
  1693. * cgrp: control group that the new cpuset will be part of
  1694. */
  1695. static struct cgroup_subsys_state *cpuset_css_alloc(struct cgroup *cgrp)
  1696. {
  1697. struct cpuset *cs;
  1698. if (!cgrp->parent)
  1699. return &top_cpuset.css;
  1700. cs = kzalloc(sizeof(*cs), GFP_KERNEL);
  1701. if (!cs)
  1702. return ERR_PTR(-ENOMEM);
  1703. if (!alloc_cpumask_var(&cs->cpus_allowed, GFP_KERNEL)) {
  1704. kfree(cs);
  1705. return ERR_PTR(-ENOMEM);
  1706. }
  1707. set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
  1708. cpumask_clear(cs->cpus_allowed);
  1709. nodes_clear(cs->mems_allowed);
  1710. fmeter_init(&cs->fmeter);
  1711. cs->relax_domain_level = -1;
  1712. return &cs->css;
  1713. }
  1714. static int cpuset_css_online(struct cgroup *cgrp)
  1715. {
  1716. struct cpuset *cs = cgroup_cs(cgrp);
  1717. struct cpuset *parent = parent_cs(cs);
  1718. struct cpuset *tmp_cs;
  1719. struct cgroup *pos_cg;
  1720. if (!parent)
  1721. return 0;
  1722. mutex_lock(&cpuset_mutex);
  1723. set_bit(CS_ONLINE, &cs->flags);
  1724. if (is_spread_page(parent))
  1725. set_bit(CS_SPREAD_PAGE, &cs->flags);
  1726. if (is_spread_slab(parent))
  1727. set_bit(CS_SPREAD_SLAB, &cs->flags);
  1728. number_of_cpusets++;
  1729. if (!test_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags))
  1730. goto out_unlock;
  1731. /*
  1732. * Clone @parent's configuration if CGRP_CPUSET_CLONE_CHILDREN is
  1733. * set. This flag handling is implemented in cgroup core for
  1734. * histrical reasons - the flag may be specified during mount.
  1735. *
  1736. * Currently, if any sibling cpusets have exclusive cpus or mem, we
  1737. * refuse to clone the configuration - thereby refusing the task to
  1738. * be entered, and as a result refusing the sys_unshare() or
  1739. * clone() which initiated it. If this becomes a problem for some
  1740. * users who wish to allow that scenario, then this could be
  1741. * changed to grant parent->cpus_allowed-sibling_cpus_exclusive
  1742. * (and likewise for mems) to the new cgroup.
  1743. */
  1744. rcu_read_lock();
  1745. cpuset_for_each_child(tmp_cs, pos_cg, parent) {
  1746. if (is_mem_exclusive(tmp_cs) || is_cpu_exclusive(tmp_cs)) {
  1747. rcu_read_unlock();
  1748. goto out_unlock;
  1749. }
  1750. }
  1751. rcu_read_unlock();
  1752. mutex_lock(&callback_mutex);
  1753. cs->mems_allowed = parent->mems_allowed;
  1754. cpumask_copy(cs->cpus_allowed, parent->cpus_allowed);
  1755. mutex_unlock(&callback_mutex);
  1756. out_unlock:
  1757. mutex_unlock(&cpuset_mutex);
  1758. return 0;
  1759. }
  1760. static void cpuset_css_offline(struct cgroup *cgrp)
  1761. {
  1762. struct cpuset *cs = cgroup_cs(cgrp);
  1763. mutex_lock(&cpuset_mutex);
  1764. if (is_sched_load_balance(cs))
  1765. update_flag(CS_SCHED_LOAD_BALANCE, cs, 0);
  1766. number_of_cpusets--;
  1767. clear_bit(CS_ONLINE, &cs->flags);
  1768. mutex_unlock(&cpuset_mutex);
  1769. }
  1770. /*
  1771. * If the cpuset being removed has its flag 'sched_load_balance'
  1772. * enabled, then simulate turning sched_load_balance off, which
  1773. * will call rebuild_sched_domains_locked().
  1774. */
  1775. static void cpuset_css_free(struct cgroup *cgrp)
  1776. {
  1777. struct cpuset *cs = cgroup_cs(cgrp);
  1778. free_cpumask_var(cs->cpus_allowed);
  1779. kfree(cs);
  1780. }
  1781. struct cgroup_subsys cpuset_subsys = {
  1782. .name = "cpuset",
  1783. .css_alloc = cpuset_css_alloc,
  1784. .css_online = cpuset_css_online,
  1785. .css_offline = cpuset_css_offline,
  1786. .css_free = cpuset_css_free,
  1787. .can_attach = cpuset_can_attach,
  1788. .cancel_attach = cpuset_cancel_attach,
  1789. .attach = cpuset_attach,
  1790. .subsys_id = cpuset_subsys_id,
  1791. .base_cftypes = files,
  1792. .early_init = 1,
  1793. };
  1794. /**
  1795. * cpuset_init - initialize cpusets at system boot
  1796. *
  1797. * Description: Initialize top_cpuset and the cpuset internal file system,
  1798. **/
  1799. int __init cpuset_init(void)
  1800. {
  1801. int err = 0;
  1802. if (!alloc_cpumask_var(&top_cpuset.cpus_allowed, GFP_KERNEL))
  1803. BUG();
  1804. cpumask_setall(top_cpuset.cpus_allowed);
  1805. nodes_setall(top_cpuset.mems_allowed);
  1806. fmeter_init(&top_cpuset.fmeter);
  1807. set_bit(CS_SCHED_LOAD_BALANCE, &top_cpuset.flags);
  1808. top_cpuset.relax_domain_level = -1;
  1809. err = register_filesystem(&cpuset_fs_type);
  1810. if (err < 0)
  1811. return err;
  1812. if (!alloc_cpumask_var(&cpus_attach, GFP_KERNEL))
  1813. BUG();
  1814. number_of_cpusets = 1;
  1815. return 0;
  1816. }
  1817. /*
  1818. * If CPU and/or memory hotplug handlers, below, unplug any CPUs
  1819. * or memory nodes, we need to walk over the cpuset hierarchy,
  1820. * removing that CPU or node from all cpusets. If this removes the
  1821. * last CPU or node from a cpuset, then move the tasks in the empty
  1822. * cpuset to its next-highest non-empty parent.
  1823. */
  1824. static void remove_tasks_in_empty_cpuset(struct cpuset *cs)
  1825. {
  1826. struct cpuset *parent;
  1827. /*
  1828. * Find its next-highest non-empty parent, (top cpuset
  1829. * has online cpus, so can't be empty).
  1830. */
  1831. parent = parent_cs(cs);
  1832. while (cpumask_empty(parent->cpus_allowed) ||
  1833. nodes_empty(parent->mems_allowed))
  1834. parent = parent_cs(parent);
  1835. if (cgroup_transfer_tasks(parent->css.cgroup, cs->css.cgroup)) {
  1836. rcu_read_lock();
  1837. printk(KERN_ERR "cpuset: failed to transfer tasks out of empty cpuset %s\n",
  1838. cgroup_name(cs->css.cgroup));
  1839. rcu_read_unlock();
  1840. }
  1841. }
  1842. /**
  1843. * cpuset_hotplug_update_tasks - update tasks in a cpuset for hotunplug
  1844. * @cs: cpuset in interest
  1845. *
  1846. * Compare @cs's cpu and mem masks against top_cpuset and if some have gone
  1847. * offline, update @cs accordingly. If @cs ends up with no CPU or memory,
  1848. * all its tasks are moved to the nearest ancestor with both resources.
  1849. */
  1850. static void cpuset_hotplug_update_tasks(struct cpuset *cs)
  1851. {
  1852. static cpumask_t off_cpus;
  1853. static nodemask_t off_mems;
  1854. bool is_empty;
  1855. bool sane = cgroup_sane_behavior(cs->css.cgroup);
  1856. retry:
  1857. wait_event(cpuset_attach_wq, cs->attach_in_progress == 0);
  1858. mutex_lock(&cpuset_mutex);
  1859. /*
  1860. * We have raced with task attaching. We wait until attaching
  1861. * is finished, so we won't attach a task to an empty cpuset.
  1862. */
  1863. if (cs->attach_in_progress) {
  1864. mutex_unlock(&cpuset_mutex);
  1865. goto retry;
  1866. }
  1867. cpumask_andnot(&off_cpus, cs->cpus_allowed, top_cpuset.cpus_allowed);
  1868. nodes_andnot(off_mems, cs->mems_allowed, top_cpuset.mems_allowed);
  1869. mutex_lock(&callback_mutex);
  1870. cpumask_andnot(cs->cpus_allowed, cs->cpus_allowed, &off_cpus);
  1871. mutex_unlock(&callback_mutex);
  1872. /*
  1873. * If sane_behavior flag is set, we need to update tasks' cpumask
  1874. * for empty cpuset to take on ancestor's cpumask. Otherwise, don't
  1875. * call update_tasks_cpumask() if the cpuset becomes empty, as
  1876. * the tasks in it will be migrated to an ancestor.
  1877. */
  1878. if ((sane && cpumask_empty(cs->cpus_allowed)) ||
  1879. (!cpumask_empty(&off_cpus) && !cpumask_empty(cs->cpus_allowed)))
  1880. update_tasks_cpumask(cs, NULL);
  1881. mutex_lock(&callback_mutex);
  1882. nodes_andnot(cs->mems_allowed, cs->mems_allowed, off_mems);
  1883. mutex_unlock(&callback_mutex);
  1884. /*
  1885. * If sane_behavior flag is set, we need to update tasks' nodemask
  1886. * for empty cpuset to take on ancestor's nodemask. Otherwise, don't
  1887. * call update_tasks_nodemask() if the cpuset becomes empty, as
  1888. * the tasks in it will be migratd to an ancestor.
  1889. */
  1890. if ((sane && nodes_empty(cs->mems_allowed)) ||
  1891. (!nodes_empty(off_mems) && !nodes_empty(cs->mems_allowed)))
  1892. update_tasks_nodemask(cs, NULL);
  1893. is_empty = cpumask_empty(cs->cpus_allowed) ||
  1894. nodes_empty(cs->mems_allowed);
  1895. mutex_unlock(&cpuset_mutex);
  1896. /*
  1897. * If sane_behavior flag is set, we'll keep tasks in empty cpusets.
  1898. *
  1899. * Otherwise move tasks to the nearest ancestor with execution
  1900. * resources. This is full cgroup operation which will
  1901. * also call back into cpuset. Should be done outside any lock.
  1902. */
  1903. if (!sane && is_empty)
  1904. remove_tasks_in_empty_cpuset(cs);
  1905. }
  1906. /**
  1907. * cpuset_hotplug_workfn - handle CPU/memory hotunplug for a cpuset
  1908. *
  1909. * This function is called after either CPU or memory configuration has
  1910. * changed and updates cpuset accordingly. The top_cpuset is always
  1911. * synchronized to cpu_active_mask and N_MEMORY, which is necessary in
  1912. * order to make cpusets transparent (of no affect) on systems that are
  1913. * actively using CPU hotplug but making no active use of cpusets.
  1914. *
  1915. * Non-root cpusets are only affected by offlining. If any CPUs or memory
  1916. * nodes have been taken down, cpuset_hotplug_update_tasks() is invoked on
  1917. * all descendants.
  1918. *
  1919. * Note that CPU offlining during suspend is ignored. We don't modify
  1920. * cpusets across suspend/resume cycles at all.
  1921. */
  1922. static void cpuset_hotplug_workfn(struct work_struct *work)
  1923. {
  1924. static cpumask_t new_cpus;
  1925. static nodemask_t new_mems;
  1926. bool cpus_updated, mems_updated;
  1927. mutex_lock(&cpuset_mutex);
  1928. /* fetch the available cpus/mems and find out which changed how */
  1929. cpumask_copy(&new_cpus, cpu_active_mask);
  1930. new_mems = node_states[N_MEMORY];
  1931. cpus_updated = !cpumask_equal(top_cpuset.cpus_allowed, &new_cpus);
  1932. mems_updated = !nodes_equal(top_cpuset.mems_allowed, new_mems);
  1933. /* synchronize cpus_allowed to cpu_active_mask */
  1934. if (cpus_updated) {
  1935. mutex_lock(&callback_mutex);
  1936. cpumask_copy(top_cpuset.cpus_allowed, &new_cpus);
  1937. mutex_unlock(&callback_mutex);
  1938. /* we don't mess with cpumasks of tasks in top_cpuset */
  1939. }
  1940. /* synchronize mems_allowed to N_MEMORY */
  1941. if (mems_updated) {
  1942. mutex_lock(&callback_mutex);
  1943. top_cpuset.mems_allowed = new_mems;
  1944. mutex_unlock(&callback_mutex);
  1945. update_tasks_nodemask(&top_cpuset, NULL);
  1946. }
  1947. mutex_unlock(&cpuset_mutex);
  1948. /* if cpus or mems changed, we need to propagate to descendants */
  1949. if (cpus_updated || mems_updated) {
  1950. struct cpuset *cs;
  1951. struct cgroup *pos_cgrp;
  1952. rcu_read_lock();
  1953. cpuset_for_each_descendant_pre(cs, pos_cgrp, &top_cpuset) {
  1954. if (!css_tryget(&cs->css))
  1955. continue;
  1956. rcu_read_unlock();
  1957. cpuset_hotplug_update_tasks(cs);
  1958. rcu_read_lock();
  1959. css_put(&cs->css);
  1960. }
  1961. rcu_read_unlock();
  1962. }
  1963. /* rebuild sched domains if cpus_allowed has changed */
  1964. if (cpus_updated)
  1965. rebuild_sched_domains();
  1966. }
  1967. void cpuset_update_active_cpus(bool cpu_online)
  1968. {
  1969. /*
  1970. * We're inside cpu hotplug critical region which usually nests
  1971. * inside cgroup synchronization. Bounce actual hotplug processing
  1972. * to a work item to avoid reverse locking order.
  1973. *
  1974. * We still need to do partition_sched_domains() synchronously;
  1975. * otherwise, the scheduler will get confused and put tasks to the
  1976. * dead CPU. Fall back to the default single domain.
  1977. * cpuset_hotplug_workfn() will rebuild it as necessary.
  1978. */
  1979. partition_sched_domains(1, NULL, NULL);
  1980. schedule_work(&cpuset_hotplug_work);
  1981. }
  1982. /*
  1983. * Keep top_cpuset.mems_allowed tracking node_states[N_MEMORY].
  1984. * Call this routine anytime after node_states[N_MEMORY] changes.
  1985. * See cpuset_update_active_cpus() for CPU hotplug handling.
  1986. */
  1987. static int cpuset_track_online_nodes(struct notifier_block *self,
  1988. unsigned long action, void *arg)
  1989. {
  1990. schedule_work(&cpuset_hotplug_work);
  1991. return NOTIFY_OK;
  1992. }
  1993. static struct notifier_block cpuset_track_online_nodes_nb = {
  1994. .notifier_call = cpuset_track_online_nodes,
  1995. .priority = 10, /* ??! */
  1996. };
  1997. /**
  1998. * cpuset_init_smp - initialize cpus_allowed
  1999. *
  2000. * Description: Finish top cpuset after cpu, node maps are initialized
  2001. */
  2002. void __init cpuset_init_smp(void)
  2003. {
  2004. cpumask_copy(top_cpuset.cpus_allowed, cpu_active_mask);
  2005. top_cpuset.mems_allowed = node_states[N_MEMORY];
  2006. top_cpuset.old_mems_allowed = top_cpuset.mems_allowed;
  2007. register_hotmemory_notifier(&cpuset_track_online_nodes_nb);
  2008. }
  2009. /**
  2010. * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset.
  2011. * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
  2012. * @pmask: pointer to struct cpumask variable to receive cpus_allowed set.
  2013. *
  2014. * Description: Returns the cpumask_var_t cpus_allowed of the cpuset
  2015. * attached to the specified @tsk. Guaranteed to return some non-empty
  2016. * subset of cpu_online_mask, even if this means going outside the
  2017. * tasks cpuset.
  2018. **/
  2019. void cpuset_cpus_allowed(struct task_struct *tsk, struct cpumask *pmask)
  2020. {
  2021. struct cpuset *cpus_cs;
  2022. mutex_lock(&callback_mutex);
  2023. task_lock(tsk);
  2024. cpus_cs = effective_cpumask_cpuset(task_cs(tsk));
  2025. guarantee_online_cpus(cpus_cs, pmask);
  2026. task_unlock(tsk);
  2027. mutex_unlock(&callback_mutex);
  2028. }
  2029. void cpuset_cpus_allowed_fallback(struct task_struct *tsk)
  2030. {
  2031. const struct cpuset *cpus_cs;
  2032. rcu_read_lock();
  2033. cpus_cs = effective_cpumask_cpuset(task_cs(tsk));
  2034. do_set_cpus_allowed(tsk, cpus_cs->cpus_allowed);
  2035. rcu_read_unlock();
  2036. /*
  2037. * We own tsk->cpus_allowed, nobody can change it under us.
  2038. *
  2039. * But we used cs && cs->cpus_allowed lockless and thus can
  2040. * race with cgroup_attach_task() or update_cpumask() and get
  2041. * the wrong tsk->cpus_allowed. However, both cases imply the
  2042. * subsequent cpuset_change_cpumask()->set_cpus_allowed_ptr()
  2043. * which takes task_rq_lock().
  2044. *
  2045. * If we are called after it dropped the lock we must see all
  2046. * changes in tsk_cs()->cpus_allowed. Otherwise we can temporary
  2047. * set any mask even if it is not right from task_cs() pov,
  2048. * the pending set_cpus_allowed_ptr() will fix things.
  2049. *
  2050. * select_fallback_rq() will fix things ups and set cpu_possible_mask
  2051. * if required.
  2052. */
  2053. }
  2054. void cpuset_init_current_mems_allowed(void)
  2055. {
  2056. nodes_setall(current->mems_allowed);
  2057. }
  2058. /**
  2059. * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset.
  2060. * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed.
  2061. *
  2062. * Description: Returns the nodemask_t mems_allowed of the cpuset
  2063. * attached to the specified @tsk. Guaranteed to return some non-empty
  2064. * subset of node_states[N_MEMORY], even if this means going outside the
  2065. * tasks cpuset.
  2066. **/
  2067. nodemask_t cpuset_mems_allowed(struct task_struct *tsk)
  2068. {
  2069. struct cpuset *mems_cs;
  2070. nodemask_t mask;
  2071. mutex_lock(&callback_mutex);
  2072. task_lock(tsk);
  2073. mems_cs = effective_nodemask_cpuset(task_cs(tsk));
  2074. guarantee_online_mems(mems_cs, &mask);
  2075. task_unlock(tsk);
  2076. mutex_unlock(&callback_mutex);
  2077. return mask;
  2078. }
  2079. /**
  2080. * cpuset_nodemask_valid_mems_allowed - check nodemask vs. curremt mems_allowed
  2081. * @nodemask: the nodemask to be checked
  2082. *
  2083. * Are any of the nodes in the nodemask allowed in current->mems_allowed?
  2084. */
  2085. int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask)
  2086. {
  2087. return nodes_intersects(*nodemask, current->mems_allowed);
  2088. }
  2089. /*
  2090. * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or
  2091. * mem_hardwall ancestor to the specified cpuset. Call holding
  2092. * callback_mutex. If no ancestor is mem_exclusive or mem_hardwall
  2093. * (an unusual configuration), then returns the root cpuset.
  2094. */
  2095. static const struct cpuset *nearest_hardwall_ancestor(const struct cpuset *cs)
  2096. {
  2097. while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && parent_cs(cs))
  2098. cs = parent_cs(cs);
  2099. return cs;
  2100. }
  2101. /**
  2102. * cpuset_node_allowed_softwall - Can we allocate on a memory node?
  2103. * @node: is this an allowed node?
  2104. * @gfp_mask: memory allocation flags
  2105. *
  2106. * If we're in interrupt, yes, we can always allocate. If __GFP_THISNODE is
  2107. * set, yes, we can always allocate. If node is in our task's mems_allowed,
  2108. * yes. If it's not a __GFP_HARDWALL request and this node is in the nearest
  2109. * hardwalled cpuset ancestor to this task's cpuset, yes. If the task has been
  2110. * OOM killed and has access to memory reserves as specified by the TIF_MEMDIE
  2111. * flag, yes.
  2112. * Otherwise, no.
  2113. *
  2114. * If __GFP_HARDWALL is set, cpuset_node_allowed_softwall() reduces to
  2115. * cpuset_node_allowed_hardwall(). Otherwise, cpuset_node_allowed_softwall()
  2116. * might sleep, and might allow a node from an enclosing cpuset.
  2117. *
  2118. * cpuset_node_allowed_hardwall() only handles the simpler case of hardwall
  2119. * cpusets, and never sleeps.
  2120. *
  2121. * The __GFP_THISNODE placement logic is really handled elsewhere,
  2122. * by forcibly using a zonelist starting at a specified node, and by
  2123. * (in get_page_from_freelist()) refusing to consider the zones for
  2124. * any node on the zonelist except the first. By the time any such
  2125. * calls get to this routine, we should just shut up and say 'yes'.
  2126. *
  2127. * GFP_USER allocations are marked with the __GFP_HARDWALL bit,
  2128. * and do not allow allocations outside the current tasks cpuset
  2129. * unless the task has been OOM killed as is marked TIF_MEMDIE.
  2130. * GFP_KERNEL allocations are not so marked, so can escape to the
  2131. * nearest enclosing hardwalled ancestor cpuset.
  2132. *
  2133. * Scanning up parent cpusets requires callback_mutex. The
  2134. * __alloc_pages() routine only calls here with __GFP_HARDWALL bit
  2135. * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the
  2136. * current tasks mems_allowed came up empty on the first pass over
  2137. * the zonelist. So only GFP_KERNEL allocations, if all nodes in the
  2138. * cpuset are short of memory, might require taking the callback_mutex
  2139. * mutex.
  2140. *
  2141. * The first call here from mm/page_alloc:get_page_from_freelist()
  2142. * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets,
  2143. * so no allocation on a node outside the cpuset is allowed (unless
  2144. * in interrupt, of course).
  2145. *
  2146. * The second pass through get_page_from_freelist() doesn't even call
  2147. * here for GFP_ATOMIC calls. For those calls, the __alloc_pages()
  2148. * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set
  2149. * in alloc_flags. That logic and the checks below have the combined
  2150. * affect that:
  2151. * in_interrupt - any node ok (current task context irrelevant)
  2152. * GFP_ATOMIC - any node ok
  2153. * TIF_MEMDIE - any node ok
  2154. * GFP_KERNEL - any node in enclosing hardwalled cpuset ok
  2155. * GFP_USER - only nodes in current tasks mems allowed ok.
  2156. *
  2157. * Rule:
  2158. * Don't call cpuset_node_allowed_softwall if you can't sleep, unless you
  2159. * pass in the __GFP_HARDWALL flag set in gfp_flag, which disables
  2160. * the code that might scan up ancestor cpusets and sleep.
  2161. */
  2162. int __cpuset_node_allowed_softwall(int node, gfp_t gfp_mask)
  2163. {
  2164. const struct cpuset *cs; /* current cpuset ancestors */
  2165. int allowed; /* is allocation in zone z allowed? */
  2166. if (in_interrupt() || (gfp_mask & __GFP_THISNODE))
  2167. return 1;
  2168. might_sleep_if(!(gfp_mask & __GFP_HARDWALL));
  2169. if (node_isset(node, current->mems_allowed))
  2170. return 1;
  2171. /*
  2172. * Allow tasks that have access to memory reserves because they have
  2173. * been OOM killed to get memory anywhere.
  2174. */
  2175. if (unlikely(test_thread_flag(TIF_MEMDIE)))
  2176. return 1;
  2177. if (gfp_mask & __GFP_HARDWALL) /* If hardwall request, stop here */
  2178. return 0;
  2179. if (current->flags & PF_EXITING) /* Let dying task have memory */
  2180. return 1;
  2181. /* Not hardwall and node outside mems_allowed: scan up cpusets */
  2182. mutex_lock(&callback_mutex);
  2183. task_lock(current);
  2184. cs = nearest_hardwall_ancestor(task_cs(current));
  2185. task_unlock(current);
  2186. allowed = node_isset(node, cs->mems_allowed);
  2187. mutex_unlock(&callback_mutex);
  2188. return allowed;
  2189. }
  2190. /*
  2191. * cpuset_node_allowed_hardwall - Can we allocate on a memory node?
  2192. * @node: is this an allowed node?
  2193. * @gfp_mask: memory allocation flags
  2194. *
  2195. * If we're in interrupt, yes, we can always allocate. If __GFP_THISNODE is
  2196. * set, yes, we can always allocate. If node is in our task's mems_allowed,
  2197. * yes. If the task has been OOM killed and has access to memory reserves as
  2198. * specified by the TIF_MEMDIE flag, yes.
  2199. * Otherwise, no.
  2200. *
  2201. * The __GFP_THISNODE placement logic is really handled elsewhere,
  2202. * by forcibly using a zonelist starting at a specified node, and by
  2203. * (in get_page_from_freelist()) refusing to consider the zones for
  2204. * any node on the zonelist except the first. By the time any such
  2205. * calls get to this routine, we should just shut up and say 'yes'.
  2206. *
  2207. * Unlike the cpuset_node_allowed_softwall() variant, above,
  2208. * this variant requires that the node be in the current task's
  2209. * mems_allowed or that we're in interrupt. It does not scan up the
  2210. * cpuset hierarchy for the nearest enclosing mem_exclusive cpuset.
  2211. * It never sleeps.
  2212. */
  2213. int __cpuset_node_allowed_hardwall(int node, gfp_t gfp_mask)
  2214. {
  2215. if (in_interrupt() || (gfp_mask & __GFP_THISNODE))
  2216. return 1;
  2217. if (node_isset(node, current->mems_allowed))
  2218. return 1;
  2219. /*
  2220. * Allow tasks that have access to memory reserves because they have
  2221. * been OOM killed to get memory anywhere.
  2222. */
  2223. if (unlikely(test_thread_flag(TIF_MEMDIE)))
  2224. return 1;
  2225. return 0;
  2226. }
  2227. /**
  2228. * cpuset_mem_spread_node() - On which node to begin search for a file page
  2229. * cpuset_slab_spread_node() - On which node to begin search for a slab page
  2230. *
  2231. * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for
  2232. * tasks in a cpuset with is_spread_page or is_spread_slab set),
  2233. * and if the memory allocation used cpuset_mem_spread_node()
  2234. * to determine on which node to start looking, as it will for
  2235. * certain page cache or slab cache pages such as used for file
  2236. * system buffers and inode caches, then instead of starting on the
  2237. * local node to look for a free page, rather spread the starting
  2238. * node around the tasks mems_allowed nodes.
  2239. *
  2240. * We don't have to worry about the returned node being offline
  2241. * because "it can't happen", and even if it did, it would be ok.
  2242. *
  2243. * The routines calling guarantee_online_mems() are careful to
  2244. * only set nodes in task->mems_allowed that are online. So it
  2245. * should not be possible for the following code to return an
  2246. * offline node. But if it did, that would be ok, as this routine
  2247. * is not returning the node where the allocation must be, only
  2248. * the node where the search should start. The zonelist passed to
  2249. * __alloc_pages() will include all nodes. If the slab allocator
  2250. * is passed an offline node, it will fall back to the local node.
  2251. * See kmem_cache_alloc_node().
  2252. */
  2253. static int cpuset_spread_node(int *rotor)
  2254. {
  2255. int node;
  2256. node = next_node(*rotor, current->mems_allowed);
  2257. if (node == MAX_NUMNODES)
  2258. node = first_node(current->mems_allowed);
  2259. *rotor = node;
  2260. return node;
  2261. }
  2262. int cpuset_mem_spread_node(void)
  2263. {
  2264. if (current->cpuset_mem_spread_rotor == NUMA_NO_NODE)
  2265. current->cpuset_mem_spread_rotor =
  2266. node_random(&current->mems_allowed);
  2267. return cpuset_spread_node(&current->cpuset_mem_spread_rotor);
  2268. }
  2269. int cpuset_slab_spread_node(void)
  2270. {
  2271. if (current->cpuset_slab_spread_rotor == NUMA_NO_NODE)
  2272. current->cpuset_slab_spread_rotor =
  2273. node_random(&current->mems_allowed);
  2274. return cpuset_spread_node(&current->cpuset_slab_spread_rotor);
  2275. }
  2276. EXPORT_SYMBOL_GPL(cpuset_mem_spread_node);
  2277. /**
  2278. * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's?
  2279. * @tsk1: pointer to task_struct of some task.
  2280. * @tsk2: pointer to task_struct of some other task.
  2281. *
  2282. * Description: Return true if @tsk1's mems_allowed intersects the
  2283. * mems_allowed of @tsk2. Used by the OOM killer to determine if
  2284. * one of the task's memory usage might impact the memory available
  2285. * to the other.
  2286. **/
  2287. int cpuset_mems_allowed_intersects(const struct task_struct *tsk1,
  2288. const struct task_struct *tsk2)
  2289. {
  2290. return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed);
  2291. }
  2292. #define CPUSET_NODELIST_LEN (256)
  2293. /**
  2294. * cpuset_print_task_mems_allowed - prints task's cpuset and mems_allowed
  2295. * @task: pointer to task_struct of some task.
  2296. *
  2297. * Description: Prints @task's name, cpuset name, and cached copy of its
  2298. * mems_allowed to the kernel log. Must hold task_lock(task) to allow
  2299. * dereferencing task_cs(task).
  2300. */
  2301. void cpuset_print_task_mems_allowed(struct task_struct *tsk)
  2302. {
  2303. /* Statically allocated to prevent using excess stack. */
  2304. static char cpuset_nodelist[CPUSET_NODELIST_LEN];
  2305. static DEFINE_SPINLOCK(cpuset_buffer_lock);
  2306. struct cgroup *cgrp = task_cs(tsk)->css.cgroup;
  2307. rcu_read_lock();
  2308. spin_lock(&cpuset_buffer_lock);
  2309. nodelist_scnprintf(cpuset_nodelist, CPUSET_NODELIST_LEN,
  2310. tsk->mems_allowed);
  2311. printk(KERN_INFO "%s cpuset=%s mems_allowed=%s\n",
  2312. tsk->comm, cgroup_name(cgrp), cpuset_nodelist);
  2313. spin_unlock(&cpuset_buffer_lock);
  2314. rcu_read_unlock();
  2315. }
  2316. /*
  2317. * Collection of memory_pressure is suppressed unless
  2318. * this flag is enabled by writing "1" to the special
  2319. * cpuset file 'memory_pressure_enabled' in the root cpuset.
  2320. */
  2321. int cpuset_memory_pressure_enabled __read_mostly;
  2322. /**
  2323. * cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims.
  2324. *
  2325. * Keep a running average of the rate of synchronous (direct)
  2326. * page reclaim efforts initiated by tasks in each cpuset.
  2327. *
  2328. * This represents the rate at which some task in the cpuset
  2329. * ran low on memory on all nodes it was allowed to use, and
  2330. * had to enter the kernels page reclaim code in an effort to
  2331. * create more free memory by tossing clean pages or swapping
  2332. * or writing dirty pages.
  2333. *
  2334. * Display to user space in the per-cpuset read-only file
  2335. * "memory_pressure". Value displayed is an integer
  2336. * representing the recent rate of entry into the synchronous
  2337. * (direct) page reclaim by any task attached to the cpuset.
  2338. **/
  2339. void __cpuset_memory_pressure_bump(void)
  2340. {
  2341. task_lock(current);
  2342. fmeter_markevent(&task_cs(current)->fmeter);
  2343. task_unlock(current);
  2344. }
  2345. #ifdef CONFIG_PROC_PID_CPUSET
  2346. /*
  2347. * proc_cpuset_show()
  2348. * - Print tasks cpuset path into seq_file.
  2349. * - Used for /proc/<pid>/cpuset.
  2350. * - No need to task_lock(tsk) on this tsk->cpuset reference, as it
  2351. * doesn't really matter if tsk->cpuset changes after we read it,
  2352. * and we take cpuset_mutex, keeping cpuset_attach() from changing it
  2353. * anyway.
  2354. */
  2355. int proc_cpuset_show(struct seq_file *m, void *unused_v)
  2356. {
  2357. struct pid *pid;
  2358. struct task_struct *tsk;
  2359. char *buf;
  2360. struct cgroup_subsys_state *css;
  2361. int retval;
  2362. retval = -ENOMEM;
  2363. buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
  2364. if (!buf)
  2365. goto out;
  2366. retval = -ESRCH;
  2367. pid = m->private;
  2368. tsk = get_pid_task(pid, PIDTYPE_PID);
  2369. if (!tsk)
  2370. goto out_free;
  2371. rcu_read_lock();
  2372. css = task_subsys_state(tsk, cpuset_subsys_id);
  2373. retval = cgroup_path(css->cgroup, buf, PAGE_SIZE);
  2374. rcu_read_unlock();
  2375. if (retval < 0)
  2376. goto out_put_task;
  2377. seq_puts(m, buf);
  2378. seq_putc(m, '\n');
  2379. out_put_task:
  2380. put_task_struct(tsk);
  2381. out_free:
  2382. kfree(buf);
  2383. out:
  2384. return retval;
  2385. }
  2386. #endif /* CONFIG_PROC_PID_CPUSET */
  2387. /* Display task mems_allowed in /proc/<pid>/status file. */
  2388. void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task)
  2389. {
  2390. seq_printf(m, "Mems_allowed:\t");
  2391. seq_nodemask(m, &task->mems_allowed);
  2392. seq_printf(m, "\n");
  2393. seq_printf(m, "Mems_allowed_list:\t");
  2394. seq_nodemask_list(m, &task->mems_allowed);
  2395. seq_printf(m, "\n");
  2396. }