i915_gem.c 104 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158
  1. /*
  2. * Copyright © 2008 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eric Anholt <eric@anholt.net>
  25. *
  26. */
  27. #include "drmP.h"
  28. #include "drm.h"
  29. #include "i915_drm.h"
  30. #include "i915_drv.h"
  31. #include "i915_trace.h"
  32. #include "intel_drv.h"
  33. #include <linux/slab.h>
  34. #include <linux/swap.h>
  35. #include <linux/pci.h>
  36. static __must_check int i915_gem_object_flush_gpu_write_domain(struct drm_i915_gem_object *obj);
  37. static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
  38. static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
  39. static __must_check int i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj,
  40. bool write);
  41. static __must_check int i915_gem_object_set_cpu_read_domain_range(struct drm_i915_gem_object *obj,
  42. uint64_t offset,
  43. uint64_t size);
  44. static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_i915_gem_object *obj);
  45. static __must_check int i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
  46. unsigned alignment,
  47. bool map_and_fenceable);
  48. static void i915_gem_clear_fence_reg(struct drm_device *dev,
  49. struct drm_i915_fence_reg *reg);
  50. static int i915_gem_phys_pwrite(struct drm_device *dev,
  51. struct drm_i915_gem_object *obj,
  52. struct drm_i915_gem_pwrite *args,
  53. struct drm_file *file);
  54. static void i915_gem_free_object_tail(struct drm_i915_gem_object *obj);
  55. static int i915_gem_inactive_shrink(struct shrinker *shrinker,
  56. struct shrink_control *sc);
  57. /* some bookkeeping */
  58. static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
  59. size_t size)
  60. {
  61. dev_priv->mm.object_count++;
  62. dev_priv->mm.object_memory += size;
  63. }
  64. static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
  65. size_t size)
  66. {
  67. dev_priv->mm.object_count--;
  68. dev_priv->mm.object_memory -= size;
  69. }
  70. static int
  71. i915_gem_wait_for_error(struct drm_device *dev)
  72. {
  73. struct drm_i915_private *dev_priv = dev->dev_private;
  74. struct completion *x = &dev_priv->error_completion;
  75. unsigned long flags;
  76. int ret;
  77. if (!atomic_read(&dev_priv->mm.wedged))
  78. return 0;
  79. ret = wait_for_completion_interruptible(x);
  80. if (ret)
  81. return ret;
  82. if (atomic_read(&dev_priv->mm.wedged)) {
  83. /* GPU is hung, bump the completion count to account for
  84. * the token we just consumed so that we never hit zero and
  85. * end up waiting upon a subsequent completion event that
  86. * will never happen.
  87. */
  88. spin_lock_irqsave(&x->wait.lock, flags);
  89. x->done++;
  90. spin_unlock_irqrestore(&x->wait.lock, flags);
  91. }
  92. return 0;
  93. }
  94. int i915_mutex_lock_interruptible(struct drm_device *dev)
  95. {
  96. int ret;
  97. ret = i915_gem_wait_for_error(dev);
  98. if (ret)
  99. return ret;
  100. ret = mutex_lock_interruptible(&dev->struct_mutex);
  101. if (ret)
  102. return ret;
  103. WARN_ON(i915_verify_lists(dev));
  104. return 0;
  105. }
  106. static inline bool
  107. i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
  108. {
  109. return obj->gtt_space && !obj->active && obj->pin_count == 0;
  110. }
  111. void i915_gem_do_init(struct drm_device *dev,
  112. unsigned long start,
  113. unsigned long mappable_end,
  114. unsigned long end)
  115. {
  116. drm_i915_private_t *dev_priv = dev->dev_private;
  117. drm_mm_init(&dev_priv->mm.gtt_space, start, end - start);
  118. dev_priv->mm.gtt_start = start;
  119. dev_priv->mm.gtt_mappable_end = mappable_end;
  120. dev_priv->mm.gtt_end = end;
  121. dev_priv->mm.gtt_total = end - start;
  122. dev_priv->mm.mappable_gtt_total = min(end, mappable_end) - start;
  123. /* Take over this portion of the GTT */
  124. intel_gtt_clear_range(start / PAGE_SIZE, (end-start) / PAGE_SIZE);
  125. }
  126. int
  127. i915_gem_init_ioctl(struct drm_device *dev, void *data,
  128. struct drm_file *file)
  129. {
  130. struct drm_i915_gem_init *args = data;
  131. if (args->gtt_start >= args->gtt_end ||
  132. (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
  133. return -EINVAL;
  134. mutex_lock(&dev->struct_mutex);
  135. i915_gem_do_init(dev, args->gtt_start, args->gtt_end, args->gtt_end);
  136. mutex_unlock(&dev->struct_mutex);
  137. return 0;
  138. }
  139. int
  140. i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
  141. struct drm_file *file)
  142. {
  143. struct drm_i915_private *dev_priv = dev->dev_private;
  144. struct drm_i915_gem_get_aperture *args = data;
  145. struct drm_i915_gem_object *obj;
  146. size_t pinned;
  147. if (!(dev->driver->driver_features & DRIVER_GEM))
  148. return -ENODEV;
  149. pinned = 0;
  150. mutex_lock(&dev->struct_mutex);
  151. list_for_each_entry(obj, &dev_priv->mm.pinned_list, mm_list)
  152. pinned += obj->gtt_space->size;
  153. mutex_unlock(&dev->struct_mutex);
  154. args->aper_size = dev_priv->mm.gtt_total;
  155. args->aper_available_size = args->aper_size -pinned;
  156. return 0;
  157. }
  158. static int
  159. i915_gem_create(struct drm_file *file,
  160. struct drm_device *dev,
  161. uint64_t size,
  162. uint32_t *handle_p)
  163. {
  164. struct drm_i915_gem_object *obj;
  165. int ret;
  166. u32 handle;
  167. size = roundup(size, PAGE_SIZE);
  168. /* Allocate the new object */
  169. obj = i915_gem_alloc_object(dev, size);
  170. if (obj == NULL)
  171. return -ENOMEM;
  172. ret = drm_gem_handle_create(file, &obj->base, &handle);
  173. if (ret) {
  174. drm_gem_object_release(&obj->base);
  175. i915_gem_info_remove_obj(dev->dev_private, obj->base.size);
  176. kfree(obj);
  177. return ret;
  178. }
  179. /* drop reference from allocate - handle holds it now */
  180. drm_gem_object_unreference(&obj->base);
  181. trace_i915_gem_object_create(obj);
  182. *handle_p = handle;
  183. return 0;
  184. }
  185. int
  186. i915_gem_dumb_create(struct drm_file *file,
  187. struct drm_device *dev,
  188. struct drm_mode_create_dumb *args)
  189. {
  190. /* have to work out size/pitch and return them */
  191. args->pitch = ALIGN(args->width * ((args->bpp + 7) / 8), 64);
  192. args->size = args->pitch * args->height;
  193. return i915_gem_create(file, dev,
  194. args->size, &args->handle);
  195. }
  196. int i915_gem_dumb_destroy(struct drm_file *file,
  197. struct drm_device *dev,
  198. uint32_t handle)
  199. {
  200. return drm_gem_handle_delete(file, handle);
  201. }
  202. /**
  203. * Creates a new mm object and returns a handle to it.
  204. */
  205. int
  206. i915_gem_create_ioctl(struct drm_device *dev, void *data,
  207. struct drm_file *file)
  208. {
  209. struct drm_i915_gem_create *args = data;
  210. return i915_gem_create(file, dev,
  211. args->size, &args->handle);
  212. }
  213. static int i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj)
  214. {
  215. drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
  216. return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
  217. obj->tiling_mode != I915_TILING_NONE;
  218. }
  219. static inline void
  220. slow_shmem_copy(struct page *dst_page,
  221. int dst_offset,
  222. struct page *src_page,
  223. int src_offset,
  224. int length)
  225. {
  226. char *dst_vaddr, *src_vaddr;
  227. dst_vaddr = kmap(dst_page);
  228. src_vaddr = kmap(src_page);
  229. memcpy(dst_vaddr + dst_offset, src_vaddr + src_offset, length);
  230. kunmap(src_page);
  231. kunmap(dst_page);
  232. }
  233. static inline void
  234. slow_shmem_bit17_copy(struct page *gpu_page,
  235. int gpu_offset,
  236. struct page *cpu_page,
  237. int cpu_offset,
  238. int length,
  239. int is_read)
  240. {
  241. char *gpu_vaddr, *cpu_vaddr;
  242. /* Use the unswizzled path if this page isn't affected. */
  243. if ((page_to_phys(gpu_page) & (1 << 17)) == 0) {
  244. if (is_read)
  245. return slow_shmem_copy(cpu_page, cpu_offset,
  246. gpu_page, gpu_offset, length);
  247. else
  248. return slow_shmem_copy(gpu_page, gpu_offset,
  249. cpu_page, cpu_offset, length);
  250. }
  251. gpu_vaddr = kmap(gpu_page);
  252. cpu_vaddr = kmap(cpu_page);
  253. /* Copy the data, XORing A6 with A17 (1). The user already knows he's
  254. * XORing with the other bits (A9 for Y, A9 and A10 for X)
  255. */
  256. while (length > 0) {
  257. int cacheline_end = ALIGN(gpu_offset + 1, 64);
  258. int this_length = min(cacheline_end - gpu_offset, length);
  259. int swizzled_gpu_offset = gpu_offset ^ 64;
  260. if (is_read) {
  261. memcpy(cpu_vaddr + cpu_offset,
  262. gpu_vaddr + swizzled_gpu_offset,
  263. this_length);
  264. } else {
  265. memcpy(gpu_vaddr + swizzled_gpu_offset,
  266. cpu_vaddr + cpu_offset,
  267. this_length);
  268. }
  269. cpu_offset += this_length;
  270. gpu_offset += this_length;
  271. length -= this_length;
  272. }
  273. kunmap(cpu_page);
  274. kunmap(gpu_page);
  275. }
  276. /**
  277. * This is the fast shmem pread path, which attempts to copy_from_user directly
  278. * from the backing pages of the object to the user's address space. On a
  279. * fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow().
  280. */
  281. static int
  282. i915_gem_shmem_pread_fast(struct drm_device *dev,
  283. struct drm_i915_gem_object *obj,
  284. struct drm_i915_gem_pread *args,
  285. struct drm_file *file)
  286. {
  287. struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
  288. ssize_t remain;
  289. loff_t offset;
  290. char __user *user_data;
  291. int page_offset, page_length;
  292. user_data = (char __user *) (uintptr_t) args->data_ptr;
  293. remain = args->size;
  294. offset = args->offset;
  295. while (remain > 0) {
  296. struct page *page;
  297. char *vaddr;
  298. int ret;
  299. /* Operation in this page
  300. *
  301. * page_offset = offset within page
  302. * page_length = bytes to copy for this page
  303. */
  304. page_offset = offset_in_page(offset);
  305. page_length = remain;
  306. if ((page_offset + remain) > PAGE_SIZE)
  307. page_length = PAGE_SIZE - page_offset;
  308. page = read_cache_page_gfp(mapping, offset >> PAGE_SHIFT,
  309. GFP_HIGHUSER | __GFP_RECLAIMABLE);
  310. if (IS_ERR(page))
  311. return PTR_ERR(page);
  312. vaddr = kmap_atomic(page);
  313. ret = __copy_to_user_inatomic(user_data,
  314. vaddr + page_offset,
  315. page_length);
  316. kunmap_atomic(vaddr);
  317. mark_page_accessed(page);
  318. page_cache_release(page);
  319. if (ret)
  320. return -EFAULT;
  321. remain -= page_length;
  322. user_data += page_length;
  323. offset += page_length;
  324. }
  325. return 0;
  326. }
  327. /**
  328. * This is the fallback shmem pread path, which allocates temporary storage
  329. * in kernel space to copy_to_user into outside of the struct_mutex, so we
  330. * can copy out of the object's backing pages while holding the struct mutex
  331. * and not take page faults.
  332. */
  333. static int
  334. i915_gem_shmem_pread_slow(struct drm_device *dev,
  335. struct drm_i915_gem_object *obj,
  336. struct drm_i915_gem_pread *args,
  337. struct drm_file *file)
  338. {
  339. struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
  340. struct mm_struct *mm = current->mm;
  341. struct page **user_pages;
  342. ssize_t remain;
  343. loff_t offset, pinned_pages, i;
  344. loff_t first_data_page, last_data_page, num_pages;
  345. int shmem_page_offset;
  346. int data_page_index, data_page_offset;
  347. int page_length;
  348. int ret;
  349. uint64_t data_ptr = args->data_ptr;
  350. int do_bit17_swizzling;
  351. remain = args->size;
  352. /* Pin the user pages containing the data. We can't fault while
  353. * holding the struct mutex, yet we want to hold it while
  354. * dereferencing the user data.
  355. */
  356. first_data_page = data_ptr / PAGE_SIZE;
  357. last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
  358. num_pages = last_data_page - first_data_page + 1;
  359. user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
  360. if (user_pages == NULL)
  361. return -ENOMEM;
  362. mutex_unlock(&dev->struct_mutex);
  363. down_read(&mm->mmap_sem);
  364. pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
  365. num_pages, 1, 0, user_pages, NULL);
  366. up_read(&mm->mmap_sem);
  367. mutex_lock(&dev->struct_mutex);
  368. if (pinned_pages < num_pages) {
  369. ret = -EFAULT;
  370. goto out;
  371. }
  372. ret = i915_gem_object_set_cpu_read_domain_range(obj,
  373. args->offset,
  374. args->size);
  375. if (ret)
  376. goto out;
  377. do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
  378. offset = args->offset;
  379. while (remain > 0) {
  380. struct page *page;
  381. /* Operation in this page
  382. *
  383. * shmem_page_offset = offset within page in shmem file
  384. * data_page_index = page number in get_user_pages return
  385. * data_page_offset = offset with data_page_index page.
  386. * page_length = bytes to copy for this page
  387. */
  388. shmem_page_offset = offset_in_page(offset);
  389. data_page_index = data_ptr / PAGE_SIZE - first_data_page;
  390. data_page_offset = offset_in_page(data_ptr);
  391. page_length = remain;
  392. if ((shmem_page_offset + page_length) > PAGE_SIZE)
  393. page_length = PAGE_SIZE - shmem_page_offset;
  394. if ((data_page_offset + page_length) > PAGE_SIZE)
  395. page_length = PAGE_SIZE - data_page_offset;
  396. page = read_cache_page_gfp(mapping, offset >> PAGE_SHIFT,
  397. GFP_HIGHUSER | __GFP_RECLAIMABLE);
  398. if (IS_ERR(page)) {
  399. ret = PTR_ERR(page);
  400. goto out;
  401. }
  402. if (do_bit17_swizzling) {
  403. slow_shmem_bit17_copy(page,
  404. shmem_page_offset,
  405. user_pages[data_page_index],
  406. data_page_offset,
  407. page_length,
  408. 1);
  409. } else {
  410. slow_shmem_copy(user_pages[data_page_index],
  411. data_page_offset,
  412. page,
  413. shmem_page_offset,
  414. page_length);
  415. }
  416. mark_page_accessed(page);
  417. page_cache_release(page);
  418. remain -= page_length;
  419. data_ptr += page_length;
  420. offset += page_length;
  421. }
  422. out:
  423. for (i = 0; i < pinned_pages; i++) {
  424. SetPageDirty(user_pages[i]);
  425. mark_page_accessed(user_pages[i]);
  426. page_cache_release(user_pages[i]);
  427. }
  428. drm_free_large(user_pages);
  429. return ret;
  430. }
  431. /**
  432. * Reads data from the object referenced by handle.
  433. *
  434. * On error, the contents of *data are undefined.
  435. */
  436. int
  437. i915_gem_pread_ioctl(struct drm_device *dev, void *data,
  438. struct drm_file *file)
  439. {
  440. struct drm_i915_gem_pread *args = data;
  441. struct drm_i915_gem_object *obj;
  442. int ret = 0;
  443. if (args->size == 0)
  444. return 0;
  445. if (!access_ok(VERIFY_WRITE,
  446. (char __user *)(uintptr_t)args->data_ptr,
  447. args->size))
  448. return -EFAULT;
  449. ret = fault_in_pages_writeable((char __user *)(uintptr_t)args->data_ptr,
  450. args->size);
  451. if (ret)
  452. return -EFAULT;
  453. ret = i915_mutex_lock_interruptible(dev);
  454. if (ret)
  455. return ret;
  456. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  457. if (&obj->base == NULL) {
  458. ret = -ENOENT;
  459. goto unlock;
  460. }
  461. /* Bounds check source. */
  462. if (args->offset > obj->base.size ||
  463. args->size > obj->base.size - args->offset) {
  464. ret = -EINVAL;
  465. goto out;
  466. }
  467. trace_i915_gem_object_pread(obj, args->offset, args->size);
  468. ret = i915_gem_object_set_cpu_read_domain_range(obj,
  469. args->offset,
  470. args->size);
  471. if (ret)
  472. goto out;
  473. ret = -EFAULT;
  474. if (!i915_gem_object_needs_bit17_swizzle(obj))
  475. ret = i915_gem_shmem_pread_fast(dev, obj, args, file);
  476. if (ret == -EFAULT)
  477. ret = i915_gem_shmem_pread_slow(dev, obj, args, file);
  478. out:
  479. drm_gem_object_unreference(&obj->base);
  480. unlock:
  481. mutex_unlock(&dev->struct_mutex);
  482. return ret;
  483. }
  484. /* This is the fast write path which cannot handle
  485. * page faults in the source data
  486. */
  487. static inline int
  488. fast_user_write(struct io_mapping *mapping,
  489. loff_t page_base, int page_offset,
  490. char __user *user_data,
  491. int length)
  492. {
  493. char *vaddr_atomic;
  494. unsigned long unwritten;
  495. vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
  496. unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
  497. user_data, length);
  498. io_mapping_unmap_atomic(vaddr_atomic);
  499. return unwritten;
  500. }
  501. /* Here's the write path which can sleep for
  502. * page faults
  503. */
  504. static inline void
  505. slow_kernel_write(struct io_mapping *mapping,
  506. loff_t gtt_base, int gtt_offset,
  507. struct page *user_page, int user_offset,
  508. int length)
  509. {
  510. char __iomem *dst_vaddr;
  511. char *src_vaddr;
  512. dst_vaddr = io_mapping_map_wc(mapping, gtt_base);
  513. src_vaddr = kmap(user_page);
  514. memcpy_toio(dst_vaddr + gtt_offset,
  515. src_vaddr + user_offset,
  516. length);
  517. kunmap(user_page);
  518. io_mapping_unmap(dst_vaddr);
  519. }
  520. /**
  521. * This is the fast pwrite path, where we copy the data directly from the
  522. * user into the GTT, uncached.
  523. */
  524. static int
  525. i915_gem_gtt_pwrite_fast(struct drm_device *dev,
  526. struct drm_i915_gem_object *obj,
  527. struct drm_i915_gem_pwrite *args,
  528. struct drm_file *file)
  529. {
  530. drm_i915_private_t *dev_priv = dev->dev_private;
  531. ssize_t remain;
  532. loff_t offset, page_base;
  533. char __user *user_data;
  534. int page_offset, page_length;
  535. user_data = (char __user *) (uintptr_t) args->data_ptr;
  536. remain = args->size;
  537. offset = obj->gtt_offset + args->offset;
  538. while (remain > 0) {
  539. /* Operation in this page
  540. *
  541. * page_base = page offset within aperture
  542. * page_offset = offset within page
  543. * page_length = bytes to copy for this page
  544. */
  545. page_base = offset & PAGE_MASK;
  546. page_offset = offset_in_page(offset);
  547. page_length = remain;
  548. if ((page_offset + remain) > PAGE_SIZE)
  549. page_length = PAGE_SIZE - page_offset;
  550. /* If we get a fault while copying data, then (presumably) our
  551. * source page isn't available. Return the error and we'll
  552. * retry in the slow path.
  553. */
  554. if (fast_user_write(dev_priv->mm.gtt_mapping, page_base,
  555. page_offset, user_data, page_length))
  556. return -EFAULT;
  557. remain -= page_length;
  558. user_data += page_length;
  559. offset += page_length;
  560. }
  561. return 0;
  562. }
  563. /**
  564. * This is the fallback GTT pwrite path, which uses get_user_pages to pin
  565. * the memory and maps it using kmap_atomic for copying.
  566. *
  567. * This code resulted in x11perf -rgb10text consuming about 10% more CPU
  568. * than using i915_gem_gtt_pwrite_fast on a G45 (32-bit).
  569. */
  570. static int
  571. i915_gem_gtt_pwrite_slow(struct drm_device *dev,
  572. struct drm_i915_gem_object *obj,
  573. struct drm_i915_gem_pwrite *args,
  574. struct drm_file *file)
  575. {
  576. drm_i915_private_t *dev_priv = dev->dev_private;
  577. ssize_t remain;
  578. loff_t gtt_page_base, offset;
  579. loff_t first_data_page, last_data_page, num_pages;
  580. loff_t pinned_pages, i;
  581. struct page **user_pages;
  582. struct mm_struct *mm = current->mm;
  583. int gtt_page_offset, data_page_offset, data_page_index, page_length;
  584. int ret;
  585. uint64_t data_ptr = args->data_ptr;
  586. remain = args->size;
  587. /* Pin the user pages containing the data. We can't fault while
  588. * holding the struct mutex, and all of the pwrite implementations
  589. * want to hold it while dereferencing the user data.
  590. */
  591. first_data_page = data_ptr / PAGE_SIZE;
  592. last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
  593. num_pages = last_data_page - first_data_page + 1;
  594. user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
  595. if (user_pages == NULL)
  596. return -ENOMEM;
  597. mutex_unlock(&dev->struct_mutex);
  598. down_read(&mm->mmap_sem);
  599. pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
  600. num_pages, 0, 0, user_pages, NULL);
  601. up_read(&mm->mmap_sem);
  602. mutex_lock(&dev->struct_mutex);
  603. if (pinned_pages < num_pages) {
  604. ret = -EFAULT;
  605. goto out_unpin_pages;
  606. }
  607. ret = i915_gem_object_set_to_gtt_domain(obj, true);
  608. if (ret)
  609. goto out_unpin_pages;
  610. ret = i915_gem_object_put_fence(obj);
  611. if (ret)
  612. goto out_unpin_pages;
  613. offset = obj->gtt_offset + args->offset;
  614. while (remain > 0) {
  615. /* Operation in this page
  616. *
  617. * gtt_page_base = page offset within aperture
  618. * gtt_page_offset = offset within page in aperture
  619. * data_page_index = page number in get_user_pages return
  620. * data_page_offset = offset with data_page_index page.
  621. * page_length = bytes to copy for this page
  622. */
  623. gtt_page_base = offset & PAGE_MASK;
  624. gtt_page_offset = offset_in_page(offset);
  625. data_page_index = data_ptr / PAGE_SIZE - first_data_page;
  626. data_page_offset = offset_in_page(data_ptr);
  627. page_length = remain;
  628. if ((gtt_page_offset + page_length) > PAGE_SIZE)
  629. page_length = PAGE_SIZE - gtt_page_offset;
  630. if ((data_page_offset + page_length) > PAGE_SIZE)
  631. page_length = PAGE_SIZE - data_page_offset;
  632. slow_kernel_write(dev_priv->mm.gtt_mapping,
  633. gtt_page_base, gtt_page_offset,
  634. user_pages[data_page_index],
  635. data_page_offset,
  636. page_length);
  637. remain -= page_length;
  638. offset += page_length;
  639. data_ptr += page_length;
  640. }
  641. out_unpin_pages:
  642. for (i = 0; i < pinned_pages; i++)
  643. page_cache_release(user_pages[i]);
  644. drm_free_large(user_pages);
  645. return ret;
  646. }
  647. /**
  648. * This is the fast shmem pwrite path, which attempts to directly
  649. * copy_from_user into the kmapped pages backing the object.
  650. */
  651. static int
  652. i915_gem_shmem_pwrite_fast(struct drm_device *dev,
  653. struct drm_i915_gem_object *obj,
  654. struct drm_i915_gem_pwrite *args,
  655. struct drm_file *file)
  656. {
  657. struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
  658. ssize_t remain;
  659. loff_t offset;
  660. char __user *user_data;
  661. int page_offset, page_length;
  662. user_data = (char __user *) (uintptr_t) args->data_ptr;
  663. remain = args->size;
  664. offset = args->offset;
  665. obj->dirty = 1;
  666. while (remain > 0) {
  667. struct page *page;
  668. char *vaddr;
  669. int ret;
  670. /* Operation in this page
  671. *
  672. * page_offset = offset within page
  673. * page_length = bytes to copy for this page
  674. */
  675. page_offset = offset_in_page(offset);
  676. page_length = remain;
  677. if ((page_offset + remain) > PAGE_SIZE)
  678. page_length = PAGE_SIZE - page_offset;
  679. page = read_cache_page_gfp(mapping, offset >> PAGE_SHIFT,
  680. GFP_HIGHUSER | __GFP_RECLAIMABLE);
  681. if (IS_ERR(page))
  682. return PTR_ERR(page);
  683. vaddr = kmap_atomic(page, KM_USER0);
  684. ret = __copy_from_user_inatomic(vaddr + page_offset,
  685. user_data,
  686. page_length);
  687. kunmap_atomic(vaddr, KM_USER0);
  688. set_page_dirty(page);
  689. mark_page_accessed(page);
  690. page_cache_release(page);
  691. /* If we get a fault while copying data, then (presumably) our
  692. * source page isn't available. Return the error and we'll
  693. * retry in the slow path.
  694. */
  695. if (ret)
  696. return -EFAULT;
  697. remain -= page_length;
  698. user_data += page_length;
  699. offset += page_length;
  700. }
  701. return 0;
  702. }
  703. /**
  704. * This is the fallback shmem pwrite path, which uses get_user_pages to pin
  705. * the memory and maps it using kmap_atomic for copying.
  706. *
  707. * This avoids taking mmap_sem for faulting on the user's address while the
  708. * struct_mutex is held.
  709. */
  710. static int
  711. i915_gem_shmem_pwrite_slow(struct drm_device *dev,
  712. struct drm_i915_gem_object *obj,
  713. struct drm_i915_gem_pwrite *args,
  714. struct drm_file *file)
  715. {
  716. struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
  717. struct mm_struct *mm = current->mm;
  718. struct page **user_pages;
  719. ssize_t remain;
  720. loff_t offset, pinned_pages, i;
  721. loff_t first_data_page, last_data_page, num_pages;
  722. int shmem_page_offset;
  723. int data_page_index, data_page_offset;
  724. int page_length;
  725. int ret;
  726. uint64_t data_ptr = args->data_ptr;
  727. int do_bit17_swizzling;
  728. remain = args->size;
  729. /* Pin the user pages containing the data. We can't fault while
  730. * holding the struct mutex, and all of the pwrite implementations
  731. * want to hold it while dereferencing the user data.
  732. */
  733. first_data_page = data_ptr / PAGE_SIZE;
  734. last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
  735. num_pages = last_data_page - first_data_page + 1;
  736. user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
  737. if (user_pages == NULL)
  738. return -ENOMEM;
  739. mutex_unlock(&dev->struct_mutex);
  740. down_read(&mm->mmap_sem);
  741. pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
  742. num_pages, 0, 0, user_pages, NULL);
  743. up_read(&mm->mmap_sem);
  744. mutex_lock(&dev->struct_mutex);
  745. if (pinned_pages < num_pages) {
  746. ret = -EFAULT;
  747. goto out;
  748. }
  749. ret = i915_gem_object_set_to_cpu_domain(obj, 1);
  750. if (ret)
  751. goto out;
  752. do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
  753. offset = args->offset;
  754. obj->dirty = 1;
  755. while (remain > 0) {
  756. struct page *page;
  757. /* Operation in this page
  758. *
  759. * shmem_page_offset = offset within page in shmem file
  760. * data_page_index = page number in get_user_pages return
  761. * data_page_offset = offset with data_page_index page.
  762. * page_length = bytes to copy for this page
  763. */
  764. shmem_page_offset = offset_in_page(offset);
  765. data_page_index = data_ptr / PAGE_SIZE - first_data_page;
  766. data_page_offset = offset_in_page(data_ptr);
  767. page_length = remain;
  768. if ((shmem_page_offset + page_length) > PAGE_SIZE)
  769. page_length = PAGE_SIZE - shmem_page_offset;
  770. if ((data_page_offset + page_length) > PAGE_SIZE)
  771. page_length = PAGE_SIZE - data_page_offset;
  772. page = read_cache_page_gfp(mapping, offset >> PAGE_SHIFT,
  773. GFP_HIGHUSER | __GFP_RECLAIMABLE);
  774. if (IS_ERR(page)) {
  775. ret = PTR_ERR(page);
  776. goto out;
  777. }
  778. if (do_bit17_swizzling) {
  779. slow_shmem_bit17_copy(page,
  780. shmem_page_offset,
  781. user_pages[data_page_index],
  782. data_page_offset,
  783. page_length,
  784. 0);
  785. } else {
  786. slow_shmem_copy(page,
  787. shmem_page_offset,
  788. user_pages[data_page_index],
  789. data_page_offset,
  790. page_length);
  791. }
  792. set_page_dirty(page);
  793. mark_page_accessed(page);
  794. page_cache_release(page);
  795. remain -= page_length;
  796. data_ptr += page_length;
  797. offset += page_length;
  798. }
  799. out:
  800. for (i = 0; i < pinned_pages; i++)
  801. page_cache_release(user_pages[i]);
  802. drm_free_large(user_pages);
  803. return ret;
  804. }
  805. /**
  806. * Writes data to the object referenced by handle.
  807. *
  808. * On error, the contents of the buffer that were to be modified are undefined.
  809. */
  810. int
  811. i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
  812. struct drm_file *file)
  813. {
  814. struct drm_i915_gem_pwrite *args = data;
  815. struct drm_i915_gem_object *obj;
  816. int ret;
  817. if (args->size == 0)
  818. return 0;
  819. if (!access_ok(VERIFY_READ,
  820. (char __user *)(uintptr_t)args->data_ptr,
  821. args->size))
  822. return -EFAULT;
  823. ret = fault_in_pages_readable((char __user *)(uintptr_t)args->data_ptr,
  824. args->size);
  825. if (ret)
  826. return -EFAULT;
  827. ret = i915_mutex_lock_interruptible(dev);
  828. if (ret)
  829. return ret;
  830. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  831. if (&obj->base == NULL) {
  832. ret = -ENOENT;
  833. goto unlock;
  834. }
  835. /* Bounds check destination. */
  836. if (args->offset > obj->base.size ||
  837. args->size > obj->base.size - args->offset) {
  838. ret = -EINVAL;
  839. goto out;
  840. }
  841. trace_i915_gem_object_pwrite(obj, args->offset, args->size);
  842. /* We can only do the GTT pwrite on untiled buffers, as otherwise
  843. * it would end up going through the fenced access, and we'll get
  844. * different detiling behavior between reading and writing.
  845. * pread/pwrite currently are reading and writing from the CPU
  846. * perspective, requiring manual detiling by the client.
  847. */
  848. if (obj->phys_obj)
  849. ret = i915_gem_phys_pwrite(dev, obj, args, file);
  850. else if (obj->gtt_space &&
  851. obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
  852. ret = i915_gem_object_pin(obj, 0, true);
  853. if (ret)
  854. goto out;
  855. ret = i915_gem_object_set_to_gtt_domain(obj, true);
  856. if (ret)
  857. goto out_unpin;
  858. ret = i915_gem_object_put_fence(obj);
  859. if (ret)
  860. goto out_unpin;
  861. ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
  862. if (ret == -EFAULT)
  863. ret = i915_gem_gtt_pwrite_slow(dev, obj, args, file);
  864. out_unpin:
  865. i915_gem_object_unpin(obj);
  866. } else {
  867. ret = i915_gem_object_set_to_cpu_domain(obj, 1);
  868. if (ret)
  869. goto out;
  870. ret = -EFAULT;
  871. if (!i915_gem_object_needs_bit17_swizzle(obj))
  872. ret = i915_gem_shmem_pwrite_fast(dev, obj, args, file);
  873. if (ret == -EFAULT)
  874. ret = i915_gem_shmem_pwrite_slow(dev, obj, args, file);
  875. }
  876. out:
  877. drm_gem_object_unreference(&obj->base);
  878. unlock:
  879. mutex_unlock(&dev->struct_mutex);
  880. return ret;
  881. }
  882. /**
  883. * Called when user space prepares to use an object with the CPU, either
  884. * through the mmap ioctl's mapping or a GTT mapping.
  885. */
  886. int
  887. i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
  888. struct drm_file *file)
  889. {
  890. struct drm_i915_gem_set_domain *args = data;
  891. struct drm_i915_gem_object *obj;
  892. uint32_t read_domains = args->read_domains;
  893. uint32_t write_domain = args->write_domain;
  894. int ret;
  895. if (!(dev->driver->driver_features & DRIVER_GEM))
  896. return -ENODEV;
  897. /* Only handle setting domains to types used by the CPU. */
  898. if (write_domain & I915_GEM_GPU_DOMAINS)
  899. return -EINVAL;
  900. if (read_domains & I915_GEM_GPU_DOMAINS)
  901. return -EINVAL;
  902. /* Having something in the write domain implies it's in the read
  903. * domain, and only that read domain. Enforce that in the request.
  904. */
  905. if (write_domain != 0 && read_domains != write_domain)
  906. return -EINVAL;
  907. ret = i915_mutex_lock_interruptible(dev);
  908. if (ret)
  909. return ret;
  910. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  911. if (&obj->base == NULL) {
  912. ret = -ENOENT;
  913. goto unlock;
  914. }
  915. if (read_domains & I915_GEM_DOMAIN_GTT) {
  916. ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
  917. /* Silently promote "you're not bound, there was nothing to do"
  918. * to success, since the client was just asking us to
  919. * make sure everything was done.
  920. */
  921. if (ret == -EINVAL)
  922. ret = 0;
  923. } else {
  924. ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
  925. }
  926. drm_gem_object_unreference(&obj->base);
  927. unlock:
  928. mutex_unlock(&dev->struct_mutex);
  929. return ret;
  930. }
  931. /**
  932. * Called when user space has done writes to this buffer
  933. */
  934. int
  935. i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
  936. struct drm_file *file)
  937. {
  938. struct drm_i915_gem_sw_finish *args = data;
  939. struct drm_i915_gem_object *obj;
  940. int ret = 0;
  941. if (!(dev->driver->driver_features & DRIVER_GEM))
  942. return -ENODEV;
  943. ret = i915_mutex_lock_interruptible(dev);
  944. if (ret)
  945. return ret;
  946. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  947. if (&obj->base == NULL) {
  948. ret = -ENOENT;
  949. goto unlock;
  950. }
  951. /* Pinned buffers may be scanout, so flush the cache */
  952. if (obj->pin_count)
  953. i915_gem_object_flush_cpu_write_domain(obj);
  954. drm_gem_object_unreference(&obj->base);
  955. unlock:
  956. mutex_unlock(&dev->struct_mutex);
  957. return ret;
  958. }
  959. /**
  960. * Maps the contents of an object, returning the address it is mapped
  961. * into.
  962. *
  963. * While the mapping holds a reference on the contents of the object, it doesn't
  964. * imply a ref on the object itself.
  965. */
  966. int
  967. i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
  968. struct drm_file *file)
  969. {
  970. struct drm_i915_private *dev_priv = dev->dev_private;
  971. struct drm_i915_gem_mmap *args = data;
  972. struct drm_gem_object *obj;
  973. unsigned long addr;
  974. if (!(dev->driver->driver_features & DRIVER_GEM))
  975. return -ENODEV;
  976. obj = drm_gem_object_lookup(dev, file, args->handle);
  977. if (obj == NULL)
  978. return -ENOENT;
  979. if (obj->size > dev_priv->mm.gtt_mappable_end) {
  980. drm_gem_object_unreference_unlocked(obj);
  981. return -E2BIG;
  982. }
  983. down_write(&current->mm->mmap_sem);
  984. addr = do_mmap(obj->filp, 0, args->size,
  985. PROT_READ | PROT_WRITE, MAP_SHARED,
  986. args->offset);
  987. up_write(&current->mm->mmap_sem);
  988. drm_gem_object_unreference_unlocked(obj);
  989. if (IS_ERR((void *)addr))
  990. return addr;
  991. args->addr_ptr = (uint64_t) addr;
  992. return 0;
  993. }
  994. /**
  995. * i915_gem_fault - fault a page into the GTT
  996. * vma: VMA in question
  997. * vmf: fault info
  998. *
  999. * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
  1000. * from userspace. The fault handler takes care of binding the object to
  1001. * the GTT (if needed), allocating and programming a fence register (again,
  1002. * only if needed based on whether the old reg is still valid or the object
  1003. * is tiled) and inserting a new PTE into the faulting process.
  1004. *
  1005. * Note that the faulting process may involve evicting existing objects
  1006. * from the GTT and/or fence registers to make room. So performance may
  1007. * suffer if the GTT working set is large or there are few fence registers
  1008. * left.
  1009. */
  1010. int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
  1011. {
  1012. struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
  1013. struct drm_device *dev = obj->base.dev;
  1014. drm_i915_private_t *dev_priv = dev->dev_private;
  1015. pgoff_t page_offset;
  1016. unsigned long pfn;
  1017. int ret = 0;
  1018. bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
  1019. /* We don't use vmf->pgoff since that has the fake offset */
  1020. page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
  1021. PAGE_SHIFT;
  1022. ret = i915_mutex_lock_interruptible(dev);
  1023. if (ret)
  1024. goto out;
  1025. trace_i915_gem_object_fault(obj, page_offset, true, write);
  1026. /* Now bind it into the GTT if needed */
  1027. if (!obj->map_and_fenceable) {
  1028. ret = i915_gem_object_unbind(obj);
  1029. if (ret)
  1030. goto unlock;
  1031. }
  1032. if (!obj->gtt_space) {
  1033. ret = i915_gem_object_bind_to_gtt(obj, 0, true);
  1034. if (ret)
  1035. goto unlock;
  1036. }
  1037. ret = i915_gem_object_set_to_gtt_domain(obj, write);
  1038. if (ret)
  1039. goto unlock;
  1040. if (obj->tiling_mode == I915_TILING_NONE)
  1041. ret = i915_gem_object_put_fence(obj);
  1042. else
  1043. ret = i915_gem_object_get_fence(obj, NULL);
  1044. if (ret)
  1045. goto unlock;
  1046. if (i915_gem_object_is_inactive(obj))
  1047. list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
  1048. obj->fault_mappable = true;
  1049. pfn = ((dev->agp->base + obj->gtt_offset) >> PAGE_SHIFT) +
  1050. page_offset;
  1051. /* Finally, remap it using the new GTT offset */
  1052. ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
  1053. unlock:
  1054. mutex_unlock(&dev->struct_mutex);
  1055. out:
  1056. switch (ret) {
  1057. case -EIO:
  1058. case -EAGAIN:
  1059. /* Give the error handler a chance to run and move the
  1060. * objects off the GPU active list. Next time we service the
  1061. * fault, we should be able to transition the page into the
  1062. * GTT without touching the GPU (and so avoid further
  1063. * EIO/EGAIN). If the GPU is wedged, then there is no issue
  1064. * with coherency, just lost writes.
  1065. */
  1066. set_need_resched();
  1067. case 0:
  1068. case -ERESTARTSYS:
  1069. case -EINTR:
  1070. return VM_FAULT_NOPAGE;
  1071. case -ENOMEM:
  1072. return VM_FAULT_OOM;
  1073. default:
  1074. return VM_FAULT_SIGBUS;
  1075. }
  1076. }
  1077. /**
  1078. * i915_gem_create_mmap_offset - create a fake mmap offset for an object
  1079. * @obj: obj in question
  1080. *
  1081. * GEM memory mapping works by handing back to userspace a fake mmap offset
  1082. * it can use in a subsequent mmap(2) call. The DRM core code then looks
  1083. * up the object based on the offset and sets up the various memory mapping
  1084. * structures.
  1085. *
  1086. * This routine allocates and attaches a fake offset for @obj.
  1087. */
  1088. static int
  1089. i915_gem_create_mmap_offset(struct drm_i915_gem_object *obj)
  1090. {
  1091. struct drm_device *dev = obj->base.dev;
  1092. struct drm_gem_mm *mm = dev->mm_private;
  1093. struct drm_map_list *list;
  1094. struct drm_local_map *map;
  1095. int ret = 0;
  1096. /* Set the object up for mmap'ing */
  1097. list = &obj->base.map_list;
  1098. list->map = kzalloc(sizeof(struct drm_map_list), GFP_KERNEL);
  1099. if (!list->map)
  1100. return -ENOMEM;
  1101. map = list->map;
  1102. map->type = _DRM_GEM;
  1103. map->size = obj->base.size;
  1104. map->handle = obj;
  1105. /* Get a DRM GEM mmap offset allocated... */
  1106. list->file_offset_node = drm_mm_search_free(&mm->offset_manager,
  1107. obj->base.size / PAGE_SIZE,
  1108. 0, 0);
  1109. if (!list->file_offset_node) {
  1110. DRM_ERROR("failed to allocate offset for bo %d\n",
  1111. obj->base.name);
  1112. ret = -ENOSPC;
  1113. goto out_free_list;
  1114. }
  1115. list->file_offset_node = drm_mm_get_block(list->file_offset_node,
  1116. obj->base.size / PAGE_SIZE,
  1117. 0);
  1118. if (!list->file_offset_node) {
  1119. ret = -ENOMEM;
  1120. goto out_free_list;
  1121. }
  1122. list->hash.key = list->file_offset_node->start;
  1123. ret = drm_ht_insert_item(&mm->offset_hash, &list->hash);
  1124. if (ret) {
  1125. DRM_ERROR("failed to add to map hash\n");
  1126. goto out_free_mm;
  1127. }
  1128. return 0;
  1129. out_free_mm:
  1130. drm_mm_put_block(list->file_offset_node);
  1131. out_free_list:
  1132. kfree(list->map);
  1133. list->map = NULL;
  1134. return ret;
  1135. }
  1136. /**
  1137. * i915_gem_release_mmap - remove physical page mappings
  1138. * @obj: obj in question
  1139. *
  1140. * Preserve the reservation of the mmapping with the DRM core code, but
  1141. * relinquish ownership of the pages back to the system.
  1142. *
  1143. * It is vital that we remove the page mapping if we have mapped a tiled
  1144. * object through the GTT and then lose the fence register due to
  1145. * resource pressure. Similarly if the object has been moved out of the
  1146. * aperture, than pages mapped into userspace must be revoked. Removing the
  1147. * mapping will then trigger a page fault on the next user access, allowing
  1148. * fixup by i915_gem_fault().
  1149. */
  1150. void
  1151. i915_gem_release_mmap(struct drm_i915_gem_object *obj)
  1152. {
  1153. if (!obj->fault_mappable)
  1154. return;
  1155. if (obj->base.dev->dev_mapping)
  1156. unmap_mapping_range(obj->base.dev->dev_mapping,
  1157. (loff_t)obj->base.map_list.hash.key<<PAGE_SHIFT,
  1158. obj->base.size, 1);
  1159. obj->fault_mappable = false;
  1160. }
  1161. static void
  1162. i915_gem_free_mmap_offset(struct drm_i915_gem_object *obj)
  1163. {
  1164. struct drm_device *dev = obj->base.dev;
  1165. struct drm_gem_mm *mm = dev->mm_private;
  1166. struct drm_map_list *list = &obj->base.map_list;
  1167. drm_ht_remove_item(&mm->offset_hash, &list->hash);
  1168. drm_mm_put_block(list->file_offset_node);
  1169. kfree(list->map);
  1170. list->map = NULL;
  1171. }
  1172. static uint32_t
  1173. i915_gem_get_gtt_size(struct drm_i915_gem_object *obj)
  1174. {
  1175. struct drm_device *dev = obj->base.dev;
  1176. uint32_t size;
  1177. if (INTEL_INFO(dev)->gen >= 4 ||
  1178. obj->tiling_mode == I915_TILING_NONE)
  1179. return obj->base.size;
  1180. /* Previous chips need a power-of-two fence region when tiling */
  1181. if (INTEL_INFO(dev)->gen == 3)
  1182. size = 1024*1024;
  1183. else
  1184. size = 512*1024;
  1185. while (size < obj->base.size)
  1186. size <<= 1;
  1187. return size;
  1188. }
  1189. /**
  1190. * i915_gem_get_gtt_alignment - return required GTT alignment for an object
  1191. * @obj: object to check
  1192. *
  1193. * Return the required GTT alignment for an object, taking into account
  1194. * potential fence register mapping.
  1195. */
  1196. static uint32_t
  1197. i915_gem_get_gtt_alignment(struct drm_i915_gem_object *obj)
  1198. {
  1199. struct drm_device *dev = obj->base.dev;
  1200. /*
  1201. * Minimum alignment is 4k (GTT page size), but might be greater
  1202. * if a fence register is needed for the object.
  1203. */
  1204. if (INTEL_INFO(dev)->gen >= 4 ||
  1205. obj->tiling_mode == I915_TILING_NONE)
  1206. return 4096;
  1207. /*
  1208. * Previous chips need to be aligned to the size of the smallest
  1209. * fence register that can contain the object.
  1210. */
  1211. return i915_gem_get_gtt_size(obj);
  1212. }
  1213. /**
  1214. * i915_gem_get_unfenced_gtt_alignment - return required GTT alignment for an
  1215. * unfenced object
  1216. * @obj: object to check
  1217. *
  1218. * Return the required GTT alignment for an object, only taking into account
  1219. * unfenced tiled surface requirements.
  1220. */
  1221. uint32_t
  1222. i915_gem_get_unfenced_gtt_alignment(struct drm_i915_gem_object *obj)
  1223. {
  1224. struct drm_device *dev = obj->base.dev;
  1225. int tile_height;
  1226. /*
  1227. * Minimum alignment is 4k (GTT page size) for sane hw.
  1228. */
  1229. if (INTEL_INFO(dev)->gen >= 4 || IS_G33(dev) ||
  1230. obj->tiling_mode == I915_TILING_NONE)
  1231. return 4096;
  1232. /*
  1233. * Older chips need unfenced tiled buffers to be aligned to the left
  1234. * edge of an even tile row (where tile rows are counted as if the bo is
  1235. * placed in a fenced gtt region).
  1236. */
  1237. if (IS_GEN2(dev))
  1238. tile_height = 16;
  1239. else if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
  1240. tile_height = 32;
  1241. else
  1242. tile_height = 8;
  1243. return tile_height * obj->stride * 2;
  1244. }
  1245. int
  1246. i915_gem_mmap_gtt(struct drm_file *file,
  1247. struct drm_device *dev,
  1248. uint32_t handle,
  1249. uint64_t *offset)
  1250. {
  1251. struct drm_i915_private *dev_priv = dev->dev_private;
  1252. struct drm_i915_gem_object *obj;
  1253. int ret;
  1254. if (!(dev->driver->driver_features & DRIVER_GEM))
  1255. return -ENODEV;
  1256. ret = i915_mutex_lock_interruptible(dev);
  1257. if (ret)
  1258. return ret;
  1259. obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
  1260. if (&obj->base == NULL) {
  1261. ret = -ENOENT;
  1262. goto unlock;
  1263. }
  1264. if (obj->base.size > dev_priv->mm.gtt_mappable_end) {
  1265. ret = -E2BIG;
  1266. goto unlock;
  1267. }
  1268. if (obj->madv != I915_MADV_WILLNEED) {
  1269. DRM_ERROR("Attempting to mmap a purgeable buffer\n");
  1270. ret = -EINVAL;
  1271. goto out;
  1272. }
  1273. if (!obj->base.map_list.map) {
  1274. ret = i915_gem_create_mmap_offset(obj);
  1275. if (ret)
  1276. goto out;
  1277. }
  1278. *offset = (u64)obj->base.map_list.hash.key << PAGE_SHIFT;
  1279. out:
  1280. drm_gem_object_unreference(&obj->base);
  1281. unlock:
  1282. mutex_unlock(&dev->struct_mutex);
  1283. return ret;
  1284. }
  1285. /**
  1286. * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
  1287. * @dev: DRM device
  1288. * @data: GTT mapping ioctl data
  1289. * @file: GEM object info
  1290. *
  1291. * Simply returns the fake offset to userspace so it can mmap it.
  1292. * The mmap call will end up in drm_gem_mmap(), which will set things
  1293. * up so we can get faults in the handler above.
  1294. *
  1295. * The fault handler will take care of binding the object into the GTT
  1296. * (since it may have been evicted to make room for something), allocating
  1297. * a fence register, and mapping the appropriate aperture address into
  1298. * userspace.
  1299. */
  1300. int
  1301. i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
  1302. struct drm_file *file)
  1303. {
  1304. struct drm_i915_gem_mmap_gtt *args = data;
  1305. if (!(dev->driver->driver_features & DRIVER_GEM))
  1306. return -ENODEV;
  1307. return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
  1308. }
  1309. static int
  1310. i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj,
  1311. gfp_t gfpmask)
  1312. {
  1313. int page_count, i;
  1314. struct address_space *mapping;
  1315. struct inode *inode;
  1316. struct page *page;
  1317. /* Get the list of pages out of our struct file. They'll be pinned
  1318. * at this point until we release them.
  1319. */
  1320. page_count = obj->base.size / PAGE_SIZE;
  1321. BUG_ON(obj->pages != NULL);
  1322. obj->pages = drm_malloc_ab(page_count, sizeof(struct page *));
  1323. if (obj->pages == NULL)
  1324. return -ENOMEM;
  1325. inode = obj->base.filp->f_path.dentry->d_inode;
  1326. mapping = inode->i_mapping;
  1327. for (i = 0; i < page_count; i++) {
  1328. page = read_cache_page_gfp(mapping, i,
  1329. GFP_HIGHUSER |
  1330. __GFP_COLD |
  1331. __GFP_RECLAIMABLE |
  1332. gfpmask);
  1333. if (IS_ERR(page))
  1334. goto err_pages;
  1335. obj->pages[i] = page;
  1336. }
  1337. if (obj->tiling_mode != I915_TILING_NONE)
  1338. i915_gem_object_do_bit_17_swizzle(obj);
  1339. return 0;
  1340. err_pages:
  1341. while (i--)
  1342. page_cache_release(obj->pages[i]);
  1343. drm_free_large(obj->pages);
  1344. obj->pages = NULL;
  1345. return PTR_ERR(page);
  1346. }
  1347. static void
  1348. i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
  1349. {
  1350. int page_count = obj->base.size / PAGE_SIZE;
  1351. int i;
  1352. BUG_ON(obj->madv == __I915_MADV_PURGED);
  1353. if (obj->tiling_mode != I915_TILING_NONE)
  1354. i915_gem_object_save_bit_17_swizzle(obj);
  1355. if (obj->madv == I915_MADV_DONTNEED)
  1356. obj->dirty = 0;
  1357. for (i = 0; i < page_count; i++) {
  1358. if (obj->dirty)
  1359. set_page_dirty(obj->pages[i]);
  1360. if (obj->madv == I915_MADV_WILLNEED)
  1361. mark_page_accessed(obj->pages[i]);
  1362. page_cache_release(obj->pages[i]);
  1363. }
  1364. obj->dirty = 0;
  1365. drm_free_large(obj->pages);
  1366. obj->pages = NULL;
  1367. }
  1368. void
  1369. i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
  1370. struct intel_ring_buffer *ring,
  1371. u32 seqno)
  1372. {
  1373. struct drm_device *dev = obj->base.dev;
  1374. struct drm_i915_private *dev_priv = dev->dev_private;
  1375. BUG_ON(ring == NULL);
  1376. obj->ring = ring;
  1377. /* Add a reference if we're newly entering the active list. */
  1378. if (!obj->active) {
  1379. drm_gem_object_reference(&obj->base);
  1380. obj->active = 1;
  1381. }
  1382. /* Move from whatever list we were on to the tail of execution. */
  1383. list_move_tail(&obj->mm_list, &dev_priv->mm.active_list);
  1384. list_move_tail(&obj->ring_list, &ring->active_list);
  1385. obj->last_rendering_seqno = seqno;
  1386. if (obj->fenced_gpu_access) {
  1387. struct drm_i915_fence_reg *reg;
  1388. BUG_ON(obj->fence_reg == I915_FENCE_REG_NONE);
  1389. obj->last_fenced_seqno = seqno;
  1390. obj->last_fenced_ring = ring;
  1391. reg = &dev_priv->fence_regs[obj->fence_reg];
  1392. list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
  1393. }
  1394. }
  1395. static void
  1396. i915_gem_object_move_off_active(struct drm_i915_gem_object *obj)
  1397. {
  1398. list_del_init(&obj->ring_list);
  1399. obj->last_rendering_seqno = 0;
  1400. }
  1401. static void
  1402. i915_gem_object_move_to_flushing(struct drm_i915_gem_object *obj)
  1403. {
  1404. struct drm_device *dev = obj->base.dev;
  1405. drm_i915_private_t *dev_priv = dev->dev_private;
  1406. BUG_ON(!obj->active);
  1407. list_move_tail(&obj->mm_list, &dev_priv->mm.flushing_list);
  1408. i915_gem_object_move_off_active(obj);
  1409. }
  1410. static void
  1411. i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
  1412. {
  1413. struct drm_device *dev = obj->base.dev;
  1414. struct drm_i915_private *dev_priv = dev->dev_private;
  1415. if (obj->pin_count != 0)
  1416. list_move_tail(&obj->mm_list, &dev_priv->mm.pinned_list);
  1417. else
  1418. list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
  1419. BUG_ON(!list_empty(&obj->gpu_write_list));
  1420. BUG_ON(!obj->active);
  1421. obj->ring = NULL;
  1422. i915_gem_object_move_off_active(obj);
  1423. obj->fenced_gpu_access = false;
  1424. obj->active = 0;
  1425. obj->pending_gpu_write = false;
  1426. drm_gem_object_unreference(&obj->base);
  1427. WARN_ON(i915_verify_lists(dev));
  1428. }
  1429. /* Immediately discard the backing storage */
  1430. static void
  1431. i915_gem_object_truncate(struct drm_i915_gem_object *obj)
  1432. {
  1433. struct inode *inode;
  1434. /* Our goal here is to return as much of the memory as
  1435. * is possible back to the system as we are called from OOM.
  1436. * To do this we must instruct the shmfs to drop all of its
  1437. * backing pages, *now*. Here we mirror the actions taken
  1438. * when by shmem_delete_inode() to release the backing store.
  1439. */
  1440. inode = obj->base.filp->f_path.dentry->d_inode;
  1441. truncate_inode_pages(inode->i_mapping, 0);
  1442. if (inode->i_op->truncate_range)
  1443. inode->i_op->truncate_range(inode, 0, (loff_t)-1);
  1444. obj->madv = __I915_MADV_PURGED;
  1445. }
  1446. static inline int
  1447. i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
  1448. {
  1449. return obj->madv == I915_MADV_DONTNEED;
  1450. }
  1451. static void
  1452. i915_gem_process_flushing_list(struct intel_ring_buffer *ring,
  1453. uint32_t flush_domains)
  1454. {
  1455. struct drm_i915_gem_object *obj, *next;
  1456. list_for_each_entry_safe(obj, next,
  1457. &ring->gpu_write_list,
  1458. gpu_write_list) {
  1459. if (obj->base.write_domain & flush_domains) {
  1460. uint32_t old_write_domain = obj->base.write_domain;
  1461. obj->base.write_domain = 0;
  1462. list_del_init(&obj->gpu_write_list);
  1463. i915_gem_object_move_to_active(obj, ring,
  1464. i915_gem_next_request_seqno(ring));
  1465. trace_i915_gem_object_change_domain(obj,
  1466. obj->base.read_domains,
  1467. old_write_domain);
  1468. }
  1469. }
  1470. }
  1471. int
  1472. i915_add_request(struct intel_ring_buffer *ring,
  1473. struct drm_file *file,
  1474. struct drm_i915_gem_request *request)
  1475. {
  1476. drm_i915_private_t *dev_priv = ring->dev->dev_private;
  1477. uint32_t seqno;
  1478. int was_empty;
  1479. int ret;
  1480. BUG_ON(request == NULL);
  1481. ret = ring->add_request(ring, &seqno);
  1482. if (ret)
  1483. return ret;
  1484. trace_i915_gem_request_add(ring, seqno);
  1485. request->seqno = seqno;
  1486. request->ring = ring;
  1487. request->emitted_jiffies = jiffies;
  1488. was_empty = list_empty(&ring->request_list);
  1489. list_add_tail(&request->list, &ring->request_list);
  1490. if (file) {
  1491. struct drm_i915_file_private *file_priv = file->driver_priv;
  1492. spin_lock(&file_priv->mm.lock);
  1493. request->file_priv = file_priv;
  1494. list_add_tail(&request->client_list,
  1495. &file_priv->mm.request_list);
  1496. spin_unlock(&file_priv->mm.lock);
  1497. }
  1498. ring->outstanding_lazy_request = false;
  1499. if (!dev_priv->mm.suspended) {
  1500. mod_timer(&dev_priv->hangcheck_timer,
  1501. jiffies + msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD));
  1502. if (was_empty)
  1503. queue_delayed_work(dev_priv->wq,
  1504. &dev_priv->mm.retire_work, HZ);
  1505. }
  1506. return 0;
  1507. }
  1508. static inline void
  1509. i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
  1510. {
  1511. struct drm_i915_file_private *file_priv = request->file_priv;
  1512. if (!file_priv)
  1513. return;
  1514. spin_lock(&file_priv->mm.lock);
  1515. if (request->file_priv) {
  1516. list_del(&request->client_list);
  1517. request->file_priv = NULL;
  1518. }
  1519. spin_unlock(&file_priv->mm.lock);
  1520. }
  1521. static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
  1522. struct intel_ring_buffer *ring)
  1523. {
  1524. while (!list_empty(&ring->request_list)) {
  1525. struct drm_i915_gem_request *request;
  1526. request = list_first_entry(&ring->request_list,
  1527. struct drm_i915_gem_request,
  1528. list);
  1529. list_del(&request->list);
  1530. i915_gem_request_remove_from_client(request);
  1531. kfree(request);
  1532. }
  1533. while (!list_empty(&ring->active_list)) {
  1534. struct drm_i915_gem_object *obj;
  1535. obj = list_first_entry(&ring->active_list,
  1536. struct drm_i915_gem_object,
  1537. ring_list);
  1538. obj->base.write_domain = 0;
  1539. list_del_init(&obj->gpu_write_list);
  1540. i915_gem_object_move_to_inactive(obj);
  1541. }
  1542. }
  1543. static void i915_gem_reset_fences(struct drm_device *dev)
  1544. {
  1545. struct drm_i915_private *dev_priv = dev->dev_private;
  1546. int i;
  1547. for (i = 0; i < 16; i++) {
  1548. struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
  1549. struct drm_i915_gem_object *obj = reg->obj;
  1550. if (!obj)
  1551. continue;
  1552. if (obj->tiling_mode)
  1553. i915_gem_release_mmap(obj);
  1554. reg->obj->fence_reg = I915_FENCE_REG_NONE;
  1555. reg->obj->fenced_gpu_access = false;
  1556. reg->obj->last_fenced_seqno = 0;
  1557. reg->obj->last_fenced_ring = NULL;
  1558. i915_gem_clear_fence_reg(dev, reg);
  1559. }
  1560. }
  1561. void i915_gem_reset(struct drm_device *dev)
  1562. {
  1563. struct drm_i915_private *dev_priv = dev->dev_private;
  1564. struct drm_i915_gem_object *obj;
  1565. int i;
  1566. for (i = 0; i < I915_NUM_RINGS; i++)
  1567. i915_gem_reset_ring_lists(dev_priv, &dev_priv->ring[i]);
  1568. /* Remove anything from the flushing lists. The GPU cache is likely
  1569. * to be lost on reset along with the data, so simply move the
  1570. * lost bo to the inactive list.
  1571. */
  1572. while (!list_empty(&dev_priv->mm.flushing_list)) {
  1573. obj= list_first_entry(&dev_priv->mm.flushing_list,
  1574. struct drm_i915_gem_object,
  1575. mm_list);
  1576. obj->base.write_domain = 0;
  1577. list_del_init(&obj->gpu_write_list);
  1578. i915_gem_object_move_to_inactive(obj);
  1579. }
  1580. /* Move everything out of the GPU domains to ensure we do any
  1581. * necessary invalidation upon reuse.
  1582. */
  1583. list_for_each_entry(obj,
  1584. &dev_priv->mm.inactive_list,
  1585. mm_list)
  1586. {
  1587. obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
  1588. }
  1589. /* The fence registers are invalidated so clear them out */
  1590. i915_gem_reset_fences(dev);
  1591. }
  1592. /**
  1593. * This function clears the request list as sequence numbers are passed.
  1594. */
  1595. static void
  1596. i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
  1597. {
  1598. uint32_t seqno;
  1599. int i;
  1600. if (list_empty(&ring->request_list))
  1601. return;
  1602. WARN_ON(i915_verify_lists(ring->dev));
  1603. seqno = ring->get_seqno(ring);
  1604. for (i = 0; i < ARRAY_SIZE(ring->sync_seqno); i++)
  1605. if (seqno >= ring->sync_seqno[i])
  1606. ring->sync_seqno[i] = 0;
  1607. while (!list_empty(&ring->request_list)) {
  1608. struct drm_i915_gem_request *request;
  1609. request = list_first_entry(&ring->request_list,
  1610. struct drm_i915_gem_request,
  1611. list);
  1612. if (!i915_seqno_passed(seqno, request->seqno))
  1613. break;
  1614. trace_i915_gem_request_retire(ring, request->seqno);
  1615. list_del(&request->list);
  1616. i915_gem_request_remove_from_client(request);
  1617. kfree(request);
  1618. }
  1619. /* Move any buffers on the active list that are no longer referenced
  1620. * by the ringbuffer to the flushing/inactive lists as appropriate.
  1621. */
  1622. while (!list_empty(&ring->active_list)) {
  1623. struct drm_i915_gem_object *obj;
  1624. obj= list_first_entry(&ring->active_list,
  1625. struct drm_i915_gem_object,
  1626. ring_list);
  1627. if (!i915_seqno_passed(seqno, obj->last_rendering_seqno))
  1628. break;
  1629. if (obj->base.write_domain != 0)
  1630. i915_gem_object_move_to_flushing(obj);
  1631. else
  1632. i915_gem_object_move_to_inactive(obj);
  1633. }
  1634. if (unlikely(ring->trace_irq_seqno &&
  1635. i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
  1636. ring->irq_put(ring);
  1637. ring->trace_irq_seqno = 0;
  1638. }
  1639. WARN_ON(i915_verify_lists(ring->dev));
  1640. }
  1641. void
  1642. i915_gem_retire_requests(struct drm_device *dev)
  1643. {
  1644. drm_i915_private_t *dev_priv = dev->dev_private;
  1645. int i;
  1646. if (!list_empty(&dev_priv->mm.deferred_free_list)) {
  1647. struct drm_i915_gem_object *obj, *next;
  1648. /* We must be careful that during unbind() we do not
  1649. * accidentally infinitely recurse into retire requests.
  1650. * Currently:
  1651. * retire -> free -> unbind -> wait -> retire_ring
  1652. */
  1653. list_for_each_entry_safe(obj, next,
  1654. &dev_priv->mm.deferred_free_list,
  1655. mm_list)
  1656. i915_gem_free_object_tail(obj);
  1657. }
  1658. for (i = 0; i < I915_NUM_RINGS; i++)
  1659. i915_gem_retire_requests_ring(&dev_priv->ring[i]);
  1660. }
  1661. static void
  1662. i915_gem_retire_work_handler(struct work_struct *work)
  1663. {
  1664. drm_i915_private_t *dev_priv;
  1665. struct drm_device *dev;
  1666. bool idle;
  1667. int i;
  1668. dev_priv = container_of(work, drm_i915_private_t,
  1669. mm.retire_work.work);
  1670. dev = dev_priv->dev;
  1671. /* Come back later if the device is busy... */
  1672. if (!mutex_trylock(&dev->struct_mutex)) {
  1673. queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
  1674. return;
  1675. }
  1676. i915_gem_retire_requests(dev);
  1677. /* Send a periodic flush down the ring so we don't hold onto GEM
  1678. * objects indefinitely.
  1679. */
  1680. idle = true;
  1681. for (i = 0; i < I915_NUM_RINGS; i++) {
  1682. struct intel_ring_buffer *ring = &dev_priv->ring[i];
  1683. if (!list_empty(&ring->gpu_write_list)) {
  1684. struct drm_i915_gem_request *request;
  1685. int ret;
  1686. ret = i915_gem_flush_ring(ring,
  1687. 0, I915_GEM_GPU_DOMAINS);
  1688. request = kzalloc(sizeof(*request), GFP_KERNEL);
  1689. if (ret || request == NULL ||
  1690. i915_add_request(ring, NULL, request))
  1691. kfree(request);
  1692. }
  1693. idle &= list_empty(&ring->request_list);
  1694. }
  1695. if (!dev_priv->mm.suspended && !idle)
  1696. queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
  1697. mutex_unlock(&dev->struct_mutex);
  1698. }
  1699. /**
  1700. * Waits for a sequence number to be signaled, and cleans up the
  1701. * request and object lists appropriately for that event.
  1702. */
  1703. int
  1704. i915_wait_request(struct intel_ring_buffer *ring,
  1705. uint32_t seqno)
  1706. {
  1707. drm_i915_private_t *dev_priv = ring->dev->dev_private;
  1708. u32 ier;
  1709. int ret = 0;
  1710. BUG_ON(seqno == 0);
  1711. if (atomic_read(&dev_priv->mm.wedged)) {
  1712. struct completion *x = &dev_priv->error_completion;
  1713. bool recovery_complete;
  1714. unsigned long flags;
  1715. /* Give the error handler a chance to run. */
  1716. spin_lock_irqsave(&x->wait.lock, flags);
  1717. recovery_complete = x->done > 0;
  1718. spin_unlock_irqrestore(&x->wait.lock, flags);
  1719. return recovery_complete ? -EIO : -EAGAIN;
  1720. }
  1721. if (seqno == ring->outstanding_lazy_request) {
  1722. struct drm_i915_gem_request *request;
  1723. request = kzalloc(sizeof(*request), GFP_KERNEL);
  1724. if (request == NULL)
  1725. return -ENOMEM;
  1726. ret = i915_add_request(ring, NULL, request);
  1727. if (ret) {
  1728. kfree(request);
  1729. return ret;
  1730. }
  1731. seqno = request->seqno;
  1732. }
  1733. if (!i915_seqno_passed(ring->get_seqno(ring), seqno)) {
  1734. if (HAS_PCH_SPLIT(ring->dev))
  1735. ier = I915_READ(DEIER) | I915_READ(GTIER);
  1736. else
  1737. ier = I915_READ(IER);
  1738. if (!ier) {
  1739. DRM_ERROR("something (likely vbetool) disabled "
  1740. "interrupts, re-enabling\n");
  1741. i915_driver_irq_preinstall(ring->dev);
  1742. i915_driver_irq_postinstall(ring->dev);
  1743. }
  1744. trace_i915_gem_request_wait_begin(ring, seqno);
  1745. ring->waiting_seqno = seqno;
  1746. if (ring->irq_get(ring)) {
  1747. if (dev_priv->mm.interruptible)
  1748. ret = wait_event_interruptible(ring->irq_queue,
  1749. i915_seqno_passed(ring->get_seqno(ring), seqno)
  1750. || atomic_read(&dev_priv->mm.wedged));
  1751. else
  1752. wait_event(ring->irq_queue,
  1753. i915_seqno_passed(ring->get_seqno(ring), seqno)
  1754. || atomic_read(&dev_priv->mm.wedged));
  1755. ring->irq_put(ring);
  1756. } else if (wait_for(i915_seqno_passed(ring->get_seqno(ring),
  1757. seqno) ||
  1758. atomic_read(&dev_priv->mm.wedged), 3000))
  1759. ret = -EBUSY;
  1760. ring->waiting_seqno = 0;
  1761. trace_i915_gem_request_wait_end(ring, seqno);
  1762. }
  1763. if (atomic_read(&dev_priv->mm.wedged))
  1764. ret = -EAGAIN;
  1765. if (ret && ret != -ERESTARTSYS)
  1766. DRM_ERROR("%s returns %d (awaiting %d at %d, next %d)\n",
  1767. __func__, ret, seqno, ring->get_seqno(ring),
  1768. dev_priv->next_seqno);
  1769. /* Directly dispatch request retiring. While we have the work queue
  1770. * to handle this, the waiter on a request often wants an associated
  1771. * buffer to have made it to the inactive list, and we would need
  1772. * a separate wait queue to handle that.
  1773. */
  1774. if (ret == 0)
  1775. i915_gem_retire_requests_ring(ring);
  1776. return ret;
  1777. }
  1778. /**
  1779. * Ensures that all rendering to the object has completed and the object is
  1780. * safe to unbind from the GTT or access from the CPU.
  1781. */
  1782. int
  1783. i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj)
  1784. {
  1785. int ret;
  1786. /* This function only exists to support waiting for existing rendering,
  1787. * not for emitting required flushes.
  1788. */
  1789. BUG_ON((obj->base.write_domain & I915_GEM_GPU_DOMAINS) != 0);
  1790. /* If there is rendering queued on the buffer being evicted, wait for
  1791. * it.
  1792. */
  1793. if (obj->active) {
  1794. ret = i915_wait_request(obj->ring, obj->last_rendering_seqno);
  1795. if (ret)
  1796. return ret;
  1797. }
  1798. return 0;
  1799. }
  1800. /**
  1801. * Unbinds an object from the GTT aperture.
  1802. */
  1803. int
  1804. i915_gem_object_unbind(struct drm_i915_gem_object *obj)
  1805. {
  1806. int ret = 0;
  1807. if (obj->gtt_space == NULL)
  1808. return 0;
  1809. if (obj->pin_count != 0) {
  1810. DRM_ERROR("Attempting to unbind pinned buffer\n");
  1811. return -EINVAL;
  1812. }
  1813. /* blow away mappings if mapped through GTT */
  1814. i915_gem_release_mmap(obj);
  1815. /* Move the object to the CPU domain to ensure that
  1816. * any possible CPU writes while it's not in the GTT
  1817. * are flushed when we go to remap it. This will
  1818. * also ensure that all pending GPU writes are finished
  1819. * before we unbind.
  1820. */
  1821. ret = i915_gem_object_set_to_cpu_domain(obj, 1);
  1822. if (ret == -ERESTARTSYS)
  1823. return ret;
  1824. /* Continue on if we fail due to EIO, the GPU is hung so we
  1825. * should be safe and we need to cleanup or else we might
  1826. * cause memory corruption through use-after-free.
  1827. */
  1828. if (ret) {
  1829. i915_gem_clflush_object(obj);
  1830. obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
  1831. }
  1832. /* release the fence reg _after_ flushing */
  1833. ret = i915_gem_object_put_fence(obj);
  1834. if (ret == -ERESTARTSYS)
  1835. return ret;
  1836. trace_i915_gem_object_unbind(obj);
  1837. i915_gem_gtt_unbind_object(obj);
  1838. i915_gem_object_put_pages_gtt(obj);
  1839. list_del_init(&obj->gtt_list);
  1840. list_del_init(&obj->mm_list);
  1841. /* Avoid an unnecessary call to unbind on rebind. */
  1842. obj->map_and_fenceable = true;
  1843. drm_mm_put_block(obj->gtt_space);
  1844. obj->gtt_space = NULL;
  1845. obj->gtt_offset = 0;
  1846. if (i915_gem_object_is_purgeable(obj))
  1847. i915_gem_object_truncate(obj);
  1848. return ret;
  1849. }
  1850. int
  1851. i915_gem_flush_ring(struct intel_ring_buffer *ring,
  1852. uint32_t invalidate_domains,
  1853. uint32_t flush_domains)
  1854. {
  1855. int ret;
  1856. if (((invalidate_domains | flush_domains) & I915_GEM_GPU_DOMAINS) == 0)
  1857. return 0;
  1858. trace_i915_gem_ring_flush(ring, invalidate_domains, flush_domains);
  1859. ret = ring->flush(ring, invalidate_domains, flush_domains);
  1860. if (ret)
  1861. return ret;
  1862. if (flush_domains & I915_GEM_GPU_DOMAINS)
  1863. i915_gem_process_flushing_list(ring, flush_domains);
  1864. return 0;
  1865. }
  1866. static int i915_ring_idle(struct intel_ring_buffer *ring)
  1867. {
  1868. int ret;
  1869. if (list_empty(&ring->gpu_write_list) && list_empty(&ring->active_list))
  1870. return 0;
  1871. if (!list_empty(&ring->gpu_write_list)) {
  1872. ret = i915_gem_flush_ring(ring,
  1873. I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
  1874. if (ret)
  1875. return ret;
  1876. }
  1877. return i915_wait_request(ring, i915_gem_next_request_seqno(ring));
  1878. }
  1879. int
  1880. i915_gpu_idle(struct drm_device *dev)
  1881. {
  1882. drm_i915_private_t *dev_priv = dev->dev_private;
  1883. bool lists_empty;
  1884. int ret, i;
  1885. lists_empty = (list_empty(&dev_priv->mm.flushing_list) &&
  1886. list_empty(&dev_priv->mm.active_list));
  1887. if (lists_empty)
  1888. return 0;
  1889. /* Flush everything onto the inactive list. */
  1890. for (i = 0; i < I915_NUM_RINGS; i++) {
  1891. ret = i915_ring_idle(&dev_priv->ring[i]);
  1892. if (ret)
  1893. return ret;
  1894. }
  1895. return 0;
  1896. }
  1897. static int sandybridge_write_fence_reg(struct drm_i915_gem_object *obj,
  1898. struct intel_ring_buffer *pipelined)
  1899. {
  1900. struct drm_device *dev = obj->base.dev;
  1901. drm_i915_private_t *dev_priv = dev->dev_private;
  1902. u32 size = obj->gtt_space->size;
  1903. int regnum = obj->fence_reg;
  1904. uint64_t val;
  1905. val = (uint64_t)((obj->gtt_offset + size - 4096) &
  1906. 0xfffff000) << 32;
  1907. val |= obj->gtt_offset & 0xfffff000;
  1908. val |= (uint64_t)((obj->stride / 128) - 1) <<
  1909. SANDYBRIDGE_FENCE_PITCH_SHIFT;
  1910. if (obj->tiling_mode == I915_TILING_Y)
  1911. val |= 1 << I965_FENCE_TILING_Y_SHIFT;
  1912. val |= I965_FENCE_REG_VALID;
  1913. if (pipelined) {
  1914. int ret = intel_ring_begin(pipelined, 6);
  1915. if (ret)
  1916. return ret;
  1917. intel_ring_emit(pipelined, MI_NOOP);
  1918. intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(2));
  1919. intel_ring_emit(pipelined, FENCE_REG_SANDYBRIDGE_0 + regnum*8);
  1920. intel_ring_emit(pipelined, (u32)val);
  1921. intel_ring_emit(pipelined, FENCE_REG_SANDYBRIDGE_0 + regnum*8 + 4);
  1922. intel_ring_emit(pipelined, (u32)(val >> 32));
  1923. intel_ring_advance(pipelined);
  1924. } else
  1925. I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + regnum * 8, val);
  1926. return 0;
  1927. }
  1928. static int i965_write_fence_reg(struct drm_i915_gem_object *obj,
  1929. struct intel_ring_buffer *pipelined)
  1930. {
  1931. struct drm_device *dev = obj->base.dev;
  1932. drm_i915_private_t *dev_priv = dev->dev_private;
  1933. u32 size = obj->gtt_space->size;
  1934. int regnum = obj->fence_reg;
  1935. uint64_t val;
  1936. val = (uint64_t)((obj->gtt_offset + size - 4096) &
  1937. 0xfffff000) << 32;
  1938. val |= obj->gtt_offset & 0xfffff000;
  1939. val |= ((obj->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
  1940. if (obj->tiling_mode == I915_TILING_Y)
  1941. val |= 1 << I965_FENCE_TILING_Y_SHIFT;
  1942. val |= I965_FENCE_REG_VALID;
  1943. if (pipelined) {
  1944. int ret = intel_ring_begin(pipelined, 6);
  1945. if (ret)
  1946. return ret;
  1947. intel_ring_emit(pipelined, MI_NOOP);
  1948. intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(2));
  1949. intel_ring_emit(pipelined, FENCE_REG_965_0 + regnum*8);
  1950. intel_ring_emit(pipelined, (u32)val);
  1951. intel_ring_emit(pipelined, FENCE_REG_965_0 + regnum*8 + 4);
  1952. intel_ring_emit(pipelined, (u32)(val >> 32));
  1953. intel_ring_advance(pipelined);
  1954. } else
  1955. I915_WRITE64(FENCE_REG_965_0 + regnum * 8, val);
  1956. return 0;
  1957. }
  1958. static int i915_write_fence_reg(struct drm_i915_gem_object *obj,
  1959. struct intel_ring_buffer *pipelined)
  1960. {
  1961. struct drm_device *dev = obj->base.dev;
  1962. drm_i915_private_t *dev_priv = dev->dev_private;
  1963. u32 size = obj->gtt_space->size;
  1964. u32 fence_reg, val, pitch_val;
  1965. int tile_width;
  1966. if (WARN((obj->gtt_offset & ~I915_FENCE_START_MASK) ||
  1967. (size & -size) != size ||
  1968. (obj->gtt_offset & (size - 1)),
  1969. "object 0x%08x [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
  1970. obj->gtt_offset, obj->map_and_fenceable, size))
  1971. return -EINVAL;
  1972. if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
  1973. tile_width = 128;
  1974. else
  1975. tile_width = 512;
  1976. /* Note: pitch better be a power of two tile widths */
  1977. pitch_val = obj->stride / tile_width;
  1978. pitch_val = ffs(pitch_val) - 1;
  1979. val = obj->gtt_offset;
  1980. if (obj->tiling_mode == I915_TILING_Y)
  1981. val |= 1 << I830_FENCE_TILING_Y_SHIFT;
  1982. val |= I915_FENCE_SIZE_BITS(size);
  1983. val |= pitch_val << I830_FENCE_PITCH_SHIFT;
  1984. val |= I830_FENCE_REG_VALID;
  1985. fence_reg = obj->fence_reg;
  1986. if (fence_reg < 8)
  1987. fence_reg = FENCE_REG_830_0 + fence_reg * 4;
  1988. else
  1989. fence_reg = FENCE_REG_945_8 + (fence_reg - 8) * 4;
  1990. if (pipelined) {
  1991. int ret = intel_ring_begin(pipelined, 4);
  1992. if (ret)
  1993. return ret;
  1994. intel_ring_emit(pipelined, MI_NOOP);
  1995. intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(1));
  1996. intel_ring_emit(pipelined, fence_reg);
  1997. intel_ring_emit(pipelined, val);
  1998. intel_ring_advance(pipelined);
  1999. } else
  2000. I915_WRITE(fence_reg, val);
  2001. return 0;
  2002. }
  2003. static int i830_write_fence_reg(struct drm_i915_gem_object *obj,
  2004. struct intel_ring_buffer *pipelined)
  2005. {
  2006. struct drm_device *dev = obj->base.dev;
  2007. drm_i915_private_t *dev_priv = dev->dev_private;
  2008. u32 size = obj->gtt_space->size;
  2009. int regnum = obj->fence_reg;
  2010. uint32_t val;
  2011. uint32_t pitch_val;
  2012. if (WARN((obj->gtt_offset & ~I830_FENCE_START_MASK) ||
  2013. (size & -size) != size ||
  2014. (obj->gtt_offset & (size - 1)),
  2015. "object 0x%08x not 512K or pot-size 0x%08x aligned\n",
  2016. obj->gtt_offset, size))
  2017. return -EINVAL;
  2018. pitch_val = obj->stride / 128;
  2019. pitch_val = ffs(pitch_val) - 1;
  2020. val = obj->gtt_offset;
  2021. if (obj->tiling_mode == I915_TILING_Y)
  2022. val |= 1 << I830_FENCE_TILING_Y_SHIFT;
  2023. val |= I830_FENCE_SIZE_BITS(size);
  2024. val |= pitch_val << I830_FENCE_PITCH_SHIFT;
  2025. val |= I830_FENCE_REG_VALID;
  2026. if (pipelined) {
  2027. int ret = intel_ring_begin(pipelined, 4);
  2028. if (ret)
  2029. return ret;
  2030. intel_ring_emit(pipelined, MI_NOOP);
  2031. intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(1));
  2032. intel_ring_emit(pipelined, FENCE_REG_830_0 + regnum*4);
  2033. intel_ring_emit(pipelined, val);
  2034. intel_ring_advance(pipelined);
  2035. } else
  2036. I915_WRITE(FENCE_REG_830_0 + regnum * 4, val);
  2037. return 0;
  2038. }
  2039. static bool ring_passed_seqno(struct intel_ring_buffer *ring, u32 seqno)
  2040. {
  2041. return i915_seqno_passed(ring->get_seqno(ring), seqno);
  2042. }
  2043. static int
  2044. i915_gem_object_flush_fence(struct drm_i915_gem_object *obj,
  2045. struct intel_ring_buffer *pipelined)
  2046. {
  2047. int ret;
  2048. if (obj->fenced_gpu_access) {
  2049. if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
  2050. ret = i915_gem_flush_ring(obj->last_fenced_ring,
  2051. 0, obj->base.write_domain);
  2052. if (ret)
  2053. return ret;
  2054. }
  2055. obj->fenced_gpu_access = false;
  2056. }
  2057. if (obj->last_fenced_seqno && pipelined != obj->last_fenced_ring) {
  2058. if (!ring_passed_seqno(obj->last_fenced_ring,
  2059. obj->last_fenced_seqno)) {
  2060. ret = i915_wait_request(obj->last_fenced_ring,
  2061. obj->last_fenced_seqno);
  2062. if (ret)
  2063. return ret;
  2064. }
  2065. obj->last_fenced_seqno = 0;
  2066. obj->last_fenced_ring = NULL;
  2067. }
  2068. /* Ensure that all CPU reads are completed before installing a fence
  2069. * and all writes before removing the fence.
  2070. */
  2071. if (obj->base.read_domains & I915_GEM_DOMAIN_GTT)
  2072. mb();
  2073. return 0;
  2074. }
  2075. int
  2076. i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
  2077. {
  2078. int ret;
  2079. if (obj->tiling_mode)
  2080. i915_gem_release_mmap(obj);
  2081. ret = i915_gem_object_flush_fence(obj, NULL);
  2082. if (ret)
  2083. return ret;
  2084. if (obj->fence_reg != I915_FENCE_REG_NONE) {
  2085. struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
  2086. i915_gem_clear_fence_reg(obj->base.dev,
  2087. &dev_priv->fence_regs[obj->fence_reg]);
  2088. obj->fence_reg = I915_FENCE_REG_NONE;
  2089. }
  2090. return 0;
  2091. }
  2092. static struct drm_i915_fence_reg *
  2093. i915_find_fence_reg(struct drm_device *dev,
  2094. struct intel_ring_buffer *pipelined)
  2095. {
  2096. struct drm_i915_private *dev_priv = dev->dev_private;
  2097. struct drm_i915_fence_reg *reg, *first, *avail;
  2098. int i;
  2099. /* First try to find a free reg */
  2100. avail = NULL;
  2101. for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
  2102. reg = &dev_priv->fence_regs[i];
  2103. if (!reg->obj)
  2104. return reg;
  2105. if (!reg->obj->pin_count)
  2106. avail = reg;
  2107. }
  2108. if (avail == NULL)
  2109. return NULL;
  2110. /* None available, try to steal one or wait for a user to finish */
  2111. avail = first = NULL;
  2112. list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
  2113. if (reg->obj->pin_count)
  2114. continue;
  2115. if (first == NULL)
  2116. first = reg;
  2117. if (!pipelined ||
  2118. !reg->obj->last_fenced_ring ||
  2119. reg->obj->last_fenced_ring == pipelined) {
  2120. avail = reg;
  2121. break;
  2122. }
  2123. }
  2124. if (avail == NULL)
  2125. avail = first;
  2126. return avail;
  2127. }
  2128. /**
  2129. * i915_gem_object_get_fence - set up a fence reg for an object
  2130. * @obj: object to map through a fence reg
  2131. * @pipelined: ring on which to queue the change, or NULL for CPU access
  2132. * @interruptible: must we wait uninterruptibly for the register to retire?
  2133. *
  2134. * When mapping objects through the GTT, userspace wants to be able to write
  2135. * to them without having to worry about swizzling if the object is tiled.
  2136. *
  2137. * This function walks the fence regs looking for a free one for @obj,
  2138. * stealing one if it can't find any.
  2139. *
  2140. * It then sets up the reg based on the object's properties: address, pitch
  2141. * and tiling format.
  2142. */
  2143. int
  2144. i915_gem_object_get_fence(struct drm_i915_gem_object *obj,
  2145. struct intel_ring_buffer *pipelined)
  2146. {
  2147. struct drm_device *dev = obj->base.dev;
  2148. struct drm_i915_private *dev_priv = dev->dev_private;
  2149. struct drm_i915_fence_reg *reg;
  2150. int ret;
  2151. /* XXX disable pipelining. There are bugs. Shocking. */
  2152. pipelined = NULL;
  2153. /* Just update our place in the LRU if our fence is getting reused. */
  2154. if (obj->fence_reg != I915_FENCE_REG_NONE) {
  2155. reg = &dev_priv->fence_regs[obj->fence_reg];
  2156. list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
  2157. if (obj->tiling_changed) {
  2158. ret = i915_gem_object_flush_fence(obj, pipelined);
  2159. if (ret)
  2160. return ret;
  2161. if (!obj->fenced_gpu_access && !obj->last_fenced_seqno)
  2162. pipelined = NULL;
  2163. if (pipelined) {
  2164. reg->setup_seqno =
  2165. i915_gem_next_request_seqno(pipelined);
  2166. obj->last_fenced_seqno = reg->setup_seqno;
  2167. obj->last_fenced_ring = pipelined;
  2168. }
  2169. goto update;
  2170. }
  2171. if (!pipelined) {
  2172. if (reg->setup_seqno) {
  2173. if (!ring_passed_seqno(obj->last_fenced_ring,
  2174. reg->setup_seqno)) {
  2175. ret = i915_wait_request(obj->last_fenced_ring,
  2176. reg->setup_seqno);
  2177. if (ret)
  2178. return ret;
  2179. }
  2180. reg->setup_seqno = 0;
  2181. }
  2182. } else if (obj->last_fenced_ring &&
  2183. obj->last_fenced_ring != pipelined) {
  2184. ret = i915_gem_object_flush_fence(obj, pipelined);
  2185. if (ret)
  2186. return ret;
  2187. }
  2188. return 0;
  2189. }
  2190. reg = i915_find_fence_reg(dev, pipelined);
  2191. if (reg == NULL)
  2192. return -ENOSPC;
  2193. ret = i915_gem_object_flush_fence(obj, pipelined);
  2194. if (ret)
  2195. return ret;
  2196. if (reg->obj) {
  2197. struct drm_i915_gem_object *old = reg->obj;
  2198. drm_gem_object_reference(&old->base);
  2199. if (old->tiling_mode)
  2200. i915_gem_release_mmap(old);
  2201. ret = i915_gem_object_flush_fence(old, pipelined);
  2202. if (ret) {
  2203. drm_gem_object_unreference(&old->base);
  2204. return ret;
  2205. }
  2206. if (old->last_fenced_seqno == 0 && obj->last_fenced_seqno == 0)
  2207. pipelined = NULL;
  2208. old->fence_reg = I915_FENCE_REG_NONE;
  2209. old->last_fenced_ring = pipelined;
  2210. old->last_fenced_seqno =
  2211. pipelined ? i915_gem_next_request_seqno(pipelined) : 0;
  2212. drm_gem_object_unreference(&old->base);
  2213. } else if (obj->last_fenced_seqno == 0)
  2214. pipelined = NULL;
  2215. reg->obj = obj;
  2216. list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
  2217. obj->fence_reg = reg - dev_priv->fence_regs;
  2218. obj->last_fenced_ring = pipelined;
  2219. reg->setup_seqno =
  2220. pipelined ? i915_gem_next_request_seqno(pipelined) : 0;
  2221. obj->last_fenced_seqno = reg->setup_seqno;
  2222. update:
  2223. obj->tiling_changed = false;
  2224. switch (INTEL_INFO(dev)->gen) {
  2225. case 7:
  2226. case 6:
  2227. ret = sandybridge_write_fence_reg(obj, pipelined);
  2228. break;
  2229. case 5:
  2230. case 4:
  2231. ret = i965_write_fence_reg(obj, pipelined);
  2232. break;
  2233. case 3:
  2234. ret = i915_write_fence_reg(obj, pipelined);
  2235. break;
  2236. case 2:
  2237. ret = i830_write_fence_reg(obj, pipelined);
  2238. break;
  2239. }
  2240. return ret;
  2241. }
  2242. /**
  2243. * i915_gem_clear_fence_reg - clear out fence register info
  2244. * @obj: object to clear
  2245. *
  2246. * Zeroes out the fence register itself and clears out the associated
  2247. * data structures in dev_priv and obj.
  2248. */
  2249. static void
  2250. i915_gem_clear_fence_reg(struct drm_device *dev,
  2251. struct drm_i915_fence_reg *reg)
  2252. {
  2253. drm_i915_private_t *dev_priv = dev->dev_private;
  2254. uint32_t fence_reg = reg - dev_priv->fence_regs;
  2255. switch (INTEL_INFO(dev)->gen) {
  2256. case 7:
  2257. case 6:
  2258. I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + fence_reg*8, 0);
  2259. break;
  2260. case 5:
  2261. case 4:
  2262. I915_WRITE64(FENCE_REG_965_0 + fence_reg*8, 0);
  2263. break;
  2264. case 3:
  2265. if (fence_reg >= 8)
  2266. fence_reg = FENCE_REG_945_8 + (fence_reg - 8) * 4;
  2267. else
  2268. case 2:
  2269. fence_reg = FENCE_REG_830_0 + fence_reg * 4;
  2270. I915_WRITE(fence_reg, 0);
  2271. break;
  2272. }
  2273. list_del_init(&reg->lru_list);
  2274. reg->obj = NULL;
  2275. reg->setup_seqno = 0;
  2276. }
  2277. /**
  2278. * Finds free space in the GTT aperture and binds the object there.
  2279. */
  2280. static int
  2281. i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
  2282. unsigned alignment,
  2283. bool map_and_fenceable)
  2284. {
  2285. struct drm_device *dev = obj->base.dev;
  2286. drm_i915_private_t *dev_priv = dev->dev_private;
  2287. struct drm_mm_node *free_space;
  2288. gfp_t gfpmask = __GFP_NORETRY | __GFP_NOWARN;
  2289. u32 size, fence_size, fence_alignment, unfenced_alignment;
  2290. bool mappable, fenceable;
  2291. int ret;
  2292. if (obj->madv != I915_MADV_WILLNEED) {
  2293. DRM_ERROR("Attempting to bind a purgeable object\n");
  2294. return -EINVAL;
  2295. }
  2296. fence_size = i915_gem_get_gtt_size(obj);
  2297. fence_alignment = i915_gem_get_gtt_alignment(obj);
  2298. unfenced_alignment = i915_gem_get_unfenced_gtt_alignment(obj);
  2299. if (alignment == 0)
  2300. alignment = map_and_fenceable ? fence_alignment :
  2301. unfenced_alignment;
  2302. if (map_and_fenceable && alignment & (fence_alignment - 1)) {
  2303. DRM_ERROR("Invalid object alignment requested %u\n", alignment);
  2304. return -EINVAL;
  2305. }
  2306. size = map_and_fenceable ? fence_size : obj->base.size;
  2307. /* If the object is bigger than the entire aperture, reject it early
  2308. * before evicting everything in a vain attempt to find space.
  2309. */
  2310. if (obj->base.size >
  2311. (map_and_fenceable ? dev_priv->mm.gtt_mappable_end : dev_priv->mm.gtt_total)) {
  2312. DRM_ERROR("Attempting to bind an object larger than the aperture\n");
  2313. return -E2BIG;
  2314. }
  2315. search_free:
  2316. if (map_and_fenceable)
  2317. free_space =
  2318. drm_mm_search_free_in_range(&dev_priv->mm.gtt_space,
  2319. size, alignment, 0,
  2320. dev_priv->mm.gtt_mappable_end,
  2321. 0);
  2322. else
  2323. free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
  2324. size, alignment, 0);
  2325. if (free_space != NULL) {
  2326. if (map_and_fenceable)
  2327. obj->gtt_space =
  2328. drm_mm_get_block_range_generic(free_space,
  2329. size, alignment, 0,
  2330. dev_priv->mm.gtt_mappable_end,
  2331. 0);
  2332. else
  2333. obj->gtt_space =
  2334. drm_mm_get_block(free_space, size, alignment);
  2335. }
  2336. if (obj->gtt_space == NULL) {
  2337. /* If the gtt is empty and we're still having trouble
  2338. * fitting our object in, we're out of memory.
  2339. */
  2340. ret = i915_gem_evict_something(dev, size, alignment,
  2341. map_and_fenceable);
  2342. if (ret)
  2343. return ret;
  2344. goto search_free;
  2345. }
  2346. ret = i915_gem_object_get_pages_gtt(obj, gfpmask);
  2347. if (ret) {
  2348. drm_mm_put_block(obj->gtt_space);
  2349. obj->gtt_space = NULL;
  2350. if (ret == -ENOMEM) {
  2351. /* first try to reclaim some memory by clearing the GTT */
  2352. ret = i915_gem_evict_everything(dev, false);
  2353. if (ret) {
  2354. /* now try to shrink everyone else */
  2355. if (gfpmask) {
  2356. gfpmask = 0;
  2357. goto search_free;
  2358. }
  2359. return -ENOMEM;
  2360. }
  2361. goto search_free;
  2362. }
  2363. return ret;
  2364. }
  2365. ret = i915_gem_gtt_bind_object(obj);
  2366. if (ret) {
  2367. i915_gem_object_put_pages_gtt(obj);
  2368. drm_mm_put_block(obj->gtt_space);
  2369. obj->gtt_space = NULL;
  2370. if (i915_gem_evict_everything(dev, false))
  2371. return ret;
  2372. goto search_free;
  2373. }
  2374. list_add_tail(&obj->gtt_list, &dev_priv->mm.gtt_list);
  2375. list_add_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
  2376. /* Assert that the object is not currently in any GPU domain. As it
  2377. * wasn't in the GTT, there shouldn't be any way it could have been in
  2378. * a GPU cache
  2379. */
  2380. BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
  2381. BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
  2382. obj->gtt_offset = obj->gtt_space->start;
  2383. fenceable =
  2384. obj->gtt_space->size == fence_size &&
  2385. (obj->gtt_space->start & (fence_alignment -1)) == 0;
  2386. mappable =
  2387. obj->gtt_offset + obj->base.size <= dev_priv->mm.gtt_mappable_end;
  2388. obj->map_and_fenceable = mappable && fenceable;
  2389. trace_i915_gem_object_bind(obj, map_and_fenceable);
  2390. return 0;
  2391. }
  2392. void
  2393. i915_gem_clflush_object(struct drm_i915_gem_object *obj)
  2394. {
  2395. /* If we don't have a page list set up, then we're not pinned
  2396. * to GPU, and we can ignore the cache flush because it'll happen
  2397. * again at bind time.
  2398. */
  2399. if (obj->pages == NULL)
  2400. return;
  2401. /* If the GPU is snooping the contents of the CPU cache,
  2402. * we do not need to manually clear the CPU cache lines. However,
  2403. * the caches are only snooped when the render cache is
  2404. * flushed/invalidated. As we always have to emit invalidations
  2405. * and flushes when moving into and out of the RENDER domain, correct
  2406. * snooping behaviour occurs naturally as the result of our domain
  2407. * tracking.
  2408. */
  2409. if (obj->cache_level != I915_CACHE_NONE)
  2410. return;
  2411. trace_i915_gem_object_clflush(obj);
  2412. drm_clflush_pages(obj->pages, obj->base.size / PAGE_SIZE);
  2413. }
  2414. /** Flushes any GPU write domain for the object if it's dirty. */
  2415. static int
  2416. i915_gem_object_flush_gpu_write_domain(struct drm_i915_gem_object *obj)
  2417. {
  2418. if ((obj->base.write_domain & I915_GEM_GPU_DOMAINS) == 0)
  2419. return 0;
  2420. /* Queue the GPU write cache flushing we need. */
  2421. return i915_gem_flush_ring(obj->ring, 0, obj->base.write_domain);
  2422. }
  2423. /** Flushes the GTT write domain for the object if it's dirty. */
  2424. static void
  2425. i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
  2426. {
  2427. uint32_t old_write_domain;
  2428. if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
  2429. return;
  2430. /* No actual flushing is required for the GTT write domain. Writes
  2431. * to it immediately go to main memory as far as we know, so there's
  2432. * no chipset flush. It also doesn't land in render cache.
  2433. *
  2434. * However, we do have to enforce the order so that all writes through
  2435. * the GTT land before any writes to the device, such as updates to
  2436. * the GATT itself.
  2437. */
  2438. wmb();
  2439. i915_gem_release_mmap(obj);
  2440. old_write_domain = obj->base.write_domain;
  2441. obj->base.write_domain = 0;
  2442. trace_i915_gem_object_change_domain(obj,
  2443. obj->base.read_domains,
  2444. old_write_domain);
  2445. }
  2446. /** Flushes the CPU write domain for the object if it's dirty. */
  2447. static void
  2448. i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
  2449. {
  2450. uint32_t old_write_domain;
  2451. if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
  2452. return;
  2453. i915_gem_clflush_object(obj);
  2454. intel_gtt_chipset_flush();
  2455. old_write_domain = obj->base.write_domain;
  2456. obj->base.write_domain = 0;
  2457. trace_i915_gem_object_change_domain(obj,
  2458. obj->base.read_domains,
  2459. old_write_domain);
  2460. }
  2461. /**
  2462. * Moves a single object to the GTT read, and possibly write domain.
  2463. *
  2464. * This function returns when the move is complete, including waiting on
  2465. * flushes to occur.
  2466. */
  2467. int
  2468. i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
  2469. {
  2470. uint32_t old_write_domain, old_read_domains;
  2471. int ret;
  2472. /* Not valid to be called on unbound objects. */
  2473. if (obj->gtt_space == NULL)
  2474. return -EINVAL;
  2475. if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
  2476. return 0;
  2477. ret = i915_gem_object_flush_gpu_write_domain(obj);
  2478. if (ret)
  2479. return ret;
  2480. if (obj->pending_gpu_write || write) {
  2481. ret = i915_gem_object_wait_rendering(obj);
  2482. if (ret)
  2483. return ret;
  2484. }
  2485. i915_gem_object_flush_cpu_write_domain(obj);
  2486. old_write_domain = obj->base.write_domain;
  2487. old_read_domains = obj->base.read_domains;
  2488. /* It should now be out of any other write domains, and we can update
  2489. * the domain values for our changes.
  2490. */
  2491. BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
  2492. obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
  2493. if (write) {
  2494. obj->base.read_domains = I915_GEM_DOMAIN_GTT;
  2495. obj->base.write_domain = I915_GEM_DOMAIN_GTT;
  2496. obj->dirty = 1;
  2497. }
  2498. trace_i915_gem_object_change_domain(obj,
  2499. old_read_domains,
  2500. old_write_domain);
  2501. return 0;
  2502. }
  2503. /*
  2504. * Prepare buffer for display plane. Use uninterruptible for possible flush
  2505. * wait, as in modesetting process we're not supposed to be interrupted.
  2506. */
  2507. int
  2508. i915_gem_object_set_to_display_plane(struct drm_i915_gem_object *obj,
  2509. struct intel_ring_buffer *pipelined)
  2510. {
  2511. uint32_t old_read_domains;
  2512. int ret;
  2513. /* Not valid to be called on unbound objects. */
  2514. if (obj->gtt_space == NULL)
  2515. return -EINVAL;
  2516. ret = i915_gem_object_flush_gpu_write_domain(obj);
  2517. if (ret)
  2518. return ret;
  2519. /* Currently, we are always called from an non-interruptible context. */
  2520. if (pipelined != obj->ring) {
  2521. ret = i915_gem_object_wait_rendering(obj);
  2522. if (ret)
  2523. return ret;
  2524. }
  2525. i915_gem_object_flush_cpu_write_domain(obj);
  2526. old_read_domains = obj->base.read_domains;
  2527. obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
  2528. trace_i915_gem_object_change_domain(obj,
  2529. old_read_domains,
  2530. obj->base.write_domain);
  2531. return 0;
  2532. }
  2533. int
  2534. i915_gem_object_flush_gpu(struct drm_i915_gem_object *obj)
  2535. {
  2536. int ret;
  2537. if (!obj->active)
  2538. return 0;
  2539. if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
  2540. ret = i915_gem_flush_ring(obj->ring, 0, obj->base.write_domain);
  2541. if (ret)
  2542. return ret;
  2543. }
  2544. return i915_gem_object_wait_rendering(obj);
  2545. }
  2546. /**
  2547. * Moves a single object to the CPU read, and possibly write domain.
  2548. *
  2549. * This function returns when the move is complete, including waiting on
  2550. * flushes to occur.
  2551. */
  2552. static int
  2553. i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
  2554. {
  2555. uint32_t old_write_domain, old_read_domains;
  2556. int ret;
  2557. if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
  2558. return 0;
  2559. ret = i915_gem_object_flush_gpu_write_domain(obj);
  2560. if (ret)
  2561. return ret;
  2562. ret = i915_gem_object_wait_rendering(obj);
  2563. if (ret)
  2564. return ret;
  2565. i915_gem_object_flush_gtt_write_domain(obj);
  2566. /* If we have a partially-valid cache of the object in the CPU,
  2567. * finish invalidating it and free the per-page flags.
  2568. */
  2569. i915_gem_object_set_to_full_cpu_read_domain(obj);
  2570. old_write_domain = obj->base.write_domain;
  2571. old_read_domains = obj->base.read_domains;
  2572. /* Flush the CPU cache if it's still invalid. */
  2573. if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
  2574. i915_gem_clflush_object(obj);
  2575. obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
  2576. }
  2577. /* It should now be out of any other write domains, and we can update
  2578. * the domain values for our changes.
  2579. */
  2580. BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
  2581. /* If we're writing through the CPU, then the GPU read domains will
  2582. * need to be invalidated at next use.
  2583. */
  2584. if (write) {
  2585. obj->base.read_domains = I915_GEM_DOMAIN_CPU;
  2586. obj->base.write_domain = I915_GEM_DOMAIN_CPU;
  2587. }
  2588. trace_i915_gem_object_change_domain(obj,
  2589. old_read_domains,
  2590. old_write_domain);
  2591. return 0;
  2592. }
  2593. /**
  2594. * Moves the object from a partially CPU read to a full one.
  2595. *
  2596. * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
  2597. * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
  2598. */
  2599. static void
  2600. i915_gem_object_set_to_full_cpu_read_domain(struct drm_i915_gem_object *obj)
  2601. {
  2602. if (!obj->page_cpu_valid)
  2603. return;
  2604. /* If we're partially in the CPU read domain, finish moving it in.
  2605. */
  2606. if (obj->base.read_domains & I915_GEM_DOMAIN_CPU) {
  2607. int i;
  2608. for (i = 0; i <= (obj->base.size - 1) / PAGE_SIZE; i++) {
  2609. if (obj->page_cpu_valid[i])
  2610. continue;
  2611. drm_clflush_pages(obj->pages + i, 1);
  2612. }
  2613. }
  2614. /* Free the page_cpu_valid mappings which are now stale, whether
  2615. * or not we've got I915_GEM_DOMAIN_CPU.
  2616. */
  2617. kfree(obj->page_cpu_valid);
  2618. obj->page_cpu_valid = NULL;
  2619. }
  2620. /**
  2621. * Set the CPU read domain on a range of the object.
  2622. *
  2623. * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
  2624. * not entirely valid. The page_cpu_valid member of the object flags which
  2625. * pages have been flushed, and will be respected by
  2626. * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
  2627. * of the whole object.
  2628. *
  2629. * This function returns when the move is complete, including waiting on
  2630. * flushes to occur.
  2631. */
  2632. static int
  2633. i915_gem_object_set_cpu_read_domain_range(struct drm_i915_gem_object *obj,
  2634. uint64_t offset, uint64_t size)
  2635. {
  2636. uint32_t old_read_domains;
  2637. int i, ret;
  2638. if (offset == 0 && size == obj->base.size)
  2639. return i915_gem_object_set_to_cpu_domain(obj, 0);
  2640. ret = i915_gem_object_flush_gpu_write_domain(obj);
  2641. if (ret)
  2642. return ret;
  2643. ret = i915_gem_object_wait_rendering(obj);
  2644. if (ret)
  2645. return ret;
  2646. i915_gem_object_flush_gtt_write_domain(obj);
  2647. /* If we're already fully in the CPU read domain, we're done. */
  2648. if (obj->page_cpu_valid == NULL &&
  2649. (obj->base.read_domains & I915_GEM_DOMAIN_CPU) != 0)
  2650. return 0;
  2651. /* Otherwise, create/clear the per-page CPU read domain flag if we're
  2652. * newly adding I915_GEM_DOMAIN_CPU
  2653. */
  2654. if (obj->page_cpu_valid == NULL) {
  2655. obj->page_cpu_valid = kzalloc(obj->base.size / PAGE_SIZE,
  2656. GFP_KERNEL);
  2657. if (obj->page_cpu_valid == NULL)
  2658. return -ENOMEM;
  2659. } else if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
  2660. memset(obj->page_cpu_valid, 0, obj->base.size / PAGE_SIZE);
  2661. /* Flush the cache on any pages that are still invalid from the CPU's
  2662. * perspective.
  2663. */
  2664. for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
  2665. i++) {
  2666. if (obj->page_cpu_valid[i])
  2667. continue;
  2668. drm_clflush_pages(obj->pages + i, 1);
  2669. obj->page_cpu_valid[i] = 1;
  2670. }
  2671. /* It should now be out of any other write domains, and we can update
  2672. * the domain values for our changes.
  2673. */
  2674. BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
  2675. old_read_domains = obj->base.read_domains;
  2676. obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
  2677. trace_i915_gem_object_change_domain(obj,
  2678. old_read_domains,
  2679. obj->base.write_domain);
  2680. return 0;
  2681. }
  2682. /* Throttle our rendering by waiting until the ring has completed our requests
  2683. * emitted over 20 msec ago.
  2684. *
  2685. * Note that if we were to use the current jiffies each time around the loop,
  2686. * we wouldn't escape the function with any frames outstanding if the time to
  2687. * render a frame was over 20ms.
  2688. *
  2689. * This should get us reasonable parallelism between CPU and GPU but also
  2690. * relatively low latency when blocking on a particular request to finish.
  2691. */
  2692. static int
  2693. i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
  2694. {
  2695. struct drm_i915_private *dev_priv = dev->dev_private;
  2696. struct drm_i915_file_private *file_priv = file->driver_priv;
  2697. unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
  2698. struct drm_i915_gem_request *request;
  2699. struct intel_ring_buffer *ring = NULL;
  2700. u32 seqno = 0;
  2701. int ret;
  2702. if (atomic_read(&dev_priv->mm.wedged))
  2703. return -EIO;
  2704. spin_lock(&file_priv->mm.lock);
  2705. list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
  2706. if (time_after_eq(request->emitted_jiffies, recent_enough))
  2707. break;
  2708. ring = request->ring;
  2709. seqno = request->seqno;
  2710. }
  2711. spin_unlock(&file_priv->mm.lock);
  2712. if (seqno == 0)
  2713. return 0;
  2714. ret = 0;
  2715. if (!i915_seqno_passed(ring->get_seqno(ring), seqno)) {
  2716. /* And wait for the seqno passing without holding any locks and
  2717. * causing extra latency for others. This is safe as the irq
  2718. * generation is designed to be run atomically and so is
  2719. * lockless.
  2720. */
  2721. if (ring->irq_get(ring)) {
  2722. ret = wait_event_interruptible(ring->irq_queue,
  2723. i915_seqno_passed(ring->get_seqno(ring), seqno)
  2724. || atomic_read(&dev_priv->mm.wedged));
  2725. ring->irq_put(ring);
  2726. if (ret == 0 && atomic_read(&dev_priv->mm.wedged))
  2727. ret = -EIO;
  2728. }
  2729. }
  2730. if (ret == 0)
  2731. queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
  2732. return ret;
  2733. }
  2734. int
  2735. i915_gem_object_pin(struct drm_i915_gem_object *obj,
  2736. uint32_t alignment,
  2737. bool map_and_fenceable)
  2738. {
  2739. struct drm_device *dev = obj->base.dev;
  2740. struct drm_i915_private *dev_priv = dev->dev_private;
  2741. int ret;
  2742. BUG_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT);
  2743. WARN_ON(i915_verify_lists(dev));
  2744. if (obj->gtt_space != NULL) {
  2745. if ((alignment && obj->gtt_offset & (alignment - 1)) ||
  2746. (map_and_fenceable && !obj->map_and_fenceable)) {
  2747. WARN(obj->pin_count,
  2748. "bo is already pinned with incorrect alignment:"
  2749. " offset=%x, req.alignment=%x, req.map_and_fenceable=%d,"
  2750. " obj->map_and_fenceable=%d\n",
  2751. obj->gtt_offset, alignment,
  2752. map_and_fenceable,
  2753. obj->map_and_fenceable);
  2754. ret = i915_gem_object_unbind(obj);
  2755. if (ret)
  2756. return ret;
  2757. }
  2758. }
  2759. if (obj->gtt_space == NULL) {
  2760. ret = i915_gem_object_bind_to_gtt(obj, alignment,
  2761. map_and_fenceable);
  2762. if (ret)
  2763. return ret;
  2764. }
  2765. if (obj->pin_count++ == 0) {
  2766. if (!obj->active)
  2767. list_move_tail(&obj->mm_list,
  2768. &dev_priv->mm.pinned_list);
  2769. }
  2770. obj->pin_mappable |= map_and_fenceable;
  2771. WARN_ON(i915_verify_lists(dev));
  2772. return 0;
  2773. }
  2774. void
  2775. i915_gem_object_unpin(struct drm_i915_gem_object *obj)
  2776. {
  2777. struct drm_device *dev = obj->base.dev;
  2778. drm_i915_private_t *dev_priv = dev->dev_private;
  2779. WARN_ON(i915_verify_lists(dev));
  2780. BUG_ON(obj->pin_count == 0);
  2781. BUG_ON(obj->gtt_space == NULL);
  2782. if (--obj->pin_count == 0) {
  2783. if (!obj->active)
  2784. list_move_tail(&obj->mm_list,
  2785. &dev_priv->mm.inactive_list);
  2786. obj->pin_mappable = false;
  2787. }
  2788. WARN_ON(i915_verify_lists(dev));
  2789. }
  2790. int
  2791. i915_gem_pin_ioctl(struct drm_device *dev, void *data,
  2792. struct drm_file *file)
  2793. {
  2794. struct drm_i915_gem_pin *args = data;
  2795. struct drm_i915_gem_object *obj;
  2796. int ret;
  2797. ret = i915_mutex_lock_interruptible(dev);
  2798. if (ret)
  2799. return ret;
  2800. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  2801. if (&obj->base == NULL) {
  2802. ret = -ENOENT;
  2803. goto unlock;
  2804. }
  2805. if (obj->madv != I915_MADV_WILLNEED) {
  2806. DRM_ERROR("Attempting to pin a purgeable buffer\n");
  2807. ret = -EINVAL;
  2808. goto out;
  2809. }
  2810. if (obj->pin_filp != NULL && obj->pin_filp != file) {
  2811. DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
  2812. args->handle);
  2813. ret = -EINVAL;
  2814. goto out;
  2815. }
  2816. obj->user_pin_count++;
  2817. obj->pin_filp = file;
  2818. if (obj->user_pin_count == 1) {
  2819. ret = i915_gem_object_pin(obj, args->alignment, true);
  2820. if (ret)
  2821. goto out;
  2822. }
  2823. /* XXX - flush the CPU caches for pinned objects
  2824. * as the X server doesn't manage domains yet
  2825. */
  2826. i915_gem_object_flush_cpu_write_domain(obj);
  2827. args->offset = obj->gtt_offset;
  2828. out:
  2829. drm_gem_object_unreference(&obj->base);
  2830. unlock:
  2831. mutex_unlock(&dev->struct_mutex);
  2832. return ret;
  2833. }
  2834. int
  2835. i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
  2836. struct drm_file *file)
  2837. {
  2838. struct drm_i915_gem_pin *args = data;
  2839. struct drm_i915_gem_object *obj;
  2840. int ret;
  2841. ret = i915_mutex_lock_interruptible(dev);
  2842. if (ret)
  2843. return ret;
  2844. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  2845. if (&obj->base == NULL) {
  2846. ret = -ENOENT;
  2847. goto unlock;
  2848. }
  2849. if (obj->pin_filp != file) {
  2850. DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
  2851. args->handle);
  2852. ret = -EINVAL;
  2853. goto out;
  2854. }
  2855. obj->user_pin_count--;
  2856. if (obj->user_pin_count == 0) {
  2857. obj->pin_filp = NULL;
  2858. i915_gem_object_unpin(obj);
  2859. }
  2860. out:
  2861. drm_gem_object_unreference(&obj->base);
  2862. unlock:
  2863. mutex_unlock(&dev->struct_mutex);
  2864. return ret;
  2865. }
  2866. int
  2867. i915_gem_busy_ioctl(struct drm_device *dev, void *data,
  2868. struct drm_file *file)
  2869. {
  2870. struct drm_i915_gem_busy *args = data;
  2871. struct drm_i915_gem_object *obj;
  2872. int ret;
  2873. ret = i915_mutex_lock_interruptible(dev);
  2874. if (ret)
  2875. return ret;
  2876. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  2877. if (&obj->base == NULL) {
  2878. ret = -ENOENT;
  2879. goto unlock;
  2880. }
  2881. /* Count all active objects as busy, even if they are currently not used
  2882. * by the gpu. Users of this interface expect objects to eventually
  2883. * become non-busy without any further actions, therefore emit any
  2884. * necessary flushes here.
  2885. */
  2886. args->busy = obj->active;
  2887. if (args->busy) {
  2888. /* Unconditionally flush objects, even when the gpu still uses this
  2889. * object. Userspace calling this function indicates that it wants to
  2890. * use this buffer rather sooner than later, so issuing the required
  2891. * flush earlier is beneficial.
  2892. */
  2893. if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
  2894. ret = i915_gem_flush_ring(obj->ring,
  2895. 0, obj->base.write_domain);
  2896. } else if (obj->ring->outstanding_lazy_request ==
  2897. obj->last_rendering_seqno) {
  2898. struct drm_i915_gem_request *request;
  2899. /* This ring is not being cleared by active usage,
  2900. * so emit a request to do so.
  2901. */
  2902. request = kzalloc(sizeof(*request), GFP_KERNEL);
  2903. if (request)
  2904. ret = i915_add_request(obj->ring, NULL,request);
  2905. else
  2906. ret = -ENOMEM;
  2907. }
  2908. /* Update the active list for the hardware's current position.
  2909. * Otherwise this only updates on a delayed timer or when irqs
  2910. * are actually unmasked, and our working set ends up being
  2911. * larger than required.
  2912. */
  2913. i915_gem_retire_requests_ring(obj->ring);
  2914. args->busy = obj->active;
  2915. }
  2916. drm_gem_object_unreference(&obj->base);
  2917. unlock:
  2918. mutex_unlock(&dev->struct_mutex);
  2919. return ret;
  2920. }
  2921. int
  2922. i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
  2923. struct drm_file *file_priv)
  2924. {
  2925. return i915_gem_ring_throttle(dev, file_priv);
  2926. }
  2927. int
  2928. i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
  2929. struct drm_file *file_priv)
  2930. {
  2931. struct drm_i915_gem_madvise *args = data;
  2932. struct drm_i915_gem_object *obj;
  2933. int ret;
  2934. switch (args->madv) {
  2935. case I915_MADV_DONTNEED:
  2936. case I915_MADV_WILLNEED:
  2937. break;
  2938. default:
  2939. return -EINVAL;
  2940. }
  2941. ret = i915_mutex_lock_interruptible(dev);
  2942. if (ret)
  2943. return ret;
  2944. obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
  2945. if (&obj->base == NULL) {
  2946. ret = -ENOENT;
  2947. goto unlock;
  2948. }
  2949. if (obj->pin_count) {
  2950. ret = -EINVAL;
  2951. goto out;
  2952. }
  2953. if (obj->madv != __I915_MADV_PURGED)
  2954. obj->madv = args->madv;
  2955. /* if the object is no longer bound, discard its backing storage */
  2956. if (i915_gem_object_is_purgeable(obj) &&
  2957. obj->gtt_space == NULL)
  2958. i915_gem_object_truncate(obj);
  2959. args->retained = obj->madv != __I915_MADV_PURGED;
  2960. out:
  2961. drm_gem_object_unreference(&obj->base);
  2962. unlock:
  2963. mutex_unlock(&dev->struct_mutex);
  2964. return ret;
  2965. }
  2966. struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
  2967. size_t size)
  2968. {
  2969. struct drm_i915_private *dev_priv = dev->dev_private;
  2970. struct drm_i915_gem_object *obj;
  2971. obj = kzalloc(sizeof(*obj), GFP_KERNEL);
  2972. if (obj == NULL)
  2973. return NULL;
  2974. if (drm_gem_object_init(dev, &obj->base, size) != 0) {
  2975. kfree(obj);
  2976. return NULL;
  2977. }
  2978. i915_gem_info_add_obj(dev_priv, size);
  2979. obj->base.write_domain = I915_GEM_DOMAIN_CPU;
  2980. obj->base.read_domains = I915_GEM_DOMAIN_CPU;
  2981. obj->cache_level = I915_CACHE_NONE;
  2982. obj->base.driver_private = NULL;
  2983. obj->fence_reg = I915_FENCE_REG_NONE;
  2984. INIT_LIST_HEAD(&obj->mm_list);
  2985. INIT_LIST_HEAD(&obj->gtt_list);
  2986. INIT_LIST_HEAD(&obj->ring_list);
  2987. INIT_LIST_HEAD(&obj->exec_list);
  2988. INIT_LIST_HEAD(&obj->gpu_write_list);
  2989. obj->madv = I915_MADV_WILLNEED;
  2990. /* Avoid an unnecessary call to unbind on the first bind. */
  2991. obj->map_and_fenceable = true;
  2992. return obj;
  2993. }
  2994. int i915_gem_init_object(struct drm_gem_object *obj)
  2995. {
  2996. BUG();
  2997. return 0;
  2998. }
  2999. static void i915_gem_free_object_tail(struct drm_i915_gem_object *obj)
  3000. {
  3001. struct drm_device *dev = obj->base.dev;
  3002. drm_i915_private_t *dev_priv = dev->dev_private;
  3003. int ret;
  3004. ret = i915_gem_object_unbind(obj);
  3005. if (ret == -ERESTARTSYS) {
  3006. list_move(&obj->mm_list,
  3007. &dev_priv->mm.deferred_free_list);
  3008. return;
  3009. }
  3010. trace_i915_gem_object_destroy(obj);
  3011. if (obj->base.map_list.map)
  3012. i915_gem_free_mmap_offset(obj);
  3013. drm_gem_object_release(&obj->base);
  3014. i915_gem_info_remove_obj(dev_priv, obj->base.size);
  3015. kfree(obj->page_cpu_valid);
  3016. kfree(obj->bit_17);
  3017. kfree(obj);
  3018. }
  3019. void i915_gem_free_object(struct drm_gem_object *gem_obj)
  3020. {
  3021. struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
  3022. struct drm_device *dev = obj->base.dev;
  3023. while (obj->pin_count > 0)
  3024. i915_gem_object_unpin(obj);
  3025. if (obj->phys_obj)
  3026. i915_gem_detach_phys_object(dev, obj);
  3027. i915_gem_free_object_tail(obj);
  3028. }
  3029. int
  3030. i915_gem_idle(struct drm_device *dev)
  3031. {
  3032. drm_i915_private_t *dev_priv = dev->dev_private;
  3033. int ret;
  3034. mutex_lock(&dev->struct_mutex);
  3035. if (dev_priv->mm.suspended) {
  3036. mutex_unlock(&dev->struct_mutex);
  3037. return 0;
  3038. }
  3039. ret = i915_gpu_idle(dev);
  3040. if (ret) {
  3041. mutex_unlock(&dev->struct_mutex);
  3042. return ret;
  3043. }
  3044. /* Under UMS, be paranoid and evict. */
  3045. if (!drm_core_check_feature(dev, DRIVER_MODESET)) {
  3046. ret = i915_gem_evict_inactive(dev, false);
  3047. if (ret) {
  3048. mutex_unlock(&dev->struct_mutex);
  3049. return ret;
  3050. }
  3051. }
  3052. i915_gem_reset_fences(dev);
  3053. /* Hack! Don't let anybody do execbuf while we don't control the chip.
  3054. * We need to replace this with a semaphore, or something.
  3055. * And not confound mm.suspended!
  3056. */
  3057. dev_priv->mm.suspended = 1;
  3058. del_timer_sync(&dev_priv->hangcheck_timer);
  3059. i915_kernel_lost_context(dev);
  3060. i915_gem_cleanup_ringbuffer(dev);
  3061. mutex_unlock(&dev->struct_mutex);
  3062. /* Cancel the retire work handler, which should be idle now. */
  3063. cancel_delayed_work_sync(&dev_priv->mm.retire_work);
  3064. return 0;
  3065. }
  3066. int
  3067. i915_gem_init_ringbuffer(struct drm_device *dev)
  3068. {
  3069. drm_i915_private_t *dev_priv = dev->dev_private;
  3070. int ret;
  3071. ret = intel_init_render_ring_buffer(dev);
  3072. if (ret)
  3073. return ret;
  3074. if (HAS_BSD(dev)) {
  3075. ret = intel_init_bsd_ring_buffer(dev);
  3076. if (ret)
  3077. goto cleanup_render_ring;
  3078. }
  3079. if (HAS_BLT(dev)) {
  3080. ret = intel_init_blt_ring_buffer(dev);
  3081. if (ret)
  3082. goto cleanup_bsd_ring;
  3083. }
  3084. dev_priv->next_seqno = 1;
  3085. return 0;
  3086. cleanup_bsd_ring:
  3087. intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
  3088. cleanup_render_ring:
  3089. intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
  3090. return ret;
  3091. }
  3092. void
  3093. i915_gem_cleanup_ringbuffer(struct drm_device *dev)
  3094. {
  3095. drm_i915_private_t *dev_priv = dev->dev_private;
  3096. int i;
  3097. for (i = 0; i < I915_NUM_RINGS; i++)
  3098. intel_cleanup_ring_buffer(&dev_priv->ring[i]);
  3099. }
  3100. int
  3101. i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
  3102. struct drm_file *file_priv)
  3103. {
  3104. drm_i915_private_t *dev_priv = dev->dev_private;
  3105. int ret, i;
  3106. if (drm_core_check_feature(dev, DRIVER_MODESET))
  3107. return 0;
  3108. if (atomic_read(&dev_priv->mm.wedged)) {
  3109. DRM_ERROR("Reenabling wedged hardware, good luck\n");
  3110. atomic_set(&dev_priv->mm.wedged, 0);
  3111. }
  3112. mutex_lock(&dev->struct_mutex);
  3113. dev_priv->mm.suspended = 0;
  3114. ret = i915_gem_init_ringbuffer(dev);
  3115. if (ret != 0) {
  3116. mutex_unlock(&dev->struct_mutex);
  3117. return ret;
  3118. }
  3119. BUG_ON(!list_empty(&dev_priv->mm.active_list));
  3120. BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
  3121. BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
  3122. for (i = 0; i < I915_NUM_RINGS; i++) {
  3123. BUG_ON(!list_empty(&dev_priv->ring[i].active_list));
  3124. BUG_ON(!list_empty(&dev_priv->ring[i].request_list));
  3125. }
  3126. mutex_unlock(&dev->struct_mutex);
  3127. ret = drm_irq_install(dev);
  3128. if (ret)
  3129. goto cleanup_ringbuffer;
  3130. return 0;
  3131. cleanup_ringbuffer:
  3132. mutex_lock(&dev->struct_mutex);
  3133. i915_gem_cleanup_ringbuffer(dev);
  3134. dev_priv->mm.suspended = 1;
  3135. mutex_unlock(&dev->struct_mutex);
  3136. return ret;
  3137. }
  3138. int
  3139. i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
  3140. struct drm_file *file_priv)
  3141. {
  3142. if (drm_core_check_feature(dev, DRIVER_MODESET))
  3143. return 0;
  3144. drm_irq_uninstall(dev);
  3145. return i915_gem_idle(dev);
  3146. }
  3147. void
  3148. i915_gem_lastclose(struct drm_device *dev)
  3149. {
  3150. int ret;
  3151. if (drm_core_check_feature(dev, DRIVER_MODESET))
  3152. return;
  3153. ret = i915_gem_idle(dev);
  3154. if (ret)
  3155. DRM_ERROR("failed to idle hardware: %d\n", ret);
  3156. }
  3157. static void
  3158. init_ring_lists(struct intel_ring_buffer *ring)
  3159. {
  3160. INIT_LIST_HEAD(&ring->active_list);
  3161. INIT_LIST_HEAD(&ring->request_list);
  3162. INIT_LIST_HEAD(&ring->gpu_write_list);
  3163. }
  3164. void
  3165. i915_gem_load(struct drm_device *dev)
  3166. {
  3167. int i;
  3168. drm_i915_private_t *dev_priv = dev->dev_private;
  3169. INIT_LIST_HEAD(&dev_priv->mm.active_list);
  3170. INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
  3171. INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
  3172. INIT_LIST_HEAD(&dev_priv->mm.pinned_list);
  3173. INIT_LIST_HEAD(&dev_priv->mm.fence_list);
  3174. INIT_LIST_HEAD(&dev_priv->mm.deferred_free_list);
  3175. INIT_LIST_HEAD(&dev_priv->mm.gtt_list);
  3176. for (i = 0; i < I915_NUM_RINGS; i++)
  3177. init_ring_lists(&dev_priv->ring[i]);
  3178. for (i = 0; i < 16; i++)
  3179. INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
  3180. INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
  3181. i915_gem_retire_work_handler);
  3182. init_completion(&dev_priv->error_completion);
  3183. /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
  3184. if (IS_GEN3(dev)) {
  3185. u32 tmp = I915_READ(MI_ARB_STATE);
  3186. if (!(tmp & MI_ARB_C3_LP_WRITE_ENABLE)) {
  3187. /* arb state is a masked write, so set bit + bit in mask */
  3188. tmp = MI_ARB_C3_LP_WRITE_ENABLE | (MI_ARB_C3_LP_WRITE_ENABLE << MI_ARB_MASK_SHIFT);
  3189. I915_WRITE(MI_ARB_STATE, tmp);
  3190. }
  3191. }
  3192. dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
  3193. /* Old X drivers will take 0-2 for front, back, depth buffers */
  3194. if (!drm_core_check_feature(dev, DRIVER_MODESET))
  3195. dev_priv->fence_reg_start = 3;
  3196. if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
  3197. dev_priv->num_fence_regs = 16;
  3198. else
  3199. dev_priv->num_fence_regs = 8;
  3200. /* Initialize fence registers to zero */
  3201. for (i = 0; i < dev_priv->num_fence_regs; i++) {
  3202. i915_gem_clear_fence_reg(dev, &dev_priv->fence_regs[i]);
  3203. }
  3204. i915_gem_detect_bit_6_swizzle(dev);
  3205. init_waitqueue_head(&dev_priv->pending_flip_queue);
  3206. dev_priv->mm.interruptible = true;
  3207. dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
  3208. dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
  3209. register_shrinker(&dev_priv->mm.inactive_shrinker);
  3210. }
  3211. /*
  3212. * Create a physically contiguous memory object for this object
  3213. * e.g. for cursor + overlay regs
  3214. */
  3215. static int i915_gem_init_phys_object(struct drm_device *dev,
  3216. int id, int size, int align)
  3217. {
  3218. drm_i915_private_t *dev_priv = dev->dev_private;
  3219. struct drm_i915_gem_phys_object *phys_obj;
  3220. int ret;
  3221. if (dev_priv->mm.phys_objs[id - 1] || !size)
  3222. return 0;
  3223. phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
  3224. if (!phys_obj)
  3225. return -ENOMEM;
  3226. phys_obj->id = id;
  3227. phys_obj->handle = drm_pci_alloc(dev, size, align);
  3228. if (!phys_obj->handle) {
  3229. ret = -ENOMEM;
  3230. goto kfree_obj;
  3231. }
  3232. #ifdef CONFIG_X86
  3233. set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
  3234. #endif
  3235. dev_priv->mm.phys_objs[id - 1] = phys_obj;
  3236. return 0;
  3237. kfree_obj:
  3238. kfree(phys_obj);
  3239. return ret;
  3240. }
  3241. static void i915_gem_free_phys_object(struct drm_device *dev, int id)
  3242. {
  3243. drm_i915_private_t *dev_priv = dev->dev_private;
  3244. struct drm_i915_gem_phys_object *phys_obj;
  3245. if (!dev_priv->mm.phys_objs[id - 1])
  3246. return;
  3247. phys_obj = dev_priv->mm.phys_objs[id - 1];
  3248. if (phys_obj->cur_obj) {
  3249. i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
  3250. }
  3251. #ifdef CONFIG_X86
  3252. set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
  3253. #endif
  3254. drm_pci_free(dev, phys_obj->handle);
  3255. kfree(phys_obj);
  3256. dev_priv->mm.phys_objs[id - 1] = NULL;
  3257. }
  3258. void i915_gem_free_all_phys_object(struct drm_device *dev)
  3259. {
  3260. int i;
  3261. for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
  3262. i915_gem_free_phys_object(dev, i);
  3263. }
  3264. void i915_gem_detach_phys_object(struct drm_device *dev,
  3265. struct drm_i915_gem_object *obj)
  3266. {
  3267. struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
  3268. char *vaddr;
  3269. int i;
  3270. int page_count;
  3271. if (!obj->phys_obj)
  3272. return;
  3273. vaddr = obj->phys_obj->handle->vaddr;
  3274. page_count = obj->base.size / PAGE_SIZE;
  3275. for (i = 0; i < page_count; i++) {
  3276. struct page *page = read_cache_page_gfp(mapping, i,
  3277. GFP_HIGHUSER | __GFP_RECLAIMABLE);
  3278. if (!IS_ERR(page)) {
  3279. char *dst = kmap_atomic(page);
  3280. memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
  3281. kunmap_atomic(dst);
  3282. drm_clflush_pages(&page, 1);
  3283. set_page_dirty(page);
  3284. mark_page_accessed(page);
  3285. page_cache_release(page);
  3286. }
  3287. }
  3288. intel_gtt_chipset_flush();
  3289. obj->phys_obj->cur_obj = NULL;
  3290. obj->phys_obj = NULL;
  3291. }
  3292. int
  3293. i915_gem_attach_phys_object(struct drm_device *dev,
  3294. struct drm_i915_gem_object *obj,
  3295. int id,
  3296. int align)
  3297. {
  3298. struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
  3299. drm_i915_private_t *dev_priv = dev->dev_private;
  3300. int ret = 0;
  3301. int page_count;
  3302. int i;
  3303. if (id > I915_MAX_PHYS_OBJECT)
  3304. return -EINVAL;
  3305. if (obj->phys_obj) {
  3306. if (obj->phys_obj->id == id)
  3307. return 0;
  3308. i915_gem_detach_phys_object(dev, obj);
  3309. }
  3310. /* create a new object */
  3311. if (!dev_priv->mm.phys_objs[id - 1]) {
  3312. ret = i915_gem_init_phys_object(dev, id,
  3313. obj->base.size, align);
  3314. if (ret) {
  3315. DRM_ERROR("failed to init phys object %d size: %zu\n",
  3316. id, obj->base.size);
  3317. return ret;
  3318. }
  3319. }
  3320. /* bind to the object */
  3321. obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
  3322. obj->phys_obj->cur_obj = obj;
  3323. page_count = obj->base.size / PAGE_SIZE;
  3324. for (i = 0; i < page_count; i++) {
  3325. struct page *page;
  3326. char *dst, *src;
  3327. page = read_cache_page_gfp(mapping, i,
  3328. GFP_HIGHUSER | __GFP_RECLAIMABLE);
  3329. if (IS_ERR(page))
  3330. return PTR_ERR(page);
  3331. src = kmap_atomic(page);
  3332. dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
  3333. memcpy(dst, src, PAGE_SIZE);
  3334. kunmap_atomic(src);
  3335. mark_page_accessed(page);
  3336. page_cache_release(page);
  3337. }
  3338. return 0;
  3339. }
  3340. static int
  3341. i915_gem_phys_pwrite(struct drm_device *dev,
  3342. struct drm_i915_gem_object *obj,
  3343. struct drm_i915_gem_pwrite *args,
  3344. struct drm_file *file_priv)
  3345. {
  3346. void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
  3347. char __user *user_data = (char __user *) (uintptr_t) args->data_ptr;
  3348. if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
  3349. unsigned long unwritten;
  3350. /* The physical object once assigned is fixed for the lifetime
  3351. * of the obj, so we can safely drop the lock and continue
  3352. * to access vaddr.
  3353. */
  3354. mutex_unlock(&dev->struct_mutex);
  3355. unwritten = copy_from_user(vaddr, user_data, args->size);
  3356. mutex_lock(&dev->struct_mutex);
  3357. if (unwritten)
  3358. return -EFAULT;
  3359. }
  3360. intel_gtt_chipset_flush();
  3361. return 0;
  3362. }
  3363. void i915_gem_release(struct drm_device *dev, struct drm_file *file)
  3364. {
  3365. struct drm_i915_file_private *file_priv = file->driver_priv;
  3366. /* Clean up our request list when the client is going away, so that
  3367. * later retire_requests won't dereference our soon-to-be-gone
  3368. * file_priv.
  3369. */
  3370. spin_lock(&file_priv->mm.lock);
  3371. while (!list_empty(&file_priv->mm.request_list)) {
  3372. struct drm_i915_gem_request *request;
  3373. request = list_first_entry(&file_priv->mm.request_list,
  3374. struct drm_i915_gem_request,
  3375. client_list);
  3376. list_del(&request->client_list);
  3377. request->file_priv = NULL;
  3378. }
  3379. spin_unlock(&file_priv->mm.lock);
  3380. }
  3381. static int
  3382. i915_gpu_is_active(struct drm_device *dev)
  3383. {
  3384. drm_i915_private_t *dev_priv = dev->dev_private;
  3385. int lists_empty;
  3386. lists_empty = list_empty(&dev_priv->mm.flushing_list) &&
  3387. list_empty(&dev_priv->mm.active_list);
  3388. return !lists_empty;
  3389. }
  3390. static int
  3391. i915_gem_inactive_shrink(struct shrinker *shrinker, struct shrink_control *sc)
  3392. {
  3393. struct drm_i915_private *dev_priv =
  3394. container_of(shrinker,
  3395. struct drm_i915_private,
  3396. mm.inactive_shrinker);
  3397. struct drm_device *dev = dev_priv->dev;
  3398. struct drm_i915_gem_object *obj, *next;
  3399. int nr_to_scan = sc->nr_to_scan;
  3400. int cnt;
  3401. if (!mutex_trylock(&dev->struct_mutex))
  3402. return 0;
  3403. /* "fast-path" to count number of available objects */
  3404. if (nr_to_scan == 0) {
  3405. cnt = 0;
  3406. list_for_each_entry(obj,
  3407. &dev_priv->mm.inactive_list,
  3408. mm_list)
  3409. cnt++;
  3410. mutex_unlock(&dev->struct_mutex);
  3411. return cnt / 100 * sysctl_vfs_cache_pressure;
  3412. }
  3413. rescan:
  3414. /* first scan for clean buffers */
  3415. i915_gem_retire_requests(dev);
  3416. list_for_each_entry_safe(obj, next,
  3417. &dev_priv->mm.inactive_list,
  3418. mm_list) {
  3419. if (i915_gem_object_is_purgeable(obj)) {
  3420. if (i915_gem_object_unbind(obj) == 0 &&
  3421. --nr_to_scan == 0)
  3422. break;
  3423. }
  3424. }
  3425. /* second pass, evict/count anything still on the inactive list */
  3426. cnt = 0;
  3427. list_for_each_entry_safe(obj, next,
  3428. &dev_priv->mm.inactive_list,
  3429. mm_list) {
  3430. if (nr_to_scan &&
  3431. i915_gem_object_unbind(obj) == 0)
  3432. nr_to_scan--;
  3433. else
  3434. cnt++;
  3435. }
  3436. if (nr_to_scan && i915_gpu_is_active(dev)) {
  3437. /*
  3438. * We are desperate for pages, so as a last resort, wait
  3439. * for the GPU to finish and discard whatever we can.
  3440. * This has a dramatic impact to reduce the number of
  3441. * OOM-killer events whilst running the GPU aggressively.
  3442. */
  3443. if (i915_gpu_idle(dev) == 0)
  3444. goto rescan;
  3445. }
  3446. mutex_unlock(&dev->struct_mutex);
  3447. return cnt / 100 * sysctl_vfs_cache_pressure;
  3448. }