txrx.c 21 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822
  1. /*
  2. * Copyright (c) 2012 Qualcomm Atheros, Inc.
  3. *
  4. * Permission to use, copy, modify, and/or distribute this software for any
  5. * purpose with or without fee is hereby granted, provided that the above
  6. * copyright notice and this permission notice appear in all copies.
  7. *
  8. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  9. * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  10. * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  11. * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  12. * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  13. * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  14. * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  15. */
  16. #include <linux/kernel.h>
  17. #include <linux/netdevice.h>
  18. #include <linux/etherdevice.h>
  19. #include <linux/hardirq.h>
  20. #include <net/ieee80211_radiotap.h>
  21. #include <linux/if_arp.h>
  22. #include <linux/moduleparam.h>
  23. #include "wil6210.h"
  24. #include "wmi.h"
  25. #include "txrx.h"
  26. static bool rtap_include_phy_info;
  27. module_param(rtap_include_phy_info, bool, S_IRUGO);
  28. MODULE_PARM_DESC(rtap_include_phy_info,
  29. " Include PHY info in the radiotap header, default - no");
  30. static inline int wil_vring_is_empty(struct vring *vring)
  31. {
  32. return vring->swhead == vring->swtail;
  33. }
  34. static inline u32 wil_vring_next_tail(struct vring *vring)
  35. {
  36. return (vring->swtail + 1) % vring->size;
  37. }
  38. static inline void wil_vring_advance_head(struct vring *vring, int n)
  39. {
  40. vring->swhead = (vring->swhead + n) % vring->size;
  41. }
  42. static inline int wil_vring_is_full(struct vring *vring)
  43. {
  44. return wil_vring_next_tail(vring) == vring->swhead;
  45. }
  46. /*
  47. * Available space in Tx Vring
  48. */
  49. static inline int wil_vring_avail_tx(struct vring *vring)
  50. {
  51. u32 swhead = vring->swhead;
  52. u32 swtail = vring->swtail;
  53. int used = (vring->size + swhead - swtail) % vring->size;
  54. return vring->size - used - 1;
  55. }
  56. static int wil_vring_alloc(struct wil6210_priv *wil, struct vring *vring)
  57. {
  58. struct device *dev = wil_to_dev(wil);
  59. size_t sz = vring->size * sizeof(vring->va[0]);
  60. uint i;
  61. BUILD_BUG_ON(sizeof(vring->va[0]) != 32);
  62. vring->swhead = 0;
  63. vring->swtail = 0;
  64. vring->ctx = kzalloc(vring->size * sizeof(vring->ctx[0]), GFP_KERNEL);
  65. if (!vring->ctx) {
  66. vring->va = NULL;
  67. return -ENOMEM;
  68. }
  69. /*
  70. * vring->va should be aligned on its size rounded up to power of 2
  71. * This is granted by the dma_alloc_coherent
  72. */
  73. vring->va = dma_alloc_coherent(dev, sz, &vring->pa, GFP_KERNEL);
  74. if (!vring->va) {
  75. kfree(vring->ctx);
  76. vring->ctx = NULL;
  77. return -ENOMEM;
  78. }
  79. /* initially, all descriptors are SW owned
  80. * For Tx and Rx, ownership bit is at the same location, thus
  81. * we can use any
  82. */
  83. for (i = 0; i < vring->size; i++) {
  84. volatile struct vring_tx_desc *d = &(vring->va[i].tx);
  85. d->dma.status = TX_DMA_STATUS_DU;
  86. }
  87. wil_dbg_misc(wil, "vring[%d] 0x%p:0x%016llx 0x%p\n", vring->size,
  88. vring->va, (unsigned long long)vring->pa, vring->ctx);
  89. return 0;
  90. }
  91. static void wil_vring_free(struct wil6210_priv *wil, struct vring *vring,
  92. int tx)
  93. {
  94. struct device *dev = wil_to_dev(wil);
  95. size_t sz = vring->size * sizeof(vring->va[0]);
  96. while (!wil_vring_is_empty(vring)) {
  97. if (tx) {
  98. volatile struct vring_tx_desc *d =
  99. &vring->va[vring->swtail].tx;
  100. dma_addr_t pa = d->dma.addr_low |
  101. ((u64)d->dma.addr_high << 32);
  102. struct sk_buff *skb = vring->ctx[vring->swtail];
  103. if (skb) {
  104. dma_unmap_single(dev, pa, d->dma.length,
  105. DMA_TO_DEVICE);
  106. dev_kfree_skb_any(skb);
  107. vring->ctx[vring->swtail] = NULL;
  108. } else {
  109. dma_unmap_page(dev, pa, d->dma.length,
  110. DMA_TO_DEVICE);
  111. }
  112. vring->swtail = wil_vring_next_tail(vring);
  113. } else { /* rx */
  114. volatile struct vring_rx_desc *d =
  115. &vring->va[vring->swtail].rx;
  116. dma_addr_t pa = d->dma.addr_low |
  117. ((u64)d->dma.addr_high << 32);
  118. struct sk_buff *skb = vring->ctx[vring->swhead];
  119. dma_unmap_single(dev, pa, d->dma.length,
  120. DMA_FROM_DEVICE);
  121. kfree_skb(skb);
  122. wil_vring_advance_head(vring, 1);
  123. }
  124. }
  125. dma_free_coherent(dev, sz, (void *)vring->va, vring->pa);
  126. kfree(vring->ctx);
  127. vring->pa = 0;
  128. vring->va = NULL;
  129. vring->ctx = NULL;
  130. }
  131. /**
  132. * Allocate one skb for Rx VRING
  133. *
  134. * Safe to call from IRQ
  135. */
  136. static int wil_vring_alloc_skb(struct wil6210_priv *wil, struct vring *vring,
  137. u32 i, int headroom)
  138. {
  139. struct device *dev = wil_to_dev(wil);
  140. unsigned int sz = RX_BUF_LEN;
  141. volatile struct vring_rx_desc *d = &(vring->va[i].rx);
  142. dma_addr_t pa;
  143. /* TODO align */
  144. struct sk_buff *skb = dev_alloc_skb(sz + headroom);
  145. if (unlikely(!skb))
  146. return -ENOMEM;
  147. skb_reserve(skb, headroom);
  148. skb_put(skb, sz);
  149. pa = dma_map_single(dev, skb->data, skb->len, DMA_FROM_DEVICE);
  150. if (unlikely(dma_mapping_error(dev, pa))) {
  151. kfree_skb(skb);
  152. return -ENOMEM;
  153. }
  154. d->dma.d0 = BIT(9) | RX_DMA_D0_CMD_DMA_IT;
  155. d->dma.addr_low = lower_32_bits(pa);
  156. d->dma.addr_high = (u16)upper_32_bits(pa);
  157. /* ip_length don't care */
  158. /* b11 don't care */
  159. /* error don't care */
  160. d->dma.status = 0; /* BIT(0) should be 0 for HW_OWNED */
  161. d->dma.length = sz;
  162. vring->ctx[i] = skb;
  163. return 0;
  164. }
  165. /**
  166. * Adds radiotap header
  167. *
  168. * Any error indicated as "Bad FCS"
  169. *
  170. * Vendor data for 04:ce:14-1 (Wilocity-1) consists of:
  171. * - Rx descriptor: 32 bytes
  172. * - Phy info
  173. */
  174. static void wil_rx_add_radiotap_header(struct wil6210_priv *wil,
  175. struct sk_buff *skb,
  176. volatile struct vring_rx_desc *d)
  177. {
  178. struct wireless_dev *wdev = wil->wdev;
  179. struct wil6210_rtap {
  180. struct ieee80211_radiotap_header rthdr;
  181. /* fields should be in the order of bits in rthdr.it_present */
  182. /* flags */
  183. u8 flags;
  184. /* channel */
  185. __le16 chnl_freq __aligned(2);
  186. __le16 chnl_flags;
  187. /* MCS */
  188. u8 mcs_present;
  189. u8 mcs_flags;
  190. u8 mcs_index;
  191. } __packed;
  192. struct wil6210_rtap_vendor {
  193. struct wil6210_rtap rtap;
  194. /* vendor */
  195. u8 vendor_oui[3] __aligned(2);
  196. u8 vendor_ns;
  197. __le16 vendor_skip;
  198. u8 vendor_data[0];
  199. } __packed;
  200. struct wil6210_rtap_vendor *rtap_vendor;
  201. int rtap_len = sizeof(struct wil6210_rtap);
  202. int phy_length = 0; /* phy info header size, bytes */
  203. static char phy_data[128];
  204. struct ieee80211_channel *ch = wdev->preset_chandef.chan;
  205. if (rtap_include_phy_info) {
  206. rtap_len = sizeof(*rtap_vendor) + sizeof(*d);
  207. /* calculate additional length */
  208. if (d->dma.status & RX_DMA_STATUS_PHY_INFO) {
  209. /**
  210. * PHY info starts from 8-byte boundary
  211. * there are 8-byte lines, last line may be partially
  212. * written (HW bug), thus FW configures for last line
  213. * to be excessive. Driver skips this last line.
  214. */
  215. int len = min_t(int, 8 + sizeof(phy_data),
  216. wil_rxdesc_phy_length(d));
  217. if (len > 8) {
  218. void *p = skb_tail_pointer(skb);
  219. void *pa = PTR_ALIGN(p, 8);
  220. if (skb_tailroom(skb) >= len + (pa - p)) {
  221. phy_length = len - 8;
  222. memcpy(phy_data, pa, phy_length);
  223. }
  224. }
  225. }
  226. rtap_len += phy_length;
  227. }
  228. if (skb_headroom(skb) < rtap_len &&
  229. pskb_expand_head(skb, rtap_len, 0, GFP_ATOMIC)) {
  230. wil_err(wil, "Unable to expand headrom to %d\n", rtap_len);
  231. return;
  232. }
  233. rtap_vendor = (void *)skb_push(skb, rtap_len);
  234. memset(rtap_vendor, 0, rtap_len);
  235. rtap_vendor->rtap.rthdr.it_version = PKTHDR_RADIOTAP_VERSION;
  236. rtap_vendor->rtap.rthdr.it_len = cpu_to_le16(rtap_len);
  237. rtap_vendor->rtap.rthdr.it_present = cpu_to_le32(
  238. (1 << IEEE80211_RADIOTAP_FLAGS) |
  239. (1 << IEEE80211_RADIOTAP_CHANNEL) |
  240. (1 << IEEE80211_RADIOTAP_MCS));
  241. if (d->dma.status & RX_DMA_STATUS_ERROR)
  242. rtap_vendor->rtap.flags |= IEEE80211_RADIOTAP_F_BADFCS;
  243. rtap_vendor->rtap.chnl_freq = cpu_to_le16(ch ? ch->center_freq : 58320);
  244. rtap_vendor->rtap.chnl_flags = cpu_to_le16(0);
  245. rtap_vendor->rtap.mcs_present = IEEE80211_RADIOTAP_MCS_HAVE_MCS;
  246. rtap_vendor->rtap.mcs_flags = 0;
  247. rtap_vendor->rtap.mcs_index = wil_rxdesc_mcs(d);
  248. if (rtap_include_phy_info) {
  249. rtap_vendor->rtap.rthdr.it_present |= cpu_to_le32(1 <<
  250. IEEE80211_RADIOTAP_VENDOR_NAMESPACE);
  251. /* OUI for Wilocity 04:ce:14 */
  252. rtap_vendor->vendor_oui[0] = 0x04;
  253. rtap_vendor->vendor_oui[1] = 0xce;
  254. rtap_vendor->vendor_oui[2] = 0x14;
  255. rtap_vendor->vendor_ns = 1;
  256. /* Rx descriptor + PHY data */
  257. rtap_vendor->vendor_skip = cpu_to_le16(sizeof(*d) +
  258. phy_length);
  259. memcpy(rtap_vendor->vendor_data, (void *)d, sizeof(*d));
  260. memcpy(rtap_vendor->vendor_data + sizeof(*d), phy_data,
  261. phy_length);
  262. }
  263. }
  264. /*
  265. * Fast swap in place between 2 registers
  266. */
  267. static void wil_swap_u16(u16 *a, u16 *b)
  268. {
  269. *a ^= *b;
  270. *b ^= *a;
  271. *a ^= *b;
  272. }
  273. static void wil_swap_ethaddr(void *data)
  274. {
  275. struct ethhdr *eth = data;
  276. u16 *s = (u16 *)eth->h_source;
  277. u16 *d = (u16 *)eth->h_dest;
  278. wil_swap_u16(s++, d++);
  279. wil_swap_u16(s++, d++);
  280. wil_swap_u16(s, d);
  281. }
  282. /**
  283. * reap 1 frame from @swhead
  284. *
  285. * Safe to call from IRQ
  286. */
  287. static struct sk_buff *wil_vring_reap_rx(struct wil6210_priv *wil,
  288. struct vring *vring)
  289. {
  290. struct device *dev = wil_to_dev(wil);
  291. struct net_device *ndev = wil_to_ndev(wil);
  292. volatile struct vring_rx_desc *d;
  293. struct sk_buff *skb;
  294. dma_addr_t pa;
  295. unsigned int sz = RX_BUF_LEN;
  296. u8 ftype;
  297. u8 ds_bits;
  298. if (wil_vring_is_empty(vring))
  299. return NULL;
  300. d = &(vring->va[vring->swhead].rx);
  301. if (!(d->dma.status & RX_DMA_STATUS_DU)) {
  302. /* it is not error, we just reached end of Rx done area */
  303. return NULL;
  304. }
  305. pa = d->dma.addr_low | ((u64)d->dma.addr_high << 32);
  306. skb = vring->ctx[vring->swhead];
  307. dma_unmap_single(dev, pa, sz, DMA_FROM_DEVICE);
  308. skb_trim(skb, d->dma.length);
  309. wil->stats.last_mcs_rx = wil_rxdesc_mcs(d);
  310. /* use radiotap header only if required */
  311. if (ndev->type == ARPHRD_IEEE80211_RADIOTAP)
  312. wil_rx_add_radiotap_header(wil, skb, d);
  313. wil_dbg_txrx(wil, "Rx[%3d] : %d bytes\n", vring->swhead, d->dma.length);
  314. wil_hex_dump_txrx("Rx ", DUMP_PREFIX_NONE, 32, 4,
  315. (const void *)d, sizeof(*d), false);
  316. wil_vring_advance_head(vring, 1);
  317. /* no extra checks if in sniffer mode */
  318. if (ndev->type != ARPHRD_ETHER)
  319. return skb;
  320. /*
  321. * Non-data frames may be delivered through Rx DMA channel (ex: BAR)
  322. * Driver should recognize it by frame type, that is found
  323. * in Rx descriptor. If type is not data, it is 802.11 frame as is
  324. */
  325. ftype = wil_rxdesc_ftype(d) << 2;
  326. if (ftype != IEEE80211_FTYPE_DATA) {
  327. wil_dbg_txrx(wil, "Non-data frame ftype 0x%08x\n", ftype);
  328. /* TODO: process it */
  329. kfree_skb(skb);
  330. return NULL;
  331. }
  332. if (skb->len < ETH_HLEN) {
  333. wil_err(wil, "Short frame, len = %d\n", skb->len);
  334. /* TODO: process it (i.e. BAR) */
  335. kfree_skb(skb);
  336. return NULL;
  337. }
  338. ds_bits = wil_rxdesc_ds_bits(d);
  339. if (ds_bits == 1) {
  340. /*
  341. * HW bug - in ToDS mode, i.e. Rx on AP side,
  342. * addresses get swapped
  343. */
  344. wil_swap_ethaddr(skb->data);
  345. }
  346. return skb;
  347. }
  348. /**
  349. * allocate and fill up to @count buffers in rx ring
  350. * buffers posted at @swtail
  351. */
  352. static int wil_rx_refill(struct wil6210_priv *wil, int count)
  353. {
  354. struct net_device *ndev = wil_to_ndev(wil);
  355. struct vring *v = &wil->vring_rx;
  356. u32 next_tail;
  357. int rc = 0;
  358. int headroom = ndev->type == ARPHRD_IEEE80211_RADIOTAP ?
  359. WIL6210_RTAP_SIZE : 0;
  360. for (; next_tail = wil_vring_next_tail(v),
  361. (next_tail != v->swhead) && (count-- > 0);
  362. v->swtail = next_tail) {
  363. rc = wil_vring_alloc_skb(wil, v, v->swtail, headroom);
  364. if (rc) {
  365. wil_err(wil, "Error %d in wil_rx_refill[%d]\n",
  366. rc, v->swtail);
  367. break;
  368. }
  369. }
  370. iowrite32(v->swtail, wil->csr + HOSTADDR(v->hwtail));
  371. return rc;
  372. }
  373. /*
  374. * Pass Rx packet to the netif. Update statistics.
  375. */
  376. static void wil_netif_rx_any(struct sk_buff *skb, struct net_device *ndev)
  377. {
  378. int rc;
  379. unsigned int len = skb->len;
  380. skb_orphan(skb);
  381. if (in_interrupt())
  382. rc = netif_rx(skb);
  383. else
  384. rc = netif_rx_ni(skb);
  385. if (likely(rc == NET_RX_SUCCESS)) {
  386. ndev->stats.rx_packets++;
  387. ndev->stats.rx_bytes += len;
  388. } else {
  389. ndev->stats.rx_dropped++;
  390. }
  391. }
  392. /**
  393. * Proceed all completed skb's from Rx VRING
  394. *
  395. * Safe to call from IRQ
  396. */
  397. void wil_rx_handle(struct wil6210_priv *wil)
  398. {
  399. struct net_device *ndev = wil_to_ndev(wil);
  400. struct vring *v = &wil->vring_rx;
  401. struct sk_buff *skb;
  402. if (!v->va) {
  403. wil_err(wil, "Rx IRQ while Rx not yet initialized\n");
  404. return;
  405. }
  406. wil_dbg_txrx(wil, "%s()\n", __func__);
  407. while (NULL != (skb = wil_vring_reap_rx(wil, v))) {
  408. wil_hex_dump_txrx("Rx ", DUMP_PREFIX_OFFSET, 16, 1,
  409. skb->data, skb_headlen(skb), false);
  410. if (wil->wdev->iftype == NL80211_IFTYPE_MONITOR) {
  411. skb->dev = ndev;
  412. skb_reset_mac_header(skb);
  413. skb->ip_summed = CHECKSUM_UNNECESSARY;
  414. skb->pkt_type = PACKET_OTHERHOST;
  415. skb->protocol = htons(ETH_P_802_2);
  416. } else {
  417. skb->protocol = eth_type_trans(skb, ndev);
  418. }
  419. wil_netif_rx_any(skb, ndev);
  420. }
  421. wil_rx_refill(wil, v->size);
  422. }
  423. int wil_rx_init(struct wil6210_priv *wil)
  424. {
  425. struct vring *vring = &wil->vring_rx;
  426. int rc;
  427. vring->size = WIL6210_RX_RING_SIZE;
  428. rc = wil_vring_alloc(wil, vring);
  429. if (rc)
  430. return rc;
  431. rc = wmi_rx_chain_add(wil, vring);
  432. if (rc)
  433. goto err_free;
  434. rc = wil_rx_refill(wil, vring->size);
  435. if (rc)
  436. goto err_free;
  437. return 0;
  438. err_free:
  439. wil_vring_free(wil, vring, 0);
  440. return rc;
  441. }
  442. void wil_rx_fini(struct wil6210_priv *wil)
  443. {
  444. struct vring *vring = &wil->vring_rx;
  445. if (vring->va)
  446. wil_vring_free(wil, vring, 0);
  447. }
  448. int wil_vring_init_tx(struct wil6210_priv *wil, int id, int size,
  449. int cid, int tid)
  450. {
  451. int rc;
  452. struct wmi_vring_cfg_cmd cmd = {
  453. .action = cpu_to_le32(WMI_VRING_CMD_ADD),
  454. .vring_cfg = {
  455. .tx_sw_ring = {
  456. .max_mpdu_size = cpu_to_le16(TX_BUF_LEN),
  457. },
  458. .ringid = id,
  459. .cidxtid = (cid & 0xf) | ((tid & 0xf) << 4),
  460. .encap_trans_type = WMI_VRING_ENC_TYPE_802_3,
  461. .mac_ctrl = 0,
  462. .to_resolution = 0,
  463. .agg_max_wsize = 16,
  464. .schd_params = {
  465. .priority = cpu_to_le16(0),
  466. .timeslot_us = cpu_to_le16(0xfff),
  467. },
  468. },
  469. };
  470. struct {
  471. struct wil6210_mbox_hdr_wmi wmi;
  472. struct wmi_vring_cfg_done_event cmd;
  473. } __packed reply;
  474. struct vring *vring = &wil->vring_tx[id];
  475. if (vring->va) {
  476. wil_err(wil, "Tx ring [%d] already allocated\n", id);
  477. rc = -EINVAL;
  478. goto out;
  479. }
  480. vring->size = size;
  481. rc = wil_vring_alloc(wil, vring);
  482. if (rc)
  483. goto out;
  484. cmd.vring_cfg.tx_sw_ring.ring_mem_base = cpu_to_le64(vring->pa);
  485. cmd.vring_cfg.tx_sw_ring.ring_size = cpu_to_le16(vring->size);
  486. rc = wmi_call(wil, WMI_VRING_CFG_CMDID, &cmd, sizeof(cmd),
  487. WMI_VRING_CFG_DONE_EVENTID, &reply, sizeof(reply), 100);
  488. if (rc)
  489. goto out_free;
  490. if (reply.cmd.status != WMI_VRING_CFG_SUCCESS) {
  491. wil_err(wil, "Tx config failed, status 0x%02x\n",
  492. reply.cmd.status);
  493. rc = -EINVAL;
  494. goto out_free;
  495. }
  496. vring->hwtail = le32_to_cpu(reply.cmd.tx_vring_tail_ptr);
  497. return 0;
  498. out_free:
  499. wil_vring_free(wil, vring, 1);
  500. out:
  501. return rc;
  502. }
  503. void wil_vring_fini_tx(struct wil6210_priv *wil, int id)
  504. {
  505. struct vring *vring = &wil->vring_tx[id];
  506. if (!vring->va)
  507. return;
  508. wil_vring_free(wil, vring, 1);
  509. }
  510. static struct vring *wil_find_tx_vring(struct wil6210_priv *wil,
  511. struct sk_buff *skb)
  512. {
  513. struct vring *v = &wil->vring_tx[0];
  514. if (v->va)
  515. return v;
  516. return NULL;
  517. }
  518. static int wil_tx_desc_map(volatile struct vring_tx_desc *d,
  519. dma_addr_t pa, u32 len)
  520. {
  521. d->dma.addr_low = lower_32_bits(pa);
  522. d->dma.addr_high = (u16)upper_32_bits(pa);
  523. d->dma.ip_length = 0;
  524. /* 0..6: mac_length; 7:ip_version 0-IP6 1-IP4*/
  525. d->dma.b11 = 0/*14 | BIT(7)*/;
  526. d->dma.error = 0;
  527. d->dma.status = 0; /* BIT(0) should be 0 for HW_OWNED */
  528. d->dma.length = len;
  529. d->dma.d0 = 0;
  530. d->mac.d[0] = 0;
  531. d->mac.d[1] = 0;
  532. d->mac.d[2] = 0;
  533. d->mac.ucode_cmd = 0;
  534. /* use dst index 0 */
  535. d->mac.d[1] |= BIT(MAC_CFG_DESC_TX_1_DST_INDEX_EN_POS) |
  536. (0 << MAC_CFG_DESC_TX_1_DST_INDEX_POS);
  537. /* translation type: 0 - bypass; 1 - 802.3; 2 - native wifi */
  538. d->mac.d[2] = BIT(MAC_CFG_DESC_TX_2_SNAP_HDR_INSERTION_EN_POS) |
  539. (1 << MAC_CFG_DESC_TX_2_L2_TRANSLATION_TYPE_POS);
  540. return 0;
  541. }
  542. static int wil_tx_vring(struct wil6210_priv *wil, struct vring *vring,
  543. struct sk_buff *skb)
  544. {
  545. struct device *dev = wil_to_dev(wil);
  546. volatile struct vring_tx_desc *d;
  547. u32 swhead = vring->swhead;
  548. int avail = wil_vring_avail_tx(vring);
  549. int nr_frags = skb_shinfo(skb)->nr_frags;
  550. uint f;
  551. int vring_index = vring - wil->vring_tx;
  552. uint i = swhead;
  553. dma_addr_t pa;
  554. wil_dbg_txrx(wil, "%s()\n", __func__);
  555. if (avail < vring->size/8)
  556. netif_tx_stop_all_queues(wil_to_ndev(wil));
  557. if (avail < 1 + nr_frags) {
  558. wil_err(wil, "Tx ring full. No space for %d fragments\n",
  559. 1 + nr_frags);
  560. return -ENOMEM;
  561. }
  562. d = &(vring->va[i].tx);
  563. /* FIXME FW can accept only unicast frames for the peer */
  564. memcpy(skb->data, wil->dst_addr[vring_index], ETH_ALEN);
  565. pa = dma_map_single(dev, skb->data,
  566. skb_headlen(skb), DMA_TO_DEVICE);
  567. wil_dbg_txrx(wil, "Tx skb %d bytes %p -> %#08llx\n", skb_headlen(skb),
  568. skb->data, (unsigned long long)pa);
  569. wil_hex_dump_txrx("Tx ", DUMP_PREFIX_OFFSET, 16, 1,
  570. skb->data, skb_headlen(skb), false);
  571. if (unlikely(dma_mapping_error(dev, pa)))
  572. return -EINVAL;
  573. /* 1-st segment */
  574. wil_tx_desc_map(d, pa, skb_headlen(skb));
  575. d->mac.d[2] |= ((nr_frags + 1) <<
  576. MAC_CFG_DESC_TX_2_NUM_OF_DESCRIPTORS_POS);
  577. /* middle segments */
  578. for (f = 0; f < nr_frags; f++) {
  579. const struct skb_frag_struct *frag =
  580. &skb_shinfo(skb)->frags[f];
  581. int len = skb_frag_size(frag);
  582. i = (swhead + f + 1) % vring->size;
  583. d = &(vring->va[i].tx);
  584. pa = skb_frag_dma_map(dev, frag, 0, skb_frag_size(frag),
  585. DMA_TO_DEVICE);
  586. if (unlikely(dma_mapping_error(dev, pa)))
  587. goto dma_error;
  588. wil_tx_desc_map(d, pa, len);
  589. vring->ctx[i] = NULL;
  590. }
  591. /* for the last seg only */
  592. d->dma.d0 |= BIT(DMA_CFG_DESC_TX_0_CMD_EOP_POS);
  593. d->dma.d0 |= BIT(9); /* BUG: undocumented bit */
  594. d->dma.d0 |= BIT(DMA_CFG_DESC_TX_0_CMD_DMA_IT_POS);
  595. d->dma.d0 |= (vring_index << DMA_CFG_DESC_TX_0_QID_POS);
  596. wil_hex_dump_txrx("Tx ", DUMP_PREFIX_NONE, 32, 4,
  597. (const void *)d, sizeof(*d), false);
  598. /* advance swhead */
  599. wil_vring_advance_head(vring, nr_frags + 1);
  600. wil_dbg_txrx(wil, "Tx swhead %d -> %d\n", swhead, vring->swhead);
  601. iowrite32(vring->swhead, wil->csr + HOSTADDR(vring->hwtail));
  602. /* hold reference to skb
  603. * to prevent skb release before accounting
  604. * in case of immediate "tx done"
  605. */
  606. vring->ctx[i] = skb_get(skb);
  607. return 0;
  608. dma_error:
  609. /* unmap what we have mapped */
  610. /* Note: increment @f to operate with positive index */
  611. for (f++; f > 0; f--) {
  612. i = (swhead + f) % vring->size;
  613. d = &(vring->va[i].tx);
  614. d->dma.status = TX_DMA_STATUS_DU;
  615. pa = d->dma.addr_low | ((u64)d->dma.addr_high << 32);
  616. if (vring->ctx[i])
  617. dma_unmap_single(dev, pa, d->dma.length, DMA_TO_DEVICE);
  618. else
  619. dma_unmap_page(dev, pa, d->dma.length, DMA_TO_DEVICE);
  620. }
  621. return -EINVAL;
  622. }
  623. netdev_tx_t wil_start_xmit(struct sk_buff *skb, struct net_device *ndev)
  624. {
  625. struct wil6210_priv *wil = ndev_to_wil(ndev);
  626. struct vring *vring;
  627. int rc;
  628. wil_dbg_txrx(wil, "%s()\n", __func__);
  629. if (!test_bit(wil_status_fwready, &wil->status)) {
  630. wil_err(wil, "FW not ready\n");
  631. goto drop;
  632. }
  633. if (!test_bit(wil_status_fwconnected, &wil->status)) {
  634. wil_err(wil, "FW not connected\n");
  635. goto drop;
  636. }
  637. if (wil->wdev->iftype == NL80211_IFTYPE_MONITOR) {
  638. wil_err(wil, "Xmit in monitor mode not supported\n");
  639. goto drop;
  640. }
  641. if (skb->protocol == cpu_to_be16(ETH_P_PAE)) {
  642. rc = wmi_tx_eapol(wil, skb);
  643. } else {
  644. /* find vring */
  645. vring = wil_find_tx_vring(wil, skb);
  646. if (!vring) {
  647. wil_err(wil, "No Tx VRING available\n");
  648. goto drop;
  649. }
  650. /* set up vring entry */
  651. rc = wil_tx_vring(wil, vring, skb);
  652. }
  653. switch (rc) {
  654. case 0:
  655. /* statistics will be updated on the tx_complete */
  656. dev_kfree_skb_any(skb);
  657. return NETDEV_TX_OK;
  658. case -ENOMEM:
  659. return NETDEV_TX_BUSY;
  660. default:
  661. break; /* goto drop; */
  662. }
  663. drop:
  664. netif_tx_stop_all_queues(ndev);
  665. ndev->stats.tx_dropped++;
  666. dev_kfree_skb_any(skb);
  667. return NET_XMIT_DROP;
  668. }
  669. /**
  670. * Clean up transmitted skb's from the Tx VRING
  671. *
  672. * Safe to call from IRQ
  673. */
  674. void wil_tx_complete(struct wil6210_priv *wil, int ringid)
  675. {
  676. struct net_device *ndev = wil_to_ndev(wil);
  677. struct device *dev = wil_to_dev(wil);
  678. struct vring *vring = &wil->vring_tx[ringid];
  679. if (!vring->va) {
  680. wil_err(wil, "Tx irq[%d]: vring not initialized\n", ringid);
  681. return;
  682. }
  683. wil_dbg_txrx(wil, "%s(%d)\n", __func__, ringid);
  684. while (!wil_vring_is_empty(vring)) {
  685. volatile struct vring_tx_desc *d = &vring->va[vring->swtail].tx;
  686. dma_addr_t pa;
  687. struct sk_buff *skb;
  688. if (!(d->dma.status & TX_DMA_STATUS_DU))
  689. break;
  690. wil_dbg_txrx(wil,
  691. "Tx[%3d] : %d bytes, status 0x%02x err 0x%02x\n",
  692. vring->swtail, d->dma.length, d->dma.status,
  693. d->dma.error);
  694. wil_hex_dump_txrx("TxC ", DUMP_PREFIX_NONE, 32, 4,
  695. (const void *)d, sizeof(*d), false);
  696. pa = d->dma.addr_low | ((u64)d->dma.addr_high << 32);
  697. skb = vring->ctx[vring->swtail];
  698. if (skb) {
  699. if (d->dma.error == 0) {
  700. ndev->stats.tx_packets++;
  701. ndev->stats.tx_bytes += skb->len;
  702. } else {
  703. ndev->stats.tx_errors++;
  704. }
  705. dma_unmap_single(dev, pa, d->dma.length, DMA_TO_DEVICE);
  706. dev_kfree_skb_any(skb);
  707. vring->ctx[vring->swtail] = NULL;
  708. } else {
  709. dma_unmap_page(dev, pa, d->dma.length, DMA_TO_DEVICE);
  710. }
  711. d->dma.addr_low = 0;
  712. d->dma.addr_high = 0;
  713. d->dma.length = 0;
  714. d->dma.status = TX_DMA_STATUS_DU;
  715. vring->swtail = wil_vring_next_tail(vring);
  716. }
  717. if (wil_vring_avail_tx(vring) > vring->size/4)
  718. netif_tx_wake_all_queues(wil_to_ndev(wil));
  719. }