eth1394.c 47 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755
  1. /*
  2. * eth1394.c -- IPv4 driver for Linux IEEE-1394 Subsystem
  3. *
  4. * Copyright (C) 2001-2003 Ben Collins <bcollins@debian.org>
  5. * 2000 Bonin Franck <boninf@free.fr>
  6. * 2003 Steve Kinneberg <kinnebergsteve@acmsystems.com>
  7. *
  8. * Mainly based on work by Emanuel Pirker and Andreas E. Bombe
  9. *
  10. * This program is free software; you can redistribute it and/or modify
  11. * it under the terms of the GNU General Public License as published by
  12. * the Free Software Foundation; either version 2 of the License, or
  13. * (at your option) any later version.
  14. *
  15. * This program is distributed in the hope that it will be useful,
  16. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  17. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  18. * GNU General Public License for more details.
  19. *
  20. * You should have received a copy of the GNU General Public License
  21. * along with this program; if not, write to the Free Software Foundation,
  22. * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  23. */
  24. /*
  25. * This driver intends to support RFC 2734, which describes a method for
  26. * transporting IPv4 datagrams over IEEE-1394 serial busses.
  27. *
  28. * TODO:
  29. * RFC 2734 related:
  30. * - Add MCAP. Limited Multicast exists only to 224.0.0.1 and 224.0.0.2.
  31. *
  32. * Non-RFC 2734 related:
  33. * - Handle fragmented skb's coming from the networking layer.
  34. * - Move generic GASP reception to core 1394 code
  35. * - Convert kmalloc/kfree for link fragments to use kmem_cache_* instead
  36. * - Stability improvements
  37. * - Performance enhancements
  38. * - Consider garbage collecting old partial datagrams after X amount of time
  39. */
  40. #include <linux/module.h>
  41. #include <linux/kernel.h>
  42. #include <linux/slab.h>
  43. #include <linux/errno.h>
  44. #include <linux/types.h>
  45. #include <linux/delay.h>
  46. #include <linux/init.h>
  47. #include <linux/workqueue.h>
  48. #include <linux/netdevice.h>
  49. #include <linux/inetdevice.h>
  50. #include <linux/if_arp.h>
  51. #include <linux/if_ether.h>
  52. #include <linux/ip.h>
  53. #include <linux/in.h>
  54. #include <linux/tcp.h>
  55. #include <linux/skbuff.h>
  56. #include <linux/bitops.h>
  57. #include <linux/ethtool.h>
  58. #include <asm/uaccess.h>
  59. #include <asm/delay.h>
  60. #include <asm/unaligned.h>
  61. #include <net/arp.h>
  62. #include "config_roms.h"
  63. #include "csr1212.h"
  64. #include "eth1394.h"
  65. #include "highlevel.h"
  66. #include "ieee1394.h"
  67. #include "ieee1394_core.h"
  68. #include "ieee1394_hotplug.h"
  69. #include "ieee1394_transactions.h"
  70. #include "ieee1394_types.h"
  71. #include "iso.h"
  72. #include "nodemgr.h"
  73. #define ETH1394_PRINT_G(level, fmt, args...) \
  74. printk(level "%s: " fmt, driver_name, ## args)
  75. #define ETH1394_PRINT(level, dev_name, fmt, args...) \
  76. printk(level "%s: %s: " fmt, driver_name, dev_name, ## args)
  77. struct fragment_info {
  78. struct list_head list;
  79. int offset;
  80. int len;
  81. };
  82. struct partial_datagram {
  83. struct list_head list;
  84. u16 dgl;
  85. u16 dg_size;
  86. u16 ether_type;
  87. struct sk_buff *skb;
  88. char *pbuf;
  89. struct list_head frag_info;
  90. };
  91. struct pdg_list {
  92. struct list_head list; /* partial datagram list per node */
  93. unsigned int sz; /* partial datagram list size per node */
  94. spinlock_t lock; /* partial datagram lock */
  95. };
  96. struct eth1394_host_info {
  97. struct hpsb_host *host;
  98. struct net_device *dev;
  99. };
  100. struct eth1394_node_ref {
  101. struct unit_directory *ud;
  102. struct list_head list;
  103. };
  104. struct eth1394_node_info {
  105. u16 maxpayload; /* max payload */
  106. u8 sspd; /* max speed */
  107. u64 fifo; /* FIFO address */
  108. struct pdg_list pdg; /* partial RX datagram lists */
  109. int dgl; /* outgoing datagram label */
  110. };
  111. static const char driver_name[] = "eth1394";
  112. static struct kmem_cache *packet_task_cache;
  113. static struct hpsb_highlevel eth1394_highlevel;
  114. /* Use common.lf to determine header len */
  115. static const int hdr_type_len[] = {
  116. sizeof(struct eth1394_uf_hdr),
  117. sizeof(struct eth1394_ff_hdr),
  118. sizeof(struct eth1394_sf_hdr),
  119. sizeof(struct eth1394_sf_hdr)
  120. };
  121. static const u16 eth1394_speedto_maxpayload[] = {
  122. /* S100, S200, S400, S800, S1600, S3200 */
  123. 512, 1024, 2048, 4096, 4096, 4096
  124. };
  125. MODULE_AUTHOR("Ben Collins (bcollins@debian.org)");
  126. MODULE_DESCRIPTION("IEEE 1394 IPv4 Driver (IPv4-over-1394 as per RFC 2734)");
  127. MODULE_LICENSE("GPL");
  128. /*
  129. * The max_partial_datagrams parameter is the maximum number of fragmented
  130. * datagrams per node that eth1394 will keep in memory. Providing an upper
  131. * bound allows us to limit the amount of memory that partial datagrams
  132. * consume in the event that some partial datagrams are never completed.
  133. */
  134. static int max_partial_datagrams = 25;
  135. module_param(max_partial_datagrams, int, S_IRUGO | S_IWUSR);
  136. MODULE_PARM_DESC(max_partial_datagrams,
  137. "Maximum number of partially received fragmented datagrams "
  138. "(default = 25).");
  139. static int ether1394_header(struct sk_buff *skb, struct net_device *dev,
  140. unsigned short type, void *daddr, void *saddr,
  141. unsigned len);
  142. static int ether1394_rebuild_header(struct sk_buff *skb);
  143. static int ether1394_header_parse(struct sk_buff *skb, unsigned char *haddr);
  144. static int ether1394_header_cache(struct neighbour *neigh, struct hh_cache *hh);
  145. static void ether1394_header_cache_update(struct hh_cache *hh,
  146. struct net_device *dev,
  147. unsigned char *haddr);
  148. static int ether1394_tx(struct sk_buff *skb, struct net_device *dev);
  149. static void ether1394_iso(struct hpsb_iso *iso);
  150. static struct ethtool_ops ethtool_ops;
  151. static int ether1394_write(struct hpsb_host *host, int srcid, int destid,
  152. quadlet_t *data, u64 addr, size_t len, u16 flags);
  153. static void ether1394_add_host(struct hpsb_host *host);
  154. static void ether1394_remove_host(struct hpsb_host *host);
  155. static void ether1394_host_reset(struct hpsb_host *host);
  156. /* Function for incoming 1394 packets */
  157. static struct hpsb_address_ops addr_ops = {
  158. .write = ether1394_write,
  159. };
  160. /* Ieee1394 highlevel driver functions */
  161. static struct hpsb_highlevel eth1394_highlevel = {
  162. .name = driver_name,
  163. .add_host = ether1394_add_host,
  164. .remove_host = ether1394_remove_host,
  165. .host_reset = ether1394_host_reset,
  166. };
  167. static int ether1394_recv_init(struct eth1394_priv *priv)
  168. {
  169. unsigned int iso_buf_size;
  170. /* FIXME: rawiso limits us to PAGE_SIZE */
  171. iso_buf_size = min((unsigned int)PAGE_SIZE,
  172. 2 * (1U << (priv->host->csr.max_rec + 1)));
  173. priv->iso = hpsb_iso_recv_init(priv->host,
  174. ETHER1394_GASP_BUFFERS * iso_buf_size,
  175. ETHER1394_GASP_BUFFERS,
  176. priv->broadcast_channel,
  177. HPSB_ISO_DMA_PACKET_PER_BUFFER,
  178. 1, ether1394_iso);
  179. if (priv->iso == NULL) {
  180. ETH1394_PRINT_G(KERN_ERR, "Failed to allocate IR context\n");
  181. priv->bc_state = ETHER1394_BC_ERROR;
  182. return -EAGAIN;
  183. }
  184. if (hpsb_iso_recv_start(priv->iso, -1, (1 << 3), -1) < 0)
  185. priv->bc_state = ETHER1394_BC_STOPPED;
  186. else
  187. priv->bc_state = ETHER1394_BC_RUNNING;
  188. return 0;
  189. }
  190. /* This is called after an "ifup" */
  191. static int ether1394_open(struct net_device *dev)
  192. {
  193. struct eth1394_priv *priv = netdev_priv(dev);
  194. int ret;
  195. if (priv->bc_state == ETHER1394_BC_ERROR) {
  196. ret = ether1394_recv_init(priv);
  197. if (ret)
  198. return ret;
  199. }
  200. netif_start_queue(dev);
  201. return 0;
  202. }
  203. /* This is called after an "ifdown" */
  204. static int ether1394_stop(struct net_device *dev)
  205. {
  206. /* flush priv->wake */
  207. flush_scheduled_work();
  208. netif_stop_queue(dev);
  209. return 0;
  210. }
  211. /* Return statistics to the caller */
  212. static struct net_device_stats *ether1394_stats(struct net_device *dev)
  213. {
  214. return &(((struct eth1394_priv *)netdev_priv(dev))->stats);
  215. }
  216. /* FIXME: What to do if we timeout? I think a host reset is probably in order,
  217. * so that's what we do. Should we increment the stat counters too? */
  218. static void ether1394_tx_timeout(struct net_device *dev)
  219. {
  220. struct hpsb_host *host =
  221. ((struct eth1394_priv *)netdev_priv(dev))->host;
  222. ETH1394_PRINT(KERN_ERR, dev->name, "Timeout, resetting host\n");
  223. ether1394_host_reset(host);
  224. }
  225. static inline int ether1394_max_mtu(struct hpsb_host* host)
  226. {
  227. return (1 << (host->csr.max_rec + 1))
  228. - sizeof(union eth1394_hdr) - ETHER1394_GASP_OVERHEAD;
  229. }
  230. static int ether1394_change_mtu(struct net_device *dev, int new_mtu)
  231. {
  232. int max_mtu;
  233. if (new_mtu < 68)
  234. return -EINVAL;
  235. max_mtu = ether1394_max_mtu(
  236. ((struct eth1394_priv *)netdev_priv(dev))->host);
  237. if (new_mtu > max_mtu) {
  238. ETH1394_PRINT(KERN_INFO, dev->name,
  239. "Local node constrains MTU to %d\n", max_mtu);
  240. return -ERANGE;
  241. }
  242. dev->mtu = new_mtu;
  243. return 0;
  244. }
  245. static void purge_partial_datagram(struct list_head *old)
  246. {
  247. struct partial_datagram *pd;
  248. struct list_head *lh, *n;
  249. struct fragment_info *fi;
  250. pd = list_entry(old, struct partial_datagram, list);
  251. list_for_each_safe(lh, n, &pd->frag_info) {
  252. fi = list_entry(lh, struct fragment_info, list);
  253. list_del(lh);
  254. kfree(fi);
  255. }
  256. list_del(old);
  257. kfree_skb(pd->skb);
  258. kfree(pd);
  259. }
  260. /******************************************
  261. * 1394 bus activity functions
  262. ******************************************/
  263. static struct eth1394_node_ref *eth1394_find_node(struct list_head *inl,
  264. struct unit_directory *ud)
  265. {
  266. struct eth1394_node_ref *node;
  267. list_for_each_entry(node, inl, list)
  268. if (node->ud == ud)
  269. return node;
  270. return NULL;
  271. }
  272. static struct eth1394_node_ref *eth1394_find_node_guid(struct list_head *inl,
  273. u64 guid)
  274. {
  275. struct eth1394_node_ref *node;
  276. list_for_each_entry(node, inl, list)
  277. if (node->ud->ne->guid == guid)
  278. return node;
  279. return NULL;
  280. }
  281. static struct eth1394_node_ref *eth1394_find_node_nodeid(struct list_head *inl,
  282. nodeid_t nodeid)
  283. {
  284. struct eth1394_node_ref *node;
  285. list_for_each_entry(node, inl, list)
  286. if (node->ud->ne->nodeid == nodeid)
  287. return node;
  288. return NULL;
  289. }
  290. static int eth1394_new_node(struct eth1394_host_info *hi,
  291. struct unit_directory *ud)
  292. {
  293. struct eth1394_priv *priv;
  294. struct eth1394_node_ref *new_node;
  295. struct eth1394_node_info *node_info;
  296. new_node = kmalloc(sizeof(*new_node), GFP_KERNEL);
  297. if (!new_node)
  298. return -ENOMEM;
  299. node_info = kmalloc(sizeof(*node_info), GFP_KERNEL);
  300. if (!node_info) {
  301. kfree(new_node);
  302. return -ENOMEM;
  303. }
  304. spin_lock_init(&node_info->pdg.lock);
  305. INIT_LIST_HEAD(&node_info->pdg.list);
  306. node_info->pdg.sz = 0;
  307. node_info->fifo = CSR1212_INVALID_ADDR_SPACE;
  308. ud->device.driver_data = node_info;
  309. new_node->ud = ud;
  310. priv = netdev_priv(hi->dev);
  311. list_add_tail(&new_node->list, &priv->ip_node_list);
  312. return 0;
  313. }
  314. static int eth1394_probe(struct device *dev)
  315. {
  316. struct unit_directory *ud;
  317. struct eth1394_host_info *hi;
  318. ud = container_of(dev, struct unit_directory, device);
  319. hi = hpsb_get_hostinfo(&eth1394_highlevel, ud->ne->host);
  320. if (!hi)
  321. return -ENOENT;
  322. return eth1394_new_node(hi, ud);
  323. }
  324. static int eth1394_remove(struct device *dev)
  325. {
  326. struct unit_directory *ud;
  327. struct eth1394_host_info *hi;
  328. struct eth1394_priv *priv;
  329. struct eth1394_node_ref *old_node;
  330. struct eth1394_node_info *node_info;
  331. struct list_head *lh, *n;
  332. unsigned long flags;
  333. ud = container_of(dev, struct unit_directory, device);
  334. hi = hpsb_get_hostinfo(&eth1394_highlevel, ud->ne->host);
  335. if (!hi)
  336. return -ENOENT;
  337. priv = netdev_priv(hi->dev);
  338. old_node = eth1394_find_node(&priv->ip_node_list, ud);
  339. if (!old_node)
  340. return 0;
  341. list_del(&old_node->list);
  342. kfree(old_node);
  343. node_info = (struct eth1394_node_info*)ud->device.driver_data;
  344. spin_lock_irqsave(&node_info->pdg.lock, flags);
  345. /* The partial datagram list should be empty, but we'll just
  346. * make sure anyway... */
  347. list_for_each_safe(lh, n, &node_info->pdg.list)
  348. purge_partial_datagram(lh);
  349. spin_unlock_irqrestore(&node_info->pdg.lock, flags);
  350. kfree(node_info);
  351. ud->device.driver_data = NULL;
  352. return 0;
  353. }
  354. static int eth1394_update(struct unit_directory *ud)
  355. {
  356. struct eth1394_host_info *hi;
  357. struct eth1394_priv *priv;
  358. struct eth1394_node_ref *node;
  359. hi = hpsb_get_hostinfo(&eth1394_highlevel, ud->ne->host);
  360. if (!hi)
  361. return -ENOENT;
  362. priv = netdev_priv(hi->dev);
  363. node = eth1394_find_node(&priv->ip_node_list, ud);
  364. if (node)
  365. return 0;
  366. return eth1394_new_node(hi, ud);
  367. }
  368. static struct ieee1394_device_id eth1394_id_table[] = {
  369. {
  370. .match_flags = (IEEE1394_MATCH_SPECIFIER_ID |
  371. IEEE1394_MATCH_VERSION),
  372. .specifier_id = ETHER1394_GASP_SPECIFIER_ID,
  373. .version = ETHER1394_GASP_VERSION,
  374. },
  375. {}
  376. };
  377. MODULE_DEVICE_TABLE(ieee1394, eth1394_id_table);
  378. static struct hpsb_protocol_driver eth1394_proto_driver = {
  379. .name = driver_name,
  380. .id_table = eth1394_id_table,
  381. .update = eth1394_update,
  382. .driver = {
  383. .probe = eth1394_probe,
  384. .remove = eth1394_remove,
  385. },
  386. };
  387. static void ether1394_reset_priv(struct net_device *dev, int set_mtu)
  388. {
  389. unsigned long flags;
  390. int i;
  391. struct eth1394_priv *priv = netdev_priv(dev);
  392. struct hpsb_host *host = priv->host;
  393. u64 guid = get_unaligned((u64 *)&(host->csr.rom->bus_info_data[3]));
  394. int max_speed = IEEE1394_SPEED_MAX;
  395. spin_lock_irqsave(&priv->lock, flags);
  396. memset(priv->ud_list, 0, sizeof(priv->ud_list));
  397. priv->bc_maxpayload = 512;
  398. /* Determine speed limit */
  399. /* FIXME: This is broken for nodes with link speed < PHY speed,
  400. * and it is suboptimal for S200B...S800B hardware.
  401. * The result of nodemgr's speed probe should be used somehow. */
  402. for (i = 0; i < host->node_count; i++) {
  403. /* take care of S100B...S400B PHY ports */
  404. if (host->speed[i] == SELFID_SPEED_UNKNOWN) {
  405. max_speed = IEEE1394_SPEED_100;
  406. break;
  407. }
  408. if (max_speed > host->speed[i])
  409. max_speed = host->speed[i];
  410. }
  411. priv->bc_sspd = max_speed;
  412. if (set_mtu) {
  413. /* Use the RFC 2734 default 1500 octets or the maximum payload
  414. * as initial MTU */
  415. dev->mtu = min(1500, ether1394_max_mtu(host));
  416. /* Set our hardware address while we're at it */
  417. memcpy(dev->dev_addr, &guid, sizeof(u64));
  418. memset(dev->broadcast, 0xff, sizeof(u64));
  419. }
  420. spin_unlock_irqrestore(&priv->lock, flags);
  421. }
  422. static void ether1394_init_dev(struct net_device *dev)
  423. {
  424. dev->open = ether1394_open;
  425. dev->stop = ether1394_stop;
  426. dev->hard_start_xmit = ether1394_tx;
  427. dev->get_stats = ether1394_stats;
  428. dev->tx_timeout = ether1394_tx_timeout;
  429. dev->change_mtu = ether1394_change_mtu;
  430. dev->hard_header = ether1394_header;
  431. dev->rebuild_header = ether1394_rebuild_header;
  432. dev->hard_header_cache = ether1394_header_cache;
  433. dev->header_cache_update= ether1394_header_cache_update;
  434. dev->hard_header_parse = ether1394_header_parse;
  435. SET_ETHTOOL_OPS(dev, &ethtool_ops);
  436. dev->watchdog_timeo = ETHER1394_TIMEOUT;
  437. dev->flags = IFF_BROADCAST | IFF_MULTICAST;
  438. dev->features = NETIF_F_HIGHDMA;
  439. dev->addr_len = ETH1394_ALEN;
  440. dev->hard_header_len = ETH1394_HLEN;
  441. dev->type = ARPHRD_IEEE1394;
  442. /* FIXME: This value was copied from ether_setup(). Is it too much? */
  443. dev->tx_queue_len = 1000;
  444. }
  445. /*
  446. * Wake the queue up after commonly encountered transmit failure conditions are
  447. * hopefully over. Currently only tlabel exhaustion is accounted for.
  448. */
  449. static void ether1394_wake_queue(struct work_struct *work)
  450. {
  451. struct eth1394_priv *priv;
  452. struct hpsb_packet *packet;
  453. priv = container_of(work, struct eth1394_priv, wake);
  454. packet = hpsb_alloc_packet(0);
  455. /* This is really bad, but unjam the queue anyway. */
  456. if (!packet)
  457. goto out;
  458. packet->host = priv->host;
  459. packet->node_id = priv->wake_node;
  460. /*
  461. * A transaction label is all we really want. If we get one, it almost
  462. * always means we can get a lot more because the ieee1394 core recycled
  463. * a whole batch of tlabels, at last.
  464. */
  465. if (hpsb_get_tlabel(packet) == 0)
  466. hpsb_free_tlabel(packet);
  467. hpsb_free_packet(packet);
  468. out:
  469. netif_wake_queue(priv->wake_dev);
  470. }
  471. /*
  472. * This function is called every time a card is found. It is generally called
  473. * when the module is installed. This is where we add all of our ethernet
  474. * devices. One for each host.
  475. */
  476. static void ether1394_add_host(struct hpsb_host *host)
  477. {
  478. struct eth1394_host_info *hi = NULL;
  479. struct net_device *dev = NULL;
  480. struct eth1394_priv *priv;
  481. u64 fifo_addr;
  482. if (hpsb_config_rom_ip1394_add(host) != 0) {
  483. ETH1394_PRINT_G(KERN_ERR, "Can't add IP-over-1394 ROM entry\n");
  484. return;
  485. }
  486. fifo_addr = hpsb_allocate_and_register_addrspace(
  487. &eth1394_highlevel, host, &addr_ops,
  488. ETHER1394_REGION_ADDR_LEN, ETHER1394_REGION_ADDR_LEN,
  489. CSR1212_INVALID_ADDR_SPACE, CSR1212_INVALID_ADDR_SPACE);
  490. if (fifo_addr == CSR1212_INVALID_ADDR_SPACE) {
  491. ETH1394_PRINT_G(KERN_ERR, "Cannot register CSR space\n");
  492. hpsb_config_rom_ip1394_remove(host);
  493. return;
  494. }
  495. dev = alloc_netdev(sizeof(*priv), "eth%d", ether1394_init_dev);
  496. if (dev == NULL) {
  497. ETH1394_PRINT_G(KERN_ERR, "Out of memory\n");
  498. goto out;
  499. }
  500. SET_MODULE_OWNER(dev);
  501. /* This used to be &host->device in Linux 2.6.20 and before. */
  502. SET_NETDEV_DEV(dev, host->device.parent);
  503. priv = netdev_priv(dev);
  504. INIT_LIST_HEAD(&priv->ip_node_list);
  505. spin_lock_init(&priv->lock);
  506. priv->host = host;
  507. priv->local_fifo = fifo_addr;
  508. INIT_WORK(&priv->wake, ether1394_wake_queue);
  509. priv->wake_dev = dev;
  510. hi = hpsb_create_hostinfo(&eth1394_highlevel, host, sizeof(*hi));
  511. if (hi == NULL) {
  512. ETH1394_PRINT_G(KERN_ERR, "Out of memory\n");
  513. goto out;
  514. }
  515. ether1394_reset_priv(dev, 1);
  516. if (register_netdev(dev)) {
  517. ETH1394_PRINT_G(KERN_ERR, "Cannot register the driver\n");
  518. goto out;
  519. }
  520. ETH1394_PRINT(KERN_INFO, dev->name, "IPv4 over IEEE 1394 (fw-host%d)\n",
  521. host->id);
  522. hi->host = host;
  523. hi->dev = dev;
  524. /* Ignore validity in hopes that it will be set in the future. It'll
  525. * be checked when the eth device is opened. */
  526. priv->broadcast_channel = host->csr.broadcast_channel & 0x3f;
  527. ether1394_recv_init(priv);
  528. return;
  529. out:
  530. if (dev)
  531. free_netdev(dev);
  532. if (hi)
  533. hpsb_destroy_hostinfo(&eth1394_highlevel, host);
  534. hpsb_unregister_addrspace(&eth1394_highlevel, host, fifo_addr);
  535. hpsb_config_rom_ip1394_remove(host);
  536. }
  537. /* Remove a card from our list */
  538. static void ether1394_remove_host(struct hpsb_host *host)
  539. {
  540. struct eth1394_host_info *hi;
  541. struct eth1394_priv *priv;
  542. hi = hpsb_get_hostinfo(&eth1394_highlevel, host);
  543. if (!hi)
  544. return;
  545. priv = netdev_priv(hi->dev);
  546. hpsb_unregister_addrspace(&eth1394_highlevel, host, priv->local_fifo);
  547. hpsb_config_rom_ip1394_remove(host);
  548. if (priv->iso)
  549. hpsb_iso_shutdown(priv->iso);
  550. unregister_netdev(hi->dev);
  551. free_netdev(hi->dev);
  552. }
  553. /* A bus reset happened */
  554. static void ether1394_host_reset(struct hpsb_host *host)
  555. {
  556. struct eth1394_host_info *hi;
  557. struct eth1394_priv *priv;
  558. struct net_device *dev;
  559. struct list_head *lh, *n;
  560. struct eth1394_node_ref *node;
  561. struct eth1394_node_info *node_info;
  562. unsigned long flags;
  563. hi = hpsb_get_hostinfo(&eth1394_highlevel, host);
  564. /* This can happen for hosts that we don't use */
  565. if (!hi)
  566. return;
  567. dev = hi->dev;
  568. priv = netdev_priv(dev);
  569. /* Reset our private host data, but not our MTU */
  570. netif_stop_queue(dev);
  571. ether1394_reset_priv(dev, 0);
  572. list_for_each_entry(node, &priv->ip_node_list, list) {
  573. node_info = node->ud->device.driver_data;
  574. spin_lock_irqsave(&node_info->pdg.lock, flags);
  575. list_for_each_safe(lh, n, &node_info->pdg.list)
  576. purge_partial_datagram(lh);
  577. INIT_LIST_HEAD(&(node_info->pdg.list));
  578. node_info->pdg.sz = 0;
  579. spin_unlock_irqrestore(&node_info->pdg.lock, flags);
  580. }
  581. netif_wake_queue(dev);
  582. }
  583. /******************************************
  584. * HW Header net device functions
  585. ******************************************/
  586. /* These functions have been adapted from net/ethernet/eth.c */
  587. /* Create a fake MAC header for an arbitrary protocol layer.
  588. * saddr=NULL means use device source address
  589. * daddr=NULL means leave destination address (eg unresolved arp). */
  590. static int ether1394_header(struct sk_buff *skb, struct net_device *dev,
  591. unsigned short type, void *daddr, void *saddr,
  592. unsigned len)
  593. {
  594. struct eth1394hdr *eth =
  595. (struct eth1394hdr *)skb_push(skb, ETH1394_HLEN);
  596. eth->h_proto = htons(type);
  597. if (dev->flags & (IFF_LOOPBACK | IFF_NOARP)) {
  598. memset(eth->h_dest, 0, dev->addr_len);
  599. return dev->hard_header_len;
  600. }
  601. if (daddr) {
  602. memcpy(eth->h_dest, daddr, dev->addr_len);
  603. return dev->hard_header_len;
  604. }
  605. return -dev->hard_header_len;
  606. }
  607. /* Rebuild the faked MAC header. This is called after an ARP
  608. * (or in future other address resolution) has completed on this
  609. * sk_buff. We now let ARP fill in the other fields.
  610. *
  611. * This routine CANNOT use cached dst->neigh!
  612. * Really, it is used only when dst->neigh is wrong.
  613. */
  614. static int ether1394_rebuild_header(struct sk_buff *skb)
  615. {
  616. struct eth1394hdr *eth = (struct eth1394hdr *)skb->data;
  617. if (eth->h_proto == htons(ETH_P_IP))
  618. return arp_find((unsigned char *)&eth->h_dest, skb);
  619. ETH1394_PRINT(KERN_DEBUG, skb->dev->name,
  620. "unable to resolve type %04x addresses\n",
  621. ntohs(eth->h_proto));
  622. return 0;
  623. }
  624. static int ether1394_header_parse(struct sk_buff *skb, unsigned char *haddr)
  625. {
  626. struct net_device *dev = skb->dev;
  627. memcpy(haddr, dev->dev_addr, ETH1394_ALEN);
  628. return ETH1394_ALEN;
  629. }
  630. static int ether1394_header_cache(struct neighbour *neigh, struct hh_cache *hh)
  631. {
  632. unsigned short type = hh->hh_type;
  633. struct net_device *dev = neigh->dev;
  634. struct eth1394hdr *eth =
  635. (struct eth1394hdr *)((u8 *)hh->hh_data + 16 - ETH1394_HLEN);
  636. if (type == htons(ETH_P_802_3))
  637. return -1;
  638. eth->h_proto = type;
  639. memcpy(eth->h_dest, neigh->ha, dev->addr_len);
  640. hh->hh_len = ETH1394_HLEN;
  641. return 0;
  642. }
  643. /* Called by Address Resolution module to notify changes in address. */
  644. static void ether1394_header_cache_update(struct hh_cache *hh,
  645. struct net_device *dev,
  646. unsigned char * haddr)
  647. {
  648. memcpy((u8 *)hh->hh_data + 16 - ETH1394_HLEN, haddr, dev->addr_len);
  649. }
  650. /******************************************
  651. * Datagram reception code
  652. ******************************************/
  653. /* Copied from net/ethernet/eth.c */
  654. static u16 ether1394_type_trans(struct sk_buff *skb, struct net_device *dev)
  655. {
  656. struct eth1394hdr *eth;
  657. unsigned char *rawp;
  658. skb_reset_mac_header(skb);
  659. skb_pull(skb, ETH1394_HLEN);
  660. eth = eth1394_hdr(skb);
  661. if (*eth->h_dest & 1) {
  662. if (memcmp(eth->h_dest, dev->broadcast, dev->addr_len) == 0)
  663. skb->pkt_type = PACKET_BROADCAST;
  664. #if 0
  665. else
  666. skb->pkt_type = PACKET_MULTICAST;
  667. #endif
  668. } else {
  669. if (memcmp(eth->h_dest, dev->dev_addr, dev->addr_len))
  670. skb->pkt_type = PACKET_OTHERHOST;
  671. }
  672. if (ntohs(eth->h_proto) >= 1536)
  673. return eth->h_proto;
  674. rawp = skb->data;
  675. if (*(unsigned short *)rawp == 0xFFFF)
  676. return htons(ETH_P_802_3);
  677. return htons(ETH_P_802_2);
  678. }
  679. /* Parse an encapsulated IP1394 header into an ethernet frame packet.
  680. * We also perform ARP translation here, if need be. */
  681. static u16 ether1394_parse_encap(struct sk_buff *skb, struct net_device *dev,
  682. nodeid_t srcid, nodeid_t destid,
  683. u16 ether_type)
  684. {
  685. struct eth1394_priv *priv = netdev_priv(dev);
  686. u64 dest_hw;
  687. unsigned short ret = 0;
  688. /* Setup our hw addresses. We use these to build the ethernet header. */
  689. if (destid == (LOCAL_BUS | ALL_NODES))
  690. dest_hw = ~0ULL; /* broadcast */
  691. else
  692. dest_hw = cpu_to_be64((u64)priv->host->csr.guid_hi << 32 |
  693. priv->host->csr.guid_lo);
  694. /* If this is an ARP packet, convert it. First, we want to make
  695. * use of some of the fields, since they tell us a little bit
  696. * about the sending machine. */
  697. if (ether_type == htons(ETH_P_ARP)) {
  698. struct eth1394_arp *arp1394 = (struct eth1394_arp *)skb->data;
  699. struct arphdr *arp = (struct arphdr *)skb->data;
  700. unsigned char *arp_ptr = (unsigned char *)(arp + 1);
  701. u64 fifo_addr = (u64)ntohs(arp1394->fifo_hi) << 32 |
  702. ntohl(arp1394->fifo_lo);
  703. u8 max_rec = min(priv->host->csr.max_rec,
  704. (u8)(arp1394->max_rec));
  705. int sspd = arp1394->sspd;
  706. u16 maxpayload;
  707. struct eth1394_node_ref *node;
  708. struct eth1394_node_info *node_info;
  709. __be64 guid;
  710. /* Sanity check. MacOSX seems to be sending us 131 in this
  711. * field (atleast on my Panther G5). Not sure why. */
  712. if (sspd > 5 || sspd < 0)
  713. sspd = 0;
  714. maxpayload = min(eth1394_speedto_maxpayload[sspd],
  715. (u16)(1 << (max_rec + 1)));
  716. guid = get_unaligned(&arp1394->s_uniq_id);
  717. node = eth1394_find_node_guid(&priv->ip_node_list,
  718. be64_to_cpu(guid));
  719. if (!node)
  720. return 0;
  721. node_info =
  722. (struct eth1394_node_info *)node->ud->device.driver_data;
  723. /* Update our speed/payload/fifo_offset table */
  724. node_info->maxpayload = maxpayload;
  725. node_info->sspd = sspd;
  726. node_info->fifo = fifo_addr;
  727. /* Now that we're done with the 1394 specific stuff, we'll
  728. * need to alter some of the data. Believe it or not, all
  729. * that needs to be done is sender_IP_address needs to be
  730. * moved, the destination hardware address get stuffed
  731. * in and the hardware address length set to 8.
  732. *
  733. * IMPORTANT: The code below overwrites 1394 specific data
  734. * needed above so keep the munging of the data for the
  735. * higher level IP stack last. */
  736. arp->ar_hln = 8;
  737. arp_ptr += arp->ar_hln; /* skip over sender unique id */
  738. *(u32 *)arp_ptr = arp1394->sip; /* move sender IP addr */
  739. arp_ptr += arp->ar_pln; /* skip over sender IP addr */
  740. if (arp->ar_op == htons(ARPOP_REQUEST))
  741. memset(arp_ptr, 0, sizeof(u64));
  742. else
  743. memcpy(arp_ptr, dev->dev_addr, sizeof(u64));
  744. }
  745. /* Now add the ethernet header. */
  746. if (dev->hard_header(skb, dev, ntohs(ether_type), &dest_hw, NULL,
  747. skb->len) >= 0)
  748. ret = ether1394_type_trans(skb, dev);
  749. return ret;
  750. }
  751. static int fragment_overlap(struct list_head *frag_list, int offset, int len)
  752. {
  753. struct fragment_info *fi;
  754. int end = offset + len;
  755. list_for_each_entry(fi, frag_list, list)
  756. if (offset < fi->offset + fi->len && end > fi->offset)
  757. return 1;
  758. return 0;
  759. }
  760. static struct list_head *find_partial_datagram(struct list_head *pdgl, int dgl)
  761. {
  762. struct partial_datagram *pd;
  763. list_for_each_entry(pd, pdgl, list)
  764. if (pd->dgl == dgl)
  765. return &pd->list;
  766. return NULL;
  767. }
  768. /* Assumes that new fragment does not overlap any existing fragments */
  769. static int new_fragment(struct list_head *frag_info, int offset, int len)
  770. {
  771. struct list_head *lh;
  772. struct fragment_info *fi, *fi2, *new;
  773. list_for_each(lh, frag_info) {
  774. fi = list_entry(lh, struct fragment_info, list);
  775. if (fi->offset + fi->len == offset) {
  776. /* The new fragment can be tacked on to the end */
  777. fi->len += len;
  778. /* Did the new fragment plug a hole? */
  779. fi2 = list_entry(lh->next, struct fragment_info, list);
  780. if (fi->offset + fi->len == fi2->offset) {
  781. /* glue fragments together */
  782. fi->len += fi2->len;
  783. list_del(lh->next);
  784. kfree(fi2);
  785. }
  786. return 0;
  787. } else if (offset + len == fi->offset) {
  788. /* The new fragment can be tacked on to the beginning */
  789. fi->offset = offset;
  790. fi->len += len;
  791. /* Did the new fragment plug a hole? */
  792. fi2 = list_entry(lh->prev, struct fragment_info, list);
  793. if (fi2->offset + fi2->len == fi->offset) {
  794. /* glue fragments together */
  795. fi2->len += fi->len;
  796. list_del(lh);
  797. kfree(fi);
  798. }
  799. return 0;
  800. } else if (offset > fi->offset + fi->len) {
  801. break;
  802. } else if (offset + len < fi->offset) {
  803. lh = lh->prev;
  804. break;
  805. }
  806. }
  807. new = kmalloc(sizeof(*new), GFP_ATOMIC);
  808. if (!new)
  809. return -ENOMEM;
  810. new->offset = offset;
  811. new->len = len;
  812. list_add(&new->list, lh);
  813. return 0;
  814. }
  815. static int new_partial_datagram(struct net_device *dev, struct list_head *pdgl,
  816. int dgl, int dg_size, char *frag_buf,
  817. int frag_off, int frag_len)
  818. {
  819. struct partial_datagram *new;
  820. new = kmalloc(sizeof(*new), GFP_ATOMIC);
  821. if (!new)
  822. return -ENOMEM;
  823. INIT_LIST_HEAD(&new->frag_info);
  824. if (new_fragment(&new->frag_info, frag_off, frag_len) < 0) {
  825. kfree(new);
  826. return -ENOMEM;
  827. }
  828. new->dgl = dgl;
  829. new->dg_size = dg_size;
  830. new->skb = dev_alloc_skb(dg_size + dev->hard_header_len + 15);
  831. if (!new->skb) {
  832. struct fragment_info *fi = list_entry(new->frag_info.next,
  833. struct fragment_info,
  834. list);
  835. kfree(fi);
  836. kfree(new);
  837. return -ENOMEM;
  838. }
  839. skb_reserve(new->skb, (dev->hard_header_len + 15) & ~15);
  840. new->pbuf = skb_put(new->skb, dg_size);
  841. memcpy(new->pbuf + frag_off, frag_buf, frag_len);
  842. list_add(&new->list, pdgl);
  843. return 0;
  844. }
  845. static int update_partial_datagram(struct list_head *pdgl, struct list_head *lh,
  846. char *frag_buf, int frag_off, int frag_len)
  847. {
  848. struct partial_datagram *pd =
  849. list_entry(lh, struct partial_datagram, list);
  850. if (new_fragment(&pd->frag_info, frag_off, frag_len) < 0)
  851. return -ENOMEM;
  852. memcpy(pd->pbuf + frag_off, frag_buf, frag_len);
  853. /* Move list entry to beginnig of list so that oldest partial
  854. * datagrams percolate to the end of the list */
  855. list_move(lh, pdgl);
  856. return 0;
  857. }
  858. static int is_datagram_complete(struct list_head *lh, int dg_size)
  859. {
  860. struct partial_datagram *pd;
  861. struct fragment_info *fi;
  862. pd = list_entry(lh, struct partial_datagram, list);
  863. fi = list_entry(pd->frag_info.next, struct fragment_info, list);
  864. return (fi->len == dg_size);
  865. }
  866. /* Packet reception. We convert the IP1394 encapsulation header to an
  867. * ethernet header, and fill it with some of our other fields. This is
  868. * an incoming packet from the 1394 bus. */
  869. static int ether1394_data_handler(struct net_device *dev, int srcid, int destid,
  870. char *buf, int len)
  871. {
  872. struct sk_buff *skb;
  873. unsigned long flags;
  874. struct eth1394_priv *priv = netdev_priv(dev);
  875. union eth1394_hdr *hdr = (union eth1394_hdr *)buf;
  876. u16 ether_type = 0; /* initialized to clear warning */
  877. int hdr_len;
  878. struct unit_directory *ud = priv->ud_list[NODEID_TO_NODE(srcid)];
  879. struct eth1394_node_info *node_info;
  880. if (!ud) {
  881. struct eth1394_node_ref *node;
  882. node = eth1394_find_node_nodeid(&priv->ip_node_list, srcid);
  883. if (unlikely(!node)) {
  884. HPSB_PRINT(KERN_ERR, "ether1394 rx: sender nodeid "
  885. "lookup failure: " NODE_BUS_FMT,
  886. NODE_BUS_ARGS(priv->host, srcid));
  887. priv->stats.rx_dropped++;
  888. return -1;
  889. }
  890. ud = node->ud;
  891. priv->ud_list[NODEID_TO_NODE(srcid)] = ud;
  892. }
  893. node_info = (struct eth1394_node_info *)ud->device.driver_data;
  894. /* First, did we receive a fragmented or unfragmented datagram? */
  895. hdr->words.word1 = ntohs(hdr->words.word1);
  896. hdr_len = hdr_type_len[hdr->common.lf];
  897. if (hdr->common.lf == ETH1394_HDR_LF_UF) {
  898. /* An unfragmented datagram has been received by the ieee1394
  899. * bus. Build an skbuff around it so we can pass it to the
  900. * high level network layer. */
  901. skb = dev_alloc_skb(len + dev->hard_header_len + 15);
  902. if (unlikely(!skb)) {
  903. ETH1394_PRINT_G(KERN_ERR, "Out of memory\n");
  904. priv->stats.rx_dropped++;
  905. return -1;
  906. }
  907. skb_reserve(skb, (dev->hard_header_len + 15) & ~15);
  908. memcpy(skb_put(skb, len - hdr_len), buf + hdr_len,
  909. len - hdr_len);
  910. ether_type = hdr->uf.ether_type;
  911. } else {
  912. /* A datagram fragment has been received, now the fun begins. */
  913. struct list_head *pdgl, *lh;
  914. struct partial_datagram *pd;
  915. int fg_off;
  916. int fg_len = len - hdr_len;
  917. int dg_size;
  918. int dgl;
  919. int retval;
  920. struct pdg_list *pdg = &(node_info->pdg);
  921. hdr->words.word3 = ntohs(hdr->words.word3);
  922. /* The 4th header word is reserved so no need to do ntohs() */
  923. if (hdr->common.lf == ETH1394_HDR_LF_FF) {
  924. ether_type = hdr->ff.ether_type;
  925. dgl = hdr->ff.dgl;
  926. dg_size = hdr->ff.dg_size + 1;
  927. fg_off = 0;
  928. } else {
  929. hdr->words.word2 = ntohs(hdr->words.word2);
  930. dgl = hdr->sf.dgl;
  931. dg_size = hdr->sf.dg_size + 1;
  932. fg_off = hdr->sf.fg_off;
  933. }
  934. spin_lock_irqsave(&pdg->lock, flags);
  935. pdgl = &(pdg->list);
  936. lh = find_partial_datagram(pdgl, dgl);
  937. if (lh == NULL) {
  938. while (pdg->sz >= max_partial_datagrams) {
  939. /* remove the oldest */
  940. purge_partial_datagram(pdgl->prev);
  941. pdg->sz--;
  942. }
  943. retval = new_partial_datagram(dev, pdgl, dgl, dg_size,
  944. buf + hdr_len, fg_off,
  945. fg_len);
  946. if (retval < 0) {
  947. spin_unlock_irqrestore(&pdg->lock, flags);
  948. goto bad_proto;
  949. }
  950. pdg->sz++;
  951. lh = find_partial_datagram(pdgl, dgl);
  952. } else {
  953. struct partial_datagram *pd;
  954. pd = list_entry(lh, struct partial_datagram, list);
  955. if (fragment_overlap(&pd->frag_info, fg_off, fg_len)) {
  956. /* Overlapping fragments, obliterate old
  957. * datagram and start new one. */
  958. purge_partial_datagram(lh);
  959. retval = new_partial_datagram(dev, pdgl, dgl,
  960. dg_size,
  961. buf + hdr_len,
  962. fg_off, fg_len);
  963. if (retval < 0) {
  964. pdg->sz--;
  965. spin_unlock_irqrestore(&pdg->lock, flags);
  966. goto bad_proto;
  967. }
  968. } else {
  969. retval = update_partial_datagram(pdgl, lh,
  970. buf + hdr_len,
  971. fg_off, fg_len);
  972. if (retval < 0) {
  973. /* Couldn't save off fragment anyway
  974. * so might as well obliterate the
  975. * datagram now. */
  976. purge_partial_datagram(lh);
  977. pdg->sz--;
  978. spin_unlock_irqrestore(&pdg->lock, flags);
  979. goto bad_proto;
  980. }
  981. } /* fragment overlap */
  982. } /* new datagram or add to existing one */
  983. pd = list_entry(lh, struct partial_datagram, list);
  984. if (hdr->common.lf == ETH1394_HDR_LF_FF)
  985. pd->ether_type = ether_type;
  986. if (is_datagram_complete(lh, dg_size)) {
  987. ether_type = pd->ether_type;
  988. pdg->sz--;
  989. skb = skb_get(pd->skb);
  990. purge_partial_datagram(lh);
  991. spin_unlock_irqrestore(&pdg->lock, flags);
  992. } else {
  993. /* Datagram is not complete, we're done for the
  994. * moment. */
  995. spin_unlock_irqrestore(&pdg->lock, flags);
  996. return 0;
  997. }
  998. } /* unframgented datagram or fragmented one */
  999. /* Write metadata, and then pass to the receive level */
  1000. skb->dev = dev;
  1001. skb->ip_summed = CHECKSUM_UNNECESSARY; /* don't check it */
  1002. /* Parse the encapsulation header. This actually does the job of
  1003. * converting to an ethernet frame header, aswell as arp
  1004. * conversion if needed. ARP conversion is easier in this
  1005. * direction, since we are using ethernet as our backend. */
  1006. skb->protocol = ether1394_parse_encap(skb, dev, srcid, destid,
  1007. ether_type);
  1008. spin_lock_irqsave(&priv->lock, flags);
  1009. if (!skb->protocol) {
  1010. priv->stats.rx_errors++;
  1011. priv->stats.rx_dropped++;
  1012. dev_kfree_skb_any(skb);
  1013. goto bad_proto;
  1014. }
  1015. if (netif_rx(skb) == NET_RX_DROP) {
  1016. priv->stats.rx_errors++;
  1017. priv->stats.rx_dropped++;
  1018. goto bad_proto;
  1019. }
  1020. /* Statistics */
  1021. priv->stats.rx_packets++;
  1022. priv->stats.rx_bytes += skb->len;
  1023. bad_proto:
  1024. if (netif_queue_stopped(dev))
  1025. netif_wake_queue(dev);
  1026. spin_unlock_irqrestore(&priv->lock, flags);
  1027. dev->last_rx = jiffies;
  1028. return 0;
  1029. }
  1030. static int ether1394_write(struct hpsb_host *host, int srcid, int destid,
  1031. quadlet_t *data, u64 addr, size_t len, u16 flags)
  1032. {
  1033. struct eth1394_host_info *hi;
  1034. hi = hpsb_get_hostinfo(&eth1394_highlevel, host);
  1035. if (unlikely(!hi)) {
  1036. ETH1394_PRINT_G(KERN_ERR, "No net device at fw-host%d\n",
  1037. host->id);
  1038. return RCODE_ADDRESS_ERROR;
  1039. }
  1040. if (ether1394_data_handler(hi->dev, srcid, destid, (char*)data, len))
  1041. return RCODE_ADDRESS_ERROR;
  1042. else
  1043. return RCODE_COMPLETE;
  1044. }
  1045. static void ether1394_iso(struct hpsb_iso *iso)
  1046. {
  1047. quadlet_t *data;
  1048. char *buf;
  1049. struct eth1394_host_info *hi;
  1050. struct net_device *dev;
  1051. struct eth1394_priv *priv;
  1052. unsigned int len;
  1053. u32 specifier_id;
  1054. u16 source_id;
  1055. int i;
  1056. int nready;
  1057. hi = hpsb_get_hostinfo(&eth1394_highlevel, iso->host);
  1058. if (unlikely(!hi)) {
  1059. ETH1394_PRINT_G(KERN_ERR, "No net device at fw-host%d\n",
  1060. iso->host->id);
  1061. return;
  1062. }
  1063. dev = hi->dev;
  1064. nready = hpsb_iso_n_ready(iso);
  1065. for (i = 0; i < nready; i++) {
  1066. struct hpsb_iso_packet_info *info =
  1067. &iso->infos[(iso->first_packet + i) % iso->buf_packets];
  1068. data = (quadlet_t *)(iso->data_buf.kvirt + info->offset);
  1069. /* skip over GASP header */
  1070. buf = (char *)data + 8;
  1071. len = info->len - 8;
  1072. specifier_id = (be32_to_cpu(data[0]) & 0xffff) << 8 |
  1073. (be32_to_cpu(data[1]) & 0xff000000) >> 24;
  1074. source_id = be32_to_cpu(data[0]) >> 16;
  1075. priv = netdev_priv(dev);
  1076. if (info->channel != (iso->host->csr.broadcast_channel & 0x3f)
  1077. || specifier_id != ETHER1394_GASP_SPECIFIER_ID) {
  1078. /* This packet is not for us */
  1079. continue;
  1080. }
  1081. ether1394_data_handler(dev, source_id, LOCAL_BUS | ALL_NODES,
  1082. buf, len);
  1083. }
  1084. hpsb_iso_recv_release_packets(iso, i);
  1085. dev->last_rx = jiffies;
  1086. }
  1087. /******************************************
  1088. * Datagram transmission code
  1089. ******************************************/
  1090. /* Convert a standard ARP packet to 1394 ARP. The first 8 bytes (the entire
  1091. * arphdr) is the same format as the ip1394 header, so they overlap. The rest
  1092. * needs to be munged a bit. The remainder of the arphdr is formatted based
  1093. * on hwaddr len and ipaddr len. We know what they'll be, so it's easy to
  1094. * judge.
  1095. *
  1096. * Now that the EUI is used for the hardware address all we need to do to make
  1097. * this work for 1394 is to insert 2 quadlets that contain max_rec size,
  1098. * speed, and unicast FIFO address information between the sender_unique_id
  1099. * and the IP addresses.
  1100. */
  1101. static void ether1394_arp_to_1394arp(struct sk_buff *skb,
  1102. struct net_device *dev)
  1103. {
  1104. struct eth1394_priv *priv = netdev_priv(dev);
  1105. struct arphdr *arp = (struct arphdr *)skb->data;
  1106. unsigned char *arp_ptr = (unsigned char *)(arp + 1);
  1107. struct eth1394_arp *arp1394 = (struct eth1394_arp *)skb->data;
  1108. arp1394->hw_addr_len = 16;
  1109. arp1394->sip = *(u32*)(arp_ptr + ETH1394_ALEN);
  1110. arp1394->max_rec = priv->host->csr.max_rec;
  1111. arp1394->sspd = priv->host->csr.lnk_spd;
  1112. arp1394->fifo_hi = htons(priv->local_fifo >> 32);
  1113. arp1394->fifo_lo = htonl(priv->local_fifo & ~0x0);
  1114. }
  1115. /* We need to encapsulate the standard header with our own. We use the
  1116. * ethernet header's proto for our own. */
  1117. static unsigned int ether1394_encapsulate_prep(unsigned int max_payload,
  1118. __be16 proto,
  1119. union eth1394_hdr *hdr,
  1120. u16 dg_size, u16 dgl)
  1121. {
  1122. unsigned int adj_max_payload =
  1123. max_payload - hdr_type_len[ETH1394_HDR_LF_UF];
  1124. /* Does it all fit in one packet? */
  1125. if (dg_size <= adj_max_payload) {
  1126. hdr->uf.lf = ETH1394_HDR_LF_UF;
  1127. hdr->uf.ether_type = proto;
  1128. } else {
  1129. hdr->ff.lf = ETH1394_HDR_LF_FF;
  1130. hdr->ff.ether_type = proto;
  1131. hdr->ff.dg_size = dg_size - 1;
  1132. hdr->ff.dgl = dgl;
  1133. adj_max_payload = max_payload - hdr_type_len[ETH1394_HDR_LF_FF];
  1134. }
  1135. return (dg_size + adj_max_payload - 1) / adj_max_payload;
  1136. }
  1137. static unsigned int ether1394_encapsulate(struct sk_buff *skb,
  1138. unsigned int max_payload,
  1139. union eth1394_hdr *hdr)
  1140. {
  1141. union eth1394_hdr *bufhdr;
  1142. int ftype = hdr->common.lf;
  1143. int hdrsz = hdr_type_len[ftype];
  1144. unsigned int adj_max_payload = max_payload - hdrsz;
  1145. switch (ftype) {
  1146. case ETH1394_HDR_LF_UF:
  1147. bufhdr = (union eth1394_hdr *)skb_push(skb, hdrsz);
  1148. bufhdr->words.word1 = htons(hdr->words.word1);
  1149. bufhdr->words.word2 = hdr->words.word2;
  1150. break;
  1151. case ETH1394_HDR_LF_FF:
  1152. bufhdr = (union eth1394_hdr *)skb_push(skb, hdrsz);
  1153. bufhdr->words.word1 = htons(hdr->words.word1);
  1154. bufhdr->words.word2 = hdr->words.word2;
  1155. bufhdr->words.word3 = htons(hdr->words.word3);
  1156. bufhdr->words.word4 = 0;
  1157. /* Set frag type here for future interior fragments */
  1158. hdr->common.lf = ETH1394_HDR_LF_IF;
  1159. hdr->sf.fg_off = 0;
  1160. break;
  1161. default:
  1162. hdr->sf.fg_off += adj_max_payload;
  1163. bufhdr = (union eth1394_hdr *)skb_pull(skb, adj_max_payload);
  1164. if (max_payload >= skb->len)
  1165. hdr->common.lf = ETH1394_HDR_LF_LF;
  1166. bufhdr->words.word1 = htons(hdr->words.word1);
  1167. bufhdr->words.word2 = htons(hdr->words.word2);
  1168. bufhdr->words.word3 = htons(hdr->words.word3);
  1169. bufhdr->words.word4 = 0;
  1170. }
  1171. return min(max_payload, skb->len);
  1172. }
  1173. static struct hpsb_packet *ether1394_alloc_common_packet(struct hpsb_host *host)
  1174. {
  1175. struct hpsb_packet *p;
  1176. p = hpsb_alloc_packet(0);
  1177. if (p) {
  1178. p->host = host;
  1179. p->generation = get_hpsb_generation(host);
  1180. p->type = hpsb_async;
  1181. }
  1182. return p;
  1183. }
  1184. static int ether1394_prep_write_packet(struct hpsb_packet *p,
  1185. struct hpsb_host *host, nodeid_t node,
  1186. u64 addr, void *data, int tx_len)
  1187. {
  1188. p->node_id = node;
  1189. if (hpsb_get_tlabel(p))
  1190. return -EAGAIN;
  1191. p->tcode = TCODE_WRITEB;
  1192. p->header_size = 16;
  1193. p->expect_response = 1;
  1194. p->header[0] =
  1195. p->node_id << 16 | p->tlabel << 10 | 1 << 8 | TCODE_WRITEB << 4;
  1196. p->header[1] = host->node_id << 16 | addr >> 32;
  1197. p->header[2] = addr & 0xffffffff;
  1198. p->header[3] = tx_len << 16;
  1199. p->data_size = (tx_len + 3) & ~3;
  1200. p->data = data;
  1201. return 0;
  1202. }
  1203. static void ether1394_prep_gasp_packet(struct hpsb_packet *p,
  1204. struct eth1394_priv *priv,
  1205. struct sk_buff *skb, int length)
  1206. {
  1207. p->header_size = 4;
  1208. p->tcode = TCODE_STREAM_DATA;
  1209. p->header[0] = length << 16 | 3 << 14 | priv->broadcast_channel << 8 |
  1210. TCODE_STREAM_DATA << 4;
  1211. p->data_size = length;
  1212. p->data = (quadlet_t *)skb->data - 2;
  1213. p->data[0] = cpu_to_be32(priv->host->node_id << 16 |
  1214. ETHER1394_GASP_SPECIFIER_ID_HI);
  1215. p->data[1] = cpu_to_be32(ETHER1394_GASP_SPECIFIER_ID_LO << 24 |
  1216. ETHER1394_GASP_VERSION);
  1217. p->speed_code = priv->bc_sspd;
  1218. /* prevent hpsb_send_packet() from overriding our speed code */
  1219. p->node_id = LOCAL_BUS | ALL_NODES;
  1220. }
  1221. static void ether1394_free_packet(struct hpsb_packet *packet)
  1222. {
  1223. if (packet->tcode != TCODE_STREAM_DATA)
  1224. hpsb_free_tlabel(packet);
  1225. hpsb_free_packet(packet);
  1226. }
  1227. static void ether1394_complete_cb(void *__ptask);
  1228. static int ether1394_send_packet(struct packet_task *ptask, unsigned int tx_len)
  1229. {
  1230. struct eth1394_priv *priv = ptask->priv;
  1231. struct hpsb_packet *packet = NULL;
  1232. packet = ether1394_alloc_common_packet(priv->host);
  1233. if (!packet)
  1234. return -ENOMEM;
  1235. if (ptask->tx_type == ETH1394_GASP) {
  1236. int length = tx_len + 2 * sizeof(quadlet_t);
  1237. ether1394_prep_gasp_packet(packet, priv, ptask->skb, length);
  1238. } else if (ether1394_prep_write_packet(packet, priv->host,
  1239. ptask->dest_node,
  1240. ptask->addr, ptask->skb->data,
  1241. tx_len)) {
  1242. hpsb_free_packet(packet);
  1243. return -EAGAIN;
  1244. }
  1245. ptask->packet = packet;
  1246. hpsb_set_packet_complete_task(ptask->packet, ether1394_complete_cb,
  1247. ptask);
  1248. if (hpsb_send_packet(packet) < 0) {
  1249. ether1394_free_packet(packet);
  1250. return -EIO;
  1251. }
  1252. return 0;
  1253. }
  1254. /* Task function to be run when a datagram transmission is completed */
  1255. static void ether1394_dg_complete(struct packet_task *ptask, int fail)
  1256. {
  1257. struct sk_buff *skb = ptask->skb;
  1258. struct eth1394_priv *priv = netdev_priv(skb->dev);
  1259. unsigned long flags;
  1260. /* Statistics */
  1261. spin_lock_irqsave(&priv->lock, flags);
  1262. if (fail) {
  1263. priv->stats.tx_dropped++;
  1264. priv->stats.tx_errors++;
  1265. } else {
  1266. priv->stats.tx_bytes += skb->len;
  1267. priv->stats.tx_packets++;
  1268. }
  1269. spin_unlock_irqrestore(&priv->lock, flags);
  1270. dev_kfree_skb_any(skb);
  1271. kmem_cache_free(packet_task_cache, ptask);
  1272. }
  1273. /* Callback for when a packet has been sent and the status of that packet is
  1274. * known */
  1275. static void ether1394_complete_cb(void *__ptask)
  1276. {
  1277. struct packet_task *ptask = (struct packet_task *)__ptask;
  1278. struct hpsb_packet *packet = ptask->packet;
  1279. int fail = 0;
  1280. if (packet->tcode != TCODE_STREAM_DATA)
  1281. fail = hpsb_packet_success(packet);
  1282. ether1394_free_packet(packet);
  1283. ptask->outstanding_pkts--;
  1284. if (ptask->outstanding_pkts > 0 && !fail) {
  1285. int tx_len, err;
  1286. /* Add the encapsulation header to the fragment */
  1287. tx_len = ether1394_encapsulate(ptask->skb, ptask->max_payload,
  1288. &ptask->hdr);
  1289. err = ether1394_send_packet(ptask, tx_len);
  1290. if (err) {
  1291. if (err == -EAGAIN)
  1292. ETH1394_PRINT_G(KERN_ERR, "Out of tlabels\n");
  1293. ether1394_dg_complete(ptask, 1);
  1294. }
  1295. } else {
  1296. ether1394_dg_complete(ptask, fail);
  1297. }
  1298. }
  1299. /* Transmit a packet (called by kernel) */
  1300. static int ether1394_tx(struct sk_buff *skb, struct net_device *dev)
  1301. {
  1302. struct eth1394hdr hdr_buf;
  1303. struct eth1394_priv *priv = netdev_priv(dev);
  1304. __be16 proto;
  1305. unsigned long flags;
  1306. nodeid_t dest_node;
  1307. eth1394_tx_type tx_type;
  1308. unsigned int tx_len;
  1309. unsigned int max_payload;
  1310. u16 dg_size;
  1311. u16 dgl;
  1312. struct packet_task *ptask;
  1313. struct eth1394_node_ref *node;
  1314. struct eth1394_node_info *node_info = NULL;
  1315. ptask = kmem_cache_alloc(packet_task_cache, GFP_ATOMIC);
  1316. if (ptask == NULL)
  1317. goto fail;
  1318. /* XXX Ignore this for now. Noticed that when MacOSX is the IRM,
  1319. * it does not set our validity bit. We need to compensate for
  1320. * that somewhere else, but not in eth1394. */
  1321. #if 0
  1322. if ((priv->host->csr.broadcast_channel & 0xc0000000) != 0xc0000000)
  1323. goto fail;
  1324. #endif
  1325. skb = skb_share_check(skb, GFP_ATOMIC);
  1326. if (!skb)
  1327. goto fail;
  1328. /* Get rid of the fake eth1394 header, but first make a copy.
  1329. * We might need to rebuild the header on tx failure. */
  1330. memcpy(&hdr_buf, skb->data, sizeof(hdr_buf));
  1331. skb_pull(skb, ETH1394_HLEN);
  1332. proto = hdr_buf.h_proto;
  1333. dg_size = skb->len;
  1334. /* Set the transmission type for the packet. ARP packets and IP
  1335. * broadcast packets are sent via GASP. */
  1336. if (memcmp(hdr_buf.h_dest, dev->broadcast, ETH1394_ALEN) == 0 ||
  1337. proto == htons(ETH_P_ARP) ||
  1338. (proto == htons(ETH_P_IP) &&
  1339. IN_MULTICAST(ntohl(ip_hdr(skb)->daddr)))) {
  1340. tx_type = ETH1394_GASP;
  1341. dest_node = LOCAL_BUS | ALL_NODES;
  1342. max_payload = priv->bc_maxpayload - ETHER1394_GASP_OVERHEAD;
  1343. BUG_ON(max_payload < 512 - ETHER1394_GASP_OVERHEAD);
  1344. dgl = priv->bc_dgl;
  1345. if (max_payload < dg_size + hdr_type_len[ETH1394_HDR_LF_UF])
  1346. priv->bc_dgl++;
  1347. } else {
  1348. __be64 guid = get_unaligned((u64 *)hdr_buf.h_dest);
  1349. node = eth1394_find_node_guid(&priv->ip_node_list,
  1350. be64_to_cpu(guid));
  1351. if (!node)
  1352. goto fail;
  1353. node_info =
  1354. (struct eth1394_node_info *)node->ud->device.driver_data;
  1355. if (node_info->fifo == CSR1212_INVALID_ADDR_SPACE)
  1356. goto fail;
  1357. dest_node = node->ud->ne->nodeid;
  1358. max_payload = node_info->maxpayload;
  1359. BUG_ON(max_payload < 512 - ETHER1394_GASP_OVERHEAD);
  1360. dgl = node_info->dgl;
  1361. if (max_payload < dg_size + hdr_type_len[ETH1394_HDR_LF_UF])
  1362. node_info->dgl++;
  1363. tx_type = ETH1394_WRREQ;
  1364. }
  1365. /* If this is an ARP packet, convert it */
  1366. if (proto == htons(ETH_P_ARP))
  1367. ether1394_arp_to_1394arp(skb, dev);
  1368. ptask->hdr.words.word1 = 0;
  1369. ptask->hdr.words.word2 = 0;
  1370. ptask->hdr.words.word3 = 0;
  1371. ptask->hdr.words.word4 = 0;
  1372. ptask->skb = skb;
  1373. ptask->priv = priv;
  1374. ptask->tx_type = tx_type;
  1375. if (tx_type != ETH1394_GASP) {
  1376. u64 addr;
  1377. spin_lock_irqsave(&priv->lock, flags);
  1378. addr = node_info->fifo;
  1379. spin_unlock_irqrestore(&priv->lock, flags);
  1380. ptask->addr = addr;
  1381. ptask->dest_node = dest_node;
  1382. }
  1383. ptask->tx_type = tx_type;
  1384. ptask->max_payload = max_payload;
  1385. ptask->outstanding_pkts = ether1394_encapsulate_prep(max_payload,
  1386. proto, &ptask->hdr, dg_size, dgl);
  1387. /* Add the encapsulation header to the fragment */
  1388. tx_len = ether1394_encapsulate(skb, max_payload, &ptask->hdr);
  1389. dev->trans_start = jiffies;
  1390. if (ether1394_send_packet(ptask, tx_len)) {
  1391. if (dest_node == (LOCAL_BUS | ALL_NODES))
  1392. goto fail;
  1393. /* At this point we want to restore the packet. When we return
  1394. * here with NETDEV_TX_BUSY we will get another entrance in this
  1395. * routine with the same skb and we need it to look the same.
  1396. * So we pull 4 more bytes, then build the header again. */
  1397. skb_pull(skb, 4);
  1398. ether1394_header(skb, dev, ntohs(hdr_buf.h_proto),
  1399. hdr_buf.h_dest, NULL, 0);
  1400. /* Most failures of ether1394_send_packet are recoverable. */
  1401. netif_stop_queue(dev);
  1402. priv->wake_node = dest_node;
  1403. schedule_work(&priv->wake);
  1404. kmem_cache_free(packet_task_cache, ptask);
  1405. return NETDEV_TX_BUSY;
  1406. }
  1407. return NETDEV_TX_OK;
  1408. fail:
  1409. if (ptask)
  1410. kmem_cache_free(packet_task_cache, ptask);
  1411. if (skb != NULL)
  1412. dev_kfree_skb(skb);
  1413. spin_lock_irqsave(&priv->lock, flags);
  1414. priv->stats.tx_dropped++;
  1415. priv->stats.tx_errors++;
  1416. spin_unlock_irqrestore(&priv->lock, flags);
  1417. /*
  1418. * FIXME: According to a patch from 2003-02-26, "returning non-zero
  1419. * causes serious problems" here, allegedly. Before that patch,
  1420. * -ERRNO was returned which is not appropriate under Linux 2.6.
  1421. * Perhaps more needs to be done? Stop the queue in serious
  1422. * conditions and restart it elsewhere?
  1423. */
  1424. /* return NETDEV_TX_BUSY; */
  1425. return NETDEV_TX_OK;
  1426. }
  1427. static void ether1394_get_drvinfo(struct net_device *dev,
  1428. struct ethtool_drvinfo *info)
  1429. {
  1430. strcpy(info->driver, driver_name);
  1431. strcpy(info->bus_info, "ieee1394"); /* FIXME provide more detail? */
  1432. }
  1433. static struct ethtool_ops ethtool_ops = {
  1434. .get_drvinfo = ether1394_get_drvinfo
  1435. };
  1436. static int __init ether1394_init_module(void)
  1437. {
  1438. int err;
  1439. packet_task_cache = kmem_cache_create("packet_task",
  1440. sizeof(struct packet_task),
  1441. 0, 0, NULL, NULL);
  1442. if (!packet_task_cache)
  1443. return -ENOMEM;
  1444. hpsb_register_highlevel(&eth1394_highlevel);
  1445. err = hpsb_register_protocol(&eth1394_proto_driver);
  1446. if (err) {
  1447. hpsb_unregister_highlevel(&eth1394_highlevel);
  1448. kmem_cache_destroy(packet_task_cache);
  1449. }
  1450. return err;
  1451. }
  1452. static void __exit ether1394_exit_module(void)
  1453. {
  1454. hpsb_unregister_protocol(&eth1394_proto_driver);
  1455. hpsb_unregister_highlevel(&eth1394_highlevel);
  1456. kmem_cache_destroy(packet_task_cache);
  1457. }
  1458. module_init(ether1394_init_module);
  1459. module_exit(ether1394_exit_module);