mm.h 43 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270
  1. #ifndef _LINUX_MM_H
  2. #define _LINUX_MM_H
  3. #include <linux/errno.h>
  4. #ifdef __KERNEL__
  5. #include <linux/gfp.h>
  6. #include <linux/list.h>
  7. #include <linux/mmzone.h>
  8. #include <linux/rbtree.h>
  9. #include <linux/prio_tree.h>
  10. #include <linux/fs.h>
  11. #include <linux/mutex.h>
  12. #include <linux/debug_locks.h>
  13. #include <linux/backing-dev.h>
  14. #include <linux/mm_types.h>
  15. struct mempolicy;
  16. struct anon_vma;
  17. struct user_struct;
  18. #ifndef CONFIG_DISCONTIGMEM /* Don't use mapnrs, do it properly */
  19. extern unsigned long max_mapnr;
  20. #endif
  21. extern unsigned long num_physpages;
  22. extern void * high_memory;
  23. extern int page_cluster;
  24. #ifdef CONFIG_SYSCTL
  25. extern int sysctl_legacy_va_layout;
  26. #else
  27. #define sysctl_legacy_va_layout 0
  28. #endif
  29. #include <asm/page.h>
  30. #include <asm/pgtable.h>
  31. #include <asm/processor.h>
  32. #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
  33. /*
  34. * Linux kernel virtual memory manager primitives.
  35. * The idea being to have a "virtual" mm in the same way
  36. * we have a virtual fs - giving a cleaner interface to the
  37. * mm details, and allowing different kinds of memory mappings
  38. * (from shared memory to executable loading to arbitrary
  39. * mmap() functions).
  40. */
  41. /*
  42. * This struct defines a memory VMM memory area. There is one of these
  43. * per VM-area/task. A VM area is any part of the process virtual memory
  44. * space that has a special rule for the page-fault handlers (ie a shared
  45. * library, the executable area etc).
  46. */
  47. struct vm_area_struct {
  48. struct mm_struct * vm_mm; /* The address space we belong to. */
  49. unsigned long vm_start; /* Our start address within vm_mm. */
  50. unsigned long vm_end; /* The first byte after our end address
  51. within vm_mm. */
  52. /* linked list of VM areas per task, sorted by address */
  53. struct vm_area_struct *vm_next;
  54. pgprot_t vm_page_prot; /* Access permissions of this VMA. */
  55. unsigned long vm_flags; /* Flags, listed below. */
  56. struct rb_node vm_rb;
  57. /*
  58. * For areas with an address space and backing store,
  59. * linkage into the address_space->i_mmap prio tree, or
  60. * linkage to the list of like vmas hanging off its node, or
  61. * linkage of vma in the address_space->i_mmap_nonlinear list.
  62. */
  63. union {
  64. struct {
  65. struct list_head list;
  66. void *parent; /* aligns with prio_tree_node parent */
  67. struct vm_area_struct *head;
  68. } vm_set;
  69. struct raw_prio_tree_node prio_tree_node;
  70. } shared;
  71. /*
  72. * A file's MAP_PRIVATE vma can be in both i_mmap tree and anon_vma
  73. * list, after a COW of one of the file pages. A MAP_SHARED vma
  74. * can only be in the i_mmap tree. An anonymous MAP_PRIVATE, stack
  75. * or brk vma (with NULL file) can only be in an anon_vma list.
  76. */
  77. struct list_head anon_vma_node; /* Serialized by anon_vma->lock */
  78. struct anon_vma *anon_vma; /* Serialized by page_table_lock */
  79. /* Function pointers to deal with this struct. */
  80. struct vm_operations_struct * vm_ops;
  81. /* Information about our backing store: */
  82. unsigned long vm_pgoff; /* Offset (within vm_file) in PAGE_SIZE
  83. units, *not* PAGE_CACHE_SIZE */
  84. struct file * vm_file; /* File we map to (can be NULL). */
  85. void * vm_private_data; /* was vm_pte (shared mem) */
  86. unsigned long vm_truncate_count;/* truncate_count or restart_addr */
  87. #ifndef CONFIG_MMU
  88. atomic_t vm_usage; /* refcount (VMAs shared if !MMU) */
  89. #endif
  90. #ifdef CONFIG_NUMA
  91. struct mempolicy *vm_policy; /* NUMA policy for the VMA */
  92. #endif
  93. };
  94. extern struct kmem_cache *vm_area_cachep;
  95. /*
  96. * This struct defines the per-mm list of VMAs for uClinux. If CONFIG_MMU is
  97. * disabled, then there's a single shared list of VMAs maintained by the
  98. * system, and mm's subscribe to these individually
  99. */
  100. struct vm_list_struct {
  101. struct vm_list_struct *next;
  102. struct vm_area_struct *vma;
  103. };
  104. #ifndef CONFIG_MMU
  105. extern struct rb_root nommu_vma_tree;
  106. extern struct rw_semaphore nommu_vma_sem;
  107. extern unsigned int kobjsize(const void *objp);
  108. #endif
  109. /*
  110. * vm_flags..
  111. */
  112. #define VM_READ 0x00000001 /* currently active flags */
  113. #define VM_WRITE 0x00000002
  114. #define VM_EXEC 0x00000004
  115. #define VM_SHARED 0x00000008
  116. /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
  117. #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
  118. #define VM_MAYWRITE 0x00000020
  119. #define VM_MAYEXEC 0x00000040
  120. #define VM_MAYSHARE 0x00000080
  121. #define VM_GROWSDOWN 0x00000100 /* general info on the segment */
  122. #define VM_GROWSUP 0x00000200
  123. #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
  124. #define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
  125. #define VM_EXECUTABLE 0x00001000
  126. #define VM_LOCKED 0x00002000
  127. #define VM_IO 0x00004000 /* Memory mapped I/O or similar */
  128. /* Used by sys_madvise() */
  129. #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
  130. #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
  131. #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
  132. #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
  133. #define VM_RESERVED 0x00080000 /* Count as reserved_vm like IO */
  134. #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
  135. #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
  136. #define VM_NONLINEAR 0x00800000 /* Is non-linear (remap_file_pages) */
  137. #define VM_MAPPED_COPY 0x01000000 /* T if mapped copy of data (nommu mmap) */
  138. #define VM_INSERTPAGE 0x02000000 /* The vma has had "vm_insert_page()" done on it */
  139. #define VM_ALWAYSDUMP 0x04000000 /* Always include in core dumps */
  140. #define VM_CAN_NONLINEAR 0x08000000 /* Has ->fault & does nonlinear pages */
  141. #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
  142. #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
  143. #endif
  144. #ifdef CONFIG_STACK_GROWSUP
  145. #define VM_STACK_FLAGS (VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
  146. #else
  147. #define VM_STACK_FLAGS (VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
  148. #endif
  149. #define VM_READHINTMASK (VM_SEQ_READ | VM_RAND_READ)
  150. #define VM_ClearReadHint(v) (v)->vm_flags &= ~VM_READHINTMASK
  151. #define VM_NormalReadHint(v) (!((v)->vm_flags & VM_READHINTMASK))
  152. #define VM_SequentialReadHint(v) ((v)->vm_flags & VM_SEQ_READ)
  153. #define VM_RandomReadHint(v) ((v)->vm_flags & VM_RAND_READ)
  154. /*
  155. * mapping from the currently active vm_flags protection bits (the
  156. * low four bits) to a page protection mask..
  157. */
  158. extern pgprot_t protection_map[16];
  159. #define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */
  160. #define FAULT_FLAG_NONLINEAR 0x02 /* Fault was via a nonlinear mapping */
  161. #define FAULT_RET_NOPAGE 0x0100 /* ->fault did not return a page. This
  162. * can be used if the handler installs
  163. * their own pte.
  164. */
  165. #define FAULT_RET_LOCKED 0x0200 /* ->fault locked the page, caller must
  166. * unlock after installing the mapping.
  167. * This is used by pagecache in
  168. * particular, where the page lock is
  169. * used to synchronise against truncate
  170. * and invalidate. Mutually exclusive
  171. * with FAULT_RET_NOPAGE.
  172. */
  173. /*
  174. * vm_fault is filled by the the pagefault handler and passed to the vma's
  175. * ->fault function. The vma's ->fault is responsible for returning the
  176. * VM_FAULT_xxx type which occupies the lowest byte of the return code, ORed
  177. * with FAULT_RET_ flags that occupy the next byte and give details about
  178. * how the fault was handled.
  179. *
  180. * pgoff should be used in favour of virtual_address, if possible. If pgoff
  181. * is used, one may set VM_CAN_NONLINEAR in the vma->vm_flags to get nonlinear
  182. * mapping support.
  183. */
  184. struct vm_fault {
  185. unsigned int flags; /* FAULT_FLAG_xxx flags */
  186. pgoff_t pgoff; /* Logical page offset based on vma */
  187. void __user *virtual_address; /* Faulting virtual address */
  188. struct page *page; /* ->fault handlers should return a
  189. * page here, unless FAULT_RET_NOPAGE
  190. * is set (which is also implied by
  191. * VM_FAULT_OOM or SIGBUS).
  192. */
  193. };
  194. /*
  195. * These are the virtual MM functions - opening of an area, closing and
  196. * unmapping it (needed to keep files on disk up-to-date etc), pointer
  197. * to the functions called when a no-page or a wp-page exception occurs.
  198. */
  199. struct vm_operations_struct {
  200. void (*open)(struct vm_area_struct * area);
  201. void (*close)(struct vm_area_struct * area);
  202. int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf);
  203. struct page *(*nopage)(struct vm_area_struct *area,
  204. unsigned long address, int *type);
  205. unsigned long (*nopfn)(struct vm_area_struct *area,
  206. unsigned long address);
  207. /* notification that a previously read-only page is about to become
  208. * writable, if an error is returned it will cause a SIGBUS */
  209. int (*page_mkwrite)(struct vm_area_struct *vma, struct page *page);
  210. #ifdef CONFIG_NUMA
  211. int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
  212. struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
  213. unsigned long addr);
  214. int (*migrate)(struct vm_area_struct *vma, const nodemask_t *from,
  215. const nodemask_t *to, unsigned long flags);
  216. #endif
  217. };
  218. struct mmu_gather;
  219. struct inode;
  220. #define page_private(page) ((page)->private)
  221. #define set_page_private(page, v) ((page)->private = (v))
  222. /*
  223. * FIXME: take this include out, include page-flags.h in
  224. * files which need it (119 of them)
  225. */
  226. #include <linux/page-flags.h>
  227. #ifdef CONFIG_DEBUG_VM
  228. #define VM_BUG_ON(cond) BUG_ON(cond)
  229. #else
  230. #define VM_BUG_ON(condition) do { } while(0)
  231. #endif
  232. /*
  233. * Methods to modify the page usage count.
  234. *
  235. * What counts for a page usage:
  236. * - cache mapping (page->mapping)
  237. * - private data (page->private)
  238. * - page mapped in a task's page tables, each mapping
  239. * is counted separately
  240. *
  241. * Also, many kernel routines increase the page count before a critical
  242. * routine so they can be sure the page doesn't go away from under them.
  243. */
  244. /*
  245. * Drop a ref, return true if the refcount fell to zero (the page has no users)
  246. */
  247. static inline int put_page_testzero(struct page *page)
  248. {
  249. VM_BUG_ON(atomic_read(&page->_count) == 0);
  250. return atomic_dec_and_test(&page->_count);
  251. }
  252. /*
  253. * Try to grab a ref unless the page has a refcount of zero, return false if
  254. * that is the case.
  255. */
  256. static inline int get_page_unless_zero(struct page *page)
  257. {
  258. VM_BUG_ON(PageCompound(page));
  259. return atomic_inc_not_zero(&page->_count);
  260. }
  261. static inline struct page *compound_head(struct page *page)
  262. {
  263. if (unlikely(PageTail(page)))
  264. return page->first_page;
  265. return page;
  266. }
  267. static inline int page_count(struct page *page)
  268. {
  269. return atomic_read(&compound_head(page)->_count);
  270. }
  271. static inline void get_page(struct page *page)
  272. {
  273. page = compound_head(page);
  274. VM_BUG_ON(atomic_read(&page->_count) == 0);
  275. atomic_inc(&page->_count);
  276. }
  277. static inline struct page *virt_to_head_page(const void *x)
  278. {
  279. struct page *page = virt_to_page(x);
  280. return compound_head(page);
  281. }
  282. /*
  283. * Setup the page count before being freed into the page allocator for
  284. * the first time (boot or memory hotplug)
  285. */
  286. static inline void init_page_count(struct page *page)
  287. {
  288. atomic_set(&page->_count, 1);
  289. }
  290. void put_page(struct page *page);
  291. void put_pages_list(struct list_head *pages);
  292. void split_page(struct page *page, unsigned int order);
  293. /*
  294. * Compound pages have a destructor function. Provide a
  295. * prototype for that function and accessor functions.
  296. * These are _only_ valid on the head of a PG_compound page.
  297. */
  298. typedef void compound_page_dtor(struct page *);
  299. static inline void set_compound_page_dtor(struct page *page,
  300. compound_page_dtor *dtor)
  301. {
  302. page[1].lru.next = (void *)dtor;
  303. }
  304. static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
  305. {
  306. return (compound_page_dtor *)page[1].lru.next;
  307. }
  308. static inline int compound_order(struct page *page)
  309. {
  310. if (!PageHead(page))
  311. return 0;
  312. return (unsigned long)page[1].lru.prev;
  313. }
  314. static inline void set_compound_order(struct page *page, unsigned long order)
  315. {
  316. page[1].lru.prev = (void *)order;
  317. }
  318. /*
  319. * Multiple processes may "see" the same page. E.g. for untouched
  320. * mappings of /dev/null, all processes see the same page full of
  321. * zeroes, and text pages of executables and shared libraries have
  322. * only one copy in memory, at most, normally.
  323. *
  324. * For the non-reserved pages, page_count(page) denotes a reference count.
  325. * page_count() == 0 means the page is free. page->lru is then used for
  326. * freelist management in the buddy allocator.
  327. * page_count() > 0 means the page has been allocated.
  328. *
  329. * Pages are allocated by the slab allocator in order to provide memory
  330. * to kmalloc and kmem_cache_alloc. In this case, the management of the
  331. * page, and the fields in 'struct page' are the responsibility of mm/slab.c
  332. * unless a particular usage is carefully commented. (the responsibility of
  333. * freeing the kmalloc memory is the caller's, of course).
  334. *
  335. * A page may be used by anyone else who does a __get_free_page().
  336. * In this case, page_count still tracks the references, and should only
  337. * be used through the normal accessor functions. The top bits of page->flags
  338. * and page->virtual store page management information, but all other fields
  339. * are unused and could be used privately, carefully. The management of this
  340. * page is the responsibility of the one who allocated it, and those who have
  341. * subsequently been given references to it.
  342. *
  343. * The other pages (we may call them "pagecache pages") are completely
  344. * managed by the Linux memory manager: I/O, buffers, swapping etc.
  345. * The following discussion applies only to them.
  346. *
  347. * A pagecache page contains an opaque `private' member, which belongs to the
  348. * page's address_space. Usually, this is the address of a circular list of
  349. * the page's disk buffers. PG_private must be set to tell the VM to call
  350. * into the filesystem to release these pages.
  351. *
  352. * A page may belong to an inode's memory mapping. In this case, page->mapping
  353. * is the pointer to the inode, and page->index is the file offset of the page,
  354. * in units of PAGE_CACHE_SIZE.
  355. *
  356. * If pagecache pages are not associated with an inode, they are said to be
  357. * anonymous pages. These may become associated with the swapcache, and in that
  358. * case PG_swapcache is set, and page->private is an offset into the swapcache.
  359. *
  360. * In either case (swapcache or inode backed), the pagecache itself holds one
  361. * reference to the page. Setting PG_private should also increment the
  362. * refcount. The each user mapping also has a reference to the page.
  363. *
  364. * The pagecache pages are stored in a per-mapping radix tree, which is
  365. * rooted at mapping->page_tree, and indexed by offset.
  366. * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
  367. * lists, we instead now tag pages as dirty/writeback in the radix tree.
  368. *
  369. * All pagecache pages may be subject to I/O:
  370. * - inode pages may need to be read from disk,
  371. * - inode pages which have been modified and are MAP_SHARED may need
  372. * to be written back to the inode on disk,
  373. * - anonymous pages (including MAP_PRIVATE file mappings) which have been
  374. * modified may need to be swapped out to swap space and (later) to be read
  375. * back into memory.
  376. */
  377. /*
  378. * The zone field is never updated after free_area_init_core()
  379. * sets it, so none of the operations on it need to be atomic.
  380. */
  381. /*
  382. * page->flags layout:
  383. *
  384. * There are three possibilities for how page->flags get
  385. * laid out. The first is for the normal case, without
  386. * sparsemem. The second is for sparsemem when there is
  387. * plenty of space for node and section. The last is when
  388. * we have run out of space and have to fall back to an
  389. * alternate (slower) way of determining the node.
  390. *
  391. * No sparsemem: | NODE | ZONE | ... | FLAGS |
  392. * with space for node: | SECTION | NODE | ZONE | ... | FLAGS |
  393. * no space for node: | SECTION | ZONE | ... | FLAGS |
  394. */
  395. #ifdef CONFIG_SPARSEMEM
  396. #define SECTIONS_WIDTH SECTIONS_SHIFT
  397. #else
  398. #define SECTIONS_WIDTH 0
  399. #endif
  400. #define ZONES_WIDTH ZONES_SHIFT
  401. #if SECTIONS_WIDTH+ZONES_WIDTH+NODES_SHIFT <= FLAGS_RESERVED
  402. #define NODES_WIDTH NODES_SHIFT
  403. #else
  404. #define NODES_WIDTH 0
  405. #endif
  406. /* Page flags: | [SECTION] | [NODE] | ZONE | ... | FLAGS | */
  407. #define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
  408. #define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
  409. #define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
  410. /*
  411. * We are going to use the flags for the page to node mapping if its in
  412. * there. This includes the case where there is no node, so it is implicit.
  413. */
  414. #if !(NODES_WIDTH > 0 || NODES_SHIFT == 0)
  415. #define NODE_NOT_IN_PAGE_FLAGS
  416. #endif
  417. #ifndef PFN_SECTION_SHIFT
  418. #define PFN_SECTION_SHIFT 0
  419. #endif
  420. /*
  421. * Define the bit shifts to access each section. For non-existant
  422. * sections we define the shift as 0; that plus a 0 mask ensures
  423. * the compiler will optimise away reference to them.
  424. */
  425. #define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
  426. #define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
  427. #define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
  428. /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allcator */
  429. #ifdef NODE_NOT_IN_PAGEFLAGS
  430. #define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
  431. #define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
  432. SECTIONS_PGOFF : ZONES_PGOFF)
  433. #else
  434. #define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
  435. #define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
  436. NODES_PGOFF : ZONES_PGOFF)
  437. #endif
  438. #define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
  439. #if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > FLAGS_RESERVED
  440. #error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > FLAGS_RESERVED
  441. #endif
  442. #define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
  443. #define NODES_MASK ((1UL << NODES_WIDTH) - 1)
  444. #define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
  445. #define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
  446. static inline enum zone_type page_zonenum(struct page *page)
  447. {
  448. return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
  449. }
  450. /*
  451. * The identification function is only used by the buddy allocator for
  452. * determining if two pages could be buddies. We are not really
  453. * identifying a zone since we could be using a the section number
  454. * id if we have not node id available in page flags.
  455. * We guarantee only that it will return the same value for two
  456. * combinable pages in a zone.
  457. */
  458. static inline int page_zone_id(struct page *page)
  459. {
  460. return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
  461. }
  462. static inline int zone_to_nid(struct zone *zone)
  463. {
  464. #ifdef CONFIG_NUMA
  465. return zone->node;
  466. #else
  467. return 0;
  468. #endif
  469. }
  470. #ifdef NODE_NOT_IN_PAGE_FLAGS
  471. extern int page_to_nid(struct page *page);
  472. #else
  473. static inline int page_to_nid(struct page *page)
  474. {
  475. return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
  476. }
  477. #endif
  478. static inline struct zone *page_zone(struct page *page)
  479. {
  480. return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
  481. }
  482. static inline unsigned long page_to_section(struct page *page)
  483. {
  484. return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
  485. }
  486. static inline void set_page_zone(struct page *page, enum zone_type zone)
  487. {
  488. page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
  489. page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
  490. }
  491. static inline void set_page_node(struct page *page, unsigned long node)
  492. {
  493. page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
  494. page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
  495. }
  496. static inline void set_page_section(struct page *page, unsigned long section)
  497. {
  498. page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
  499. page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
  500. }
  501. static inline void set_page_links(struct page *page, enum zone_type zone,
  502. unsigned long node, unsigned long pfn)
  503. {
  504. set_page_zone(page, zone);
  505. set_page_node(page, node);
  506. set_page_section(page, pfn_to_section_nr(pfn));
  507. }
  508. /*
  509. * Some inline functions in vmstat.h depend on page_zone()
  510. */
  511. #include <linux/vmstat.h>
  512. static __always_inline void *lowmem_page_address(struct page *page)
  513. {
  514. return __va(page_to_pfn(page) << PAGE_SHIFT);
  515. }
  516. #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
  517. #define HASHED_PAGE_VIRTUAL
  518. #endif
  519. #if defined(WANT_PAGE_VIRTUAL)
  520. #define page_address(page) ((page)->virtual)
  521. #define set_page_address(page, address) \
  522. do { \
  523. (page)->virtual = (address); \
  524. } while(0)
  525. #define page_address_init() do { } while(0)
  526. #endif
  527. #if defined(HASHED_PAGE_VIRTUAL)
  528. void *page_address(struct page *page);
  529. void set_page_address(struct page *page, void *virtual);
  530. void page_address_init(void);
  531. #endif
  532. #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
  533. #define page_address(page) lowmem_page_address(page)
  534. #define set_page_address(page, address) do { } while(0)
  535. #define page_address_init() do { } while(0)
  536. #endif
  537. /*
  538. * On an anonymous page mapped into a user virtual memory area,
  539. * page->mapping points to its anon_vma, not to a struct address_space;
  540. * with the PAGE_MAPPING_ANON bit set to distinguish it.
  541. *
  542. * Please note that, confusingly, "page_mapping" refers to the inode
  543. * address_space which maps the page from disk; whereas "page_mapped"
  544. * refers to user virtual address space into which the page is mapped.
  545. */
  546. #define PAGE_MAPPING_ANON 1
  547. extern struct address_space swapper_space;
  548. static inline struct address_space *page_mapping(struct page *page)
  549. {
  550. struct address_space *mapping = page->mapping;
  551. VM_BUG_ON(PageSlab(page));
  552. if (unlikely(PageSwapCache(page)))
  553. mapping = &swapper_space;
  554. #ifdef CONFIG_SLUB
  555. else if (unlikely(PageSlab(page)))
  556. mapping = NULL;
  557. #endif
  558. else if (unlikely((unsigned long)mapping & PAGE_MAPPING_ANON))
  559. mapping = NULL;
  560. return mapping;
  561. }
  562. static inline int PageAnon(struct page *page)
  563. {
  564. return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0;
  565. }
  566. /*
  567. * Return the pagecache index of the passed page. Regular pagecache pages
  568. * use ->index whereas swapcache pages use ->private
  569. */
  570. static inline pgoff_t page_index(struct page *page)
  571. {
  572. if (unlikely(PageSwapCache(page)))
  573. return page_private(page);
  574. return page->index;
  575. }
  576. /*
  577. * The atomic page->_mapcount, like _count, starts from -1:
  578. * so that transitions both from it and to it can be tracked,
  579. * using atomic_inc_and_test and atomic_add_negative(-1).
  580. */
  581. static inline void reset_page_mapcount(struct page *page)
  582. {
  583. atomic_set(&(page)->_mapcount, -1);
  584. }
  585. static inline int page_mapcount(struct page *page)
  586. {
  587. return atomic_read(&(page)->_mapcount) + 1;
  588. }
  589. /*
  590. * Return true if this page is mapped into pagetables.
  591. */
  592. static inline int page_mapped(struct page *page)
  593. {
  594. return atomic_read(&(page)->_mapcount) >= 0;
  595. }
  596. /*
  597. * Error return values for the *_nopage functions
  598. */
  599. #define NOPAGE_SIGBUS (NULL)
  600. #define NOPAGE_OOM ((struct page *) (-1))
  601. /*
  602. * Error return values for the *_nopfn functions
  603. */
  604. #define NOPFN_SIGBUS ((unsigned long) -1)
  605. #define NOPFN_OOM ((unsigned long) -2)
  606. #define NOPFN_REFAULT ((unsigned long) -3)
  607. /*
  608. * Different kinds of faults, as returned by handle_mm_fault().
  609. * Used to decide whether a process gets delivered SIGBUS or
  610. * just gets major/minor fault counters bumped up.
  611. */
  612. /*
  613. * VM_FAULT_ERROR is set for the error cases, to make some tests simpler.
  614. */
  615. #define VM_FAULT_ERROR 0x20
  616. #define VM_FAULT_OOM (0x00 | VM_FAULT_ERROR)
  617. #define VM_FAULT_SIGBUS (0x01 | VM_FAULT_ERROR)
  618. #define VM_FAULT_MINOR 0x02
  619. #define VM_FAULT_MAJOR 0x03
  620. /*
  621. * Special case for get_user_pages.
  622. * Must be in a distinct bit from the above VM_FAULT_ flags.
  623. */
  624. #define VM_FAULT_WRITE 0x10
  625. /*
  626. * Mask of VM_FAULT_ flags
  627. */
  628. #define VM_FAULT_MASK 0xff
  629. #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
  630. extern void show_free_areas(void);
  631. #ifdef CONFIG_SHMEM
  632. int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *new);
  633. struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
  634. unsigned long addr);
  635. int shmem_lock(struct file *file, int lock, struct user_struct *user);
  636. #else
  637. static inline int shmem_lock(struct file *file, int lock,
  638. struct user_struct *user)
  639. {
  640. return 0;
  641. }
  642. static inline int shmem_set_policy(struct vm_area_struct *vma,
  643. struct mempolicy *new)
  644. {
  645. return 0;
  646. }
  647. static inline struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
  648. unsigned long addr)
  649. {
  650. return NULL;
  651. }
  652. #endif
  653. struct file *shmem_file_setup(char *name, loff_t size, unsigned long flags);
  654. int shmem_zero_setup(struct vm_area_struct *);
  655. #ifndef CONFIG_MMU
  656. extern unsigned long shmem_get_unmapped_area(struct file *file,
  657. unsigned long addr,
  658. unsigned long len,
  659. unsigned long pgoff,
  660. unsigned long flags);
  661. #endif
  662. extern int can_do_mlock(void);
  663. extern int user_shm_lock(size_t, struct user_struct *);
  664. extern void user_shm_unlock(size_t, struct user_struct *);
  665. /*
  666. * Parameter block passed down to zap_pte_range in exceptional cases.
  667. */
  668. struct zap_details {
  669. struct vm_area_struct *nonlinear_vma; /* Check page->index if set */
  670. struct address_space *check_mapping; /* Check page->mapping if set */
  671. pgoff_t first_index; /* Lowest page->index to unmap */
  672. pgoff_t last_index; /* Highest page->index to unmap */
  673. spinlock_t *i_mmap_lock; /* For unmap_mapping_range: */
  674. unsigned long truncate_count; /* Compare vm_truncate_count */
  675. };
  676. struct page *vm_normal_page(struct vm_area_struct *, unsigned long, pte_t);
  677. unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
  678. unsigned long size, struct zap_details *);
  679. unsigned long unmap_vmas(struct mmu_gather **tlb,
  680. struct vm_area_struct *start_vma, unsigned long start_addr,
  681. unsigned long end_addr, unsigned long *nr_accounted,
  682. struct zap_details *);
  683. void free_pgd_range(struct mmu_gather **tlb, unsigned long addr,
  684. unsigned long end, unsigned long floor, unsigned long ceiling);
  685. void free_pgtables(struct mmu_gather **tlb, struct vm_area_struct *start_vma,
  686. unsigned long floor, unsigned long ceiling);
  687. int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
  688. struct vm_area_struct *vma);
  689. int zeromap_page_range(struct vm_area_struct *vma, unsigned long from,
  690. unsigned long size, pgprot_t prot);
  691. void unmap_mapping_range(struct address_space *mapping,
  692. loff_t const holebegin, loff_t const holelen, int even_cows);
  693. static inline void unmap_shared_mapping_range(struct address_space *mapping,
  694. loff_t const holebegin, loff_t const holelen)
  695. {
  696. unmap_mapping_range(mapping, holebegin, holelen, 0);
  697. }
  698. extern int vmtruncate(struct inode * inode, loff_t offset);
  699. extern int vmtruncate_range(struct inode * inode, loff_t offset, loff_t end);
  700. #ifdef CONFIG_MMU
  701. extern int __handle_mm_fault(struct mm_struct *mm,struct vm_area_struct *vma,
  702. unsigned long address, int write_access);
  703. static inline int handle_mm_fault(struct mm_struct *mm,
  704. struct vm_area_struct *vma, unsigned long address,
  705. int write_access)
  706. {
  707. return __handle_mm_fault(mm, vma, address, write_access) &
  708. (~VM_FAULT_WRITE);
  709. }
  710. #else
  711. static inline int handle_mm_fault(struct mm_struct *mm,
  712. struct vm_area_struct *vma, unsigned long address,
  713. int write_access)
  714. {
  715. /* should never happen if there's no MMU */
  716. BUG();
  717. return VM_FAULT_SIGBUS;
  718. }
  719. #endif
  720. extern int make_pages_present(unsigned long addr, unsigned long end);
  721. extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write);
  722. void install_arg_page(struct vm_area_struct *, struct page *, unsigned long);
  723. int get_user_pages(struct task_struct *tsk, struct mm_struct *mm, unsigned long start,
  724. int len, int write, int force, struct page **pages, struct vm_area_struct **vmas);
  725. void print_bad_pte(struct vm_area_struct *, pte_t, unsigned long);
  726. extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
  727. extern void do_invalidatepage(struct page *page, unsigned long offset);
  728. int __set_page_dirty_nobuffers(struct page *page);
  729. int __set_page_dirty_no_writeback(struct page *page);
  730. int redirty_page_for_writepage(struct writeback_control *wbc,
  731. struct page *page);
  732. int FASTCALL(set_page_dirty(struct page *page));
  733. int set_page_dirty_lock(struct page *page);
  734. int clear_page_dirty_for_io(struct page *page);
  735. extern unsigned long do_mremap(unsigned long addr,
  736. unsigned long old_len, unsigned long new_len,
  737. unsigned long flags, unsigned long new_addr);
  738. /*
  739. * A callback you can register to apply pressure to ageable caches.
  740. *
  741. * 'shrink' is passed a count 'nr_to_scan' and a 'gfpmask'. It should
  742. * look through the least-recently-used 'nr_to_scan' entries and
  743. * attempt to free them up. It should return the number of objects
  744. * which remain in the cache. If it returns -1, it means it cannot do
  745. * any scanning at this time (eg. there is a risk of deadlock).
  746. *
  747. * The 'gfpmask' refers to the allocation we are currently trying to
  748. * fulfil.
  749. *
  750. * Note that 'shrink' will be passed nr_to_scan == 0 when the VM is
  751. * querying the cache size, so a fastpath for that case is appropriate.
  752. */
  753. struct shrinker {
  754. int (*shrink)(int nr_to_scan, gfp_t gfp_mask);
  755. int seeks; /* seeks to recreate an obj */
  756. /* These are for internal use */
  757. struct list_head list;
  758. long nr; /* objs pending delete */
  759. };
  760. #define DEFAULT_SEEKS 2 /* A good number if you don't know better. */
  761. extern void register_shrinker(struct shrinker *);
  762. extern void unregister_shrinker(struct shrinker *);
  763. /*
  764. * Some shared mappigns will want the pages marked read-only
  765. * to track write events. If so, we'll downgrade vm_page_prot
  766. * to the private version (using protection_map[] without the
  767. * VM_SHARED bit).
  768. */
  769. static inline int vma_wants_writenotify(struct vm_area_struct *vma)
  770. {
  771. unsigned int vm_flags = vma->vm_flags;
  772. /* If it was private or non-writable, the write bit is already clear */
  773. if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
  774. return 0;
  775. /* The backer wishes to know when pages are first written to? */
  776. if (vma->vm_ops && vma->vm_ops->page_mkwrite)
  777. return 1;
  778. /* The open routine did something to the protections already? */
  779. if (pgprot_val(vma->vm_page_prot) !=
  780. pgprot_val(protection_map[vm_flags &
  781. (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]))
  782. return 0;
  783. /* Specialty mapping? */
  784. if (vm_flags & (VM_PFNMAP|VM_INSERTPAGE))
  785. return 0;
  786. /* Can the mapping track the dirty pages? */
  787. return vma->vm_file && vma->vm_file->f_mapping &&
  788. mapping_cap_account_dirty(vma->vm_file->f_mapping);
  789. }
  790. extern pte_t *FASTCALL(get_locked_pte(struct mm_struct *mm, unsigned long addr, spinlock_t **ptl));
  791. #ifdef __PAGETABLE_PUD_FOLDED
  792. static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd,
  793. unsigned long address)
  794. {
  795. return 0;
  796. }
  797. #else
  798. int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
  799. #endif
  800. #ifdef __PAGETABLE_PMD_FOLDED
  801. static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
  802. unsigned long address)
  803. {
  804. return 0;
  805. }
  806. #else
  807. int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
  808. #endif
  809. int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address);
  810. int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
  811. /*
  812. * The following ifdef needed to get the 4level-fixup.h header to work.
  813. * Remove it when 4level-fixup.h has been removed.
  814. */
  815. #if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
  816. static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
  817. {
  818. return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))?
  819. NULL: pud_offset(pgd, address);
  820. }
  821. static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
  822. {
  823. return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
  824. NULL: pmd_offset(pud, address);
  825. }
  826. #endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
  827. #if NR_CPUS >= CONFIG_SPLIT_PTLOCK_CPUS
  828. /*
  829. * We tuck a spinlock to guard each pagetable page into its struct page,
  830. * at page->private, with BUILD_BUG_ON to make sure that this will not
  831. * overflow into the next struct page (as it might with DEBUG_SPINLOCK).
  832. * When freeing, reset page->mapping so free_pages_check won't complain.
  833. */
  834. #define __pte_lockptr(page) &((page)->ptl)
  835. #define pte_lock_init(_page) do { \
  836. spin_lock_init(__pte_lockptr(_page)); \
  837. } while (0)
  838. #define pte_lock_deinit(page) ((page)->mapping = NULL)
  839. #define pte_lockptr(mm, pmd) ({(void)(mm); __pte_lockptr(pmd_page(*(pmd)));})
  840. #else
  841. /*
  842. * We use mm->page_table_lock to guard all pagetable pages of the mm.
  843. */
  844. #define pte_lock_init(page) do {} while (0)
  845. #define pte_lock_deinit(page) do {} while (0)
  846. #define pte_lockptr(mm, pmd) ({(void)(pmd); &(mm)->page_table_lock;})
  847. #endif /* NR_CPUS < CONFIG_SPLIT_PTLOCK_CPUS */
  848. #define pte_offset_map_lock(mm, pmd, address, ptlp) \
  849. ({ \
  850. spinlock_t *__ptl = pte_lockptr(mm, pmd); \
  851. pte_t *__pte = pte_offset_map(pmd, address); \
  852. *(ptlp) = __ptl; \
  853. spin_lock(__ptl); \
  854. __pte; \
  855. })
  856. #define pte_unmap_unlock(pte, ptl) do { \
  857. spin_unlock(ptl); \
  858. pte_unmap(pte); \
  859. } while (0)
  860. #define pte_alloc_map(mm, pmd, address) \
  861. ((unlikely(!pmd_present(*(pmd))) && __pte_alloc(mm, pmd, address))? \
  862. NULL: pte_offset_map(pmd, address))
  863. #define pte_alloc_map_lock(mm, pmd, address, ptlp) \
  864. ((unlikely(!pmd_present(*(pmd))) && __pte_alloc(mm, pmd, address))? \
  865. NULL: pte_offset_map_lock(mm, pmd, address, ptlp))
  866. #define pte_alloc_kernel(pmd, address) \
  867. ((unlikely(!pmd_present(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
  868. NULL: pte_offset_kernel(pmd, address))
  869. extern void free_area_init(unsigned long * zones_size);
  870. extern void free_area_init_node(int nid, pg_data_t *pgdat,
  871. unsigned long * zones_size, unsigned long zone_start_pfn,
  872. unsigned long *zholes_size);
  873. #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
  874. /*
  875. * With CONFIG_ARCH_POPULATES_NODE_MAP set, an architecture may initialise its
  876. * zones, allocate the backing mem_map and account for memory holes in a more
  877. * architecture independent manner. This is a substitute for creating the
  878. * zone_sizes[] and zholes_size[] arrays and passing them to
  879. * free_area_init_node()
  880. *
  881. * An architecture is expected to register range of page frames backed by
  882. * physical memory with add_active_range() before calling
  883. * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
  884. * usage, an architecture is expected to do something like
  885. *
  886. * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
  887. * max_highmem_pfn};
  888. * for_each_valid_physical_page_range()
  889. * add_active_range(node_id, start_pfn, end_pfn)
  890. * free_area_init_nodes(max_zone_pfns);
  891. *
  892. * If the architecture guarantees that there are no holes in the ranges
  893. * registered with add_active_range(), free_bootmem_active_regions()
  894. * will call free_bootmem_node() for each registered physical page range.
  895. * Similarly sparse_memory_present_with_active_regions() calls
  896. * memory_present() for each range when SPARSEMEM is enabled.
  897. *
  898. * See mm/page_alloc.c for more information on each function exposed by
  899. * CONFIG_ARCH_POPULATES_NODE_MAP
  900. */
  901. extern void free_area_init_nodes(unsigned long *max_zone_pfn);
  902. extern void add_active_range(unsigned int nid, unsigned long start_pfn,
  903. unsigned long end_pfn);
  904. extern void shrink_active_range(unsigned int nid, unsigned long old_end_pfn,
  905. unsigned long new_end_pfn);
  906. extern void push_node_boundaries(unsigned int nid, unsigned long start_pfn,
  907. unsigned long end_pfn);
  908. extern void remove_all_active_ranges(void);
  909. extern unsigned long absent_pages_in_range(unsigned long start_pfn,
  910. unsigned long end_pfn);
  911. extern void get_pfn_range_for_nid(unsigned int nid,
  912. unsigned long *start_pfn, unsigned long *end_pfn);
  913. extern unsigned long find_min_pfn_with_active_regions(void);
  914. extern unsigned long find_max_pfn_with_active_regions(void);
  915. extern void free_bootmem_with_active_regions(int nid,
  916. unsigned long max_low_pfn);
  917. extern void sparse_memory_present_with_active_regions(int nid);
  918. #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
  919. extern int early_pfn_to_nid(unsigned long pfn);
  920. #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
  921. #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
  922. extern void set_dma_reserve(unsigned long new_dma_reserve);
  923. extern void memmap_init_zone(unsigned long, int, unsigned long,
  924. unsigned long, enum memmap_context);
  925. extern void setup_per_zone_pages_min(void);
  926. extern void mem_init(void);
  927. extern void show_mem(void);
  928. extern void si_meminfo(struct sysinfo * val);
  929. extern void si_meminfo_node(struct sysinfo *val, int nid);
  930. #ifdef CONFIG_NUMA
  931. extern void setup_per_cpu_pageset(void);
  932. #else
  933. static inline void setup_per_cpu_pageset(void) {}
  934. #endif
  935. /* prio_tree.c */
  936. void vma_prio_tree_add(struct vm_area_struct *, struct vm_area_struct *old);
  937. void vma_prio_tree_insert(struct vm_area_struct *, struct prio_tree_root *);
  938. void vma_prio_tree_remove(struct vm_area_struct *, struct prio_tree_root *);
  939. struct vm_area_struct *vma_prio_tree_next(struct vm_area_struct *vma,
  940. struct prio_tree_iter *iter);
  941. #define vma_prio_tree_foreach(vma, iter, root, begin, end) \
  942. for (prio_tree_iter_init(iter, root, begin, end), vma = NULL; \
  943. (vma = vma_prio_tree_next(vma, iter)); )
  944. static inline void vma_nonlinear_insert(struct vm_area_struct *vma,
  945. struct list_head *list)
  946. {
  947. vma->shared.vm_set.parent = NULL;
  948. list_add_tail(&vma->shared.vm_set.list, list);
  949. }
  950. /* mmap.c */
  951. extern int __vm_enough_memory(long pages, int cap_sys_admin);
  952. extern void vma_adjust(struct vm_area_struct *vma, unsigned long start,
  953. unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert);
  954. extern struct vm_area_struct *vma_merge(struct mm_struct *,
  955. struct vm_area_struct *prev, unsigned long addr, unsigned long end,
  956. unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
  957. struct mempolicy *);
  958. extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
  959. extern int split_vma(struct mm_struct *,
  960. struct vm_area_struct *, unsigned long addr, int new_below);
  961. extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
  962. extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
  963. struct rb_node **, struct rb_node *);
  964. extern void unlink_file_vma(struct vm_area_struct *);
  965. extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
  966. unsigned long addr, unsigned long len, pgoff_t pgoff);
  967. extern void exit_mmap(struct mm_struct *);
  968. extern int may_expand_vm(struct mm_struct *mm, unsigned long npages);
  969. extern int install_special_mapping(struct mm_struct *mm,
  970. unsigned long addr, unsigned long len,
  971. unsigned long flags, struct page **pages);
  972. extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
  973. extern unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
  974. unsigned long len, unsigned long prot,
  975. unsigned long flag, unsigned long pgoff);
  976. extern unsigned long mmap_region(struct file *file, unsigned long addr,
  977. unsigned long len, unsigned long flags,
  978. unsigned int vm_flags, unsigned long pgoff,
  979. int accountable);
  980. static inline unsigned long do_mmap(struct file *file, unsigned long addr,
  981. unsigned long len, unsigned long prot,
  982. unsigned long flag, unsigned long offset)
  983. {
  984. unsigned long ret = -EINVAL;
  985. if ((offset + PAGE_ALIGN(len)) < offset)
  986. goto out;
  987. if (!(offset & ~PAGE_MASK))
  988. ret = do_mmap_pgoff(file, addr, len, prot, flag, offset >> PAGE_SHIFT);
  989. out:
  990. return ret;
  991. }
  992. extern int do_munmap(struct mm_struct *, unsigned long, size_t);
  993. extern unsigned long do_brk(unsigned long, unsigned long);
  994. /* filemap.c */
  995. extern unsigned long page_unuse(struct page *);
  996. extern void truncate_inode_pages(struct address_space *, loff_t);
  997. extern void truncate_inode_pages_range(struct address_space *,
  998. loff_t lstart, loff_t lend);
  999. /* generic vm_area_ops exported for stackable file systems */
  1000. extern int filemap_fault(struct vm_area_struct *, struct vm_fault *);
  1001. /* mm/page-writeback.c */
  1002. int write_one_page(struct page *page, int wait);
  1003. /* readahead.c */
  1004. #define VM_MAX_READAHEAD 128 /* kbytes */
  1005. #define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */
  1006. #define VM_MAX_CACHE_HIT 256 /* max pages in a row in cache before
  1007. * turning readahead off */
  1008. int do_page_cache_readahead(struct address_space *mapping, struct file *filp,
  1009. pgoff_t offset, unsigned long nr_to_read);
  1010. int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
  1011. pgoff_t offset, unsigned long nr_to_read);
  1012. unsigned long page_cache_readahead(struct address_space *mapping,
  1013. struct file_ra_state *ra,
  1014. struct file *filp,
  1015. pgoff_t offset,
  1016. unsigned long size);
  1017. void handle_ra_miss(struct address_space *mapping,
  1018. struct file_ra_state *ra, pgoff_t offset);
  1019. unsigned long max_sane_readahead(unsigned long nr);
  1020. /* Do stack extension */
  1021. extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
  1022. #ifdef CONFIG_IA64
  1023. extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
  1024. #endif
  1025. /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
  1026. extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
  1027. extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
  1028. struct vm_area_struct **pprev);
  1029. /* Look up the first VMA which intersects the interval start_addr..end_addr-1,
  1030. NULL if none. Assume start_addr < end_addr. */
  1031. static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
  1032. {
  1033. struct vm_area_struct * vma = find_vma(mm,start_addr);
  1034. if (vma && end_addr <= vma->vm_start)
  1035. vma = NULL;
  1036. return vma;
  1037. }
  1038. static inline unsigned long vma_pages(struct vm_area_struct *vma)
  1039. {
  1040. return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
  1041. }
  1042. pgprot_t vm_get_page_prot(unsigned long vm_flags);
  1043. struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
  1044. struct page *vmalloc_to_page(void *addr);
  1045. unsigned long vmalloc_to_pfn(void *addr);
  1046. int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
  1047. unsigned long pfn, unsigned long size, pgprot_t);
  1048. int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
  1049. int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
  1050. unsigned long pfn);
  1051. struct page *follow_page(struct vm_area_struct *, unsigned long address,
  1052. unsigned int foll_flags);
  1053. #define FOLL_WRITE 0x01 /* check pte is writable */
  1054. #define FOLL_TOUCH 0x02 /* mark page accessed */
  1055. #define FOLL_GET 0x04 /* do get_page on page */
  1056. #define FOLL_ANON 0x08 /* give ZERO_PAGE if no pgtable */
  1057. typedef int (*pte_fn_t)(pte_t *pte, struct page *pmd_page, unsigned long addr,
  1058. void *data);
  1059. extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
  1060. unsigned long size, pte_fn_t fn, void *data);
  1061. #ifdef CONFIG_PROC_FS
  1062. void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long);
  1063. #else
  1064. static inline void vm_stat_account(struct mm_struct *mm,
  1065. unsigned long flags, struct file *file, long pages)
  1066. {
  1067. }
  1068. #endif /* CONFIG_PROC_FS */
  1069. #ifndef CONFIG_DEBUG_PAGEALLOC
  1070. static inline void
  1071. kernel_map_pages(struct page *page, int numpages, int enable) {}
  1072. #endif
  1073. extern struct vm_area_struct *get_gate_vma(struct task_struct *tsk);
  1074. #ifdef __HAVE_ARCH_GATE_AREA
  1075. int in_gate_area_no_task(unsigned long addr);
  1076. int in_gate_area(struct task_struct *task, unsigned long addr);
  1077. #else
  1078. int in_gate_area_no_task(unsigned long addr);
  1079. #define in_gate_area(task, addr) ({(void)task; in_gate_area_no_task(addr);})
  1080. #endif /* __HAVE_ARCH_GATE_AREA */
  1081. int drop_caches_sysctl_handler(struct ctl_table *, int, struct file *,
  1082. void __user *, size_t *, loff_t *);
  1083. unsigned long shrink_slab(unsigned long scanned, gfp_t gfp_mask,
  1084. unsigned long lru_pages);
  1085. void drop_pagecache(void);
  1086. void drop_slab(void);
  1087. #ifndef CONFIG_MMU
  1088. #define randomize_va_space 0
  1089. #else
  1090. extern int randomize_va_space;
  1091. #endif
  1092. __attribute__((weak)) const char *arch_vma_name(struct vm_area_struct *vma);
  1093. #endif /* __KERNEL__ */
  1094. #endif /* _LINUX_MM_H */