fault_32.c 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597
  1. /*
  2. * fault.c: Page fault handlers for the Sparc.
  3. *
  4. * Copyright (C) 1995 David S. Miller (davem@caip.rutgers.edu)
  5. * Copyright (C) 1996 Eddie C. Dost (ecd@skynet.be)
  6. * Copyright (C) 1997 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
  7. */
  8. #include <asm/head.h>
  9. #include <linux/string.h>
  10. #include <linux/types.h>
  11. #include <linux/sched.h>
  12. #include <linux/ptrace.h>
  13. #include <linux/mman.h>
  14. #include <linux/threads.h>
  15. #include <linux/kernel.h>
  16. #include <linux/signal.h>
  17. #include <linux/mm.h>
  18. #include <linux/smp.h>
  19. #include <linux/perf_event.h>
  20. #include <linux/interrupt.h>
  21. #include <linux/kdebug.h>
  22. #include <asm/page.h>
  23. #include <asm/pgtable.h>
  24. #include <asm/memreg.h>
  25. #include <asm/openprom.h>
  26. #include <asm/oplib.h>
  27. #include <asm/smp.h>
  28. #include <asm/traps.h>
  29. #include <asm/uaccess.h>
  30. extern int prom_node_root;
  31. int show_unhandled_signals = 1;
  32. /* At boot time we determine these two values necessary for setting
  33. * up the segment maps and page table entries (pte's).
  34. */
  35. int num_segmaps, num_contexts;
  36. int invalid_segment;
  37. /* various Virtual Address Cache parameters we find at boot time... */
  38. int vac_size, vac_linesize, vac_do_hw_vac_flushes;
  39. int vac_entries_per_context, vac_entries_per_segment;
  40. int vac_entries_per_page;
  41. /* Return how much physical memory we have. */
  42. unsigned long probe_memory(void)
  43. {
  44. unsigned long total = 0;
  45. int i;
  46. for (i = 0; sp_banks[i].num_bytes; i++)
  47. total += sp_banks[i].num_bytes;
  48. return total;
  49. }
  50. extern void sun4c_complete_all_stores(void);
  51. /* Whee, a level 15 NMI interrupt memory error. Let's have fun... */
  52. asmlinkage void sparc_lvl15_nmi(struct pt_regs *regs, unsigned long serr,
  53. unsigned long svaddr, unsigned long aerr,
  54. unsigned long avaddr)
  55. {
  56. sun4c_complete_all_stores();
  57. printk("FAULT: NMI received\n");
  58. printk("SREGS: Synchronous Error %08lx\n", serr);
  59. printk(" Synchronous Vaddr %08lx\n", svaddr);
  60. printk(" Asynchronous Error %08lx\n", aerr);
  61. printk(" Asynchronous Vaddr %08lx\n", avaddr);
  62. if (sun4c_memerr_reg)
  63. printk(" Memory Parity Error %08lx\n", *sun4c_memerr_reg);
  64. printk("REGISTER DUMP:\n");
  65. show_regs(regs);
  66. prom_halt();
  67. }
  68. static void unhandled_fault(unsigned long, struct task_struct *,
  69. struct pt_regs *) __attribute__ ((noreturn));
  70. static void unhandled_fault(unsigned long address, struct task_struct *tsk,
  71. struct pt_regs *regs)
  72. {
  73. if((unsigned long) address < PAGE_SIZE) {
  74. printk(KERN_ALERT
  75. "Unable to handle kernel NULL pointer dereference\n");
  76. } else {
  77. printk(KERN_ALERT "Unable to handle kernel paging request "
  78. "at virtual address %08lx\n", address);
  79. }
  80. printk(KERN_ALERT "tsk->{mm,active_mm}->context = %08lx\n",
  81. (tsk->mm ? tsk->mm->context : tsk->active_mm->context));
  82. printk(KERN_ALERT "tsk->{mm,active_mm}->pgd = %08lx\n",
  83. (tsk->mm ? (unsigned long) tsk->mm->pgd :
  84. (unsigned long) tsk->active_mm->pgd));
  85. die_if_kernel("Oops", regs);
  86. }
  87. asmlinkage int lookup_fault(unsigned long pc, unsigned long ret_pc,
  88. unsigned long address)
  89. {
  90. struct pt_regs regs;
  91. unsigned long g2;
  92. unsigned int insn;
  93. int i;
  94. i = search_extables_range(ret_pc, &g2);
  95. switch (i) {
  96. case 3:
  97. /* load & store will be handled by fixup */
  98. return 3;
  99. case 1:
  100. /* store will be handled by fixup, load will bump out */
  101. /* for _to_ macros */
  102. insn = *((unsigned int *) pc);
  103. if ((insn >> 21) & 1)
  104. return 1;
  105. break;
  106. case 2:
  107. /* load will be handled by fixup, store will bump out */
  108. /* for _from_ macros */
  109. insn = *((unsigned int *) pc);
  110. if (!((insn >> 21) & 1) || ((insn>>19)&0x3f) == 15)
  111. return 2;
  112. break;
  113. default:
  114. break;
  115. }
  116. memset(&regs, 0, sizeof (regs));
  117. regs.pc = pc;
  118. regs.npc = pc + 4;
  119. __asm__ __volatile__(
  120. "rd %%psr, %0\n\t"
  121. "nop\n\t"
  122. "nop\n\t"
  123. "nop\n" : "=r" (regs.psr));
  124. unhandled_fault(address, current, &regs);
  125. /* Not reached */
  126. return 0;
  127. }
  128. static inline void
  129. show_signal_msg(struct pt_regs *regs, int sig, int code,
  130. unsigned long address, struct task_struct *tsk)
  131. {
  132. if (!unhandled_signal(tsk, sig))
  133. return;
  134. if (!printk_ratelimit())
  135. return;
  136. printk("%s%s[%d]: segfault at %lx ip %p (rpc %p) sp %p error %x",
  137. task_pid_nr(tsk) > 1 ? KERN_INFO : KERN_EMERG,
  138. tsk->comm, task_pid_nr(tsk), address,
  139. (void *)regs->pc, (void *)regs->u_regs[UREG_I7],
  140. (void *)regs->u_regs[UREG_FP], code);
  141. print_vma_addr(KERN_CONT " in ", regs->pc);
  142. printk(KERN_CONT "\n");
  143. }
  144. static void __do_fault_siginfo(int code, int sig, struct pt_regs *regs,
  145. unsigned long addr)
  146. {
  147. siginfo_t info;
  148. info.si_signo = sig;
  149. info.si_code = code;
  150. info.si_errno = 0;
  151. info.si_addr = (void __user *) addr;
  152. info.si_trapno = 0;
  153. if (unlikely(show_unhandled_signals))
  154. show_signal_msg(regs, sig, info.si_code,
  155. addr, current);
  156. force_sig_info (sig, &info, current);
  157. }
  158. extern unsigned long safe_compute_effective_address(struct pt_regs *,
  159. unsigned int);
  160. static unsigned long compute_si_addr(struct pt_regs *regs, int text_fault)
  161. {
  162. unsigned int insn;
  163. if (text_fault)
  164. return regs->pc;
  165. if (regs->psr & PSR_PS) {
  166. insn = *(unsigned int *) regs->pc;
  167. } else {
  168. __get_user(insn, (unsigned int *) regs->pc);
  169. }
  170. return safe_compute_effective_address(regs, insn);
  171. }
  172. static noinline void do_fault_siginfo(int code, int sig, struct pt_regs *regs,
  173. int text_fault)
  174. {
  175. unsigned long addr = compute_si_addr(regs, text_fault);
  176. __do_fault_siginfo(code, sig, regs, addr);
  177. }
  178. asmlinkage void do_sparc_fault(struct pt_regs *regs, int text_fault, int write,
  179. unsigned long address)
  180. {
  181. struct vm_area_struct *vma;
  182. struct task_struct *tsk = current;
  183. struct mm_struct *mm = tsk->mm;
  184. unsigned int fixup;
  185. unsigned long g2;
  186. int from_user = !(regs->psr & PSR_PS);
  187. int fault, code;
  188. unsigned int flags = (FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE |
  189. (write ? FAULT_FLAG_WRITE : 0));
  190. if(text_fault)
  191. address = regs->pc;
  192. /*
  193. * We fault-in kernel-space virtual memory on-demand. The
  194. * 'reference' page table is init_mm.pgd.
  195. *
  196. * NOTE! We MUST NOT take any locks for this case. We may
  197. * be in an interrupt or a critical region, and should
  198. * only copy the information from the master page table,
  199. * nothing more.
  200. */
  201. code = SEGV_MAPERR;
  202. if (!ARCH_SUN4C && address >= TASK_SIZE)
  203. goto vmalloc_fault;
  204. /*
  205. * If we're in an interrupt or have no user
  206. * context, we must not take the fault..
  207. */
  208. if (in_atomic() || !mm)
  209. goto no_context;
  210. perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
  211. retry:
  212. down_read(&mm->mmap_sem);
  213. /*
  214. * The kernel referencing a bad kernel pointer can lock up
  215. * a sun4c machine completely, so we must attempt recovery.
  216. */
  217. if(!from_user && address >= PAGE_OFFSET)
  218. goto bad_area;
  219. vma = find_vma(mm, address);
  220. if(!vma)
  221. goto bad_area;
  222. if(vma->vm_start <= address)
  223. goto good_area;
  224. if(!(vma->vm_flags & VM_GROWSDOWN))
  225. goto bad_area;
  226. if(expand_stack(vma, address))
  227. goto bad_area;
  228. /*
  229. * Ok, we have a good vm_area for this memory access, so
  230. * we can handle it..
  231. */
  232. good_area:
  233. code = SEGV_ACCERR;
  234. if(write) {
  235. if(!(vma->vm_flags & VM_WRITE))
  236. goto bad_area;
  237. } else {
  238. /* Allow reads even for write-only mappings */
  239. if(!(vma->vm_flags & (VM_READ | VM_EXEC)))
  240. goto bad_area;
  241. }
  242. /*
  243. * If for any reason at all we couldn't handle the fault,
  244. * make sure we exit gracefully rather than endlessly redo
  245. * the fault.
  246. */
  247. fault = handle_mm_fault(mm, vma, address, flags);
  248. if ((fault & VM_FAULT_RETRY) && fatal_signal_pending(current))
  249. return;
  250. if (unlikely(fault & VM_FAULT_ERROR)) {
  251. if (fault & VM_FAULT_OOM)
  252. goto out_of_memory;
  253. else if (fault & VM_FAULT_SIGBUS)
  254. goto do_sigbus;
  255. BUG();
  256. }
  257. if (flags & FAULT_FLAG_ALLOW_RETRY) {
  258. if (fault & VM_FAULT_MAJOR) {
  259. current->maj_flt++;
  260. perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ,
  261. 1, regs, address);
  262. } else {
  263. current->min_flt++;
  264. perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN,
  265. 1, regs, address);
  266. }
  267. if (fault & VM_FAULT_RETRY) {
  268. flags &= ~FAULT_FLAG_ALLOW_RETRY;
  269. /* No need to up_read(&mm->mmap_sem) as we would
  270. * have already released it in __lock_page_or_retry
  271. * in mm/filemap.c.
  272. */
  273. goto retry;
  274. }
  275. }
  276. up_read(&mm->mmap_sem);
  277. return;
  278. /*
  279. * Something tried to access memory that isn't in our memory map..
  280. * Fix it, but check if it's kernel or user first..
  281. */
  282. bad_area:
  283. up_read(&mm->mmap_sem);
  284. bad_area_nosemaphore:
  285. /* User mode accesses just cause a SIGSEGV */
  286. if (from_user) {
  287. do_fault_siginfo(code, SIGSEGV, regs, text_fault);
  288. return;
  289. }
  290. /* Is this in ex_table? */
  291. no_context:
  292. g2 = regs->u_regs[UREG_G2];
  293. if (!from_user) {
  294. fixup = search_extables_range(regs->pc, &g2);
  295. if (fixup > 10) { /* Values below are reserved for other things */
  296. extern const unsigned __memset_start[];
  297. extern const unsigned __memset_end[];
  298. extern const unsigned __csum_partial_copy_start[];
  299. extern const unsigned __csum_partial_copy_end[];
  300. #ifdef DEBUG_EXCEPTIONS
  301. printk("Exception: PC<%08lx> faddr<%08lx>\n", regs->pc, address);
  302. printk("EX_TABLE: insn<%08lx> fixup<%08x> g2<%08lx>\n",
  303. regs->pc, fixup, g2);
  304. #endif
  305. if ((regs->pc >= (unsigned long)__memset_start &&
  306. regs->pc < (unsigned long)__memset_end) ||
  307. (regs->pc >= (unsigned long)__csum_partial_copy_start &&
  308. regs->pc < (unsigned long)__csum_partial_copy_end)) {
  309. regs->u_regs[UREG_I4] = address;
  310. regs->u_regs[UREG_I5] = regs->pc;
  311. }
  312. regs->u_regs[UREG_G2] = g2;
  313. regs->pc = fixup;
  314. regs->npc = regs->pc + 4;
  315. return;
  316. }
  317. }
  318. unhandled_fault (address, tsk, regs);
  319. do_exit(SIGKILL);
  320. /*
  321. * We ran out of memory, or some other thing happened to us that made
  322. * us unable to handle the page fault gracefully.
  323. */
  324. out_of_memory:
  325. up_read(&mm->mmap_sem);
  326. if (from_user) {
  327. pagefault_out_of_memory();
  328. return;
  329. }
  330. goto no_context;
  331. do_sigbus:
  332. up_read(&mm->mmap_sem);
  333. do_fault_siginfo(BUS_ADRERR, SIGBUS, regs, text_fault);
  334. if (!from_user)
  335. goto no_context;
  336. vmalloc_fault:
  337. {
  338. /*
  339. * Synchronize this task's top level page-table
  340. * with the 'reference' page table.
  341. */
  342. int offset = pgd_index(address);
  343. pgd_t *pgd, *pgd_k;
  344. pmd_t *pmd, *pmd_k;
  345. pgd = tsk->active_mm->pgd + offset;
  346. pgd_k = init_mm.pgd + offset;
  347. if (!pgd_present(*pgd)) {
  348. if (!pgd_present(*pgd_k))
  349. goto bad_area_nosemaphore;
  350. pgd_val(*pgd) = pgd_val(*pgd_k);
  351. return;
  352. }
  353. pmd = pmd_offset(pgd, address);
  354. pmd_k = pmd_offset(pgd_k, address);
  355. if (pmd_present(*pmd) || !pmd_present(*pmd_k))
  356. goto bad_area_nosemaphore;
  357. *pmd = *pmd_k;
  358. return;
  359. }
  360. }
  361. asmlinkage void do_sun4c_fault(struct pt_regs *regs, int text_fault, int write,
  362. unsigned long address)
  363. {
  364. extern void sun4c_update_mmu_cache(struct vm_area_struct *,
  365. unsigned long,pte_t *);
  366. extern pte_t *sun4c_pte_offset_kernel(pmd_t *,unsigned long);
  367. struct task_struct *tsk = current;
  368. struct mm_struct *mm = tsk->mm;
  369. pgd_t *pgdp;
  370. pte_t *ptep;
  371. if (text_fault) {
  372. address = regs->pc;
  373. } else if (!write &&
  374. !(regs->psr & PSR_PS)) {
  375. unsigned int insn, __user *ip;
  376. ip = (unsigned int __user *)regs->pc;
  377. if (!get_user(insn, ip)) {
  378. if ((insn & 0xc1680000) == 0xc0680000)
  379. write = 1;
  380. }
  381. }
  382. if (!mm) {
  383. /* We are oopsing. */
  384. do_sparc_fault(regs, text_fault, write, address);
  385. BUG(); /* P3 Oops already, you bitch */
  386. }
  387. pgdp = pgd_offset(mm, address);
  388. ptep = sun4c_pte_offset_kernel((pmd_t *) pgdp, address);
  389. if (pgd_val(*pgdp)) {
  390. if (write) {
  391. if ((pte_val(*ptep) & (_SUN4C_PAGE_WRITE|_SUN4C_PAGE_PRESENT))
  392. == (_SUN4C_PAGE_WRITE|_SUN4C_PAGE_PRESENT)) {
  393. unsigned long flags;
  394. *ptep = __pte(pte_val(*ptep) | _SUN4C_PAGE_ACCESSED |
  395. _SUN4C_PAGE_MODIFIED |
  396. _SUN4C_PAGE_VALID |
  397. _SUN4C_PAGE_DIRTY);
  398. local_irq_save(flags);
  399. if (sun4c_get_segmap(address) != invalid_segment) {
  400. sun4c_put_pte(address, pte_val(*ptep));
  401. local_irq_restore(flags);
  402. return;
  403. }
  404. local_irq_restore(flags);
  405. }
  406. } else {
  407. if ((pte_val(*ptep) & (_SUN4C_PAGE_READ|_SUN4C_PAGE_PRESENT))
  408. == (_SUN4C_PAGE_READ|_SUN4C_PAGE_PRESENT)) {
  409. unsigned long flags;
  410. *ptep = __pte(pte_val(*ptep) | _SUN4C_PAGE_ACCESSED |
  411. _SUN4C_PAGE_VALID);
  412. local_irq_save(flags);
  413. if (sun4c_get_segmap(address) != invalid_segment) {
  414. sun4c_put_pte(address, pte_val(*ptep));
  415. local_irq_restore(flags);
  416. return;
  417. }
  418. local_irq_restore(flags);
  419. }
  420. }
  421. }
  422. /* This conditional is 'interesting'. */
  423. if (pgd_val(*pgdp) && !(write && !(pte_val(*ptep) & _SUN4C_PAGE_WRITE))
  424. && (pte_val(*ptep) & _SUN4C_PAGE_VALID))
  425. /* Note: It is safe to not grab the MMAP semaphore here because
  426. * we know that update_mmu_cache() will not sleep for
  427. * any reason (at least not in the current implementation)
  428. * and therefore there is no danger of another thread getting
  429. * on the CPU and doing a shrink_mmap() on this vma.
  430. */
  431. sun4c_update_mmu_cache (find_vma(current->mm, address), address,
  432. ptep);
  433. else
  434. do_sparc_fault(regs, text_fault, write, address);
  435. }
  436. /* This always deals with user addresses. */
  437. static void force_user_fault(unsigned long address, int write)
  438. {
  439. struct vm_area_struct *vma;
  440. struct task_struct *tsk = current;
  441. struct mm_struct *mm = tsk->mm;
  442. int code;
  443. code = SEGV_MAPERR;
  444. down_read(&mm->mmap_sem);
  445. vma = find_vma(mm, address);
  446. if(!vma)
  447. goto bad_area;
  448. if(vma->vm_start <= address)
  449. goto good_area;
  450. if(!(vma->vm_flags & VM_GROWSDOWN))
  451. goto bad_area;
  452. if(expand_stack(vma, address))
  453. goto bad_area;
  454. good_area:
  455. code = SEGV_ACCERR;
  456. if(write) {
  457. if(!(vma->vm_flags & VM_WRITE))
  458. goto bad_area;
  459. } else {
  460. if(!(vma->vm_flags & (VM_READ | VM_EXEC)))
  461. goto bad_area;
  462. }
  463. switch (handle_mm_fault(mm, vma, address, write ? FAULT_FLAG_WRITE : 0)) {
  464. case VM_FAULT_SIGBUS:
  465. case VM_FAULT_OOM:
  466. goto do_sigbus;
  467. }
  468. up_read(&mm->mmap_sem);
  469. return;
  470. bad_area:
  471. up_read(&mm->mmap_sem);
  472. __do_fault_siginfo(code, SIGSEGV, tsk->thread.kregs, address);
  473. return;
  474. do_sigbus:
  475. up_read(&mm->mmap_sem);
  476. __do_fault_siginfo(BUS_ADRERR, SIGBUS, tsk->thread.kregs, address);
  477. }
  478. static void check_stack_aligned(unsigned long sp)
  479. {
  480. if (sp & 0x7UL)
  481. force_sig(SIGILL, current);
  482. }
  483. void window_overflow_fault(void)
  484. {
  485. unsigned long sp;
  486. sp = current_thread_info()->rwbuf_stkptrs[0];
  487. if(((sp + 0x38) & PAGE_MASK) != (sp & PAGE_MASK))
  488. force_user_fault(sp + 0x38, 1);
  489. force_user_fault(sp, 1);
  490. check_stack_aligned(sp);
  491. }
  492. void window_underflow_fault(unsigned long sp)
  493. {
  494. if(((sp + 0x38) & PAGE_MASK) != (sp & PAGE_MASK))
  495. force_user_fault(sp + 0x38, 0);
  496. force_user_fault(sp, 0);
  497. check_stack_aligned(sp);
  498. }
  499. void window_ret_fault(struct pt_regs *regs)
  500. {
  501. unsigned long sp;
  502. sp = regs->u_regs[UREG_FP];
  503. if(((sp + 0x38) & PAGE_MASK) != (sp & PAGE_MASK))
  504. force_user_fault(sp + 0x38, 0);
  505. force_user_fault(sp, 0);
  506. check_stack_aligned(sp);
  507. }