ctree.c 112 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407
  1. /*
  2. * Copyright (C) 2007,2008 Oracle. All rights reserved.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public
  6. * License v2 as published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope that it will be useful,
  9. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  11. * General Public License for more details.
  12. *
  13. * You should have received a copy of the GNU General Public
  14. * License along with this program; if not, write to the
  15. * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16. * Boston, MA 021110-1307, USA.
  17. */
  18. #include <linux/sched.h>
  19. #include <linux/slab.h>
  20. #include "ctree.h"
  21. #include "disk-io.h"
  22. #include "transaction.h"
  23. #include "print-tree.h"
  24. #include "locking.h"
  25. static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
  26. *root, struct btrfs_path *path, int level);
  27. static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root
  28. *root, struct btrfs_key *ins_key,
  29. struct btrfs_path *path, int data_size, int extend);
  30. static int push_node_left(struct btrfs_trans_handle *trans,
  31. struct btrfs_root *root, struct extent_buffer *dst,
  32. struct extent_buffer *src, int empty);
  33. static int balance_node_right(struct btrfs_trans_handle *trans,
  34. struct btrfs_root *root,
  35. struct extent_buffer *dst_buf,
  36. struct extent_buffer *src_buf);
  37. static int del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
  38. struct btrfs_path *path, int level, int slot);
  39. struct btrfs_path *btrfs_alloc_path(void)
  40. {
  41. struct btrfs_path *path;
  42. path = kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
  43. return path;
  44. }
  45. /*
  46. * set all locked nodes in the path to blocking locks. This should
  47. * be done before scheduling
  48. */
  49. noinline void btrfs_set_path_blocking(struct btrfs_path *p)
  50. {
  51. int i;
  52. for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
  53. if (!p->nodes[i] || !p->locks[i])
  54. continue;
  55. btrfs_set_lock_blocking_rw(p->nodes[i], p->locks[i]);
  56. if (p->locks[i] == BTRFS_READ_LOCK)
  57. p->locks[i] = BTRFS_READ_LOCK_BLOCKING;
  58. else if (p->locks[i] == BTRFS_WRITE_LOCK)
  59. p->locks[i] = BTRFS_WRITE_LOCK_BLOCKING;
  60. }
  61. }
  62. /*
  63. * reset all the locked nodes in the patch to spinning locks.
  64. *
  65. * held is used to keep lockdep happy, when lockdep is enabled
  66. * we set held to a blocking lock before we go around and
  67. * retake all the spinlocks in the path. You can safely use NULL
  68. * for held
  69. */
  70. noinline void btrfs_clear_path_blocking(struct btrfs_path *p,
  71. struct extent_buffer *held, int held_rw)
  72. {
  73. int i;
  74. #ifdef CONFIG_DEBUG_LOCK_ALLOC
  75. /* lockdep really cares that we take all of these spinlocks
  76. * in the right order. If any of the locks in the path are not
  77. * currently blocking, it is going to complain. So, make really
  78. * really sure by forcing the path to blocking before we clear
  79. * the path blocking.
  80. */
  81. if (held) {
  82. btrfs_set_lock_blocking_rw(held, held_rw);
  83. if (held_rw == BTRFS_WRITE_LOCK)
  84. held_rw = BTRFS_WRITE_LOCK_BLOCKING;
  85. else if (held_rw == BTRFS_READ_LOCK)
  86. held_rw = BTRFS_READ_LOCK_BLOCKING;
  87. }
  88. btrfs_set_path_blocking(p);
  89. #endif
  90. for (i = BTRFS_MAX_LEVEL - 1; i >= 0; i--) {
  91. if (p->nodes[i] && p->locks[i]) {
  92. btrfs_clear_lock_blocking_rw(p->nodes[i], p->locks[i]);
  93. if (p->locks[i] == BTRFS_WRITE_LOCK_BLOCKING)
  94. p->locks[i] = BTRFS_WRITE_LOCK;
  95. else if (p->locks[i] == BTRFS_READ_LOCK_BLOCKING)
  96. p->locks[i] = BTRFS_READ_LOCK;
  97. }
  98. }
  99. #ifdef CONFIG_DEBUG_LOCK_ALLOC
  100. if (held)
  101. btrfs_clear_lock_blocking_rw(held, held_rw);
  102. #endif
  103. }
  104. /* this also releases the path */
  105. void btrfs_free_path(struct btrfs_path *p)
  106. {
  107. if (!p)
  108. return;
  109. btrfs_release_path(p);
  110. kmem_cache_free(btrfs_path_cachep, p);
  111. }
  112. /*
  113. * path release drops references on the extent buffers in the path
  114. * and it drops any locks held by this path
  115. *
  116. * It is safe to call this on paths that no locks or extent buffers held.
  117. */
  118. noinline void btrfs_release_path(struct btrfs_path *p)
  119. {
  120. int i;
  121. for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
  122. p->slots[i] = 0;
  123. if (!p->nodes[i])
  124. continue;
  125. if (p->locks[i]) {
  126. btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]);
  127. p->locks[i] = 0;
  128. }
  129. free_extent_buffer(p->nodes[i]);
  130. p->nodes[i] = NULL;
  131. }
  132. }
  133. /*
  134. * safely gets a reference on the root node of a tree. A lock
  135. * is not taken, so a concurrent writer may put a different node
  136. * at the root of the tree. See btrfs_lock_root_node for the
  137. * looping required.
  138. *
  139. * The extent buffer returned by this has a reference taken, so
  140. * it won't disappear. It may stop being the root of the tree
  141. * at any time because there are no locks held.
  142. */
  143. struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
  144. {
  145. struct extent_buffer *eb;
  146. while (1) {
  147. rcu_read_lock();
  148. eb = rcu_dereference(root->node);
  149. /*
  150. * RCU really hurts here, we could free up the root node because
  151. * it was cow'ed but we may not get the new root node yet so do
  152. * the inc_not_zero dance and if it doesn't work then
  153. * synchronize_rcu and try again.
  154. */
  155. if (atomic_inc_not_zero(&eb->refs)) {
  156. rcu_read_unlock();
  157. break;
  158. }
  159. rcu_read_unlock();
  160. synchronize_rcu();
  161. }
  162. return eb;
  163. }
  164. /* loop around taking references on and locking the root node of the
  165. * tree until you end up with a lock on the root. A locked buffer
  166. * is returned, with a reference held.
  167. */
  168. struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root)
  169. {
  170. struct extent_buffer *eb;
  171. while (1) {
  172. eb = btrfs_root_node(root);
  173. btrfs_tree_lock(eb);
  174. if (eb == root->node)
  175. break;
  176. btrfs_tree_unlock(eb);
  177. free_extent_buffer(eb);
  178. }
  179. return eb;
  180. }
  181. /* loop around taking references on and locking the root node of the
  182. * tree until you end up with a lock on the root. A locked buffer
  183. * is returned, with a reference held.
  184. */
  185. struct extent_buffer *btrfs_read_lock_root_node(struct btrfs_root *root)
  186. {
  187. struct extent_buffer *eb;
  188. while (1) {
  189. eb = btrfs_root_node(root);
  190. btrfs_tree_read_lock(eb);
  191. if (eb == root->node)
  192. break;
  193. btrfs_tree_read_unlock(eb);
  194. free_extent_buffer(eb);
  195. }
  196. return eb;
  197. }
  198. /* cowonly root (everything not a reference counted cow subvolume), just get
  199. * put onto a simple dirty list. transaction.c walks this to make sure they
  200. * get properly updated on disk.
  201. */
  202. static void add_root_to_dirty_list(struct btrfs_root *root)
  203. {
  204. if (root->track_dirty && list_empty(&root->dirty_list)) {
  205. list_add(&root->dirty_list,
  206. &root->fs_info->dirty_cowonly_roots);
  207. }
  208. }
  209. /*
  210. * used by snapshot creation to make a copy of a root for a tree with
  211. * a given objectid. The buffer with the new root node is returned in
  212. * cow_ret, and this func returns zero on success or a negative error code.
  213. */
  214. int btrfs_copy_root(struct btrfs_trans_handle *trans,
  215. struct btrfs_root *root,
  216. struct extent_buffer *buf,
  217. struct extent_buffer **cow_ret, u64 new_root_objectid)
  218. {
  219. struct extent_buffer *cow;
  220. int ret = 0;
  221. int level;
  222. struct btrfs_disk_key disk_key;
  223. WARN_ON(root->ref_cows && trans->transid !=
  224. root->fs_info->running_transaction->transid);
  225. WARN_ON(root->ref_cows && trans->transid != root->last_trans);
  226. level = btrfs_header_level(buf);
  227. if (level == 0)
  228. btrfs_item_key(buf, &disk_key, 0);
  229. else
  230. btrfs_node_key(buf, &disk_key, 0);
  231. cow = btrfs_alloc_free_block(trans, root, buf->len, 0,
  232. new_root_objectid, &disk_key, level,
  233. buf->start, 0, 1);
  234. if (IS_ERR(cow))
  235. return PTR_ERR(cow);
  236. copy_extent_buffer(cow, buf, 0, 0, cow->len);
  237. btrfs_set_header_bytenr(cow, cow->start);
  238. btrfs_set_header_generation(cow, trans->transid);
  239. btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
  240. btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
  241. BTRFS_HEADER_FLAG_RELOC);
  242. if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
  243. btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
  244. else
  245. btrfs_set_header_owner(cow, new_root_objectid);
  246. write_extent_buffer(cow, root->fs_info->fsid,
  247. (unsigned long)btrfs_header_fsid(cow),
  248. BTRFS_FSID_SIZE);
  249. WARN_ON(btrfs_header_generation(buf) > trans->transid);
  250. if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
  251. ret = btrfs_inc_ref(trans, root, cow, 1, 1);
  252. else
  253. ret = btrfs_inc_ref(trans, root, cow, 0, 1);
  254. if (ret)
  255. return ret;
  256. btrfs_mark_buffer_dirty(cow);
  257. *cow_ret = cow;
  258. return 0;
  259. }
  260. /*
  261. * check if the tree block can be shared by multiple trees
  262. */
  263. int btrfs_block_can_be_shared(struct btrfs_root *root,
  264. struct extent_buffer *buf)
  265. {
  266. /*
  267. * Tree blocks not in refernece counted trees and tree roots
  268. * are never shared. If a block was allocated after the last
  269. * snapshot and the block was not allocated by tree relocation,
  270. * we know the block is not shared.
  271. */
  272. if (root->ref_cows &&
  273. buf != root->node && buf != root->commit_root &&
  274. (btrfs_header_generation(buf) <=
  275. btrfs_root_last_snapshot(&root->root_item) ||
  276. btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
  277. return 1;
  278. #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
  279. if (root->ref_cows &&
  280. btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
  281. return 1;
  282. #endif
  283. return 0;
  284. }
  285. static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
  286. struct btrfs_root *root,
  287. struct extent_buffer *buf,
  288. struct extent_buffer *cow,
  289. int *last_ref)
  290. {
  291. u64 refs;
  292. u64 owner;
  293. u64 flags;
  294. u64 new_flags = 0;
  295. int ret;
  296. /*
  297. * Backrefs update rules:
  298. *
  299. * Always use full backrefs for extent pointers in tree block
  300. * allocated by tree relocation.
  301. *
  302. * If a shared tree block is no longer referenced by its owner
  303. * tree (btrfs_header_owner(buf) == root->root_key.objectid),
  304. * use full backrefs for extent pointers in tree block.
  305. *
  306. * If a tree block is been relocating
  307. * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
  308. * use full backrefs for extent pointers in tree block.
  309. * The reason for this is some operations (such as drop tree)
  310. * are only allowed for blocks use full backrefs.
  311. */
  312. if (btrfs_block_can_be_shared(root, buf)) {
  313. ret = btrfs_lookup_extent_info(trans, root, buf->start,
  314. buf->len, &refs, &flags);
  315. BUG_ON(ret);
  316. BUG_ON(refs == 0);
  317. } else {
  318. refs = 1;
  319. if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
  320. btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
  321. flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
  322. else
  323. flags = 0;
  324. }
  325. owner = btrfs_header_owner(buf);
  326. BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID &&
  327. !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
  328. if (refs > 1) {
  329. if ((owner == root->root_key.objectid ||
  330. root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
  331. !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
  332. ret = btrfs_inc_ref(trans, root, buf, 1, 1);
  333. BUG_ON(ret);
  334. if (root->root_key.objectid ==
  335. BTRFS_TREE_RELOC_OBJECTID) {
  336. ret = btrfs_dec_ref(trans, root, buf, 0, 1);
  337. BUG_ON(ret);
  338. ret = btrfs_inc_ref(trans, root, cow, 1, 1);
  339. BUG_ON(ret);
  340. }
  341. new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
  342. } else {
  343. if (root->root_key.objectid ==
  344. BTRFS_TREE_RELOC_OBJECTID)
  345. ret = btrfs_inc_ref(trans, root, cow, 1, 1);
  346. else
  347. ret = btrfs_inc_ref(trans, root, cow, 0, 1);
  348. BUG_ON(ret);
  349. }
  350. if (new_flags != 0) {
  351. ret = btrfs_set_disk_extent_flags(trans, root,
  352. buf->start,
  353. buf->len,
  354. new_flags, 0);
  355. BUG_ON(ret);
  356. }
  357. } else {
  358. if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
  359. if (root->root_key.objectid ==
  360. BTRFS_TREE_RELOC_OBJECTID)
  361. ret = btrfs_inc_ref(trans, root, cow, 1, 1);
  362. else
  363. ret = btrfs_inc_ref(trans, root, cow, 0, 1);
  364. BUG_ON(ret);
  365. ret = btrfs_dec_ref(trans, root, buf, 1, 1);
  366. BUG_ON(ret);
  367. }
  368. clean_tree_block(trans, root, buf);
  369. *last_ref = 1;
  370. }
  371. return 0;
  372. }
  373. /*
  374. * does the dirty work in cow of a single block. The parent block (if
  375. * supplied) is updated to point to the new cow copy. The new buffer is marked
  376. * dirty and returned locked. If you modify the block it needs to be marked
  377. * dirty again.
  378. *
  379. * search_start -- an allocation hint for the new block
  380. *
  381. * empty_size -- a hint that you plan on doing more cow. This is the size in
  382. * bytes the allocator should try to find free next to the block it returns.
  383. * This is just a hint and may be ignored by the allocator.
  384. */
  385. static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
  386. struct btrfs_root *root,
  387. struct extent_buffer *buf,
  388. struct extent_buffer *parent, int parent_slot,
  389. struct extent_buffer **cow_ret,
  390. u64 search_start, u64 empty_size)
  391. {
  392. struct btrfs_disk_key disk_key;
  393. struct extent_buffer *cow;
  394. int level;
  395. int last_ref = 0;
  396. int unlock_orig = 0;
  397. u64 parent_start;
  398. if (*cow_ret == buf)
  399. unlock_orig = 1;
  400. btrfs_assert_tree_locked(buf);
  401. WARN_ON(root->ref_cows && trans->transid !=
  402. root->fs_info->running_transaction->transid);
  403. WARN_ON(root->ref_cows && trans->transid != root->last_trans);
  404. level = btrfs_header_level(buf);
  405. if (level == 0)
  406. btrfs_item_key(buf, &disk_key, 0);
  407. else
  408. btrfs_node_key(buf, &disk_key, 0);
  409. if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
  410. if (parent)
  411. parent_start = parent->start;
  412. else
  413. parent_start = 0;
  414. } else
  415. parent_start = 0;
  416. cow = btrfs_alloc_free_block(trans, root, buf->len, parent_start,
  417. root->root_key.objectid, &disk_key,
  418. level, search_start, empty_size, 1);
  419. if (IS_ERR(cow))
  420. return PTR_ERR(cow);
  421. /* cow is set to blocking by btrfs_init_new_buffer */
  422. copy_extent_buffer(cow, buf, 0, 0, cow->len);
  423. btrfs_set_header_bytenr(cow, cow->start);
  424. btrfs_set_header_generation(cow, trans->transid);
  425. btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
  426. btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
  427. BTRFS_HEADER_FLAG_RELOC);
  428. if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
  429. btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
  430. else
  431. btrfs_set_header_owner(cow, root->root_key.objectid);
  432. write_extent_buffer(cow, root->fs_info->fsid,
  433. (unsigned long)btrfs_header_fsid(cow),
  434. BTRFS_FSID_SIZE);
  435. update_ref_for_cow(trans, root, buf, cow, &last_ref);
  436. if (root->ref_cows)
  437. btrfs_reloc_cow_block(trans, root, buf, cow);
  438. if (buf == root->node) {
  439. WARN_ON(parent && parent != buf);
  440. if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
  441. btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
  442. parent_start = buf->start;
  443. else
  444. parent_start = 0;
  445. extent_buffer_get(cow);
  446. rcu_assign_pointer(root->node, cow);
  447. btrfs_free_tree_block(trans, root, buf, parent_start,
  448. last_ref, 1);
  449. free_extent_buffer(buf);
  450. add_root_to_dirty_list(root);
  451. } else {
  452. if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
  453. parent_start = parent->start;
  454. else
  455. parent_start = 0;
  456. WARN_ON(trans->transid != btrfs_header_generation(parent));
  457. btrfs_set_node_blockptr(parent, parent_slot,
  458. cow->start);
  459. btrfs_set_node_ptr_generation(parent, parent_slot,
  460. trans->transid);
  461. btrfs_mark_buffer_dirty(parent);
  462. btrfs_free_tree_block(trans, root, buf, parent_start,
  463. last_ref, 1);
  464. }
  465. if (unlock_orig)
  466. btrfs_tree_unlock(buf);
  467. free_extent_buffer_stale(buf);
  468. btrfs_mark_buffer_dirty(cow);
  469. *cow_ret = cow;
  470. return 0;
  471. }
  472. static inline int should_cow_block(struct btrfs_trans_handle *trans,
  473. struct btrfs_root *root,
  474. struct extent_buffer *buf)
  475. {
  476. /* ensure we can see the force_cow */
  477. smp_rmb();
  478. /*
  479. * We do not need to cow a block if
  480. * 1) this block is not created or changed in this transaction;
  481. * 2) this block does not belong to TREE_RELOC tree;
  482. * 3) the root is not forced COW.
  483. *
  484. * What is forced COW:
  485. * when we create snapshot during commiting the transaction,
  486. * after we've finished coping src root, we must COW the shared
  487. * block to ensure the metadata consistency.
  488. */
  489. if (btrfs_header_generation(buf) == trans->transid &&
  490. !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
  491. !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
  492. btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) &&
  493. !root->force_cow)
  494. return 0;
  495. return 1;
  496. }
  497. /*
  498. * cows a single block, see __btrfs_cow_block for the real work.
  499. * This version of it has extra checks so that a block isn't cow'd more than
  500. * once per transaction, as long as it hasn't been written yet
  501. */
  502. noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
  503. struct btrfs_root *root, struct extent_buffer *buf,
  504. struct extent_buffer *parent, int parent_slot,
  505. struct extent_buffer **cow_ret)
  506. {
  507. u64 search_start;
  508. int ret;
  509. if (trans->transaction != root->fs_info->running_transaction) {
  510. printk(KERN_CRIT "trans %llu running %llu\n",
  511. (unsigned long long)trans->transid,
  512. (unsigned long long)
  513. root->fs_info->running_transaction->transid);
  514. WARN_ON(1);
  515. }
  516. if (trans->transid != root->fs_info->generation) {
  517. printk(KERN_CRIT "trans %llu running %llu\n",
  518. (unsigned long long)trans->transid,
  519. (unsigned long long)root->fs_info->generation);
  520. WARN_ON(1);
  521. }
  522. if (!should_cow_block(trans, root, buf)) {
  523. *cow_ret = buf;
  524. return 0;
  525. }
  526. search_start = buf->start & ~((u64)(1024 * 1024 * 1024) - 1);
  527. if (parent)
  528. btrfs_set_lock_blocking(parent);
  529. btrfs_set_lock_blocking(buf);
  530. ret = __btrfs_cow_block(trans, root, buf, parent,
  531. parent_slot, cow_ret, search_start, 0);
  532. trace_btrfs_cow_block(root, buf, *cow_ret);
  533. return ret;
  534. }
  535. /*
  536. * helper function for defrag to decide if two blocks pointed to by a
  537. * node are actually close by
  538. */
  539. static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
  540. {
  541. if (blocknr < other && other - (blocknr + blocksize) < 32768)
  542. return 1;
  543. if (blocknr > other && blocknr - (other + blocksize) < 32768)
  544. return 1;
  545. return 0;
  546. }
  547. /*
  548. * compare two keys in a memcmp fashion
  549. */
  550. static int comp_keys(struct btrfs_disk_key *disk, struct btrfs_key *k2)
  551. {
  552. struct btrfs_key k1;
  553. btrfs_disk_key_to_cpu(&k1, disk);
  554. return btrfs_comp_cpu_keys(&k1, k2);
  555. }
  556. /*
  557. * same as comp_keys only with two btrfs_key's
  558. */
  559. int btrfs_comp_cpu_keys(struct btrfs_key *k1, struct btrfs_key *k2)
  560. {
  561. if (k1->objectid > k2->objectid)
  562. return 1;
  563. if (k1->objectid < k2->objectid)
  564. return -1;
  565. if (k1->type > k2->type)
  566. return 1;
  567. if (k1->type < k2->type)
  568. return -1;
  569. if (k1->offset > k2->offset)
  570. return 1;
  571. if (k1->offset < k2->offset)
  572. return -1;
  573. return 0;
  574. }
  575. /*
  576. * this is used by the defrag code to go through all the
  577. * leaves pointed to by a node and reallocate them so that
  578. * disk order is close to key order
  579. */
  580. int btrfs_realloc_node(struct btrfs_trans_handle *trans,
  581. struct btrfs_root *root, struct extent_buffer *parent,
  582. int start_slot, int cache_only, u64 *last_ret,
  583. struct btrfs_key *progress)
  584. {
  585. struct extent_buffer *cur;
  586. u64 blocknr;
  587. u64 gen;
  588. u64 search_start = *last_ret;
  589. u64 last_block = 0;
  590. u64 other;
  591. u32 parent_nritems;
  592. int end_slot;
  593. int i;
  594. int err = 0;
  595. int parent_level;
  596. int uptodate;
  597. u32 blocksize;
  598. int progress_passed = 0;
  599. struct btrfs_disk_key disk_key;
  600. parent_level = btrfs_header_level(parent);
  601. if (cache_only && parent_level != 1)
  602. return 0;
  603. if (trans->transaction != root->fs_info->running_transaction)
  604. WARN_ON(1);
  605. if (trans->transid != root->fs_info->generation)
  606. WARN_ON(1);
  607. parent_nritems = btrfs_header_nritems(parent);
  608. blocksize = btrfs_level_size(root, parent_level - 1);
  609. end_slot = parent_nritems;
  610. if (parent_nritems == 1)
  611. return 0;
  612. btrfs_set_lock_blocking(parent);
  613. for (i = start_slot; i < end_slot; i++) {
  614. int close = 1;
  615. btrfs_node_key(parent, &disk_key, i);
  616. if (!progress_passed && comp_keys(&disk_key, progress) < 0)
  617. continue;
  618. progress_passed = 1;
  619. blocknr = btrfs_node_blockptr(parent, i);
  620. gen = btrfs_node_ptr_generation(parent, i);
  621. if (last_block == 0)
  622. last_block = blocknr;
  623. if (i > 0) {
  624. other = btrfs_node_blockptr(parent, i - 1);
  625. close = close_blocks(blocknr, other, blocksize);
  626. }
  627. if (!close && i < end_slot - 2) {
  628. other = btrfs_node_blockptr(parent, i + 1);
  629. close = close_blocks(blocknr, other, blocksize);
  630. }
  631. if (close) {
  632. last_block = blocknr;
  633. continue;
  634. }
  635. cur = btrfs_find_tree_block(root, blocknr, blocksize);
  636. if (cur)
  637. uptodate = btrfs_buffer_uptodate(cur, gen);
  638. else
  639. uptodate = 0;
  640. if (!cur || !uptodate) {
  641. if (cache_only) {
  642. free_extent_buffer(cur);
  643. continue;
  644. }
  645. if (!cur) {
  646. cur = read_tree_block(root, blocknr,
  647. blocksize, gen);
  648. if (!cur)
  649. return -EIO;
  650. } else if (!uptodate) {
  651. btrfs_read_buffer(cur, gen);
  652. }
  653. }
  654. if (search_start == 0)
  655. search_start = last_block;
  656. btrfs_tree_lock(cur);
  657. btrfs_set_lock_blocking(cur);
  658. err = __btrfs_cow_block(trans, root, cur, parent, i,
  659. &cur, search_start,
  660. min(16 * blocksize,
  661. (end_slot - i) * blocksize));
  662. if (err) {
  663. btrfs_tree_unlock(cur);
  664. free_extent_buffer(cur);
  665. break;
  666. }
  667. search_start = cur->start;
  668. last_block = cur->start;
  669. *last_ret = search_start;
  670. btrfs_tree_unlock(cur);
  671. free_extent_buffer(cur);
  672. }
  673. return err;
  674. }
  675. /*
  676. * The leaf data grows from end-to-front in the node.
  677. * this returns the address of the start of the last item,
  678. * which is the stop of the leaf data stack
  679. */
  680. static inline unsigned int leaf_data_end(struct btrfs_root *root,
  681. struct extent_buffer *leaf)
  682. {
  683. u32 nr = btrfs_header_nritems(leaf);
  684. if (nr == 0)
  685. return BTRFS_LEAF_DATA_SIZE(root);
  686. return btrfs_item_offset_nr(leaf, nr - 1);
  687. }
  688. /*
  689. * search for key in the extent_buffer. The items start at offset p,
  690. * and they are item_size apart. There are 'max' items in p.
  691. *
  692. * the slot in the array is returned via slot, and it points to
  693. * the place where you would insert key if it is not found in
  694. * the array.
  695. *
  696. * slot may point to max if the key is bigger than all of the keys
  697. */
  698. static noinline int generic_bin_search(struct extent_buffer *eb,
  699. unsigned long p,
  700. int item_size, struct btrfs_key *key,
  701. int max, int *slot)
  702. {
  703. int low = 0;
  704. int high = max;
  705. int mid;
  706. int ret;
  707. struct btrfs_disk_key *tmp = NULL;
  708. struct btrfs_disk_key unaligned;
  709. unsigned long offset;
  710. char *kaddr = NULL;
  711. unsigned long map_start = 0;
  712. unsigned long map_len = 0;
  713. int err;
  714. while (low < high) {
  715. mid = (low + high) / 2;
  716. offset = p + mid * item_size;
  717. if (!kaddr || offset < map_start ||
  718. (offset + sizeof(struct btrfs_disk_key)) >
  719. map_start + map_len) {
  720. err = map_private_extent_buffer(eb, offset,
  721. sizeof(struct btrfs_disk_key),
  722. &kaddr, &map_start, &map_len);
  723. if (!err) {
  724. tmp = (struct btrfs_disk_key *)(kaddr + offset -
  725. map_start);
  726. } else {
  727. read_extent_buffer(eb, &unaligned,
  728. offset, sizeof(unaligned));
  729. tmp = &unaligned;
  730. }
  731. } else {
  732. tmp = (struct btrfs_disk_key *)(kaddr + offset -
  733. map_start);
  734. }
  735. ret = comp_keys(tmp, key);
  736. if (ret < 0)
  737. low = mid + 1;
  738. else if (ret > 0)
  739. high = mid;
  740. else {
  741. *slot = mid;
  742. return 0;
  743. }
  744. }
  745. *slot = low;
  746. return 1;
  747. }
  748. /*
  749. * simple bin_search frontend that does the right thing for
  750. * leaves vs nodes
  751. */
  752. static int bin_search(struct extent_buffer *eb, struct btrfs_key *key,
  753. int level, int *slot)
  754. {
  755. if (level == 0) {
  756. return generic_bin_search(eb,
  757. offsetof(struct btrfs_leaf, items),
  758. sizeof(struct btrfs_item),
  759. key, btrfs_header_nritems(eb),
  760. slot);
  761. } else {
  762. return generic_bin_search(eb,
  763. offsetof(struct btrfs_node, ptrs),
  764. sizeof(struct btrfs_key_ptr),
  765. key, btrfs_header_nritems(eb),
  766. slot);
  767. }
  768. return -1;
  769. }
  770. int btrfs_bin_search(struct extent_buffer *eb, struct btrfs_key *key,
  771. int level, int *slot)
  772. {
  773. return bin_search(eb, key, level, slot);
  774. }
  775. static void root_add_used(struct btrfs_root *root, u32 size)
  776. {
  777. spin_lock(&root->accounting_lock);
  778. btrfs_set_root_used(&root->root_item,
  779. btrfs_root_used(&root->root_item) + size);
  780. spin_unlock(&root->accounting_lock);
  781. }
  782. static void root_sub_used(struct btrfs_root *root, u32 size)
  783. {
  784. spin_lock(&root->accounting_lock);
  785. btrfs_set_root_used(&root->root_item,
  786. btrfs_root_used(&root->root_item) - size);
  787. spin_unlock(&root->accounting_lock);
  788. }
  789. /* given a node and slot number, this reads the blocks it points to. The
  790. * extent buffer is returned with a reference taken (but unlocked).
  791. * NULL is returned on error.
  792. */
  793. static noinline struct extent_buffer *read_node_slot(struct btrfs_root *root,
  794. struct extent_buffer *parent, int slot)
  795. {
  796. int level = btrfs_header_level(parent);
  797. if (slot < 0)
  798. return NULL;
  799. if (slot >= btrfs_header_nritems(parent))
  800. return NULL;
  801. BUG_ON(level == 0);
  802. return read_tree_block(root, btrfs_node_blockptr(parent, slot),
  803. btrfs_level_size(root, level - 1),
  804. btrfs_node_ptr_generation(parent, slot));
  805. }
  806. /*
  807. * node level balancing, used to make sure nodes are in proper order for
  808. * item deletion. We balance from the top down, so we have to make sure
  809. * that a deletion won't leave an node completely empty later on.
  810. */
  811. static noinline int balance_level(struct btrfs_trans_handle *trans,
  812. struct btrfs_root *root,
  813. struct btrfs_path *path, int level)
  814. {
  815. struct extent_buffer *right = NULL;
  816. struct extent_buffer *mid;
  817. struct extent_buffer *left = NULL;
  818. struct extent_buffer *parent = NULL;
  819. int ret = 0;
  820. int wret;
  821. int pslot;
  822. int orig_slot = path->slots[level];
  823. u64 orig_ptr;
  824. if (level == 0)
  825. return 0;
  826. mid = path->nodes[level];
  827. WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK &&
  828. path->locks[level] != BTRFS_WRITE_LOCK_BLOCKING);
  829. WARN_ON(btrfs_header_generation(mid) != trans->transid);
  830. orig_ptr = btrfs_node_blockptr(mid, orig_slot);
  831. if (level < BTRFS_MAX_LEVEL - 1) {
  832. parent = path->nodes[level + 1];
  833. pslot = path->slots[level + 1];
  834. }
  835. /*
  836. * deal with the case where there is only one pointer in the root
  837. * by promoting the node below to a root
  838. */
  839. if (!parent) {
  840. struct extent_buffer *child;
  841. if (btrfs_header_nritems(mid) != 1)
  842. return 0;
  843. /* promote the child to a root */
  844. child = read_node_slot(root, mid, 0);
  845. BUG_ON(!child);
  846. btrfs_tree_lock(child);
  847. btrfs_set_lock_blocking(child);
  848. ret = btrfs_cow_block(trans, root, child, mid, 0, &child);
  849. if (ret) {
  850. btrfs_tree_unlock(child);
  851. free_extent_buffer(child);
  852. goto enospc;
  853. }
  854. rcu_assign_pointer(root->node, child);
  855. add_root_to_dirty_list(root);
  856. btrfs_tree_unlock(child);
  857. path->locks[level] = 0;
  858. path->nodes[level] = NULL;
  859. clean_tree_block(trans, root, mid);
  860. btrfs_tree_unlock(mid);
  861. /* once for the path */
  862. free_extent_buffer(mid);
  863. root_sub_used(root, mid->len);
  864. btrfs_free_tree_block(trans, root, mid, 0, 1, 0);
  865. /* once for the root ptr */
  866. free_extent_buffer_stale(mid);
  867. return 0;
  868. }
  869. if (btrfs_header_nritems(mid) >
  870. BTRFS_NODEPTRS_PER_BLOCK(root) / 4)
  871. return 0;
  872. btrfs_header_nritems(mid);
  873. left = read_node_slot(root, parent, pslot - 1);
  874. if (left) {
  875. btrfs_tree_lock(left);
  876. btrfs_set_lock_blocking(left);
  877. wret = btrfs_cow_block(trans, root, left,
  878. parent, pslot - 1, &left);
  879. if (wret) {
  880. ret = wret;
  881. goto enospc;
  882. }
  883. }
  884. right = read_node_slot(root, parent, pslot + 1);
  885. if (right) {
  886. btrfs_tree_lock(right);
  887. btrfs_set_lock_blocking(right);
  888. wret = btrfs_cow_block(trans, root, right,
  889. parent, pslot + 1, &right);
  890. if (wret) {
  891. ret = wret;
  892. goto enospc;
  893. }
  894. }
  895. /* first, try to make some room in the middle buffer */
  896. if (left) {
  897. orig_slot += btrfs_header_nritems(left);
  898. wret = push_node_left(trans, root, left, mid, 1);
  899. if (wret < 0)
  900. ret = wret;
  901. btrfs_header_nritems(mid);
  902. }
  903. /*
  904. * then try to empty the right most buffer into the middle
  905. */
  906. if (right) {
  907. wret = push_node_left(trans, root, mid, right, 1);
  908. if (wret < 0 && wret != -ENOSPC)
  909. ret = wret;
  910. if (btrfs_header_nritems(right) == 0) {
  911. clean_tree_block(trans, root, right);
  912. btrfs_tree_unlock(right);
  913. wret = del_ptr(trans, root, path, level + 1, pslot +
  914. 1);
  915. if (wret)
  916. ret = wret;
  917. root_sub_used(root, right->len);
  918. btrfs_free_tree_block(trans, root, right, 0, 1, 0);
  919. free_extent_buffer_stale(right);
  920. right = NULL;
  921. } else {
  922. struct btrfs_disk_key right_key;
  923. btrfs_node_key(right, &right_key, 0);
  924. btrfs_set_node_key(parent, &right_key, pslot + 1);
  925. btrfs_mark_buffer_dirty(parent);
  926. }
  927. }
  928. if (btrfs_header_nritems(mid) == 1) {
  929. /*
  930. * we're not allowed to leave a node with one item in the
  931. * tree during a delete. A deletion from lower in the tree
  932. * could try to delete the only pointer in this node.
  933. * So, pull some keys from the left.
  934. * There has to be a left pointer at this point because
  935. * otherwise we would have pulled some pointers from the
  936. * right
  937. */
  938. BUG_ON(!left);
  939. wret = balance_node_right(trans, root, mid, left);
  940. if (wret < 0) {
  941. ret = wret;
  942. goto enospc;
  943. }
  944. if (wret == 1) {
  945. wret = push_node_left(trans, root, left, mid, 1);
  946. if (wret < 0)
  947. ret = wret;
  948. }
  949. BUG_ON(wret == 1);
  950. }
  951. if (btrfs_header_nritems(mid) == 0) {
  952. clean_tree_block(trans, root, mid);
  953. btrfs_tree_unlock(mid);
  954. wret = del_ptr(trans, root, path, level + 1, pslot);
  955. if (wret)
  956. ret = wret;
  957. root_sub_used(root, mid->len);
  958. btrfs_free_tree_block(trans, root, mid, 0, 1, 0);
  959. free_extent_buffer_stale(mid);
  960. mid = NULL;
  961. } else {
  962. /* update the parent key to reflect our changes */
  963. struct btrfs_disk_key mid_key;
  964. btrfs_node_key(mid, &mid_key, 0);
  965. btrfs_set_node_key(parent, &mid_key, pslot);
  966. btrfs_mark_buffer_dirty(parent);
  967. }
  968. /* update the path */
  969. if (left) {
  970. if (btrfs_header_nritems(left) > orig_slot) {
  971. extent_buffer_get(left);
  972. /* left was locked after cow */
  973. path->nodes[level] = left;
  974. path->slots[level + 1] -= 1;
  975. path->slots[level] = orig_slot;
  976. if (mid) {
  977. btrfs_tree_unlock(mid);
  978. free_extent_buffer(mid);
  979. }
  980. } else {
  981. orig_slot -= btrfs_header_nritems(left);
  982. path->slots[level] = orig_slot;
  983. }
  984. }
  985. /* double check we haven't messed things up */
  986. if (orig_ptr !=
  987. btrfs_node_blockptr(path->nodes[level], path->slots[level]))
  988. BUG();
  989. enospc:
  990. if (right) {
  991. btrfs_tree_unlock(right);
  992. free_extent_buffer(right);
  993. }
  994. if (left) {
  995. if (path->nodes[level] != left)
  996. btrfs_tree_unlock(left);
  997. free_extent_buffer(left);
  998. }
  999. return ret;
  1000. }
  1001. /* Node balancing for insertion. Here we only split or push nodes around
  1002. * when they are completely full. This is also done top down, so we
  1003. * have to be pessimistic.
  1004. */
  1005. static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
  1006. struct btrfs_root *root,
  1007. struct btrfs_path *path, int level)
  1008. {
  1009. struct extent_buffer *right = NULL;
  1010. struct extent_buffer *mid;
  1011. struct extent_buffer *left = NULL;
  1012. struct extent_buffer *parent = NULL;
  1013. int ret = 0;
  1014. int wret;
  1015. int pslot;
  1016. int orig_slot = path->slots[level];
  1017. if (level == 0)
  1018. return 1;
  1019. mid = path->nodes[level];
  1020. WARN_ON(btrfs_header_generation(mid) != trans->transid);
  1021. if (level < BTRFS_MAX_LEVEL - 1) {
  1022. parent = path->nodes[level + 1];
  1023. pslot = path->slots[level + 1];
  1024. }
  1025. if (!parent)
  1026. return 1;
  1027. left = read_node_slot(root, parent, pslot - 1);
  1028. /* first, try to make some room in the middle buffer */
  1029. if (left) {
  1030. u32 left_nr;
  1031. btrfs_tree_lock(left);
  1032. btrfs_set_lock_blocking(left);
  1033. left_nr = btrfs_header_nritems(left);
  1034. if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
  1035. wret = 1;
  1036. } else {
  1037. ret = btrfs_cow_block(trans, root, left, parent,
  1038. pslot - 1, &left);
  1039. if (ret)
  1040. wret = 1;
  1041. else {
  1042. wret = push_node_left(trans, root,
  1043. left, mid, 0);
  1044. }
  1045. }
  1046. if (wret < 0)
  1047. ret = wret;
  1048. if (wret == 0) {
  1049. struct btrfs_disk_key disk_key;
  1050. orig_slot += left_nr;
  1051. btrfs_node_key(mid, &disk_key, 0);
  1052. btrfs_set_node_key(parent, &disk_key, pslot);
  1053. btrfs_mark_buffer_dirty(parent);
  1054. if (btrfs_header_nritems(left) > orig_slot) {
  1055. path->nodes[level] = left;
  1056. path->slots[level + 1] -= 1;
  1057. path->slots[level] = orig_slot;
  1058. btrfs_tree_unlock(mid);
  1059. free_extent_buffer(mid);
  1060. } else {
  1061. orig_slot -=
  1062. btrfs_header_nritems(left);
  1063. path->slots[level] = orig_slot;
  1064. btrfs_tree_unlock(left);
  1065. free_extent_buffer(left);
  1066. }
  1067. return 0;
  1068. }
  1069. btrfs_tree_unlock(left);
  1070. free_extent_buffer(left);
  1071. }
  1072. right = read_node_slot(root, parent, pslot + 1);
  1073. /*
  1074. * then try to empty the right most buffer into the middle
  1075. */
  1076. if (right) {
  1077. u32 right_nr;
  1078. btrfs_tree_lock(right);
  1079. btrfs_set_lock_blocking(right);
  1080. right_nr = btrfs_header_nritems(right);
  1081. if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
  1082. wret = 1;
  1083. } else {
  1084. ret = btrfs_cow_block(trans, root, right,
  1085. parent, pslot + 1,
  1086. &right);
  1087. if (ret)
  1088. wret = 1;
  1089. else {
  1090. wret = balance_node_right(trans, root,
  1091. right, mid);
  1092. }
  1093. }
  1094. if (wret < 0)
  1095. ret = wret;
  1096. if (wret == 0) {
  1097. struct btrfs_disk_key disk_key;
  1098. btrfs_node_key(right, &disk_key, 0);
  1099. btrfs_set_node_key(parent, &disk_key, pslot + 1);
  1100. btrfs_mark_buffer_dirty(parent);
  1101. if (btrfs_header_nritems(mid) <= orig_slot) {
  1102. path->nodes[level] = right;
  1103. path->slots[level + 1] += 1;
  1104. path->slots[level] = orig_slot -
  1105. btrfs_header_nritems(mid);
  1106. btrfs_tree_unlock(mid);
  1107. free_extent_buffer(mid);
  1108. } else {
  1109. btrfs_tree_unlock(right);
  1110. free_extent_buffer(right);
  1111. }
  1112. return 0;
  1113. }
  1114. btrfs_tree_unlock(right);
  1115. free_extent_buffer(right);
  1116. }
  1117. return 1;
  1118. }
  1119. /*
  1120. * readahead one full node of leaves, finding things that are close
  1121. * to the block in 'slot', and triggering ra on them.
  1122. */
  1123. static void reada_for_search(struct btrfs_root *root,
  1124. struct btrfs_path *path,
  1125. int level, int slot, u64 objectid)
  1126. {
  1127. struct extent_buffer *node;
  1128. struct btrfs_disk_key disk_key;
  1129. u32 nritems;
  1130. u64 search;
  1131. u64 target;
  1132. u64 nread = 0;
  1133. u64 gen;
  1134. int direction = path->reada;
  1135. struct extent_buffer *eb;
  1136. u32 nr;
  1137. u32 blocksize;
  1138. u32 nscan = 0;
  1139. if (level != 1)
  1140. return;
  1141. if (!path->nodes[level])
  1142. return;
  1143. node = path->nodes[level];
  1144. search = btrfs_node_blockptr(node, slot);
  1145. blocksize = btrfs_level_size(root, level - 1);
  1146. eb = btrfs_find_tree_block(root, search, blocksize);
  1147. if (eb) {
  1148. free_extent_buffer(eb);
  1149. return;
  1150. }
  1151. target = search;
  1152. nritems = btrfs_header_nritems(node);
  1153. nr = slot;
  1154. while (1) {
  1155. if (direction < 0) {
  1156. if (nr == 0)
  1157. break;
  1158. nr--;
  1159. } else if (direction > 0) {
  1160. nr++;
  1161. if (nr >= nritems)
  1162. break;
  1163. }
  1164. if (path->reada < 0 && objectid) {
  1165. btrfs_node_key(node, &disk_key, nr);
  1166. if (btrfs_disk_key_objectid(&disk_key) != objectid)
  1167. break;
  1168. }
  1169. search = btrfs_node_blockptr(node, nr);
  1170. if ((search <= target && target - search <= 65536) ||
  1171. (search > target && search - target <= 65536)) {
  1172. gen = btrfs_node_ptr_generation(node, nr);
  1173. readahead_tree_block(root, search, blocksize, gen);
  1174. nread += blocksize;
  1175. }
  1176. nscan++;
  1177. if ((nread > 65536 || nscan > 32))
  1178. break;
  1179. }
  1180. }
  1181. /*
  1182. * returns -EAGAIN if it had to drop the path, or zero if everything was in
  1183. * cache
  1184. */
  1185. static noinline int reada_for_balance(struct btrfs_root *root,
  1186. struct btrfs_path *path, int level)
  1187. {
  1188. int slot;
  1189. int nritems;
  1190. struct extent_buffer *parent;
  1191. struct extent_buffer *eb;
  1192. u64 gen;
  1193. u64 block1 = 0;
  1194. u64 block2 = 0;
  1195. int ret = 0;
  1196. int blocksize;
  1197. parent = path->nodes[level + 1];
  1198. if (!parent)
  1199. return 0;
  1200. nritems = btrfs_header_nritems(parent);
  1201. slot = path->slots[level + 1];
  1202. blocksize = btrfs_level_size(root, level);
  1203. if (slot > 0) {
  1204. block1 = btrfs_node_blockptr(parent, slot - 1);
  1205. gen = btrfs_node_ptr_generation(parent, slot - 1);
  1206. eb = btrfs_find_tree_block(root, block1, blocksize);
  1207. if (eb && btrfs_buffer_uptodate(eb, gen))
  1208. block1 = 0;
  1209. free_extent_buffer(eb);
  1210. }
  1211. if (slot + 1 < nritems) {
  1212. block2 = btrfs_node_blockptr(parent, slot + 1);
  1213. gen = btrfs_node_ptr_generation(parent, slot + 1);
  1214. eb = btrfs_find_tree_block(root, block2, blocksize);
  1215. if (eb && btrfs_buffer_uptodate(eb, gen))
  1216. block2 = 0;
  1217. free_extent_buffer(eb);
  1218. }
  1219. if (block1 || block2) {
  1220. ret = -EAGAIN;
  1221. /* release the whole path */
  1222. btrfs_release_path(path);
  1223. /* read the blocks */
  1224. if (block1)
  1225. readahead_tree_block(root, block1, blocksize, 0);
  1226. if (block2)
  1227. readahead_tree_block(root, block2, blocksize, 0);
  1228. if (block1) {
  1229. eb = read_tree_block(root, block1, blocksize, 0);
  1230. free_extent_buffer(eb);
  1231. }
  1232. if (block2) {
  1233. eb = read_tree_block(root, block2, blocksize, 0);
  1234. free_extent_buffer(eb);
  1235. }
  1236. }
  1237. return ret;
  1238. }
  1239. /*
  1240. * when we walk down the tree, it is usually safe to unlock the higher layers
  1241. * in the tree. The exceptions are when our path goes through slot 0, because
  1242. * operations on the tree might require changing key pointers higher up in the
  1243. * tree.
  1244. *
  1245. * callers might also have set path->keep_locks, which tells this code to keep
  1246. * the lock if the path points to the last slot in the block. This is part of
  1247. * walking through the tree, and selecting the next slot in the higher block.
  1248. *
  1249. * lowest_unlock sets the lowest level in the tree we're allowed to unlock. so
  1250. * if lowest_unlock is 1, level 0 won't be unlocked
  1251. */
  1252. static noinline void unlock_up(struct btrfs_path *path, int level,
  1253. int lowest_unlock)
  1254. {
  1255. int i;
  1256. int skip_level = level;
  1257. int no_skips = 0;
  1258. struct extent_buffer *t;
  1259. for (i = level; i < BTRFS_MAX_LEVEL; i++) {
  1260. if (!path->nodes[i])
  1261. break;
  1262. if (!path->locks[i])
  1263. break;
  1264. if (!no_skips && path->slots[i] == 0) {
  1265. skip_level = i + 1;
  1266. continue;
  1267. }
  1268. if (!no_skips && path->keep_locks) {
  1269. u32 nritems;
  1270. t = path->nodes[i];
  1271. nritems = btrfs_header_nritems(t);
  1272. if (nritems < 1 || path->slots[i] >= nritems - 1) {
  1273. skip_level = i + 1;
  1274. continue;
  1275. }
  1276. }
  1277. if (skip_level < i && i >= lowest_unlock)
  1278. no_skips = 1;
  1279. t = path->nodes[i];
  1280. if (i >= lowest_unlock && i > skip_level && path->locks[i]) {
  1281. btrfs_tree_unlock_rw(t, path->locks[i]);
  1282. path->locks[i] = 0;
  1283. }
  1284. }
  1285. }
  1286. /*
  1287. * This releases any locks held in the path starting at level and
  1288. * going all the way up to the root.
  1289. *
  1290. * btrfs_search_slot will keep the lock held on higher nodes in a few
  1291. * corner cases, such as COW of the block at slot zero in the node. This
  1292. * ignores those rules, and it should only be called when there are no
  1293. * more updates to be done higher up in the tree.
  1294. */
  1295. noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level)
  1296. {
  1297. int i;
  1298. if (path->keep_locks)
  1299. return;
  1300. for (i = level; i < BTRFS_MAX_LEVEL; i++) {
  1301. if (!path->nodes[i])
  1302. continue;
  1303. if (!path->locks[i])
  1304. continue;
  1305. btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]);
  1306. path->locks[i] = 0;
  1307. }
  1308. }
  1309. /*
  1310. * helper function for btrfs_search_slot. The goal is to find a block
  1311. * in cache without setting the path to blocking. If we find the block
  1312. * we return zero and the path is unchanged.
  1313. *
  1314. * If we can't find the block, we set the path blocking and do some
  1315. * reada. -EAGAIN is returned and the search must be repeated.
  1316. */
  1317. static int
  1318. read_block_for_search(struct btrfs_trans_handle *trans,
  1319. struct btrfs_root *root, struct btrfs_path *p,
  1320. struct extent_buffer **eb_ret, int level, int slot,
  1321. struct btrfs_key *key)
  1322. {
  1323. u64 blocknr;
  1324. u64 gen;
  1325. u32 blocksize;
  1326. struct extent_buffer *b = *eb_ret;
  1327. struct extent_buffer *tmp;
  1328. int ret;
  1329. blocknr = btrfs_node_blockptr(b, slot);
  1330. gen = btrfs_node_ptr_generation(b, slot);
  1331. blocksize = btrfs_level_size(root, level - 1);
  1332. tmp = btrfs_find_tree_block(root, blocknr, blocksize);
  1333. if (tmp) {
  1334. if (btrfs_buffer_uptodate(tmp, 0)) {
  1335. if (btrfs_buffer_uptodate(tmp, gen)) {
  1336. /*
  1337. * we found an up to date block without
  1338. * sleeping, return
  1339. * right away
  1340. */
  1341. *eb_ret = tmp;
  1342. return 0;
  1343. }
  1344. /* the pages were up to date, but we failed
  1345. * the generation number check. Do a full
  1346. * read for the generation number that is correct.
  1347. * We must do this without dropping locks so
  1348. * we can trust our generation number
  1349. */
  1350. free_extent_buffer(tmp);
  1351. btrfs_set_path_blocking(p);
  1352. tmp = read_tree_block(root, blocknr, blocksize, gen);
  1353. if (tmp && btrfs_buffer_uptodate(tmp, gen)) {
  1354. *eb_ret = tmp;
  1355. return 0;
  1356. }
  1357. free_extent_buffer(tmp);
  1358. btrfs_release_path(p);
  1359. return -EIO;
  1360. }
  1361. }
  1362. /*
  1363. * reduce lock contention at high levels
  1364. * of the btree by dropping locks before
  1365. * we read. Don't release the lock on the current
  1366. * level because we need to walk this node to figure
  1367. * out which blocks to read.
  1368. */
  1369. btrfs_unlock_up_safe(p, level + 1);
  1370. btrfs_set_path_blocking(p);
  1371. free_extent_buffer(tmp);
  1372. if (p->reada)
  1373. reada_for_search(root, p, level, slot, key->objectid);
  1374. btrfs_release_path(p);
  1375. ret = -EAGAIN;
  1376. tmp = read_tree_block(root, blocknr, blocksize, 0);
  1377. if (tmp) {
  1378. /*
  1379. * If the read above didn't mark this buffer up to date,
  1380. * it will never end up being up to date. Set ret to EIO now
  1381. * and give up so that our caller doesn't loop forever
  1382. * on our EAGAINs.
  1383. */
  1384. if (!btrfs_buffer_uptodate(tmp, 0))
  1385. ret = -EIO;
  1386. free_extent_buffer(tmp);
  1387. }
  1388. return ret;
  1389. }
  1390. /*
  1391. * helper function for btrfs_search_slot. This does all of the checks
  1392. * for node-level blocks and does any balancing required based on
  1393. * the ins_len.
  1394. *
  1395. * If no extra work was required, zero is returned. If we had to
  1396. * drop the path, -EAGAIN is returned and btrfs_search_slot must
  1397. * start over
  1398. */
  1399. static int
  1400. setup_nodes_for_search(struct btrfs_trans_handle *trans,
  1401. struct btrfs_root *root, struct btrfs_path *p,
  1402. struct extent_buffer *b, int level, int ins_len,
  1403. int *write_lock_level)
  1404. {
  1405. int ret;
  1406. if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
  1407. BTRFS_NODEPTRS_PER_BLOCK(root) - 3) {
  1408. int sret;
  1409. if (*write_lock_level < level + 1) {
  1410. *write_lock_level = level + 1;
  1411. btrfs_release_path(p);
  1412. goto again;
  1413. }
  1414. sret = reada_for_balance(root, p, level);
  1415. if (sret)
  1416. goto again;
  1417. btrfs_set_path_blocking(p);
  1418. sret = split_node(trans, root, p, level);
  1419. btrfs_clear_path_blocking(p, NULL, 0);
  1420. BUG_ON(sret > 0);
  1421. if (sret) {
  1422. ret = sret;
  1423. goto done;
  1424. }
  1425. b = p->nodes[level];
  1426. } else if (ins_len < 0 && btrfs_header_nritems(b) <
  1427. BTRFS_NODEPTRS_PER_BLOCK(root) / 2) {
  1428. int sret;
  1429. if (*write_lock_level < level + 1) {
  1430. *write_lock_level = level + 1;
  1431. btrfs_release_path(p);
  1432. goto again;
  1433. }
  1434. sret = reada_for_balance(root, p, level);
  1435. if (sret)
  1436. goto again;
  1437. btrfs_set_path_blocking(p);
  1438. sret = balance_level(trans, root, p, level);
  1439. btrfs_clear_path_blocking(p, NULL, 0);
  1440. if (sret) {
  1441. ret = sret;
  1442. goto done;
  1443. }
  1444. b = p->nodes[level];
  1445. if (!b) {
  1446. btrfs_release_path(p);
  1447. goto again;
  1448. }
  1449. BUG_ON(btrfs_header_nritems(b) == 1);
  1450. }
  1451. return 0;
  1452. again:
  1453. ret = -EAGAIN;
  1454. done:
  1455. return ret;
  1456. }
  1457. /*
  1458. * look for key in the tree. path is filled in with nodes along the way
  1459. * if key is found, we return zero and you can find the item in the leaf
  1460. * level of the path (level 0)
  1461. *
  1462. * If the key isn't found, the path points to the slot where it should
  1463. * be inserted, and 1 is returned. If there are other errors during the
  1464. * search a negative error number is returned.
  1465. *
  1466. * if ins_len > 0, nodes and leaves will be split as we walk down the
  1467. * tree. if ins_len < 0, nodes will be merged as we walk down the tree (if
  1468. * possible)
  1469. */
  1470. int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root
  1471. *root, struct btrfs_key *key, struct btrfs_path *p, int
  1472. ins_len, int cow)
  1473. {
  1474. struct extent_buffer *b;
  1475. int slot;
  1476. int ret;
  1477. int err;
  1478. int level;
  1479. int lowest_unlock = 1;
  1480. int root_lock;
  1481. /* everything at write_lock_level or lower must be write locked */
  1482. int write_lock_level = 0;
  1483. u8 lowest_level = 0;
  1484. lowest_level = p->lowest_level;
  1485. WARN_ON(lowest_level && ins_len > 0);
  1486. WARN_ON(p->nodes[0] != NULL);
  1487. if (ins_len < 0) {
  1488. lowest_unlock = 2;
  1489. /* when we are removing items, we might have to go up to level
  1490. * two as we update tree pointers Make sure we keep write
  1491. * for those levels as well
  1492. */
  1493. write_lock_level = 2;
  1494. } else if (ins_len > 0) {
  1495. /*
  1496. * for inserting items, make sure we have a write lock on
  1497. * level 1 so we can update keys
  1498. */
  1499. write_lock_level = 1;
  1500. }
  1501. if (!cow)
  1502. write_lock_level = -1;
  1503. if (cow && (p->keep_locks || p->lowest_level))
  1504. write_lock_level = BTRFS_MAX_LEVEL;
  1505. again:
  1506. /*
  1507. * we try very hard to do read locks on the root
  1508. */
  1509. root_lock = BTRFS_READ_LOCK;
  1510. level = 0;
  1511. if (p->search_commit_root) {
  1512. /*
  1513. * the commit roots are read only
  1514. * so we always do read locks
  1515. */
  1516. b = root->commit_root;
  1517. extent_buffer_get(b);
  1518. level = btrfs_header_level(b);
  1519. if (!p->skip_locking)
  1520. btrfs_tree_read_lock(b);
  1521. } else {
  1522. if (p->skip_locking) {
  1523. b = btrfs_root_node(root);
  1524. level = btrfs_header_level(b);
  1525. } else {
  1526. /* we don't know the level of the root node
  1527. * until we actually have it read locked
  1528. */
  1529. b = btrfs_read_lock_root_node(root);
  1530. level = btrfs_header_level(b);
  1531. if (level <= write_lock_level) {
  1532. /* whoops, must trade for write lock */
  1533. btrfs_tree_read_unlock(b);
  1534. free_extent_buffer(b);
  1535. b = btrfs_lock_root_node(root);
  1536. root_lock = BTRFS_WRITE_LOCK;
  1537. /* the level might have changed, check again */
  1538. level = btrfs_header_level(b);
  1539. }
  1540. }
  1541. }
  1542. p->nodes[level] = b;
  1543. if (!p->skip_locking)
  1544. p->locks[level] = root_lock;
  1545. while (b) {
  1546. level = btrfs_header_level(b);
  1547. /*
  1548. * setup the path here so we can release it under lock
  1549. * contention with the cow code
  1550. */
  1551. if (cow) {
  1552. /*
  1553. * if we don't really need to cow this block
  1554. * then we don't want to set the path blocking,
  1555. * so we test it here
  1556. */
  1557. if (!should_cow_block(trans, root, b))
  1558. goto cow_done;
  1559. btrfs_set_path_blocking(p);
  1560. /*
  1561. * must have write locks on this node and the
  1562. * parent
  1563. */
  1564. if (level + 1 > write_lock_level) {
  1565. write_lock_level = level + 1;
  1566. btrfs_release_path(p);
  1567. goto again;
  1568. }
  1569. err = btrfs_cow_block(trans, root, b,
  1570. p->nodes[level + 1],
  1571. p->slots[level + 1], &b);
  1572. if (err) {
  1573. ret = err;
  1574. goto done;
  1575. }
  1576. }
  1577. cow_done:
  1578. BUG_ON(!cow && ins_len);
  1579. p->nodes[level] = b;
  1580. btrfs_clear_path_blocking(p, NULL, 0);
  1581. /*
  1582. * we have a lock on b and as long as we aren't changing
  1583. * the tree, there is no way to for the items in b to change.
  1584. * It is safe to drop the lock on our parent before we
  1585. * go through the expensive btree search on b.
  1586. *
  1587. * If cow is true, then we might be changing slot zero,
  1588. * which may require changing the parent. So, we can't
  1589. * drop the lock until after we know which slot we're
  1590. * operating on.
  1591. */
  1592. if (!cow)
  1593. btrfs_unlock_up_safe(p, level + 1);
  1594. ret = bin_search(b, key, level, &slot);
  1595. if (level != 0) {
  1596. int dec = 0;
  1597. if (ret && slot > 0) {
  1598. dec = 1;
  1599. slot -= 1;
  1600. }
  1601. p->slots[level] = slot;
  1602. err = setup_nodes_for_search(trans, root, p, b, level,
  1603. ins_len, &write_lock_level);
  1604. if (err == -EAGAIN)
  1605. goto again;
  1606. if (err) {
  1607. ret = err;
  1608. goto done;
  1609. }
  1610. b = p->nodes[level];
  1611. slot = p->slots[level];
  1612. /*
  1613. * slot 0 is special, if we change the key
  1614. * we have to update the parent pointer
  1615. * which means we must have a write lock
  1616. * on the parent
  1617. */
  1618. if (slot == 0 && cow &&
  1619. write_lock_level < level + 1) {
  1620. write_lock_level = level + 1;
  1621. btrfs_release_path(p);
  1622. goto again;
  1623. }
  1624. unlock_up(p, level, lowest_unlock);
  1625. if (level == lowest_level) {
  1626. if (dec)
  1627. p->slots[level]++;
  1628. goto done;
  1629. }
  1630. err = read_block_for_search(trans, root, p,
  1631. &b, level, slot, key);
  1632. if (err == -EAGAIN)
  1633. goto again;
  1634. if (err) {
  1635. ret = err;
  1636. goto done;
  1637. }
  1638. if (!p->skip_locking) {
  1639. level = btrfs_header_level(b);
  1640. if (level <= write_lock_level) {
  1641. err = btrfs_try_tree_write_lock(b);
  1642. if (!err) {
  1643. btrfs_set_path_blocking(p);
  1644. btrfs_tree_lock(b);
  1645. btrfs_clear_path_blocking(p, b,
  1646. BTRFS_WRITE_LOCK);
  1647. }
  1648. p->locks[level] = BTRFS_WRITE_LOCK;
  1649. } else {
  1650. err = btrfs_try_tree_read_lock(b);
  1651. if (!err) {
  1652. btrfs_set_path_blocking(p);
  1653. btrfs_tree_read_lock(b);
  1654. btrfs_clear_path_blocking(p, b,
  1655. BTRFS_READ_LOCK);
  1656. }
  1657. p->locks[level] = BTRFS_READ_LOCK;
  1658. }
  1659. p->nodes[level] = b;
  1660. }
  1661. } else {
  1662. p->slots[level] = slot;
  1663. if (ins_len > 0 &&
  1664. btrfs_leaf_free_space(root, b) < ins_len) {
  1665. if (write_lock_level < 1) {
  1666. write_lock_level = 1;
  1667. btrfs_release_path(p);
  1668. goto again;
  1669. }
  1670. btrfs_set_path_blocking(p);
  1671. err = split_leaf(trans, root, key,
  1672. p, ins_len, ret == 0);
  1673. btrfs_clear_path_blocking(p, NULL, 0);
  1674. BUG_ON(err > 0);
  1675. if (err) {
  1676. ret = err;
  1677. goto done;
  1678. }
  1679. }
  1680. if (!p->search_for_split)
  1681. unlock_up(p, level, lowest_unlock);
  1682. goto done;
  1683. }
  1684. }
  1685. ret = 1;
  1686. done:
  1687. /*
  1688. * we don't really know what they plan on doing with the path
  1689. * from here on, so for now just mark it as blocking
  1690. */
  1691. if (!p->leave_spinning)
  1692. btrfs_set_path_blocking(p);
  1693. if (ret < 0)
  1694. btrfs_release_path(p);
  1695. return ret;
  1696. }
  1697. /*
  1698. * adjust the pointers going up the tree, starting at level
  1699. * making sure the right key of each node is points to 'key'.
  1700. * This is used after shifting pointers to the left, so it stops
  1701. * fixing up pointers when a given leaf/node is not in slot 0 of the
  1702. * higher levels
  1703. *
  1704. * If this fails to write a tree block, it returns -1, but continues
  1705. * fixing up the blocks in ram so the tree is consistent.
  1706. */
  1707. static int fixup_low_keys(struct btrfs_trans_handle *trans,
  1708. struct btrfs_root *root, struct btrfs_path *path,
  1709. struct btrfs_disk_key *key, int level)
  1710. {
  1711. int i;
  1712. int ret = 0;
  1713. struct extent_buffer *t;
  1714. for (i = level; i < BTRFS_MAX_LEVEL; i++) {
  1715. int tslot = path->slots[i];
  1716. if (!path->nodes[i])
  1717. break;
  1718. t = path->nodes[i];
  1719. btrfs_set_node_key(t, key, tslot);
  1720. btrfs_mark_buffer_dirty(path->nodes[i]);
  1721. if (tslot != 0)
  1722. break;
  1723. }
  1724. return ret;
  1725. }
  1726. /*
  1727. * update item key.
  1728. *
  1729. * This function isn't completely safe. It's the caller's responsibility
  1730. * that the new key won't break the order
  1731. */
  1732. int btrfs_set_item_key_safe(struct btrfs_trans_handle *trans,
  1733. struct btrfs_root *root, struct btrfs_path *path,
  1734. struct btrfs_key *new_key)
  1735. {
  1736. struct btrfs_disk_key disk_key;
  1737. struct extent_buffer *eb;
  1738. int slot;
  1739. eb = path->nodes[0];
  1740. slot = path->slots[0];
  1741. if (slot > 0) {
  1742. btrfs_item_key(eb, &disk_key, slot - 1);
  1743. if (comp_keys(&disk_key, new_key) >= 0)
  1744. return -1;
  1745. }
  1746. if (slot < btrfs_header_nritems(eb) - 1) {
  1747. btrfs_item_key(eb, &disk_key, slot + 1);
  1748. if (comp_keys(&disk_key, new_key) <= 0)
  1749. return -1;
  1750. }
  1751. btrfs_cpu_key_to_disk(&disk_key, new_key);
  1752. btrfs_set_item_key(eb, &disk_key, slot);
  1753. btrfs_mark_buffer_dirty(eb);
  1754. if (slot == 0)
  1755. fixup_low_keys(trans, root, path, &disk_key, 1);
  1756. return 0;
  1757. }
  1758. /*
  1759. * try to push data from one node into the next node left in the
  1760. * tree.
  1761. *
  1762. * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
  1763. * error, and > 0 if there was no room in the left hand block.
  1764. */
  1765. static int push_node_left(struct btrfs_trans_handle *trans,
  1766. struct btrfs_root *root, struct extent_buffer *dst,
  1767. struct extent_buffer *src, int empty)
  1768. {
  1769. int push_items = 0;
  1770. int src_nritems;
  1771. int dst_nritems;
  1772. int ret = 0;
  1773. src_nritems = btrfs_header_nritems(src);
  1774. dst_nritems = btrfs_header_nritems(dst);
  1775. push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
  1776. WARN_ON(btrfs_header_generation(src) != trans->transid);
  1777. WARN_ON(btrfs_header_generation(dst) != trans->transid);
  1778. if (!empty && src_nritems <= 8)
  1779. return 1;
  1780. if (push_items <= 0)
  1781. return 1;
  1782. if (empty) {
  1783. push_items = min(src_nritems, push_items);
  1784. if (push_items < src_nritems) {
  1785. /* leave at least 8 pointers in the node if
  1786. * we aren't going to empty it
  1787. */
  1788. if (src_nritems - push_items < 8) {
  1789. if (push_items <= 8)
  1790. return 1;
  1791. push_items -= 8;
  1792. }
  1793. }
  1794. } else
  1795. push_items = min(src_nritems - 8, push_items);
  1796. copy_extent_buffer(dst, src,
  1797. btrfs_node_key_ptr_offset(dst_nritems),
  1798. btrfs_node_key_ptr_offset(0),
  1799. push_items * sizeof(struct btrfs_key_ptr));
  1800. if (push_items < src_nritems) {
  1801. memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
  1802. btrfs_node_key_ptr_offset(push_items),
  1803. (src_nritems - push_items) *
  1804. sizeof(struct btrfs_key_ptr));
  1805. }
  1806. btrfs_set_header_nritems(src, src_nritems - push_items);
  1807. btrfs_set_header_nritems(dst, dst_nritems + push_items);
  1808. btrfs_mark_buffer_dirty(src);
  1809. btrfs_mark_buffer_dirty(dst);
  1810. return ret;
  1811. }
  1812. /*
  1813. * try to push data from one node into the next node right in the
  1814. * tree.
  1815. *
  1816. * returns 0 if some ptrs were pushed, < 0 if there was some horrible
  1817. * error, and > 0 if there was no room in the right hand block.
  1818. *
  1819. * this will only push up to 1/2 the contents of the left node over
  1820. */
  1821. static int balance_node_right(struct btrfs_trans_handle *trans,
  1822. struct btrfs_root *root,
  1823. struct extent_buffer *dst,
  1824. struct extent_buffer *src)
  1825. {
  1826. int push_items = 0;
  1827. int max_push;
  1828. int src_nritems;
  1829. int dst_nritems;
  1830. int ret = 0;
  1831. WARN_ON(btrfs_header_generation(src) != trans->transid);
  1832. WARN_ON(btrfs_header_generation(dst) != trans->transid);
  1833. src_nritems = btrfs_header_nritems(src);
  1834. dst_nritems = btrfs_header_nritems(dst);
  1835. push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
  1836. if (push_items <= 0)
  1837. return 1;
  1838. if (src_nritems < 4)
  1839. return 1;
  1840. max_push = src_nritems / 2 + 1;
  1841. /* don't try to empty the node */
  1842. if (max_push >= src_nritems)
  1843. return 1;
  1844. if (max_push < push_items)
  1845. push_items = max_push;
  1846. memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
  1847. btrfs_node_key_ptr_offset(0),
  1848. (dst_nritems) *
  1849. sizeof(struct btrfs_key_ptr));
  1850. copy_extent_buffer(dst, src,
  1851. btrfs_node_key_ptr_offset(0),
  1852. btrfs_node_key_ptr_offset(src_nritems - push_items),
  1853. push_items * sizeof(struct btrfs_key_ptr));
  1854. btrfs_set_header_nritems(src, src_nritems - push_items);
  1855. btrfs_set_header_nritems(dst, dst_nritems + push_items);
  1856. btrfs_mark_buffer_dirty(src);
  1857. btrfs_mark_buffer_dirty(dst);
  1858. return ret;
  1859. }
  1860. /*
  1861. * helper function to insert a new root level in the tree.
  1862. * A new node is allocated, and a single item is inserted to
  1863. * point to the existing root
  1864. *
  1865. * returns zero on success or < 0 on failure.
  1866. */
  1867. static noinline int insert_new_root(struct btrfs_trans_handle *trans,
  1868. struct btrfs_root *root,
  1869. struct btrfs_path *path, int level)
  1870. {
  1871. u64 lower_gen;
  1872. struct extent_buffer *lower;
  1873. struct extent_buffer *c;
  1874. struct extent_buffer *old;
  1875. struct btrfs_disk_key lower_key;
  1876. BUG_ON(path->nodes[level]);
  1877. BUG_ON(path->nodes[level-1] != root->node);
  1878. lower = path->nodes[level-1];
  1879. if (level == 1)
  1880. btrfs_item_key(lower, &lower_key, 0);
  1881. else
  1882. btrfs_node_key(lower, &lower_key, 0);
  1883. c = btrfs_alloc_free_block(trans, root, root->nodesize, 0,
  1884. root->root_key.objectid, &lower_key,
  1885. level, root->node->start, 0, 0);
  1886. if (IS_ERR(c))
  1887. return PTR_ERR(c);
  1888. root_add_used(root, root->nodesize);
  1889. memset_extent_buffer(c, 0, 0, sizeof(struct btrfs_header));
  1890. btrfs_set_header_nritems(c, 1);
  1891. btrfs_set_header_level(c, level);
  1892. btrfs_set_header_bytenr(c, c->start);
  1893. btrfs_set_header_generation(c, trans->transid);
  1894. btrfs_set_header_backref_rev(c, BTRFS_MIXED_BACKREF_REV);
  1895. btrfs_set_header_owner(c, root->root_key.objectid);
  1896. write_extent_buffer(c, root->fs_info->fsid,
  1897. (unsigned long)btrfs_header_fsid(c),
  1898. BTRFS_FSID_SIZE);
  1899. write_extent_buffer(c, root->fs_info->chunk_tree_uuid,
  1900. (unsigned long)btrfs_header_chunk_tree_uuid(c),
  1901. BTRFS_UUID_SIZE);
  1902. btrfs_set_node_key(c, &lower_key, 0);
  1903. btrfs_set_node_blockptr(c, 0, lower->start);
  1904. lower_gen = btrfs_header_generation(lower);
  1905. WARN_ON(lower_gen != trans->transid);
  1906. btrfs_set_node_ptr_generation(c, 0, lower_gen);
  1907. btrfs_mark_buffer_dirty(c);
  1908. old = root->node;
  1909. rcu_assign_pointer(root->node, c);
  1910. /* the super has an extra ref to root->node */
  1911. free_extent_buffer(old);
  1912. add_root_to_dirty_list(root);
  1913. extent_buffer_get(c);
  1914. path->nodes[level] = c;
  1915. path->locks[level] = BTRFS_WRITE_LOCK;
  1916. path->slots[level] = 0;
  1917. return 0;
  1918. }
  1919. /*
  1920. * worker function to insert a single pointer in a node.
  1921. * the node should have enough room for the pointer already
  1922. *
  1923. * slot and level indicate where you want the key to go, and
  1924. * blocknr is the block the key points to.
  1925. *
  1926. * returns zero on success and < 0 on any error
  1927. */
  1928. static int insert_ptr(struct btrfs_trans_handle *trans, struct btrfs_root
  1929. *root, struct btrfs_path *path, struct btrfs_disk_key
  1930. *key, u64 bytenr, int slot, int level)
  1931. {
  1932. struct extent_buffer *lower;
  1933. int nritems;
  1934. BUG_ON(!path->nodes[level]);
  1935. btrfs_assert_tree_locked(path->nodes[level]);
  1936. lower = path->nodes[level];
  1937. nritems = btrfs_header_nritems(lower);
  1938. BUG_ON(slot > nritems);
  1939. if (nritems == BTRFS_NODEPTRS_PER_BLOCK(root))
  1940. BUG();
  1941. if (slot != nritems) {
  1942. memmove_extent_buffer(lower,
  1943. btrfs_node_key_ptr_offset(slot + 1),
  1944. btrfs_node_key_ptr_offset(slot),
  1945. (nritems - slot) * sizeof(struct btrfs_key_ptr));
  1946. }
  1947. btrfs_set_node_key(lower, key, slot);
  1948. btrfs_set_node_blockptr(lower, slot, bytenr);
  1949. WARN_ON(trans->transid == 0);
  1950. btrfs_set_node_ptr_generation(lower, slot, trans->transid);
  1951. btrfs_set_header_nritems(lower, nritems + 1);
  1952. btrfs_mark_buffer_dirty(lower);
  1953. return 0;
  1954. }
  1955. /*
  1956. * split the node at the specified level in path in two.
  1957. * The path is corrected to point to the appropriate node after the split
  1958. *
  1959. * Before splitting this tries to make some room in the node by pushing
  1960. * left and right, if either one works, it returns right away.
  1961. *
  1962. * returns 0 on success and < 0 on failure
  1963. */
  1964. static noinline int split_node(struct btrfs_trans_handle *trans,
  1965. struct btrfs_root *root,
  1966. struct btrfs_path *path, int level)
  1967. {
  1968. struct extent_buffer *c;
  1969. struct extent_buffer *split;
  1970. struct btrfs_disk_key disk_key;
  1971. int mid;
  1972. int ret;
  1973. int wret;
  1974. u32 c_nritems;
  1975. c = path->nodes[level];
  1976. WARN_ON(btrfs_header_generation(c) != trans->transid);
  1977. if (c == root->node) {
  1978. /* trying to split the root, lets make a new one */
  1979. ret = insert_new_root(trans, root, path, level + 1);
  1980. if (ret)
  1981. return ret;
  1982. } else {
  1983. ret = push_nodes_for_insert(trans, root, path, level);
  1984. c = path->nodes[level];
  1985. if (!ret && btrfs_header_nritems(c) <
  1986. BTRFS_NODEPTRS_PER_BLOCK(root) - 3)
  1987. return 0;
  1988. if (ret < 0)
  1989. return ret;
  1990. }
  1991. c_nritems = btrfs_header_nritems(c);
  1992. mid = (c_nritems + 1) / 2;
  1993. btrfs_node_key(c, &disk_key, mid);
  1994. split = btrfs_alloc_free_block(trans, root, root->nodesize, 0,
  1995. root->root_key.objectid,
  1996. &disk_key, level, c->start, 0, 0);
  1997. if (IS_ERR(split))
  1998. return PTR_ERR(split);
  1999. root_add_used(root, root->nodesize);
  2000. memset_extent_buffer(split, 0, 0, sizeof(struct btrfs_header));
  2001. btrfs_set_header_level(split, btrfs_header_level(c));
  2002. btrfs_set_header_bytenr(split, split->start);
  2003. btrfs_set_header_generation(split, trans->transid);
  2004. btrfs_set_header_backref_rev(split, BTRFS_MIXED_BACKREF_REV);
  2005. btrfs_set_header_owner(split, root->root_key.objectid);
  2006. write_extent_buffer(split, root->fs_info->fsid,
  2007. (unsigned long)btrfs_header_fsid(split),
  2008. BTRFS_FSID_SIZE);
  2009. write_extent_buffer(split, root->fs_info->chunk_tree_uuid,
  2010. (unsigned long)btrfs_header_chunk_tree_uuid(split),
  2011. BTRFS_UUID_SIZE);
  2012. copy_extent_buffer(split, c,
  2013. btrfs_node_key_ptr_offset(0),
  2014. btrfs_node_key_ptr_offset(mid),
  2015. (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
  2016. btrfs_set_header_nritems(split, c_nritems - mid);
  2017. btrfs_set_header_nritems(c, mid);
  2018. ret = 0;
  2019. btrfs_mark_buffer_dirty(c);
  2020. btrfs_mark_buffer_dirty(split);
  2021. wret = insert_ptr(trans, root, path, &disk_key, split->start,
  2022. path->slots[level + 1] + 1,
  2023. level + 1);
  2024. if (wret)
  2025. ret = wret;
  2026. if (path->slots[level] >= mid) {
  2027. path->slots[level] -= mid;
  2028. btrfs_tree_unlock(c);
  2029. free_extent_buffer(c);
  2030. path->nodes[level] = split;
  2031. path->slots[level + 1] += 1;
  2032. } else {
  2033. btrfs_tree_unlock(split);
  2034. free_extent_buffer(split);
  2035. }
  2036. return ret;
  2037. }
  2038. /*
  2039. * how many bytes are required to store the items in a leaf. start
  2040. * and nr indicate which items in the leaf to check. This totals up the
  2041. * space used both by the item structs and the item data
  2042. */
  2043. static int leaf_space_used(struct extent_buffer *l, int start, int nr)
  2044. {
  2045. int data_len;
  2046. int nritems = btrfs_header_nritems(l);
  2047. int end = min(nritems, start + nr) - 1;
  2048. if (!nr)
  2049. return 0;
  2050. data_len = btrfs_item_end_nr(l, start);
  2051. data_len = data_len - btrfs_item_offset_nr(l, end);
  2052. data_len += sizeof(struct btrfs_item) * nr;
  2053. WARN_ON(data_len < 0);
  2054. return data_len;
  2055. }
  2056. /*
  2057. * The space between the end of the leaf items and
  2058. * the start of the leaf data. IOW, how much room
  2059. * the leaf has left for both items and data
  2060. */
  2061. noinline int btrfs_leaf_free_space(struct btrfs_root *root,
  2062. struct extent_buffer *leaf)
  2063. {
  2064. int nritems = btrfs_header_nritems(leaf);
  2065. int ret;
  2066. ret = BTRFS_LEAF_DATA_SIZE(root) - leaf_space_used(leaf, 0, nritems);
  2067. if (ret < 0) {
  2068. printk(KERN_CRIT "leaf free space ret %d, leaf data size %lu, "
  2069. "used %d nritems %d\n",
  2070. ret, (unsigned long) BTRFS_LEAF_DATA_SIZE(root),
  2071. leaf_space_used(leaf, 0, nritems), nritems);
  2072. }
  2073. return ret;
  2074. }
  2075. /*
  2076. * min slot controls the lowest index we're willing to push to the
  2077. * right. We'll push up to and including min_slot, but no lower
  2078. */
  2079. static noinline int __push_leaf_right(struct btrfs_trans_handle *trans,
  2080. struct btrfs_root *root,
  2081. struct btrfs_path *path,
  2082. int data_size, int empty,
  2083. struct extent_buffer *right,
  2084. int free_space, u32 left_nritems,
  2085. u32 min_slot)
  2086. {
  2087. struct extent_buffer *left = path->nodes[0];
  2088. struct extent_buffer *upper = path->nodes[1];
  2089. struct btrfs_map_token token;
  2090. struct btrfs_disk_key disk_key;
  2091. int slot;
  2092. u32 i;
  2093. int push_space = 0;
  2094. int push_items = 0;
  2095. struct btrfs_item *item;
  2096. u32 nr;
  2097. u32 right_nritems;
  2098. u32 data_end;
  2099. u32 this_item_size;
  2100. btrfs_init_map_token(&token);
  2101. if (empty)
  2102. nr = 0;
  2103. else
  2104. nr = max_t(u32, 1, min_slot);
  2105. if (path->slots[0] >= left_nritems)
  2106. push_space += data_size;
  2107. slot = path->slots[1];
  2108. i = left_nritems - 1;
  2109. while (i >= nr) {
  2110. item = btrfs_item_nr(left, i);
  2111. if (!empty && push_items > 0) {
  2112. if (path->slots[0] > i)
  2113. break;
  2114. if (path->slots[0] == i) {
  2115. int space = btrfs_leaf_free_space(root, left);
  2116. if (space + push_space * 2 > free_space)
  2117. break;
  2118. }
  2119. }
  2120. if (path->slots[0] == i)
  2121. push_space += data_size;
  2122. this_item_size = btrfs_item_size(left, item);
  2123. if (this_item_size + sizeof(*item) + push_space > free_space)
  2124. break;
  2125. push_items++;
  2126. push_space += this_item_size + sizeof(*item);
  2127. if (i == 0)
  2128. break;
  2129. i--;
  2130. }
  2131. if (push_items == 0)
  2132. goto out_unlock;
  2133. if (!empty && push_items == left_nritems)
  2134. WARN_ON(1);
  2135. /* push left to right */
  2136. right_nritems = btrfs_header_nritems(right);
  2137. push_space = btrfs_item_end_nr(left, left_nritems - push_items);
  2138. push_space -= leaf_data_end(root, left);
  2139. /* make room in the right data area */
  2140. data_end = leaf_data_end(root, right);
  2141. memmove_extent_buffer(right,
  2142. btrfs_leaf_data(right) + data_end - push_space,
  2143. btrfs_leaf_data(right) + data_end,
  2144. BTRFS_LEAF_DATA_SIZE(root) - data_end);
  2145. /* copy from the left data area */
  2146. copy_extent_buffer(right, left, btrfs_leaf_data(right) +
  2147. BTRFS_LEAF_DATA_SIZE(root) - push_space,
  2148. btrfs_leaf_data(left) + leaf_data_end(root, left),
  2149. push_space);
  2150. memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
  2151. btrfs_item_nr_offset(0),
  2152. right_nritems * sizeof(struct btrfs_item));
  2153. /* copy the items from left to right */
  2154. copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
  2155. btrfs_item_nr_offset(left_nritems - push_items),
  2156. push_items * sizeof(struct btrfs_item));
  2157. /* update the item pointers */
  2158. right_nritems += push_items;
  2159. btrfs_set_header_nritems(right, right_nritems);
  2160. push_space = BTRFS_LEAF_DATA_SIZE(root);
  2161. for (i = 0; i < right_nritems; i++) {
  2162. item = btrfs_item_nr(right, i);
  2163. push_space -= btrfs_token_item_size(right, item, &token);
  2164. btrfs_set_token_item_offset(right, item, push_space, &token);
  2165. }
  2166. left_nritems -= push_items;
  2167. btrfs_set_header_nritems(left, left_nritems);
  2168. if (left_nritems)
  2169. btrfs_mark_buffer_dirty(left);
  2170. else
  2171. clean_tree_block(trans, root, left);
  2172. btrfs_mark_buffer_dirty(right);
  2173. btrfs_item_key(right, &disk_key, 0);
  2174. btrfs_set_node_key(upper, &disk_key, slot + 1);
  2175. btrfs_mark_buffer_dirty(upper);
  2176. /* then fixup the leaf pointer in the path */
  2177. if (path->slots[0] >= left_nritems) {
  2178. path->slots[0] -= left_nritems;
  2179. if (btrfs_header_nritems(path->nodes[0]) == 0)
  2180. clean_tree_block(trans, root, path->nodes[0]);
  2181. btrfs_tree_unlock(path->nodes[0]);
  2182. free_extent_buffer(path->nodes[0]);
  2183. path->nodes[0] = right;
  2184. path->slots[1] += 1;
  2185. } else {
  2186. btrfs_tree_unlock(right);
  2187. free_extent_buffer(right);
  2188. }
  2189. return 0;
  2190. out_unlock:
  2191. btrfs_tree_unlock(right);
  2192. free_extent_buffer(right);
  2193. return 1;
  2194. }
  2195. /*
  2196. * push some data in the path leaf to the right, trying to free up at
  2197. * least data_size bytes. returns zero if the push worked, nonzero otherwise
  2198. *
  2199. * returns 1 if the push failed because the other node didn't have enough
  2200. * room, 0 if everything worked out and < 0 if there were major errors.
  2201. *
  2202. * this will push starting from min_slot to the end of the leaf. It won't
  2203. * push any slot lower than min_slot
  2204. */
  2205. static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
  2206. *root, struct btrfs_path *path,
  2207. int min_data_size, int data_size,
  2208. int empty, u32 min_slot)
  2209. {
  2210. struct extent_buffer *left = path->nodes[0];
  2211. struct extent_buffer *right;
  2212. struct extent_buffer *upper;
  2213. int slot;
  2214. int free_space;
  2215. u32 left_nritems;
  2216. int ret;
  2217. if (!path->nodes[1])
  2218. return 1;
  2219. slot = path->slots[1];
  2220. upper = path->nodes[1];
  2221. if (slot >= btrfs_header_nritems(upper) - 1)
  2222. return 1;
  2223. btrfs_assert_tree_locked(path->nodes[1]);
  2224. right = read_node_slot(root, upper, slot + 1);
  2225. if (right == NULL)
  2226. return 1;
  2227. btrfs_tree_lock(right);
  2228. btrfs_set_lock_blocking(right);
  2229. free_space = btrfs_leaf_free_space(root, right);
  2230. if (free_space < data_size)
  2231. goto out_unlock;
  2232. /* cow and double check */
  2233. ret = btrfs_cow_block(trans, root, right, upper,
  2234. slot + 1, &right);
  2235. if (ret)
  2236. goto out_unlock;
  2237. free_space = btrfs_leaf_free_space(root, right);
  2238. if (free_space < data_size)
  2239. goto out_unlock;
  2240. left_nritems = btrfs_header_nritems(left);
  2241. if (left_nritems == 0)
  2242. goto out_unlock;
  2243. return __push_leaf_right(trans, root, path, min_data_size, empty,
  2244. right, free_space, left_nritems, min_slot);
  2245. out_unlock:
  2246. btrfs_tree_unlock(right);
  2247. free_extent_buffer(right);
  2248. return 1;
  2249. }
  2250. /*
  2251. * push some data in the path leaf to the left, trying to free up at
  2252. * least data_size bytes. returns zero if the push worked, nonzero otherwise
  2253. *
  2254. * max_slot can put a limit on how far into the leaf we'll push items. The
  2255. * item at 'max_slot' won't be touched. Use (u32)-1 to make us do all the
  2256. * items
  2257. */
  2258. static noinline int __push_leaf_left(struct btrfs_trans_handle *trans,
  2259. struct btrfs_root *root,
  2260. struct btrfs_path *path, int data_size,
  2261. int empty, struct extent_buffer *left,
  2262. int free_space, u32 right_nritems,
  2263. u32 max_slot)
  2264. {
  2265. struct btrfs_disk_key disk_key;
  2266. struct extent_buffer *right = path->nodes[0];
  2267. int i;
  2268. int push_space = 0;
  2269. int push_items = 0;
  2270. struct btrfs_item *item;
  2271. u32 old_left_nritems;
  2272. u32 nr;
  2273. int ret = 0;
  2274. int wret;
  2275. u32 this_item_size;
  2276. u32 old_left_item_size;
  2277. struct btrfs_map_token token;
  2278. btrfs_init_map_token(&token);
  2279. if (empty)
  2280. nr = min(right_nritems, max_slot);
  2281. else
  2282. nr = min(right_nritems - 1, max_slot);
  2283. for (i = 0; i < nr; i++) {
  2284. item = btrfs_item_nr(right, i);
  2285. if (!empty && push_items > 0) {
  2286. if (path->slots[0] < i)
  2287. break;
  2288. if (path->slots[0] == i) {
  2289. int space = btrfs_leaf_free_space(root, right);
  2290. if (space + push_space * 2 > free_space)
  2291. break;
  2292. }
  2293. }
  2294. if (path->slots[0] == i)
  2295. push_space += data_size;
  2296. this_item_size = btrfs_item_size(right, item);
  2297. if (this_item_size + sizeof(*item) + push_space > free_space)
  2298. break;
  2299. push_items++;
  2300. push_space += this_item_size + sizeof(*item);
  2301. }
  2302. if (push_items == 0) {
  2303. ret = 1;
  2304. goto out;
  2305. }
  2306. if (!empty && push_items == btrfs_header_nritems(right))
  2307. WARN_ON(1);
  2308. /* push data from right to left */
  2309. copy_extent_buffer(left, right,
  2310. btrfs_item_nr_offset(btrfs_header_nritems(left)),
  2311. btrfs_item_nr_offset(0),
  2312. push_items * sizeof(struct btrfs_item));
  2313. push_space = BTRFS_LEAF_DATA_SIZE(root) -
  2314. btrfs_item_offset_nr(right, push_items - 1);
  2315. copy_extent_buffer(left, right, btrfs_leaf_data(left) +
  2316. leaf_data_end(root, left) - push_space,
  2317. btrfs_leaf_data(right) +
  2318. btrfs_item_offset_nr(right, push_items - 1),
  2319. push_space);
  2320. old_left_nritems = btrfs_header_nritems(left);
  2321. BUG_ON(old_left_nritems <= 0);
  2322. old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1);
  2323. for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
  2324. u32 ioff;
  2325. item = btrfs_item_nr(left, i);
  2326. ioff = btrfs_token_item_offset(left, item, &token);
  2327. btrfs_set_token_item_offset(left, item,
  2328. ioff - (BTRFS_LEAF_DATA_SIZE(root) - old_left_item_size),
  2329. &token);
  2330. }
  2331. btrfs_set_header_nritems(left, old_left_nritems + push_items);
  2332. /* fixup right node */
  2333. if (push_items > right_nritems) {
  2334. printk(KERN_CRIT "push items %d nr %u\n", push_items,
  2335. right_nritems);
  2336. WARN_ON(1);
  2337. }
  2338. if (push_items < right_nritems) {
  2339. push_space = btrfs_item_offset_nr(right, push_items - 1) -
  2340. leaf_data_end(root, right);
  2341. memmove_extent_buffer(right, btrfs_leaf_data(right) +
  2342. BTRFS_LEAF_DATA_SIZE(root) - push_space,
  2343. btrfs_leaf_data(right) +
  2344. leaf_data_end(root, right), push_space);
  2345. memmove_extent_buffer(right, btrfs_item_nr_offset(0),
  2346. btrfs_item_nr_offset(push_items),
  2347. (btrfs_header_nritems(right) - push_items) *
  2348. sizeof(struct btrfs_item));
  2349. }
  2350. right_nritems -= push_items;
  2351. btrfs_set_header_nritems(right, right_nritems);
  2352. push_space = BTRFS_LEAF_DATA_SIZE(root);
  2353. for (i = 0; i < right_nritems; i++) {
  2354. item = btrfs_item_nr(right, i);
  2355. push_space = push_space - btrfs_token_item_size(right,
  2356. item, &token);
  2357. btrfs_set_token_item_offset(right, item, push_space, &token);
  2358. }
  2359. btrfs_mark_buffer_dirty(left);
  2360. if (right_nritems)
  2361. btrfs_mark_buffer_dirty(right);
  2362. else
  2363. clean_tree_block(trans, root, right);
  2364. btrfs_item_key(right, &disk_key, 0);
  2365. wret = fixup_low_keys(trans, root, path, &disk_key, 1);
  2366. if (wret)
  2367. ret = wret;
  2368. /* then fixup the leaf pointer in the path */
  2369. if (path->slots[0] < push_items) {
  2370. path->slots[0] += old_left_nritems;
  2371. btrfs_tree_unlock(path->nodes[0]);
  2372. free_extent_buffer(path->nodes[0]);
  2373. path->nodes[0] = left;
  2374. path->slots[1] -= 1;
  2375. } else {
  2376. btrfs_tree_unlock(left);
  2377. free_extent_buffer(left);
  2378. path->slots[0] -= push_items;
  2379. }
  2380. BUG_ON(path->slots[0] < 0);
  2381. return ret;
  2382. out:
  2383. btrfs_tree_unlock(left);
  2384. free_extent_buffer(left);
  2385. return ret;
  2386. }
  2387. /*
  2388. * push some data in the path leaf to the left, trying to free up at
  2389. * least data_size bytes. returns zero if the push worked, nonzero otherwise
  2390. *
  2391. * max_slot can put a limit on how far into the leaf we'll push items. The
  2392. * item at 'max_slot' won't be touched. Use (u32)-1 to make us push all the
  2393. * items
  2394. */
  2395. static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
  2396. *root, struct btrfs_path *path, int min_data_size,
  2397. int data_size, int empty, u32 max_slot)
  2398. {
  2399. struct extent_buffer *right = path->nodes[0];
  2400. struct extent_buffer *left;
  2401. int slot;
  2402. int free_space;
  2403. u32 right_nritems;
  2404. int ret = 0;
  2405. slot = path->slots[1];
  2406. if (slot == 0)
  2407. return 1;
  2408. if (!path->nodes[1])
  2409. return 1;
  2410. right_nritems = btrfs_header_nritems(right);
  2411. if (right_nritems == 0)
  2412. return 1;
  2413. btrfs_assert_tree_locked(path->nodes[1]);
  2414. left = read_node_slot(root, path->nodes[1], slot - 1);
  2415. if (left == NULL)
  2416. return 1;
  2417. btrfs_tree_lock(left);
  2418. btrfs_set_lock_blocking(left);
  2419. free_space = btrfs_leaf_free_space(root, left);
  2420. if (free_space < data_size) {
  2421. ret = 1;
  2422. goto out;
  2423. }
  2424. /* cow and double check */
  2425. ret = btrfs_cow_block(trans, root, left,
  2426. path->nodes[1], slot - 1, &left);
  2427. if (ret) {
  2428. /* we hit -ENOSPC, but it isn't fatal here */
  2429. ret = 1;
  2430. goto out;
  2431. }
  2432. free_space = btrfs_leaf_free_space(root, left);
  2433. if (free_space < data_size) {
  2434. ret = 1;
  2435. goto out;
  2436. }
  2437. return __push_leaf_left(trans, root, path, min_data_size,
  2438. empty, left, free_space, right_nritems,
  2439. max_slot);
  2440. out:
  2441. btrfs_tree_unlock(left);
  2442. free_extent_buffer(left);
  2443. return ret;
  2444. }
  2445. /*
  2446. * split the path's leaf in two, making sure there is at least data_size
  2447. * available for the resulting leaf level of the path.
  2448. *
  2449. * returns 0 if all went well and < 0 on failure.
  2450. */
  2451. static noinline int copy_for_split(struct btrfs_trans_handle *trans,
  2452. struct btrfs_root *root,
  2453. struct btrfs_path *path,
  2454. struct extent_buffer *l,
  2455. struct extent_buffer *right,
  2456. int slot, int mid, int nritems)
  2457. {
  2458. int data_copy_size;
  2459. int rt_data_off;
  2460. int i;
  2461. int ret = 0;
  2462. int wret;
  2463. struct btrfs_disk_key disk_key;
  2464. struct btrfs_map_token token;
  2465. btrfs_init_map_token(&token);
  2466. nritems = nritems - mid;
  2467. btrfs_set_header_nritems(right, nritems);
  2468. data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(root, l);
  2469. copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
  2470. btrfs_item_nr_offset(mid),
  2471. nritems * sizeof(struct btrfs_item));
  2472. copy_extent_buffer(right, l,
  2473. btrfs_leaf_data(right) + BTRFS_LEAF_DATA_SIZE(root) -
  2474. data_copy_size, btrfs_leaf_data(l) +
  2475. leaf_data_end(root, l), data_copy_size);
  2476. rt_data_off = BTRFS_LEAF_DATA_SIZE(root) -
  2477. btrfs_item_end_nr(l, mid);
  2478. for (i = 0; i < nritems; i++) {
  2479. struct btrfs_item *item = btrfs_item_nr(right, i);
  2480. u32 ioff;
  2481. ioff = btrfs_token_item_offset(right, item, &token);
  2482. btrfs_set_token_item_offset(right, item,
  2483. ioff + rt_data_off, &token);
  2484. }
  2485. btrfs_set_header_nritems(l, mid);
  2486. ret = 0;
  2487. btrfs_item_key(right, &disk_key, 0);
  2488. wret = insert_ptr(trans, root, path, &disk_key, right->start,
  2489. path->slots[1] + 1, 1);
  2490. if (wret)
  2491. ret = wret;
  2492. btrfs_mark_buffer_dirty(right);
  2493. btrfs_mark_buffer_dirty(l);
  2494. BUG_ON(path->slots[0] != slot);
  2495. if (mid <= slot) {
  2496. btrfs_tree_unlock(path->nodes[0]);
  2497. free_extent_buffer(path->nodes[0]);
  2498. path->nodes[0] = right;
  2499. path->slots[0] -= mid;
  2500. path->slots[1] += 1;
  2501. } else {
  2502. btrfs_tree_unlock(right);
  2503. free_extent_buffer(right);
  2504. }
  2505. BUG_ON(path->slots[0] < 0);
  2506. return ret;
  2507. }
  2508. /*
  2509. * double splits happen when we need to insert a big item in the middle
  2510. * of a leaf. A double split can leave us with 3 mostly empty leaves:
  2511. * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
  2512. * A B C
  2513. *
  2514. * We avoid this by trying to push the items on either side of our target
  2515. * into the adjacent leaves. If all goes well we can avoid the double split
  2516. * completely.
  2517. */
  2518. static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
  2519. struct btrfs_root *root,
  2520. struct btrfs_path *path,
  2521. int data_size)
  2522. {
  2523. int ret;
  2524. int progress = 0;
  2525. int slot;
  2526. u32 nritems;
  2527. slot = path->slots[0];
  2528. /*
  2529. * try to push all the items after our slot into the
  2530. * right leaf
  2531. */
  2532. ret = push_leaf_right(trans, root, path, 1, data_size, 0, slot);
  2533. if (ret < 0)
  2534. return ret;
  2535. if (ret == 0)
  2536. progress++;
  2537. nritems = btrfs_header_nritems(path->nodes[0]);
  2538. /*
  2539. * our goal is to get our slot at the start or end of a leaf. If
  2540. * we've done so we're done
  2541. */
  2542. if (path->slots[0] == 0 || path->slots[0] == nritems)
  2543. return 0;
  2544. if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size)
  2545. return 0;
  2546. /* try to push all the items before our slot into the next leaf */
  2547. slot = path->slots[0];
  2548. ret = push_leaf_left(trans, root, path, 1, data_size, 0, slot);
  2549. if (ret < 0)
  2550. return ret;
  2551. if (ret == 0)
  2552. progress++;
  2553. if (progress)
  2554. return 0;
  2555. return 1;
  2556. }
  2557. /*
  2558. * split the path's leaf in two, making sure there is at least data_size
  2559. * available for the resulting leaf level of the path.
  2560. *
  2561. * returns 0 if all went well and < 0 on failure.
  2562. */
  2563. static noinline int split_leaf(struct btrfs_trans_handle *trans,
  2564. struct btrfs_root *root,
  2565. struct btrfs_key *ins_key,
  2566. struct btrfs_path *path, int data_size,
  2567. int extend)
  2568. {
  2569. struct btrfs_disk_key disk_key;
  2570. struct extent_buffer *l;
  2571. u32 nritems;
  2572. int mid;
  2573. int slot;
  2574. struct extent_buffer *right;
  2575. int ret = 0;
  2576. int wret;
  2577. int split;
  2578. int num_doubles = 0;
  2579. int tried_avoid_double = 0;
  2580. l = path->nodes[0];
  2581. slot = path->slots[0];
  2582. if (extend && data_size + btrfs_item_size_nr(l, slot) +
  2583. sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(root))
  2584. return -EOVERFLOW;
  2585. /* first try to make some room by pushing left and right */
  2586. if (data_size) {
  2587. wret = push_leaf_right(trans, root, path, data_size,
  2588. data_size, 0, 0);
  2589. if (wret < 0)
  2590. return wret;
  2591. if (wret) {
  2592. wret = push_leaf_left(trans, root, path, data_size,
  2593. data_size, 0, (u32)-1);
  2594. if (wret < 0)
  2595. return wret;
  2596. }
  2597. l = path->nodes[0];
  2598. /* did the pushes work? */
  2599. if (btrfs_leaf_free_space(root, l) >= data_size)
  2600. return 0;
  2601. }
  2602. if (!path->nodes[1]) {
  2603. ret = insert_new_root(trans, root, path, 1);
  2604. if (ret)
  2605. return ret;
  2606. }
  2607. again:
  2608. split = 1;
  2609. l = path->nodes[0];
  2610. slot = path->slots[0];
  2611. nritems = btrfs_header_nritems(l);
  2612. mid = (nritems + 1) / 2;
  2613. if (mid <= slot) {
  2614. if (nritems == 1 ||
  2615. leaf_space_used(l, mid, nritems - mid) + data_size >
  2616. BTRFS_LEAF_DATA_SIZE(root)) {
  2617. if (slot >= nritems) {
  2618. split = 0;
  2619. } else {
  2620. mid = slot;
  2621. if (mid != nritems &&
  2622. leaf_space_used(l, mid, nritems - mid) +
  2623. data_size > BTRFS_LEAF_DATA_SIZE(root)) {
  2624. if (data_size && !tried_avoid_double)
  2625. goto push_for_double;
  2626. split = 2;
  2627. }
  2628. }
  2629. }
  2630. } else {
  2631. if (leaf_space_used(l, 0, mid) + data_size >
  2632. BTRFS_LEAF_DATA_SIZE(root)) {
  2633. if (!extend && data_size && slot == 0) {
  2634. split = 0;
  2635. } else if ((extend || !data_size) && slot == 0) {
  2636. mid = 1;
  2637. } else {
  2638. mid = slot;
  2639. if (mid != nritems &&
  2640. leaf_space_used(l, mid, nritems - mid) +
  2641. data_size > BTRFS_LEAF_DATA_SIZE(root)) {
  2642. if (data_size && !tried_avoid_double)
  2643. goto push_for_double;
  2644. split = 2 ;
  2645. }
  2646. }
  2647. }
  2648. }
  2649. if (split == 0)
  2650. btrfs_cpu_key_to_disk(&disk_key, ins_key);
  2651. else
  2652. btrfs_item_key(l, &disk_key, mid);
  2653. right = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
  2654. root->root_key.objectid,
  2655. &disk_key, 0, l->start, 0, 0);
  2656. if (IS_ERR(right))
  2657. return PTR_ERR(right);
  2658. root_add_used(root, root->leafsize);
  2659. memset_extent_buffer(right, 0, 0, sizeof(struct btrfs_header));
  2660. btrfs_set_header_bytenr(right, right->start);
  2661. btrfs_set_header_generation(right, trans->transid);
  2662. btrfs_set_header_backref_rev(right, BTRFS_MIXED_BACKREF_REV);
  2663. btrfs_set_header_owner(right, root->root_key.objectid);
  2664. btrfs_set_header_level(right, 0);
  2665. write_extent_buffer(right, root->fs_info->fsid,
  2666. (unsigned long)btrfs_header_fsid(right),
  2667. BTRFS_FSID_SIZE);
  2668. write_extent_buffer(right, root->fs_info->chunk_tree_uuid,
  2669. (unsigned long)btrfs_header_chunk_tree_uuid(right),
  2670. BTRFS_UUID_SIZE);
  2671. if (split == 0) {
  2672. if (mid <= slot) {
  2673. btrfs_set_header_nritems(right, 0);
  2674. wret = insert_ptr(trans, root, path,
  2675. &disk_key, right->start,
  2676. path->slots[1] + 1, 1);
  2677. if (wret)
  2678. ret = wret;
  2679. btrfs_tree_unlock(path->nodes[0]);
  2680. free_extent_buffer(path->nodes[0]);
  2681. path->nodes[0] = right;
  2682. path->slots[0] = 0;
  2683. path->slots[1] += 1;
  2684. } else {
  2685. btrfs_set_header_nritems(right, 0);
  2686. wret = insert_ptr(trans, root, path,
  2687. &disk_key,
  2688. right->start,
  2689. path->slots[1], 1);
  2690. if (wret)
  2691. ret = wret;
  2692. btrfs_tree_unlock(path->nodes[0]);
  2693. free_extent_buffer(path->nodes[0]);
  2694. path->nodes[0] = right;
  2695. path->slots[0] = 0;
  2696. if (path->slots[1] == 0) {
  2697. wret = fixup_low_keys(trans, root,
  2698. path, &disk_key, 1);
  2699. if (wret)
  2700. ret = wret;
  2701. }
  2702. }
  2703. btrfs_mark_buffer_dirty(right);
  2704. return ret;
  2705. }
  2706. ret = copy_for_split(trans, root, path, l, right, slot, mid, nritems);
  2707. BUG_ON(ret);
  2708. if (split == 2) {
  2709. BUG_ON(num_doubles != 0);
  2710. num_doubles++;
  2711. goto again;
  2712. }
  2713. return ret;
  2714. push_for_double:
  2715. push_for_double_split(trans, root, path, data_size);
  2716. tried_avoid_double = 1;
  2717. if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size)
  2718. return 0;
  2719. goto again;
  2720. }
  2721. static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
  2722. struct btrfs_root *root,
  2723. struct btrfs_path *path, int ins_len)
  2724. {
  2725. struct btrfs_key key;
  2726. struct extent_buffer *leaf;
  2727. struct btrfs_file_extent_item *fi;
  2728. u64 extent_len = 0;
  2729. u32 item_size;
  2730. int ret;
  2731. leaf = path->nodes[0];
  2732. btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
  2733. BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
  2734. key.type != BTRFS_EXTENT_CSUM_KEY);
  2735. if (btrfs_leaf_free_space(root, leaf) >= ins_len)
  2736. return 0;
  2737. item_size = btrfs_item_size_nr(leaf, path->slots[0]);
  2738. if (key.type == BTRFS_EXTENT_DATA_KEY) {
  2739. fi = btrfs_item_ptr(leaf, path->slots[0],
  2740. struct btrfs_file_extent_item);
  2741. extent_len = btrfs_file_extent_num_bytes(leaf, fi);
  2742. }
  2743. btrfs_release_path(path);
  2744. path->keep_locks = 1;
  2745. path->search_for_split = 1;
  2746. ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
  2747. path->search_for_split = 0;
  2748. if (ret < 0)
  2749. goto err;
  2750. ret = -EAGAIN;
  2751. leaf = path->nodes[0];
  2752. /* if our item isn't there or got smaller, return now */
  2753. if (ret > 0 || item_size != btrfs_item_size_nr(leaf, path->slots[0]))
  2754. goto err;
  2755. /* the leaf has changed, it now has room. return now */
  2756. if (btrfs_leaf_free_space(root, path->nodes[0]) >= ins_len)
  2757. goto err;
  2758. if (key.type == BTRFS_EXTENT_DATA_KEY) {
  2759. fi = btrfs_item_ptr(leaf, path->slots[0],
  2760. struct btrfs_file_extent_item);
  2761. if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
  2762. goto err;
  2763. }
  2764. btrfs_set_path_blocking(path);
  2765. ret = split_leaf(trans, root, &key, path, ins_len, 1);
  2766. if (ret)
  2767. goto err;
  2768. path->keep_locks = 0;
  2769. btrfs_unlock_up_safe(path, 1);
  2770. return 0;
  2771. err:
  2772. path->keep_locks = 0;
  2773. return ret;
  2774. }
  2775. static noinline int split_item(struct btrfs_trans_handle *trans,
  2776. struct btrfs_root *root,
  2777. struct btrfs_path *path,
  2778. struct btrfs_key *new_key,
  2779. unsigned long split_offset)
  2780. {
  2781. struct extent_buffer *leaf;
  2782. struct btrfs_item *item;
  2783. struct btrfs_item *new_item;
  2784. int slot;
  2785. char *buf;
  2786. u32 nritems;
  2787. u32 item_size;
  2788. u32 orig_offset;
  2789. struct btrfs_disk_key disk_key;
  2790. leaf = path->nodes[0];
  2791. BUG_ON(btrfs_leaf_free_space(root, leaf) < sizeof(struct btrfs_item));
  2792. btrfs_set_path_blocking(path);
  2793. item = btrfs_item_nr(leaf, path->slots[0]);
  2794. orig_offset = btrfs_item_offset(leaf, item);
  2795. item_size = btrfs_item_size(leaf, item);
  2796. buf = kmalloc(item_size, GFP_NOFS);
  2797. if (!buf)
  2798. return -ENOMEM;
  2799. read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
  2800. path->slots[0]), item_size);
  2801. slot = path->slots[0] + 1;
  2802. nritems = btrfs_header_nritems(leaf);
  2803. if (slot != nritems) {
  2804. /* shift the items */
  2805. memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
  2806. btrfs_item_nr_offset(slot),
  2807. (nritems - slot) * sizeof(struct btrfs_item));
  2808. }
  2809. btrfs_cpu_key_to_disk(&disk_key, new_key);
  2810. btrfs_set_item_key(leaf, &disk_key, slot);
  2811. new_item = btrfs_item_nr(leaf, slot);
  2812. btrfs_set_item_offset(leaf, new_item, orig_offset);
  2813. btrfs_set_item_size(leaf, new_item, item_size - split_offset);
  2814. btrfs_set_item_offset(leaf, item,
  2815. orig_offset + item_size - split_offset);
  2816. btrfs_set_item_size(leaf, item, split_offset);
  2817. btrfs_set_header_nritems(leaf, nritems + 1);
  2818. /* write the data for the start of the original item */
  2819. write_extent_buffer(leaf, buf,
  2820. btrfs_item_ptr_offset(leaf, path->slots[0]),
  2821. split_offset);
  2822. /* write the data for the new item */
  2823. write_extent_buffer(leaf, buf + split_offset,
  2824. btrfs_item_ptr_offset(leaf, slot),
  2825. item_size - split_offset);
  2826. btrfs_mark_buffer_dirty(leaf);
  2827. BUG_ON(btrfs_leaf_free_space(root, leaf) < 0);
  2828. kfree(buf);
  2829. return 0;
  2830. }
  2831. /*
  2832. * This function splits a single item into two items,
  2833. * giving 'new_key' to the new item and splitting the
  2834. * old one at split_offset (from the start of the item).
  2835. *
  2836. * The path may be released by this operation. After
  2837. * the split, the path is pointing to the old item. The
  2838. * new item is going to be in the same node as the old one.
  2839. *
  2840. * Note, the item being split must be smaller enough to live alone on
  2841. * a tree block with room for one extra struct btrfs_item
  2842. *
  2843. * This allows us to split the item in place, keeping a lock on the
  2844. * leaf the entire time.
  2845. */
  2846. int btrfs_split_item(struct btrfs_trans_handle *trans,
  2847. struct btrfs_root *root,
  2848. struct btrfs_path *path,
  2849. struct btrfs_key *new_key,
  2850. unsigned long split_offset)
  2851. {
  2852. int ret;
  2853. ret = setup_leaf_for_split(trans, root, path,
  2854. sizeof(struct btrfs_item));
  2855. if (ret)
  2856. return ret;
  2857. ret = split_item(trans, root, path, new_key, split_offset);
  2858. return ret;
  2859. }
  2860. /*
  2861. * This function duplicate a item, giving 'new_key' to the new item.
  2862. * It guarantees both items live in the same tree leaf and the new item
  2863. * is contiguous with the original item.
  2864. *
  2865. * This allows us to split file extent in place, keeping a lock on the
  2866. * leaf the entire time.
  2867. */
  2868. int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
  2869. struct btrfs_root *root,
  2870. struct btrfs_path *path,
  2871. struct btrfs_key *new_key)
  2872. {
  2873. struct extent_buffer *leaf;
  2874. int ret;
  2875. u32 item_size;
  2876. leaf = path->nodes[0];
  2877. item_size = btrfs_item_size_nr(leaf, path->slots[0]);
  2878. ret = setup_leaf_for_split(trans, root, path,
  2879. item_size + sizeof(struct btrfs_item));
  2880. if (ret)
  2881. return ret;
  2882. path->slots[0]++;
  2883. ret = setup_items_for_insert(trans, root, path, new_key, &item_size,
  2884. item_size, item_size +
  2885. sizeof(struct btrfs_item), 1);
  2886. BUG_ON(ret);
  2887. leaf = path->nodes[0];
  2888. memcpy_extent_buffer(leaf,
  2889. btrfs_item_ptr_offset(leaf, path->slots[0]),
  2890. btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
  2891. item_size);
  2892. return 0;
  2893. }
  2894. /*
  2895. * make the item pointed to by the path smaller. new_size indicates
  2896. * how small to make it, and from_end tells us if we just chop bytes
  2897. * off the end of the item or if we shift the item to chop bytes off
  2898. * the front.
  2899. */
  2900. int btrfs_truncate_item(struct btrfs_trans_handle *trans,
  2901. struct btrfs_root *root,
  2902. struct btrfs_path *path,
  2903. u32 new_size, int from_end)
  2904. {
  2905. int slot;
  2906. struct extent_buffer *leaf;
  2907. struct btrfs_item *item;
  2908. u32 nritems;
  2909. unsigned int data_end;
  2910. unsigned int old_data_start;
  2911. unsigned int old_size;
  2912. unsigned int size_diff;
  2913. int i;
  2914. struct btrfs_map_token token;
  2915. btrfs_init_map_token(&token);
  2916. leaf = path->nodes[0];
  2917. slot = path->slots[0];
  2918. old_size = btrfs_item_size_nr(leaf, slot);
  2919. if (old_size == new_size)
  2920. return 0;
  2921. nritems = btrfs_header_nritems(leaf);
  2922. data_end = leaf_data_end(root, leaf);
  2923. old_data_start = btrfs_item_offset_nr(leaf, slot);
  2924. size_diff = old_size - new_size;
  2925. BUG_ON(slot < 0);
  2926. BUG_ON(slot >= nritems);
  2927. /*
  2928. * item0..itemN ... dataN.offset..dataN.size .. data0.size
  2929. */
  2930. /* first correct the data pointers */
  2931. for (i = slot; i < nritems; i++) {
  2932. u32 ioff;
  2933. item = btrfs_item_nr(leaf, i);
  2934. ioff = btrfs_token_item_offset(leaf, item, &token);
  2935. btrfs_set_token_item_offset(leaf, item,
  2936. ioff + size_diff, &token);
  2937. }
  2938. /* shift the data */
  2939. if (from_end) {
  2940. memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
  2941. data_end + size_diff, btrfs_leaf_data(leaf) +
  2942. data_end, old_data_start + new_size - data_end);
  2943. } else {
  2944. struct btrfs_disk_key disk_key;
  2945. u64 offset;
  2946. btrfs_item_key(leaf, &disk_key, slot);
  2947. if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
  2948. unsigned long ptr;
  2949. struct btrfs_file_extent_item *fi;
  2950. fi = btrfs_item_ptr(leaf, slot,
  2951. struct btrfs_file_extent_item);
  2952. fi = (struct btrfs_file_extent_item *)(
  2953. (unsigned long)fi - size_diff);
  2954. if (btrfs_file_extent_type(leaf, fi) ==
  2955. BTRFS_FILE_EXTENT_INLINE) {
  2956. ptr = btrfs_item_ptr_offset(leaf, slot);
  2957. memmove_extent_buffer(leaf, ptr,
  2958. (unsigned long)fi,
  2959. offsetof(struct btrfs_file_extent_item,
  2960. disk_bytenr));
  2961. }
  2962. }
  2963. memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
  2964. data_end + size_diff, btrfs_leaf_data(leaf) +
  2965. data_end, old_data_start - data_end);
  2966. offset = btrfs_disk_key_offset(&disk_key);
  2967. btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
  2968. btrfs_set_item_key(leaf, &disk_key, slot);
  2969. if (slot == 0)
  2970. fixup_low_keys(trans, root, path, &disk_key, 1);
  2971. }
  2972. item = btrfs_item_nr(leaf, slot);
  2973. btrfs_set_item_size(leaf, item, new_size);
  2974. btrfs_mark_buffer_dirty(leaf);
  2975. if (btrfs_leaf_free_space(root, leaf) < 0) {
  2976. btrfs_print_leaf(root, leaf);
  2977. BUG();
  2978. }
  2979. return 0;
  2980. }
  2981. /*
  2982. * make the item pointed to by the path bigger, data_size is the new size.
  2983. */
  2984. int btrfs_extend_item(struct btrfs_trans_handle *trans,
  2985. struct btrfs_root *root, struct btrfs_path *path,
  2986. u32 data_size)
  2987. {
  2988. int slot;
  2989. struct extent_buffer *leaf;
  2990. struct btrfs_item *item;
  2991. u32 nritems;
  2992. unsigned int data_end;
  2993. unsigned int old_data;
  2994. unsigned int old_size;
  2995. int i;
  2996. struct btrfs_map_token token;
  2997. btrfs_init_map_token(&token);
  2998. leaf = path->nodes[0];
  2999. nritems = btrfs_header_nritems(leaf);
  3000. data_end = leaf_data_end(root, leaf);
  3001. if (btrfs_leaf_free_space(root, leaf) < data_size) {
  3002. btrfs_print_leaf(root, leaf);
  3003. BUG();
  3004. }
  3005. slot = path->slots[0];
  3006. old_data = btrfs_item_end_nr(leaf, slot);
  3007. BUG_ON(slot < 0);
  3008. if (slot >= nritems) {
  3009. btrfs_print_leaf(root, leaf);
  3010. printk(KERN_CRIT "slot %d too large, nritems %d\n",
  3011. slot, nritems);
  3012. BUG_ON(1);
  3013. }
  3014. /*
  3015. * item0..itemN ... dataN.offset..dataN.size .. data0.size
  3016. */
  3017. /* first correct the data pointers */
  3018. for (i = slot; i < nritems; i++) {
  3019. u32 ioff;
  3020. item = btrfs_item_nr(leaf, i);
  3021. ioff = btrfs_token_item_offset(leaf, item, &token);
  3022. btrfs_set_token_item_offset(leaf, item,
  3023. ioff - data_size, &token);
  3024. }
  3025. /* shift the data */
  3026. memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
  3027. data_end - data_size, btrfs_leaf_data(leaf) +
  3028. data_end, old_data - data_end);
  3029. data_end = old_data;
  3030. old_size = btrfs_item_size_nr(leaf, slot);
  3031. item = btrfs_item_nr(leaf, slot);
  3032. btrfs_set_item_size(leaf, item, old_size + data_size);
  3033. btrfs_mark_buffer_dirty(leaf);
  3034. if (btrfs_leaf_free_space(root, leaf) < 0) {
  3035. btrfs_print_leaf(root, leaf);
  3036. BUG();
  3037. }
  3038. return 0;
  3039. }
  3040. /*
  3041. * Given a key and some data, insert items into the tree.
  3042. * This does all the path init required, making room in the tree if needed.
  3043. * Returns the number of keys that were inserted.
  3044. */
  3045. int btrfs_insert_some_items(struct btrfs_trans_handle *trans,
  3046. struct btrfs_root *root,
  3047. struct btrfs_path *path,
  3048. struct btrfs_key *cpu_key, u32 *data_size,
  3049. int nr)
  3050. {
  3051. struct extent_buffer *leaf;
  3052. struct btrfs_item *item;
  3053. int ret = 0;
  3054. int slot;
  3055. int i;
  3056. u32 nritems;
  3057. u32 total_data = 0;
  3058. u32 total_size = 0;
  3059. unsigned int data_end;
  3060. struct btrfs_disk_key disk_key;
  3061. struct btrfs_key found_key;
  3062. struct btrfs_map_token token;
  3063. btrfs_init_map_token(&token);
  3064. for (i = 0; i < nr; i++) {
  3065. if (total_size + data_size[i] + sizeof(struct btrfs_item) >
  3066. BTRFS_LEAF_DATA_SIZE(root)) {
  3067. break;
  3068. nr = i;
  3069. }
  3070. total_data += data_size[i];
  3071. total_size += data_size[i] + sizeof(struct btrfs_item);
  3072. }
  3073. BUG_ON(nr == 0);
  3074. ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
  3075. if (ret == 0)
  3076. return -EEXIST;
  3077. if (ret < 0)
  3078. goto out;
  3079. leaf = path->nodes[0];
  3080. nritems = btrfs_header_nritems(leaf);
  3081. data_end = leaf_data_end(root, leaf);
  3082. if (btrfs_leaf_free_space(root, leaf) < total_size) {
  3083. for (i = nr; i >= 0; i--) {
  3084. total_data -= data_size[i];
  3085. total_size -= data_size[i] + sizeof(struct btrfs_item);
  3086. if (total_size < btrfs_leaf_free_space(root, leaf))
  3087. break;
  3088. }
  3089. nr = i;
  3090. }
  3091. slot = path->slots[0];
  3092. BUG_ON(slot < 0);
  3093. if (slot != nritems) {
  3094. unsigned int old_data = btrfs_item_end_nr(leaf, slot);
  3095. item = btrfs_item_nr(leaf, slot);
  3096. btrfs_item_key_to_cpu(leaf, &found_key, slot);
  3097. /* figure out how many keys we can insert in here */
  3098. total_data = data_size[0];
  3099. for (i = 1; i < nr; i++) {
  3100. if (btrfs_comp_cpu_keys(&found_key, cpu_key + i) <= 0)
  3101. break;
  3102. total_data += data_size[i];
  3103. }
  3104. nr = i;
  3105. if (old_data < data_end) {
  3106. btrfs_print_leaf(root, leaf);
  3107. printk(KERN_CRIT "slot %d old_data %d data_end %d\n",
  3108. slot, old_data, data_end);
  3109. BUG_ON(1);
  3110. }
  3111. /*
  3112. * item0..itemN ... dataN.offset..dataN.size .. data0.size
  3113. */
  3114. /* first correct the data pointers */
  3115. for (i = slot; i < nritems; i++) {
  3116. u32 ioff;
  3117. item = btrfs_item_nr(leaf, i);
  3118. ioff = btrfs_token_item_offset(leaf, item, &token);
  3119. btrfs_set_token_item_offset(leaf, item,
  3120. ioff - total_data, &token);
  3121. }
  3122. /* shift the items */
  3123. memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
  3124. btrfs_item_nr_offset(slot),
  3125. (nritems - slot) * sizeof(struct btrfs_item));
  3126. /* shift the data */
  3127. memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
  3128. data_end - total_data, btrfs_leaf_data(leaf) +
  3129. data_end, old_data - data_end);
  3130. data_end = old_data;
  3131. } else {
  3132. /*
  3133. * this sucks but it has to be done, if we are inserting at
  3134. * the end of the leaf only insert 1 of the items, since we
  3135. * have no way of knowing whats on the next leaf and we'd have
  3136. * to drop our current locks to figure it out
  3137. */
  3138. nr = 1;
  3139. }
  3140. /* setup the item for the new data */
  3141. for (i = 0; i < nr; i++) {
  3142. btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
  3143. btrfs_set_item_key(leaf, &disk_key, slot + i);
  3144. item = btrfs_item_nr(leaf, slot + i);
  3145. btrfs_set_token_item_offset(leaf, item,
  3146. data_end - data_size[i], &token);
  3147. data_end -= data_size[i];
  3148. btrfs_set_token_item_size(leaf, item, data_size[i], &token);
  3149. }
  3150. btrfs_set_header_nritems(leaf, nritems + nr);
  3151. btrfs_mark_buffer_dirty(leaf);
  3152. ret = 0;
  3153. if (slot == 0) {
  3154. btrfs_cpu_key_to_disk(&disk_key, cpu_key);
  3155. ret = fixup_low_keys(trans, root, path, &disk_key, 1);
  3156. }
  3157. if (btrfs_leaf_free_space(root, leaf) < 0) {
  3158. btrfs_print_leaf(root, leaf);
  3159. BUG();
  3160. }
  3161. out:
  3162. if (!ret)
  3163. ret = nr;
  3164. return ret;
  3165. }
  3166. /*
  3167. * this is a helper for btrfs_insert_empty_items, the main goal here is
  3168. * to save stack depth by doing the bulk of the work in a function
  3169. * that doesn't call btrfs_search_slot
  3170. */
  3171. int setup_items_for_insert(struct btrfs_trans_handle *trans,
  3172. struct btrfs_root *root, struct btrfs_path *path,
  3173. struct btrfs_key *cpu_key, u32 *data_size,
  3174. u32 total_data, u32 total_size, int nr)
  3175. {
  3176. struct btrfs_item *item;
  3177. int i;
  3178. u32 nritems;
  3179. unsigned int data_end;
  3180. struct btrfs_disk_key disk_key;
  3181. int ret;
  3182. struct extent_buffer *leaf;
  3183. int slot;
  3184. struct btrfs_map_token token;
  3185. btrfs_init_map_token(&token);
  3186. leaf = path->nodes[0];
  3187. slot = path->slots[0];
  3188. nritems = btrfs_header_nritems(leaf);
  3189. data_end = leaf_data_end(root, leaf);
  3190. if (btrfs_leaf_free_space(root, leaf) < total_size) {
  3191. btrfs_print_leaf(root, leaf);
  3192. printk(KERN_CRIT "not enough freespace need %u have %d\n",
  3193. total_size, btrfs_leaf_free_space(root, leaf));
  3194. BUG();
  3195. }
  3196. if (slot != nritems) {
  3197. unsigned int old_data = btrfs_item_end_nr(leaf, slot);
  3198. if (old_data < data_end) {
  3199. btrfs_print_leaf(root, leaf);
  3200. printk(KERN_CRIT "slot %d old_data %d data_end %d\n",
  3201. slot, old_data, data_end);
  3202. BUG_ON(1);
  3203. }
  3204. /*
  3205. * item0..itemN ... dataN.offset..dataN.size .. data0.size
  3206. */
  3207. /* first correct the data pointers */
  3208. for (i = slot; i < nritems; i++) {
  3209. u32 ioff;
  3210. item = btrfs_item_nr(leaf, i);
  3211. ioff = btrfs_token_item_offset(leaf, item, &token);
  3212. btrfs_set_token_item_offset(leaf, item,
  3213. ioff - total_data, &token);
  3214. }
  3215. /* shift the items */
  3216. memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
  3217. btrfs_item_nr_offset(slot),
  3218. (nritems - slot) * sizeof(struct btrfs_item));
  3219. /* shift the data */
  3220. memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
  3221. data_end - total_data, btrfs_leaf_data(leaf) +
  3222. data_end, old_data - data_end);
  3223. data_end = old_data;
  3224. }
  3225. /* setup the item for the new data */
  3226. for (i = 0; i < nr; i++) {
  3227. btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
  3228. btrfs_set_item_key(leaf, &disk_key, slot + i);
  3229. item = btrfs_item_nr(leaf, slot + i);
  3230. btrfs_set_token_item_offset(leaf, item,
  3231. data_end - data_size[i], &token);
  3232. data_end -= data_size[i];
  3233. btrfs_set_token_item_size(leaf, item, data_size[i], &token);
  3234. }
  3235. btrfs_set_header_nritems(leaf, nritems + nr);
  3236. ret = 0;
  3237. if (slot == 0) {
  3238. btrfs_cpu_key_to_disk(&disk_key, cpu_key);
  3239. ret = fixup_low_keys(trans, root, path, &disk_key, 1);
  3240. }
  3241. btrfs_unlock_up_safe(path, 1);
  3242. btrfs_mark_buffer_dirty(leaf);
  3243. if (btrfs_leaf_free_space(root, leaf) < 0) {
  3244. btrfs_print_leaf(root, leaf);
  3245. BUG();
  3246. }
  3247. return ret;
  3248. }
  3249. /*
  3250. * Given a key and some data, insert items into the tree.
  3251. * This does all the path init required, making room in the tree if needed.
  3252. */
  3253. int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
  3254. struct btrfs_root *root,
  3255. struct btrfs_path *path,
  3256. struct btrfs_key *cpu_key, u32 *data_size,
  3257. int nr)
  3258. {
  3259. int ret = 0;
  3260. int slot;
  3261. int i;
  3262. u32 total_size = 0;
  3263. u32 total_data = 0;
  3264. for (i = 0; i < nr; i++)
  3265. total_data += data_size[i];
  3266. total_size = total_data + (nr * sizeof(struct btrfs_item));
  3267. ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
  3268. if (ret == 0)
  3269. return -EEXIST;
  3270. if (ret < 0)
  3271. goto out;
  3272. slot = path->slots[0];
  3273. BUG_ON(slot < 0);
  3274. ret = setup_items_for_insert(trans, root, path, cpu_key, data_size,
  3275. total_data, total_size, nr);
  3276. out:
  3277. return ret;
  3278. }
  3279. /*
  3280. * Given a key and some data, insert an item into the tree.
  3281. * This does all the path init required, making room in the tree if needed.
  3282. */
  3283. int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root
  3284. *root, struct btrfs_key *cpu_key, void *data, u32
  3285. data_size)
  3286. {
  3287. int ret = 0;
  3288. struct btrfs_path *path;
  3289. struct extent_buffer *leaf;
  3290. unsigned long ptr;
  3291. path = btrfs_alloc_path();
  3292. if (!path)
  3293. return -ENOMEM;
  3294. ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
  3295. if (!ret) {
  3296. leaf = path->nodes[0];
  3297. ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
  3298. write_extent_buffer(leaf, data, ptr, data_size);
  3299. btrfs_mark_buffer_dirty(leaf);
  3300. }
  3301. btrfs_free_path(path);
  3302. return ret;
  3303. }
  3304. /*
  3305. * delete the pointer from a given node.
  3306. *
  3307. * the tree should have been previously balanced so the deletion does not
  3308. * empty a node.
  3309. */
  3310. static int del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
  3311. struct btrfs_path *path, int level, int slot)
  3312. {
  3313. struct extent_buffer *parent = path->nodes[level];
  3314. u32 nritems;
  3315. int ret = 0;
  3316. int wret;
  3317. nritems = btrfs_header_nritems(parent);
  3318. if (slot != nritems - 1) {
  3319. memmove_extent_buffer(parent,
  3320. btrfs_node_key_ptr_offset(slot),
  3321. btrfs_node_key_ptr_offset(slot + 1),
  3322. sizeof(struct btrfs_key_ptr) *
  3323. (nritems - slot - 1));
  3324. }
  3325. nritems--;
  3326. btrfs_set_header_nritems(parent, nritems);
  3327. if (nritems == 0 && parent == root->node) {
  3328. BUG_ON(btrfs_header_level(root->node) != 1);
  3329. /* just turn the root into a leaf and break */
  3330. btrfs_set_header_level(root->node, 0);
  3331. } else if (slot == 0) {
  3332. struct btrfs_disk_key disk_key;
  3333. btrfs_node_key(parent, &disk_key, 0);
  3334. wret = fixup_low_keys(trans, root, path, &disk_key, level + 1);
  3335. if (wret)
  3336. ret = wret;
  3337. }
  3338. btrfs_mark_buffer_dirty(parent);
  3339. return ret;
  3340. }
  3341. /*
  3342. * a helper function to delete the leaf pointed to by path->slots[1] and
  3343. * path->nodes[1].
  3344. *
  3345. * This deletes the pointer in path->nodes[1] and frees the leaf
  3346. * block extent. zero is returned if it all worked out, < 0 otherwise.
  3347. *
  3348. * The path must have already been setup for deleting the leaf, including
  3349. * all the proper balancing. path->nodes[1] must be locked.
  3350. */
  3351. static noinline int btrfs_del_leaf(struct btrfs_trans_handle *trans,
  3352. struct btrfs_root *root,
  3353. struct btrfs_path *path,
  3354. struct extent_buffer *leaf)
  3355. {
  3356. int ret;
  3357. WARN_ON(btrfs_header_generation(leaf) != trans->transid);
  3358. ret = del_ptr(trans, root, path, 1, path->slots[1]);
  3359. if (ret)
  3360. return ret;
  3361. /*
  3362. * btrfs_free_extent is expensive, we want to make sure we
  3363. * aren't holding any locks when we call it
  3364. */
  3365. btrfs_unlock_up_safe(path, 0);
  3366. root_sub_used(root, leaf->len);
  3367. extent_buffer_get(leaf);
  3368. btrfs_free_tree_block(trans, root, leaf, 0, 1, 0);
  3369. free_extent_buffer_stale(leaf);
  3370. return 0;
  3371. }
  3372. /*
  3373. * delete the item at the leaf level in path. If that empties
  3374. * the leaf, remove it from the tree
  3375. */
  3376. int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
  3377. struct btrfs_path *path, int slot, int nr)
  3378. {
  3379. struct extent_buffer *leaf;
  3380. struct btrfs_item *item;
  3381. int last_off;
  3382. int dsize = 0;
  3383. int ret = 0;
  3384. int wret;
  3385. int i;
  3386. u32 nritems;
  3387. struct btrfs_map_token token;
  3388. btrfs_init_map_token(&token);
  3389. leaf = path->nodes[0];
  3390. last_off = btrfs_item_offset_nr(leaf, slot + nr - 1);
  3391. for (i = 0; i < nr; i++)
  3392. dsize += btrfs_item_size_nr(leaf, slot + i);
  3393. nritems = btrfs_header_nritems(leaf);
  3394. if (slot + nr != nritems) {
  3395. int data_end = leaf_data_end(root, leaf);
  3396. memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
  3397. data_end + dsize,
  3398. btrfs_leaf_data(leaf) + data_end,
  3399. last_off - data_end);
  3400. for (i = slot + nr; i < nritems; i++) {
  3401. u32 ioff;
  3402. item = btrfs_item_nr(leaf, i);
  3403. ioff = btrfs_token_item_offset(leaf, item, &token);
  3404. btrfs_set_token_item_offset(leaf, item,
  3405. ioff + dsize, &token);
  3406. }
  3407. memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
  3408. btrfs_item_nr_offset(slot + nr),
  3409. sizeof(struct btrfs_item) *
  3410. (nritems - slot - nr));
  3411. }
  3412. btrfs_set_header_nritems(leaf, nritems - nr);
  3413. nritems -= nr;
  3414. /* delete the leaf if we've emptied it */
  3415. if (nritems == 0) {
  3416. if (leaf == root->node) {
  3417. btrfs_set_header_level(leaf, 0);
  3418. } else {
  3419. btrfs_set_path_blocking(path);
  3420. clean_tree_block(trans, root, leaf);
  3421. ret = btrfs_del_leaf(trans, root, path, leaf);
  3422. BUG_ON(ret);
  3423. }
  3424. } else {
  3425. int used = leaf_space_used(leaf, 0, nritems);
  3426. if (slot == 0) {
  3427. struct btrfs_disk_key disk_key;
  3428. btrfs_item_key(leaf, &disk_key, 0);
  3429. wret = fixup_low_keys(trans, root, path,
  3430. &disk_key, 1);
  3431. if (wret)
  3432. ret = wret;
  3433. }
  3434. /* delete the leaf if it is mostly empty */
  3435. if (used < BTRFS_LEAF_DATA_SIZE(root) / 3) {
  3436. /* push_leaf_left fixes the path.
  3437. * make sure the path still points to our leaf
  3438. * for possible call to del_ptr below
  3439. */
  3440. slot = path->slots[1];
  3441. extent_buffer_get(leaf);
  3442. btrfs_set_path_blocking(path);
  3443. wret = push_leaf_left(trans, root, path, 1, 1,
  3444. 1, (u32)-1);
  3445. if (wret < 0 && wret != -ENOSPC)
  3446. ret = wret;
  3447. if (path->nodes[0] == leaf &&
  3448. btrfs_header_nritems(leaf)) {
  3449. wret = push_leaf_right(trans, root, path, 1,
  3450. 1, 1, 0);
  3451. if (wret < 0 && wret != -ENOSPC)
  3452. ret = wret;
  3453. }
  3454. if (btrfs_header_nritems(leaf) == 0) {
  3455. path->slots[1] = slot;
  3456. ret = btrfs_del_leaf(trans, root, path, leaf);
  3457. BUG_ON(ret);
  3458. free_extent_buffer(leaf);
  3459. } else {
  3460. /* if we're still in the path, make sure
  3461. * we're dirty. Otherwise, one of the
  3462. * push_leaf functions must have already
  3463. * dirtied this buffer
  3464. */
  3465. if (path->nodes[0] == leaf)
  3466. btrfs_mark_buffer_dirty(leaf);
  3467. free_extent_buffer(leaf);
  3468. }
  3469. } else {
  3470. btrfs_mark_buffer_dirty(leaf);
  3471. }
  3472. }
  3473. return ret;
  3474. }
  3475. /*
  3476. * search the tree again to find a leaf with lesser keys
  3477. * returns 0 if it found something or 1 if there are no lesser leaves.
  3478. * returns < 0 on io errors.
  3479. *
  3480. * This may release the path, and so you may lose any locks held at the
  3481. * time you call it.
  3482. */
  3483. int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
  3484. {
  3485. struct btrfs_key key;
  3486. struct btrfs_disk_key found_key;
  3487. int ret;
  3488. btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
  3489. if (key.offset > 0)
  3490. key.offset--;
  3491. else if (key.type > 0)
  3492. key.type--;
  3493. else if (key.objectid > 0)
  3494. key.objectid--;
  3495. else
  3496. return 1;
  3497. btrfs_release_path(path);
  3498. ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
  3499. if (ret < 0)
  3500. return ret;
  3501. btrfs_item_key(path->nodes[0], &found_key, 0);
  3502. ret = comp_keys(&found_key, &key);
  3503. if (ret < 0)
  3504. return 0;
  3505. return 1;
  3506. }
  3507. /*
  3508. * A helper function to walk down the tree starting at min_key, and looking
  3509. * for nodes or leaves that are either in cache or have a minimum
  3510. * transaction id. This is used by the btree defrag code, and tree logging
  3511. *
  3512. * This does not cow, but it does stuff the starting key it finds back
  3513. * into min_key, so you can call btrfs_search_slot with cow=1 on the
  3514. * key and get a writable path.
  3515. *
  3516. * This does lock as it descends, and path->keep_locks should be set
  3517. * to 1 by the caller.
  3518. *
  3519. * This honors path->lowest_level to prevent descent past a given level
  3520. * of the tree.
  3521. *
  3522. * min_trans indicates the oldest transaction that you are interested
  3523. * in walking through. Any nodes or leaves older than min_trans are
  3524. * skipped over (without reading them).
  3525. *
  3526. * returns zero if something useful was found, < 0 on error and 1 if there
  3527. * was nothing in the tree that matched the search criteria.
  3528. */
  3529. int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
  3530. struct btrfs_key *max_key,
  3531. struct btrfs_path *path, int cache_only,
  3532. u64 min_trans)
  3533. {
  3534. struct extent_buffer *cur;
  3535. struct btrfs_key found_key;
  3536. int slot;
  3537. int sret;
  3538. u32 nritems;
  3539. int level;
  3540. int ret = 1;
  3541. WARN_ON(!path->keep_locks);
  3542. again:
  3543. cur = btrfs_read_lock_root_node(root);
  3544. level = btrfs_header_level(cur);
  3545. WARN_ON(path->nodes[level]);
  3546. path->nodes[level] = cur;
  3547. path->locks[level] = BTRFS_READ_LOCK;
  3548. if (btrfs_header_generation(cur) < min_trans) {
  3549. ret = 1;
  3550. goto out;
  3551. }
  3552. while (1) {
  3553. nritems = btrfs_header_nritems(cur);
  3554. level = btrfs_header_level(cur);
  3555. sret = bin_search(cur, min_key, level, &slot);
  3556. /* at the lowest level, we're done, setup the path and exit */
  3557. if (level == path->lowest_level) {
  3558. if (slot >= nritems)
  3559. goto find_next_key;
  3560. ret = 0;
  3561. path->slots[level] = slot;
  3562. btrfs_item_key_to_cpu(cur, &found_key, slot);
  3563. goto out;
  3564. }
  3565. if (sret && slot > 0)
  3566. slot--;
  3567. /*
  3568. * check this node pointer against the cache_only and
  3569. * min_trans parameters. If it isn't in cache or is too
  3570. * old, skip to the next one.
  3571. */
  3572. while (slot < nritems) {
  3573. u64 blockptr;
  3574. u64 gen;
  3575. struct extent_buffer *tmp;
  3576. struct btrfs_disk_key disk_key;
  3577. blockptr = btrfs_node_blockptr(cur, slot);
  3578. gen = btrfs_node_ptr_generation(cur, slot);
  3579. if (gen < min_trans) {
  3580. slot++;
  3581. continue;
  3582. }
  3583. if (!cache_only)
  3584. break;
  3585. if (max_key) {
  3586. btrfs_node_key(cur, &disk_key, slot);
  3587. if (comp_keys(&disk_key, max_key) >= 0) {
  3588. ret = 1;
  3589. goto out;
  3590. }
  3591. }
  3592. tmp = btrfs_find_tree_block(root, blockptr,
  3593. btrfs_level_size(root, level - 1));
  3594. if (tmp && btrfs_buffer_uptodate(tmp, gen)) {
  3595. free_extent_buffer(tmp);
  3596. break;
  3597. }
  3598. if (tmp)
  3599. free_extent_buffer(tmp);
  3600. slot++;
  3601. }
  3602. find_next_key:
  3603. /*
  3604. * we didn't find a candidate key in this node, walk forward
  3605. * and find another one
  3606. */
  3607. if (slot >= nritems) {
  3608. path->slots[level] = slot;
  3609. btrfs_set_path_blocking(path);
  3610. sret = btrfs_find_next_key(root, path, min_key, level,
  3611. cache_only, min_trans);
  3612. if (sret == 0) {
  3613. btrfs_release_path(path);
  3614. goto again;
  3615. } else {
  3616. goto out;
  3617. }
  3618. }
  3619. /* save our key for returning back */
  3620. btrfs_node_key_to_cpu(cur, &found_key, slot);
  3621. path->slots[level] = slot;
  3622. if (level == path->lowest_level) {
  3623. ret = 0;
  3624. unlock_up(path, level, 1);
  3625. goto out;
  3626. }
  3627. btrfs_set_path_blocking(path);
  3628. cur = read_node_slot(root, cur, slot);
  3629. BUG_ON(!cur);
  3630. btrfs_tree_read_lock(cur);
  3631. path->locks[level - 1] = BTRFS_READ_LOCK;
  3632. path->nodes[level - 1] = cur;
  3633. unlock_up(path, level, 1);
  3634. btrfs_clear_path_blocking(path, NULL, 0);
  3635. }
  3636. out:
  3637. if (ret == 0)
  3638. memcpy(min_key, &found_key, sizeof(found_key));
  3639. btrfs_set_path_blocking(path);
  3640. return ret;
  3641. }
  3642. /*
  3643. * this is similar to btrfs_next_leaf, but does not try to preserve
  3644. * and fixup the path. It looks for and returns the next key in the
  3645. * tree based on the current path and the cache_only and min_trans
  3646. * parameters.
  3647. *
  3648. * 0 is returned if another key is found, < 0 if there are any errors
  3649. * and 1 is returned if there are no higher keys in the tree
  3650. *
  3651. * path->keep_locks should be set to 1 on the search made before
  3652. * calling this function.
  3653. */
  3654. int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
  3655. struct btrfs_key *key, int level,
  3656. int cache_only, u64 min_trans)
  3657. {
  3658. int slot;
  3659. struct extent_buffer *c;
  3660. WARN_ON(!path->keep_locks);
  3661. while (level < BTRFS_MAX_LEVEL) {
  3662. if (!path->nodes[level])
  3663. return 1;
  3664. slot = path->slots[level] + 1;
  3665. c = path->nodes[level];
  3666. next:
  3667. if (slot >= btrfs_header_nritems(c)) {
  3668. int ret;
  3669. int orig_lowest;
  3670. struct btrfs_key cur_key;
  3671. if (level + 1 >= BTRFS_MAX_LEVEL ||
  3672. !path->nodes[level + 1])
  3673. return 1;
  3674. if (path->locks[level + 1]) {
  3675. level++;
  3676. continue;
  3677. }
  3678. slot = btrfs_header_nritems(c) - 1;
  3679. if (level == 0)
  3680. btrfs_item_key_to_cpu(c, &cur_key, slot);
  3681. else
  3682. btrfs_node_key_to_cpu(c, &cur_key, slot);
  3683. orig_lowest = path->lowest_level;
  3684. btrfs_release_path(path);
  3685. path->lowest_level = level;
  3686. ret = btrfs_search_slot(NULL, root, &cur_key, path,
  3687. 0, 0);
  3688. path->lowest_level = orig_lowest;
  3689. if (ret < 0)
  3690. return ret;
  3691. c = path->nodes[level];
  3692. slot = path->slots[level];
  3693. if (ret == 0)
  3694. slot++;
  3695. goto next;
  3696. }
  3697. if (level == 0)
  3698. btrfs_item_key_to_cpu(c, key, slot);
  3699. else {
  3700. u64 blockptr = btrfs_node_blockptr(c, slot);
  3701. u64 gen = btrfs_node_ptr_generation(c, slot);
  3702. if (cache_only) {
  3703. struct extent_buffer *cur;
  3704. cur = btrfs_find_tree_block(root, blockptr,
  3705. btrfs_level_size(root, level - 1));
  3706. if (!cur || !btrfs_buffer_uptodate(cur, gen)) {
  3707. slot++;
  3708. if (cur)
  3709. free_extent_buffer(cur);
  3710. goto next;
  3711. }
  3712. free_extent_buffer(cur);
  3713. }
  3714. if (gen < min_trans) {
  3715. slot++;
  3716. goto next;
  3717. }
  3718. btrfs_node_key_to_cpu(c, key, slot);
  3719. }
  3720. return 0;
  3721. }
  3722. return 1;
  3723. }
  3724. /*
  3725. * search the tree again to find a leaf with greater keys
  3726. * returns 0 if it found something or 1 if there are no greater leaves.
  3727. * returns < 0 on io errors.
  3728. */
  3729. int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
  3730. {
  3731. int slot;
  3732. int level;
  3733. struct extent_buffer *c;
  3734. struct extent_buffer *next;
  3735. struct btrfs_key key;
  3736. u32 nritems;
  3737. int ret;
  3738. int old_spinning = path->leave_spinning;
  3739. int next_rw_lock = 0;
  3740. nritems = btrfs_header_nritems(path->nodes[0]);
  3741. if (nritems == 0)
  3742. return 1;
  3743. btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
  3744. again:
  3745. level = 1;
  3746. next = NULL;
  3747. next_rw_lock = 0;
  3748. btrfs_release_path(path);
  3749. path->keep_locks = 1;
  3750. path->leave_spinning = 1;
  3751. ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
  3752. path->keep_locks = 0;
  3753. if (ret < 0)
  3754. return ret;
  3755. nritems = btrfs_header_nritems(path->nodes[0]);
  3756. /*
  3757. * by releasing the path above we dropped all our locks. A balance
  3758. * could have added more items next to the key that used to be
  3759. * at the very end of the block. So, check again here and
  3760. * advance the path if there are now more items available.
  3761. */
  3762. if (nritems > 0 && path->slots[0] < nritems - 1) {
  3763. if (ret == 0)
  3764. path->slots[0]++;
  3765. ret = 0;
  3766. goto done;
  3767. }
  3768. while (level < BTRFS_MAX_LEVEL) {
  3769. if (!path->nodes[level]) {
  3770. ret = 1;
  3771. goto done;
  3772. }
  3773. slot = path->slots[level] + 1;
  3774. c = path->nodes[level];
  3775. if (slot >= btrfs_header_nritems(c)) {
  3776. level++;
  3777. if (level == BTRFS_MAX_LEVEL) {
  3778. ret = 1;
  3779. goto done;
  3780. }
  3781. continue;
  3782. }
  3783. if (next) {
  3784. btrfs_tree_unlock_rw(next, next_rw_lock);
  3785. free_extent_buffer(next);
  3786. }
  3787. next = c;
  3788. next_rw_lock = path->locks[level];
  3789. ret = read_block_for_search(NULL, root, path, &next, level,
  3790. slot, &key);
  3791. if (ret == -EAGAIN)
  3792. goto again;
  3793. if (ret < 0) {
  3794. btrfs_release_path(path);
  3795. goto done;
  3796. }
  3797. if (!path->skip_locking) {
  3798. ret = btrfs_try_tree_read_lock(next);
  3799. if (!ret) {
  3800. btrfs_set_path_blocking(path);
  3801. btrfs_tree_read_lock(next);
  3802. btrfs_clear_path_blocking(path, next,
  3803. BTRFS_READ_LOCK);
  3804. }
  3805. next_rw_lock = BTRFS_READ_LOCK;
  3806. }
  3807. break;
  3808. }
  3809. path->slots[level] = slot;
  3810. while (1) {
  3811. level--;
  3812. c = path->nodes[level];
  3813. if (path->locks[level])
  3814. btrfs_tree_unlock_rw(c, path->locks[level]);
  3815. free_extent_buffer(c);
  3816. path->nodes[level] = next;
  3817. path->slots[level] = 0;
  3818. if (!path->skip_locking)
  3819. path->locks[level] = next_rw_lock;
  3820. if (!level)
  3821. break;
  3822. ret = read_block_for_search(NULL, root, path, &next, level,
  3823. 0, &key);
  3824. if (ret == -EAGAIN)
  3825. goto again;
  3826. if (ret < 0) {
  3827. btrfs_release_path(path);
  3828. goto done;
  3829. }
  3830. if (!path->skip_locking) {
  3831. ret = btrfs_try_tree_read_lock(next);
  3832. if (!ret) {
  3833. btrfs_set_path_blocking(path);
  3834. btrfs_tree_read_lock(next);
  3835. btrfs_clear_path_blocking(path, next,
  3836. BTRFS_READ_LOCK);
  3837. }
  3838. next_rw_lock = BTRFS_READ_LOCK;
  3839. }
  3840. }
  3841. ret = 0;
  3842. done:
  3843. unlock_up(path, 0, 1);
  3844. path->leave_spinning = old_spinning;
  3845. if (!old_spinning)
  3846. btrfs_set_path_blocking(path);
  3847. return ret;
  3848. }
  3849. /*
  3850. * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
  3851. * searching until it gets past min_objectid or finds an item of 'type'
  3852. *
  3853. * returns 0 if something is found, 1 if nothing was found and < 0 on error
  3854. */
  3855. int btrfs_previous_item(struct btrfs_root *root,
  3856. struct btrfs_path *path, u64 min_objectid,
  3857. int type)
  3858. {
  3859. struct btrfs_key found_key;
  3860. struct extent_buffer *leaf;
  3861. u32 nritems;
  3862. int ret;
  3863. while (1) {
  3864. if (path->slots[0] == 0) {
  3865. btrfs_set_path_blocking(path);
  3866. ret = btrfs_prev_leaf(root, path);
  3867. if (ret != 0)
  3868. return ret;
  3869. } else {
  3870. path->slots[0]--;
  3871. }
  3872. leaf = path->nodes[0];
  3873. nritems = btrfs_header_nritems(leaf);
  3874. if (nritems == 0)
  3875. return 1;
  3876. if (path->slots[0] == nritems)
  3877. path->slots[0]--;
  3878. btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
  3879. if (found_key.objectid < min_objectid)
  3880. break;
  3881. if (found_key.type == type)
  3882. return 0;
  3883. if (found_key.objectid == min_objectid &&
  3884. found_key.type < type)
  3885. break;
  3886. }
  3887. return 1;
  3888. }