hugetlbpage.c 5.3 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253
  1. /*
  2. * IA-32 Huge TLB Page Support for Kernel.
  3. *
  4. * Copyright (C) 2002, Rohit Seth <rohit.seth@intel.com>
  5. */
  6. #include <linux/init.h>
  7. #include <linux/fs.h>
  8. #include <linux/mm.h>
  9. #include <linux/hugetlb.h>
  10. #include <linux/pagemap.h>
  11. #include <linux/err.h>
  12. #include <linux/sysctl.h>
  13. #include <asm/mman.h>
  14. #include <asm/tlb.h>
  15. #include <asm/tlbflush.h>
  16. #include <asm/pgalloc.h>
  17. pte_t *huge_pte_alloc(struct mm_struct *mm,
  18. unsigned long addr, unsigned long sz)
  19. {
  20. pgd_t *pgd;
  21. pud_t *pud;
  22. pte_t *pte = NULL;
  23. pgd = pgd_offset(mm, addr);
  24. pud = pud_alloc(mm, pgd, addr);
  25. if (pud) {
  26. if (sz == PUD_SIZE) {
  27. pte = (pte_t *)pud;
  28. } else {
  29. BUG_ON(sz != PMD_SIZE);
  30. if (pud_none(*pud))
  31. pte = huge_pmd_share(mm, addr, pud);
  32. else
  33. pte = (pte_t *)pmd_alloc(mm, pud, addr);
  34. }
  35. }
  36. BUG_ON(pte && !pte_none(*pte) && !pte_huge(*pte));
  37. return pte;
  38. }
  39. pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
  40. {
  41. pgd_t *pgd;
  42. pud_t *pud;
  43. pmd_t *pmd = NULL;
  44. pgd = pgd_offset(mm, addr);
  45. if (pgd_present(*pgd)) {
  46. pud = pud_offset(pgd, addr);
  47. if (pud_present(*pud)) {
  48. if (pud_large(*pud))
  49. return (pte_t *)pud;
  50. pmd = pmd_offset(pud, addr);
  51. }
  52. }
  53. return (pte_t *) pmd;
  54. }
  55. #if 0 /* This is just for testing */
  56. struct page *
  57. follow_huge_addr(struct mm_struct *mm, unsigned long address, int write)
  58. {
  59. unsigned long start = address;
  60. int length = 1;
  61. int nr;
  62. struct page *page;
  63. struct vm_area_struct *vma;
  64. vma = find_vma(mm, addr);
  65. if (!vma || !is_vm_hugetlb_page(vma))
  66. return ERR_PTR(-EINVAL);
  67. pte = huge_pte_offset(mm, address);
  68. /* hugetlb should be locked, and hence, prefaulted */
  69. WARN_ON(!pte || pte_none(*pte));
  70. page = &pte_page(*pte)[vpfn % (HPAGE_SIZE/PAGE_SIZE)];
  71. WARN_ON(!PageHead(page));
  72. return page;
  73. }
  74. int pmd_huge(pmd_t pmd)
  75. {
  76. return 0;
  77. }
  78. int pud_huge(pud_t pud)
  79. {
  80. return 0;
  81. }
  82. struct page *
  83. follow_huge_pmd(struct mm_struct *mm, unsigned long address,
  84. pmd_t *pmd, int write)
  85. {
  86. return NULL;
  87. }
  88. #else
  89. struct page *
  90. follow_huge_addr(struct mm_struct *mm, unsigned long address, int write)
  91. {
  92. return ERR_PTR(-EINVAL);
  93. }
  94. int pmd_huge(pmd_t pmd)
  95. {
  96. return !!(pmd_val(pmd) & _PAGE_PSE);
  97. }
  98. int pud_huge(pud_t pud)
  99. {
  100. return !!(pud_val(pud) & _PAGE_PSE);
  101. }
  102. struct page *
  103. follow_huge_pmd(struct mm_struct *mm, unsigned long address,
  104. pmd_t *pmd, int write)
  105. {
  106. struct page *page;
  107. page = pte_page(*(pte_t *)pmd);
  108. if (page)
  109. page += ((address & ~PMD_MASK) >> PAGE_SHIFT);
  110. return page;
  111. }
  112. struct page *
  113. follow_huge_pud(struct mm_struct *mm, unsigned long address,
  114. pud_t *pud, int write)
  115. {
  116. struct page *page;
  117. page = pte_page(*(pte_t *)pud);
  118. if (page)
  119. page += ((address & ~PUD_MASK) >> PAGE_SHIFT);
  120. return page;
  121. }
  122. #endif
  123. /* x86_64 also uses this file */
  124. #ifdef HAVE_ARCH_HUGETLB_UNMAPPED_AREA
  125. static unsigned long hugetlb_get_unmapped_area_bottomup(struct file *file,
  126. unsigned long addr, unsigned long len,
  127. unsigned long pgoff, unsigned long flags)
  128. {
  129. struct hstate *h = hstate_file(file);
  130. struct vm_unmapped_area_info info;
  131. info.flags = 0;
  132. info.length = len;
  133. info.low_limit = TASK_UNMAPPED_BASE;
  134. info.high_limit = TASK_SIZE;
  135. info.align_mask = PAGE_MASK & ~huge_page_mask(h);
  136. info.align_offset = 0;
  137. return vm_unmapped_area(&info);
  138. }
  139. static unsigned long hugetlb_get_unmapped_area_topdown(struct file *file,
  140. unsigned long addr0, unsigned long len,
  141. unsigned long pgoff, unsigned long flags)
  142. {
  143. struct hstate *h = hstate_file(file);
  144. struct vm_unmapped_area_info info;
  145. unsigned long addr;
  146. info.flags = VM_UNMAPPED_AREA_TOPDOWN;
  147. info.length = len;
  148. info.low_limit = PAGE_SIZE;
  149. info.high_limit = current->mm->mmap_base;
  150. info.align_mask = PAGE_MASK & ~huge_page_mask(h);
  151. info.align_offset = 0;
  152. addr = vm_unmapped_area(&info);
  153. /*
  154. * A failed mmap() very likely causes application failure,
  155. * so fall back to the bottom-up function here. This scenario
  156. * can happen with large stack limits and large mmap()
  157. * allocations.
  158. */
  159. if (addr & ~PAGE_MASK) {
  160. VM_BUG_ON(addr != -ENOMEM);
  161. info.flags = 0;
  162. info.low_limit = TASK_UNMAPPED_BASE;
  163. info.high_limit = TASK_SIZE;
  164. addr = vm_unmapped_area(&info);
  165. }
  166. return addr;
  167. }
  168. unsigned long
  169. hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
  170. unsigned long len, unsigned long pgoff, unsigned long flags)
  171. {
  172. struct hstate *h = hstate_file(file);
  173. struct mm_struct *mm = current->mm;
  174. struct vm_area_struct *vma;
  175. if (len & ~huge_page_mask(h))
  176. return -EINVAL;
  177. if (len > TASK_SIZE)
  178. return -ENOMEM;
  179. if (flags & MAP_FIXED) {
  180. if (prepare_hugepage_range(file, addr, len))
  181. return -EINVAL;
  182. return addr;
  183. }
  184. if (addr) {
  185. addr = ALIGN(addr, huge_page_size(h));
  186. vma = find_vma(mm, addr);
  187. if (TASK_SIZE - len >= addr &&
  188. (!vma || addr + len <= vma->vm_start))
  189. return addr;
  190. }
  191. if (mm->get_unmapped_area == arch_get_unmapped_area)
  192. return hugetlb_get_unmapped_area_bottomup(file, addr, len,
  193. pgoff, flags);
  194. else
  195. return hugetlb_get_unmapped_area_topdown(file, addr, len,
  196. pgoff, flags);
  197. }
  198. #endif /*HAVE_ARCH_HUGETLB_UNMAPPED_AREA*/
  199. #ifdef CONFIG_X86_64
  200. static __init int setup_hugepagesz(char *opt)
  201. {
  202. unsigned long ps = memparse(opt, &opt);
  203. if (ps == PMD_SIZE) {
  204. hugetlb_add_hstate(PMD_SHIFT - PAGE_SHIFT);
  205. } else if (ps == PUD_SIZE && cpu_has_gbpages) {
  206. hugetlb_add_hstate(PUD_SHIFT - PAGE_SHIFT);
  207. } else {
  208. printk(KERN_ERR "hugepagesz: Unsupported page size %lu M\n",
  209. ps >> 20);
  210. return 0;
  211. }
  212. return 1;
  213. }
  214. __setup("hugepagesz=", setup_hugepagesz);
  215. #endif