intel_dp.c 46 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764
  1. /*
  2. * Copyright © 2008 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Keith Packard <keithp@keithp.com>
  25. *
  26. */
  27. #include <linux/i2c.h>
  28. #include <linux/slab.h>
  29. #include "drmP.h"
  30. #include "drm.h"
  31. #include "drm_crtc.h"
  32. #include "drm_crtc_helper.h"
  33. #include "intel_drv.h"
  34. #include "i915_drm.h"
  35. #include "i915_drv.h"
  36. #include "drm_dp_helper.h"
  37. #define DP_LINK_STATUS_SIZE 6
  38. #define DP_LINK_CHECK_TIMEOUT (10 * 1000)
  39. #define DP_LINK_CONFIGURATION_SIZE 9
  40. struct intel_dp {
  41. struct intel_encoder base;
  42. uint32_t output_reg;
  43. uint32_t DP;
  44. uint8_t link_configuration[DP_LINK_CONFIGURATION_SIZE];
  45. bool has_audio;
  46. int dpms_mode;
  47. uint8_t link_bw;
  48. uint8_t lane_count;
  49. uint8_t dpcd[4];
  50. struct i2c_adapter adapter;
  51. struct i2c_algo_dp_aux_data algo;
  52. bool is_pch_edp;
  53. uint8_t train_set[4];
  54. uint8_t link_status[DP_LINK_STATUS_SIZE];
  55. };
  56. /**
  57. * is_edp - is the given port attached to an eDP panel (either CPU or PCH)
  58. * @intel_dp: DP struct
  59. *
  60. * If a CPU or PCH DP output is attached to an eDP panel, this function
  61. * will return true, and false otherwise.
  62. */
  63. static bool is_edp(struct intel_dp *intel_dp)
  64. {
  65. return intel_dp->base.type == INTEL_OUTPUT_EDP;
  66. }
  67. /**
  68. * is_pch_edp - is the port on the PCH and attached to an eDP panel?
  69. * @intel_dp: DP struct
  70. *
  71. * Returns true if the given DP struct corresponds to a PCH DP port attached
  72. * to an eDP panel, false otherwise. Helpful for determining whether we
  73. * may need FDI resources for a given DP output or not.
  74. */
  75. static bool is_pch_edp(struct intel_dp *intel_dp)
  76. {
  77. return intel_dp->is_pch_edp;
  78. }
  79. static struct intel_dp *enc_to_intel_dp(struct drm_encoder *encoder)
  80. {
  81. return container_of(encoder, struct intel_dp, base.base);
  82. }
  83. static struct intel_dp *intel_attached_dp(struct drm_connector *connector)
  84. {
  85. return container_of(intel_attached_encoder(connector),
  86. struct intel_dp, base);
  87. }
  88. static void intel_dp_start_link_train(struct intel_dp *intel_dp);
  89. static void intel_dp_complete_link_train(struct intel_dp *intel_dp);
  90. static void intel_dp_link_down(struct intel_dp *intel_dp);
  91. void
  92. intel_edp_link_config (struct intel_encoder *intel_encoder,
  93. int *lane_num, int *link_bw)
  94. {
  95. struct intel_dp *intel_dp = container_of(intel_encoder, struct intel_dp, base);
  96. *lane_num = intel_dp->lane_count;
  97. if (intel_dp->link_bw == DP_LINK_BW_1_62)
  98. *link_bw = 162000;
  99. else if (intel_dp->link_bw == DP_LINK_BW_2_7)
  100. *link_bw = 270000;
  101. }
  102. static int
  103. intel_dp_max_lane_count(struct intel_dp *intel_dp)
  104. {
  105. int max_lane_count = 4;
  106. if (intel_dp->dpcd[0] >= 0x11) {
  107. max_lane_count = intel_dp->dpcd[2] & 0x1f;
  108. switch (max_lane_count) {
  109. case 1: case 2: case 4:
  110. break;
  111. default:
  112. max_lane_count = 4;
  113. }
  114. }
  115. return max_lane_count;
  116. }
  117. static int
  118. intel_dp_max_link_bw(struct intel_dp *intel_dp)
  119. {
  120. int max_link_bw = intel_dp->dpcd[1];
  121. switch (max_link_bw) {
  122. case DP_LINK_BW_1_62:
  123. case DP_LINK_BW_2_7:
  124. break;
  125. default:
  126. max_link_bw = DP_LINK_BW_1_62;
  127. break;
  128. }
  129. return max_link_bw;
  130. }
  131. static int
  132. intel_dp_link_clock(uint8_t link_bw)
  133. {
  134. if (link_bw == DP_LINK_BW_2_7)
  135. return 270000;
  136. else
  137. return 162000;
  138. }
  139. /* I think this is a fiction */
  140. static int
  141. intel_dp_link_required(struct drm_device *dev, struct intel_dp *intel_dp, int pixel_clock)
  142. {
  143. struct drm_i915_private *dev_priv = dev->dev_private;
  144. if (is_edp(intel_dp) || is_pch_edp(intel_dp))
  145. return (pixel_clock * dev_priv->edp.bpp + 7) / 8;
  146. else
  147. return pixel_clock * 3;
  148. }
  149. static int
  150. intel_dp_max_data_rate(int max_link_clock, int max_lanes)
  151. {
  152. return (max_link_clock * max_lanes * 8) / 10;
  153. }
  154. static int
  155. intel_dp_mode_valid(struct drm_connector *connector,
  156. struct drm_display_mode *mode)
  157. {
  158. struct intel_dp *intel_dp = intel_attached_dp(connector);
  159. struct drm_device *dev = connector->dev;
  160. struct drm_i915_private *dev_priv = dev->dev_private;
  161. int max_link_clock = intel_dp_link_clock(intel_dp_max_link_bw(intel_dp));
  162. int max_lanes = intel_dp_max_lane_count(intel_dp);
  163. if ((is_edp(intel_dp) || is_pch_edp(intel_dp)) &&
  164. dev_priv->panel_fixed_mode) {
  165. if (mode->hdisplay > dev_priv->panel_fixed_mode->hdisplay)
  166. return MODE_PANEL;
  167. if (mode->vdisplay > dev_priv->panel_fixed_mode->vdisplay)
  168. return MODE_PANEL;
  169. }
  170. /* only refuse the mode on non eDP since we have seen some wierd eDP panels
  171. which are outside spec tolerances but somehow work by magic */
  172. if (!is_edp(intel_dp) &&
  173. (intel_dp_link_required(connector->dev, intel_dp, mode->clock)
  174. > intel_dp_max_data_rate(max_link_clock, max_lanes)))
  175. return MODE_CLOCK_HIGH;
  176. if (mode->clock < 10000)
  177. return MODE_CLOCK_LOW;
  178. return MODE_OK;
  179. }
  180. static uint32_t
  181. pack_aux(uint8_t *src, int src_bytes)
  182. {
  183. int i;
  184. uint32_t v = 0;
  185. if (src_bytes > 4)
  186. src_bytes = 4;
  187. for (i = 0; i < src_bytes; i++)
  188. v |= ((uint32_t) src[i]) << ((3-i) * 8);
  189. return v;
  190. }
  191. static void
  192. unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
  193. {
  194. int i;
  195. if (dst_bytes > 4)
  196. dst_bytes = 4;
  197. for (i = 0; i < dst_bytes; i++)
  198. dst[i] = src >> ((3-i) * 8);
  199. }
  200. /* hrawclock is 1/4 the FSB frequency */
  201. static int
  202. intel_hrawclk(struct drm_device *dev)
  203. {
  204. struct drm_i915_private *dev_priv = dev->dev_private;
  205. uint32_t clkcfg;
  206. clkcfg = I915_READ(CLKCFG);
  207. switch (clkcfg & CLKCFG_FSB_MASK) {
  208. case CLKCFG_FSB_400:
  209. return 100;
  210. case CLKCFG_FSB_533:
  211. return 133;
  212. case CLKCFG_FSB_667:
  213. return 166;
  214. case CLKCFG_FSB_800:
  215. return 200;
  216. case CLKCFG_FSB_1067:
  217. return 266;
  218. case CLKCFG_FSB_1333:
  219. return 333;
  220. /* these two are just a guess; one of them might be right */
  221. case CLKCFG_FSB_1600:
  222. case CLKCFG_FSB_1600_ALT:
  223. return 400;
  224. default:
  225. return 133;
  226. }
  227. }
  228. static int
  229. intel_dp_aux_ch(struct intel_dp *intel_dp,
  230. uint8_t *send, int send_bytes,
  231. uint8_t *recv, int recv_size)
  232. {
  233. uint32_t output_reg = intel_dp->output_reg;
  234. struct drm_device *dev = intel_dp->base.base.dev;
  235. struct drm_i915_private *dev_priv = dev->dev_private;
  236. uint32_t ch_ctl = output_reg + 0x10;
  237. uint32_t ch_data = ch_ctl + 4;
  238. int i;
  239. int recv_bytes;
  240. uint32_t status;
  241. uint32_t aux_clock_divider;
  242. int try, precharge;
  243. /* The clock divider is based off the hrawclk,
  244. * and would like to run at 2MHz. So, take the
  245. * hrawclk value and divide by 2 and use that
  246. *
  247. * Note that PCH attached eDP panels should use a 125MHz input
  248. * clock divider.
  249. */
  250. if (is_edp(intel_dp) && !is_pch_edp(intel_dp)) {
  251. if (IS_GEN6(dev))
  252. aux_clock_divider = 200; /* SNB eDP input clock at 400Mhz */
  253. else
  254. aux_clock_divider = 225; /* eDP input clock at 450Mhz */
  255. } else if (HAS_PCH_SPLIT(dev))
  256. aux_clock_divider = 62; /* IRL input clock fixed at 125Mhz */
  257. else
  258. aux_clock_divider = intel_hrawclk(dev) / 2;
  259. if (IS_GEN6(dev))
  260. precharge = 3;
  261. else
  262. precharge = 5;
  263. if (I915_READ(ch_ctl) & DP_AUX_CH_CTL_SEND_BUSY) {
  264. DRM_ERROR("dp_aux_ch not started status 0x%08x\n",
  265. I915_READ(ch_ctl));
  266. return -EBUSY;
  267. }
  268. /* Must try at least 3 times according to DP spec */
  269. for (try = 0; try < 5; try++) {
  270. /* Load the send data into the aux channel data registers */
  271. for (i = 0; i < send_bytes; i += 4)
  272. I915_WRITE(ch_data + i,
  273. pack_aux(send + i, send_bytes - i));
  274. /* Send the command and wait for it to complete */
  275. I915_WRITE(ch_ctl,
  276. DP_AUX_CH_CTL_SEND_BUSY |
  277. DP_AUX_CH_CTL_TIME_OUT_400us |
  278. (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
  279. (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
  280. (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT) |
  281. DP_AUX_CH_CTL_DONE |
  282. DP_AUX_CH_CTL_TIME_OUT_ERROR |
  283. DP_AUX_CH_CTL_RECEIVE_ERROR);
  284. for (;;) {
  285. status = I915_READ(ch_ctl);
  286. if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
  287. break;
  288. udelay(100);
  289. }
  290. /* Clear done status and any errors */
  291. I915_WRITE(ch_ctl,
  292. status |
  293. DP_AUX_CH_CTL_DONE |
  294. DP_AUX_CH_CTL_TIME_OUT_ERROR |
  295. DP_AUX_CH_CTL_RECEIVE_ERROR);
  296. if (status & DP_AUX_CH_CTL_DONE)
  297. break;
  298. }
  299. if ((status & DP_AUX_CH_CTL_DONE) == 0) {
  300. DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
  301. return -EBUSY;
  302. }
  303. /* Check for timeout or receive error.
  304. * Timeouts occur when the sink is not connected
  305. */
  306. if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
  307. DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
  308. return -EIO;
  309. }
  310. /* Timeouts occur when the device isn't connected, so they're
  311. * "normal" -- don't fill the kernel log with these */
  312. if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
  313. DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
  314. return -ETIMEDOUT;
  315. }
  316. /* Unload any bytes sent back from the other side */
  317. recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
  318. DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
  319. if (recv_bytes > recv_size)
  320. recv_bytes = recv_size;
  321. for (i = 0; i < recv_bytes; i += 4)
  322. unpack_aux(I915_READ(ch_data + i),
  323. recv + i, recv_bytes - i);
  324. return recv_bytes;
  325. }
  326. /* Write data to the aux channel in native mode */
  327. static int
  328. intel_dp_aux_native_write(struct intel_dp *intel_dp,
  329. uint16_t address, uint8_t *send, int send_bytes)
  330. {
  331. int ret;
  332. uint8_t msg[20];
  333. int msg_bytes;
  334. uint8_t ack;
  335. if (send_bytes > 16)
  336. return -1;
  337. msg[0] = AUX_NATIVE_WRITE << 4;
  338. msg[1] = address >> 8;
  339. msg[2] = address & 0xff;
  340. msg[3] = send_bytes - 1;
  341. memcpy(&msg[4], send, send_bytes);
  342. msg_bytes = send_bytes + 4;
  343. for (;;) {
  344. ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes, &ack, 1);
  345. if (ret < 0)
  346. return ret;
  347. if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK)
  348. break;
  349. else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
  350. udelay(100);
  351. else
  352. return -EIO;
  353. }
  354. return send_bytes;
  355. }
  356. /* Write a single byte to the aux channel in native mode */
  357. static int
  358. intel_dp_aux_native_write_1(struct intel_dp *intel_dp,
  359. uint16_t address, uint8_t byte)
  360. {
  361. return intel_dp_aux_native_write(intel_dp, address, &byte, 1);
  362. }
  363. /* read bytes from a native aux channel */
  364. static int
  365. intel_dp_aux_native_read(struct intel_dp *intel_dp,
  366. uint16_t address, uint8_t *recv, int recv_bytes)
  367. {
  368. uint8_t msg[4];
  369. int msg_bytes;
  370. uint8_t reply[20];
  371. int reply_bytes;
  372. uint8_t ack;
  373. int ret;
  374. msg[0] = AUX_NATIVE_READ << 4;
  375. msg[1] = address >> 8;
  376. msg[2] = address & 0xff;
  377. msg[3] = recv_bytes - 1;
  378. msg_bytes = 4;
  379. reply_bytes = recv_bytes + 1;
  380. for (;;) {
  381. ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes,
  382. reply, reply_bytes);
  383. if (ret == 0)
  384. return -EPROTO;
  385. if (ret < 0)
  386. return ret;
  387. ack = reply[0];
  388. if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK) {
  389. memcpy(recv, reply + 1, ret - 1);
  390. return ret - 1;
  391. }
  392. else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
  393. udelay(100);
  394. else
  395. return -EIO;
  396. }
  397. }
  398. static int
  399. intel_dp_i2c_aux_ch(struct i2c_adapter *adapter, int mode,
  400. uint8_t write_byte, uint8_t *read_byte)
  401. {
  402. struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
  403. struct intel_dp *intel_dp = container_of(adapter,
  404. struct intel_dp,
  405. adapter);
  406. uint16_t address = algo_data->address;
  407. uint8_t msg[5];
  408. uint8_t reply[2];
  409. int msg_bytes;
  410. int reply_bytes;
  411. int ret;
  412. /* Set up the command byte */
  413. if (mode & MODE_I2C_READ)
  414. msg[0] = AUX_I2C_READ << 4;
  415. else
  416. msg[0] = AUX_I2C_WRITE << 4;
  417. if (!(mode & MODE_I2C_STOP))
  418. msg[0] |= AUX_I2C_MOT << 4;
  419. msg[1] = address >> 8;
  420. msg[2] = address;
  421. switch (mode) {
  422. case MODE_I2C_WRITE:
  423. msg[3] = 0;
  424. msg[4] = write_byte;
  425. msg_bytes = 5;
  426. reply_bytes = 1;
  427. break;
  428. case MODE_I2C_READ:
  429. msg[3] = 0;
  430. msg_bytes = 4;
  431. reply_bytes = 2;
  432. break;
  433. default:
  434. msg_bytes = 3;
  435. reply_bytes = 1;
  436. break;
  437. }
  438. for (;;) {
  439. ret = intel_dp_aux_ch(intel_dp,
  440. msg, msg_bytes,
  441. reply, reply_bytes);
  442. if (ret < 0) {
  443. DRM_DEBUG_KMS("aux_ch failed %d\n", ret);
  444. return ret;
  445. }
  446. switch (reply[0] & AUX_I2C_REPLY_MASK) {
  447. case AUX_I2C_REPLY_ACK:
  448. if (mode == MODE_I2C_READ) {
  449. *read_byte = reply[1];
  450. }
  451. return reply_bytes - 1;
  452. case AUX_I2C_REPLY_NACK:
  453. DRM_DEBUG_KMS("aux_ch nack\n");
  454. return -EREMOTEIO;
  455. case AUX_I2C_REPLY_DEFER:
  456. DRM_DEBUG_KMS("aux_ch defer\n");
  457. udelay(100);
  458. break;
  459. default:
  460. DRM_ERROR("aux_ch invalid reply 0x%02x\n", reply[0]);
  461. return -EREMOTEIO;
  462. }
  463. }
  464. }
  465. static int
  466. intel_dp_i2c_init(struct intel_dp *intel_dp,
  467. struct intel_connector *intel_connector, const char *name)
  468. {
  469. DRM_DEBUG_KMS("i2c_init %s\n", name);
  470. intel_dp->algo.running = false;
  471. intel_dp->algo.address = 0;
  472. intel_dp->algo.aux_ch = intel_dp_i2c_aux_ch;
  473. memset(&intel_dp->adapter, '\0', sizeof (intel_dp->adapter));
  474. intel_dp->adapter.owner = THIS_MODULE;
  475. intel_dp->adapter.class = I2C_CLASS_DDC;
  476. strncpy (intel_dp->adapter.name, name, sizeof(intel_dp->adapter.name) - 1);
  477. intel_dp->adapter.name[sizeof(intel_dp->adapter.name) - 1] = '\0';
  478. intel_dp->adapter.algo_data = &intel_dp->algo;
  479. intel_dp->adapter.dev.parent = &intel_connector->base.kdev;
  480. return i2c_dp_aux_add_bus(&intel_dp->adapter);
  481. }
  482. static bool
  483. intel_dp_mode_fixup(struct drm_encoder *encoder, struct drm_display_mode *mode,
  484. struct drm_display_mode *adjusted_mode)
  485. {
  486. struct drm_device *dev = encoder->dev;
  487. struct drm_i915_private *dev_priv = dev->dev_private;
  488. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  489. int lane_count, clock;
  490. int max_lane_count = intel_dp_max_lane_count(intel_dp);
  491. int max_clock = intel_dp_max_link_bw(intel_dp) == DP_LINK_BW_2_7 ? 1 : 0;
  492. static int bws[2] = { DP_LINK_BW_1_62, DP_LINK_BW_2_7 };
  493. if ((is_edp(intel_dp) || is_pch_edp(intel_dp)) &&
  494. dev_priv->panel_fixed_mode) {
  495. intel_fixed_panel_mode(dev_priv->panel_fixed_mode, adjusted_mode);
  496. intel_pch_panel_fitting(dev, DRM_MODE_SCALE_FULLSCREEN,
  497. mode, adjusted_mode);
  498. /*
  499. * the mode->clock is used to calculate the Data&Link M/N
  500. * of the pipe. For the eDP the fixed clock should be used.
  501. */
  502. mode->clock = dev_priv->panel_fixed_mode->clock;
  503. }
  504. for (lane_count = 1; lane_count <= max_lane_count; lane_count <<= 1) {
  505. for (clock = 0; clock <= max_clock; clock++) {
  506. int link_avail = intel_dp_max_data_rate(intel_dp_link_clock(bws[clock]), lane_count);
  507. if (intel_dp_link_required(encoder->dev, intel_dp, mode->clock)
  508. <= link_avail) {
  509. intel_dp->link_bw = bws[clock];
  510. intel_dp->lane_count = lane_count;
  511. adjusted_mode->clock = intel_dp_link_clock(intel_dp->link_bw);
  512. DRM_DEBUG_KMS("Display port link bw %02x lane "
  513. "count %d clock %d\n",
  514. intel_dp->link_bw, intel_dp->lane_count,
  515. adjusted_mode->clock);
  516. return true;
  517. }
  518. }
  519. }
  520. if (is_edp(intel_dp) || is_pch_edp(intel_dp)) {
  521. /* okay we failed just pick the highest */
  522. intel_dp->lane_count = max_lane_count;
  523. intel_dp->link_bw = bws[max_clock];
  524. adjusted_mode->clock = intel_dp_link_clock(intel_dp->link_bw);
  525. DRM_DEBUG_KMS("Force picking display port link bw %02x lane "
  526. "count %d clock %d\n",
  527. intel_dp->link_bw, intel_dp->lane_count,
  528. adjusted_mode->clock);
  529. return true;
  530. }
  531. return false;
  532. }
  533. struct intel_dp_m_n {
  534. uint32_t tu;
  535. uint32_t gmch_m;
  536. uint32_t gmch_n;
  537. uint32_t link_m;
  538. uint32_t link_n;
  539. };
  540. static void
  541. intel_reduce_ratio(uint32_t *num, uint32_t *den)
  542. {
  543. while (*num > 0xffffff || *den > 0xffffff) {
  544. *num >>= 1;
  545. *den >>= 1;
  546. }
  547. }
  548. static void
  549. intel_dp_compute_m_n(int bpp,
  550. int nlanes,
  551. int pixel_clock,
  552. int link_clock,
  553. struct intel_dp_m_n *m_n)
  554. {
  555. m_n->tu = 64;
  556. m_n->gmch_m = (pixel_clock * bpp) >> 3;
  557. m_n->gmch_n = link_clock * nlanes;
  558. intel_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
  559. m_n->link_m = pixel_clock;
  560. m_n->link_n = link_clock;
  561. intel_reduce_ratio(&m_n->link_m, &m_n->link_n);
  562. }
  563. bool intel_pch_has_edp(struct drm_crtc *crtc)
  564. {
  565. struct drm_device *dev = crtc->dev;
  566. struct drm_mode_config *mode_config = &dev->mode_config;
  567. struct drm_encoder *encoder;
  568. list_for_each_entry(encoder, &mode_config->encoder_list, head) {
  569. struct intel_dp *intel_dp;
  570. if (encoder->crtc != crtc)
  571. continue;
  572. intel_dp = enc_to_intel_dp(encoder);
  573. if (intel_dp->base.type == INTEL_OUTPUT_DISPLAYPORT)
  574. return intel_dp->is_pch_edp;
  575. }
  576. return false;
  577. }
  578. void
  579. intel_dp_set_m_n(struct drm_crtc *crtc, struct drm_display_mode *mode,
  580. struct drm_display_mode *adjusted_mode)
  581. {
  582. struct drm_device *dev = crtc->dev;
  583. struct drm_mode_config *mode_config = &dev->mode_config;
  584. struct drm_encoder *encoder;
  585. struct drm_i915_private *dev_priv = dev->dev_private;
  586. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  587. int lane_count = 4, bpp = 24;
  588. struct intel_dp_m_n m_n;
  589. /*
  590. * Find the lane count in the intel_encoder private
  591. */
  592. list_for_each_entry(encoder, &mode_config->encoder_list, head) {
  593. struct intel_dp *intel_dp;
  594. if (encoder->crtc != crtc)
  595. continue;
  596. intel_dp = enc_to_intel_dp(encoder);
  597. if (intel_dp->base.type == INTEL_OUTPUT_DISPLAYPORT) {
  598. lane_count = intel_dp->lane_count;
  599. if (is_pch_edp(intel_dp))
  600. bpp = dev_priv->edp.bpp;
  601. break;
  602. }
  603. }
  604. /*
  605. * Compute the GMCH and Link ratios. The '3' here is
  606. * the number of bytes_per_pixel post-LUT, which we always
  607. * set up for 8-bits of R/G/B, or 3 bytes total.
  608. */
  609. intel_dp_compute_m_n(bpp, lane_count,
  610. mode->clock, adjusted_mode->clock, &m_n);
  611. if (HAS_PCH_SPLIT(dev)) {
  612. if (intel_crtc->pipe == 0) {
  613. I915_WRITE(TRANSA_DATA_M1,
  614. ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
  615. m_n.gmch_m);
  616. I915_WRITE(TRANSA_DATA_N1, m_n.gmch_n);
  617. I915_WRITE(TRANSA_DP_LINK_M1, m_n.link_m);
  618. I915_WRITE(TRANSA_DP_LINK_N1, m_n.link_n);
  619. } else {
  620. I915_WRITE(TRANSB_DATA_M1,
  621. ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
  622. m_n.gmch_m);
  623. I915_WRITE(TRANSB_DATA_N1, m_n.gmch_n);
  624. I915_WRITE(TRANSB_DP_LINK_M1, m_n.link_m);
  625. I915_WRITE(TRANSB_DP_LINK_N1, m_n.link_n);
  626. }
  627. } else {
  628. if (intel_crtc->pipe == 0) {
  629. I915_WRITE(PIPEA_GMCH_DATA_M,
  630. ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
  631. m_n.gmch_m);
  632. I915_WRITE(PIPEA_GMCH_DATA_N,
  633. m_n.gmch_n);
  634. I915_WRITE(PIPEA_DP_LINK_M, m_n.link_m);
  635. I915_WRITE(PIPEA_DP_LINK_N, m_n.link_n);
  636. } else {
  637. I915_WRITE(PIPEB_GMCH_DATA_M,
  638. ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
  639. m_n.gmch_m);
  640. I915_WRITE(PIPEB_GMCH_DATA_N,
  641. m_n.gmch_n);
  642. I915_WRITE(PIPEB_DP_LINK_M, m_n.link_m);
  643. I915_WRITE(PIPEB_DP_LINK_N, m_n.link_n);
  644. }
  645. }
  646. }
  647. static void
  648. intel_dp_mode_set(struct drm_encoder *encoder, struct drm_display_mode *mode,
  649. struct drm_display_mode *adjusted_mode)
  650. {
  651. struct drm_device *dev = encoder->dev;
  652. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  653. struct drm_crtc *crtc = intel_dp->base.base.crtc;
  654. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  655. intel_dp->DP = (DP_VOLTAGE_0_4 |
  656. DP_PRE_EMPHASIS_0);
  657. if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
  658. intel_dp->DP |= DP_SYNC_HS_HIGH;
  659. if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
  660. intel_dp->DP |= DP_SYNC_VS_HIGH;
  661. if (HAS_PCH_CPT(dev) && !is_edp(intel_dp))
  662. intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
  663. else
  664. intel_dp->DP |= DP_LINK_TRAIN_OFF;
  665. switch (intel_dp->lane_count) {
  666. case 1:
  667. intel_dp->DP |= DP_PORT_WIDTH_1;
  668. break;
  669. case 2:
  670. intel_dp->DP |= DP_PORT_WIDTH_2;
  671. break;
  672. case 4:
  673. intel_dp->DP |= DP_PORT_WIDTH_4;
  674. break;
  675. }
  676. if (intel_dp->has_audio)
  677. intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
  678. memset(intel_dp->link_configuration, 0, DP_LINK_CONFIGURATION_SIZE);
  679. intel_dp->link_configuration[0] = intel_dp->link_bw;
  680. intel_dp->link_configuration[1] = intel_dp->lane_count;
  681. /*
  682. * Check for DPCD version > 1.1 and enhanced framing support
  683. */
  684. if (intel_dp->dpcd[0] >= 0x11 && (intel_dp->dpcd[2] & DP_ENHANCED_FRAME_CAP)) {
  685. intel_dp->link_configuration[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
  686. intel_dp->DP |= DP_ENHANCED_FRAMING;
  687. }
  688. /* CPT DP's pipe select is decided in TRANS_DP_CTL */
  689. if (intel_crtc->pipe == 1 && !HAS_PCH_CPT(dev))
  690. intel_dp->DP |= DP_PIPEB_SELECT;
  691. if (is_edp(intel_dp)) {
  692. /* don't miss out required setting for eDP */
  693. intel_dp->DP |= DP_PLL_ENABLE;
  694. if (adjusted_mode->clock < 200000)
  695. intel_dp->DP |= DP_PLL_FREQ_160MHZ;
  696. else
  697. intel_dp->DP |= DP_PLL_FREQ_270MHZ;
  698. }
  699. }
  700. /* Returns true if the panel was already on when called */
  701. static bool ironlake_edp_panel_on (struct drm_device *dev)
  702. {
  703. struct drm_i915_private *dev_priv = dev->dev_private;
  704. u32 pp;
  705. if (I915_READ(PCH_PP_STATUS) & PP_ON)
  706. return true;
  707. pp = I915_READ(PCH_PP_CONTROL);
  708. /* ILK workaround: disable reset around power sequence */
  709. pp &= ~PANEL_POWER_RESET;
  710. I915_WRITE(PCH_PP_CONTROL, pp);
  711. POSTING_READ(PCH_PP_CONTROL);
  712. pp |= POWER_TARGET_ON;
  713. I915_WRITE(PCH_PP_CONTROL, pp);
  714. /* Ouch. We need to wait here for some panels, like Dell e6510
  715. * https://bugs.freedesktop.org/show_bug.cgi?id=29278i
  716. */
  717. msleep(300);
  718. if (wait_for(I915_READ(PCH_PP_STATUS) & PP_ON, 5000))
  719. DRM_ERROR("panel on wait timed out: 0x%08x\n",
  720. I915_READ(PCH_PP_STATUS));
  721. pp &= ~(PANEL_UNLOCK_REGS);
  722. pp |= PANEL_POWER_RESET; /* restore panel reset bit */
  723. I915_WRITE(PCH_PP_CONTROL, pp);
  724. POSTING_READ(PCH_PP_CONTROL);
  725. return false;
  726. }
  727. static void ironlake_edp_panel_off (struct drm_device *dev)
  728. {
  729. struct drm_i915_private *dev_priv = dev->dev_private;
  730. u32 pp;
  731. pp = I915_READ(PCH_PP_CONTROL);
  732. /* ILK workaround: disable reset around power sequence */
  733. pp &= ~PANEL_POWER_RESET;
  734. I915_WRITE(PCH_PP_CONTROL, pp);
  735. POSTING_READ(PCH_PP_CONTROL);
  736. pp &= ~POWER_TARGET_ON;
  737. I915_WRITE(PCH_PP_CONTROL, pp);
  738. if (wait_for((I915_READ(PCH_PP_STATUS) & PP_ON) == 0, 5000))
  739. DRM_ERROR("panel off wait timed out: 0x%08x\n",
  740. I915_READ(PCH_PP_STATUS));
  741. /* Make sure VDD is enabled so DP AUX will work */
  742. pp |= PANEL_POWER_RESET; /* restore panel reset bit */
  743. I915_WRITE(PCH_PP_CONTROL, pp);
  744. POSTING_READ(PCH_PP_CONTROL);
  745. /* Ouch. We need to wait here for some panels, like Dell e6510
  746. * https://bugs.freedesktop.org/show_bug.cgi?id=29278i
  747. */
  748. msleep(300);
  749. }
  750. static void ironlake_edp_panel_vdd_on(struct drm_device *dev)
  751. {
  752. struct drm_i915_private *dev_priv = dev->dev_private;
  753. u32 pp;
  754. pp = I915_READ(PCH_PP_CONTROL);
  755. pp |= EDP_FORCE_VDD;
  756. I915_WRITE(PCH_PP_CONTROL, pp);
  757. POSTING_READ(PCH_PP_CONTROL);
  758. msleep(300);
  759. }
  760. static void ironlake_edp_panel_vdd_off(struct drm_device *dev)
  761. {
  762. struct drm_i915_private *dev_priv = dev->dev_private;
  763. u32 pp;
  764. pp = I915_READ(PCH_PP_CONTROL);
  765. pp &= ~EDP_FORCE_VDD;
  766. I915_WRITE(PCH_PP_CONTROL, pp);
  767. POSTING_READ(PCH_PP_CONTROL);
  768. msleep(300);
  769. }
  770. static void ironlake_edp_backlight_on (struct drm_device *dev)
  771. {
  772. struct drm_i915_private *dev_priv = dev->dev_private;
  773. u32 pp;
  774. DRM_DEBUG_KMS("\n");
  775. pp = I915_READ(PCH_PP_CONTROL);
  776. pp |= EDP_BLC_ENABLE;
  777. I915_WRITE(PCH_PP_CONTROL, pp);
  778. }
  779. static void ironlake_edp_backlight_off (struct drm_device *dev)
  780. {
  781. struct drm_i915_private *dev_priv = dev->dev_private;
  782. u32 pp;
  783. DRM_DEBUG_KMS("\n");
  784. pp = I915_READ(PCH_PP_CONTROL);
  785. pp &= ~EDP_BLC_ENABLE;
  786. I915_WRITE(PCH_PP_CONTROL, pp);
  787. }
  788. static void ironlake_edp_pll_on(struct drm_encoder *encoder)
  789. {
  790. struct drm_device *dev = encoder->dev;
  791. struct drm_i915_private *dev_priv = dev->dev_private;
  792. u32 dpa_ctl;
  793. DRM_DEBUG_KMS("\n");
  794. dpa_ctl = I915_READ(DP_A);
  795. dpa_ctl &= ~DP_PLL_ENABLE;
  796. I915_WRITE(DP_A, dpa_ctl);
  797. }
  798. static void ironlake_edp_pll_off(struct drm_encoder *encoder)
  799. {
  800. struct drm_device *dev = encoder->dev;
  801. struct drm_i915_private *dev_priv = dev->dev_private;
  802. u32 dpa_ctl;
  803. dpa_ctl = I915_READ(DP_A);
  804. dpa_ctl |= DP_PLL_ENABLE;
  805. I915_WRITE(DP_A, dpa_ctl);
  806. POSTING_READ(DP_A);
  807. udelay(200);
  808. }
  809. static void intel_dp_prepare(struct drm_encoder *encoder)
  810. {
  811. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  812. struct drm_device *dev = encoder->dev;
  813. struct drm_i915_private *dev_priv = dev->dev_private;
  814. uint32_t dp_reg = I915_READ(intel_dp->output_reg);
  815. if (is_edp(intel_dp) || is_pch_edp(intel_dp)) {
  816. ironlake_edp_panel_off(dev);
  817. ironlake_edp_backlight_off(dev);
  818. ironlake_edp_panel_vdd_on(dev);
  819. ironlake_edp_pll_on(encoder);
  820. }
  821. if (dp_reg & DP_PORT_EN)
  822. intel_dp_link_down(intel_dp);
  823. }
  824. static void intel_dp_commit(struct drm_encoder *encoder)
  825. {
  826. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  827. struct drm_device *dev = encoder->dev;
  828. intel_dp_start_link_train(intel_dp);
  829. if (is_edp(intel_dp) || is_pch_edp(intel_dp))
  830. ironlake_edp_panel_on(dev);
  831. intel_dp_complete_link_train(intel_dp);
  832. if (is_edp(intel_dp) || is_pch_edp(intel_dp))
  833. ironlake_edp_backlight_on(dev);
  834. intel_dp->dpms_mode = DRM_MODE_DPMS_ON;
  835. }
  836. static void
  837. intel_dp_dpms(struct drm_encoder *encoder, int mode)
  838. {
  839. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  840. struct drm_device *dev = encoder->dev;
  841. struct drm_i915_private *dev_priv = dev->dev_private;
  842. uint32_t dp_reg = I915_READ(intel_dp->output_reg);
  843. if (mode != DRM_MODE_DPMS_ON) {
  844. if (is_edp(intel_dp) || is_pch_edp(intel_dp)) {
  845. ironlake_edp_backlight_off(dev);
  846. ironlake_edp_panel_off(dev);
  847. }
  848. if (dp_reg & DP_PORT_EN)
  849. intel_dp_link_down(intel_dp);
  850. if (is_edp(intel_dp) || is_pch_edp(intel_dp))
  851. ironlake_edp_pll_off(encoder);
  852. } else {
  853. if (!(dp_reg & DP_PORT_EN)) {
  854. intel_dp_start_link_train(intel_dp);
  855. if (is_edp(intel_dp) || is_pch_edp(intel_dp))
  856. ironlake_edp_panel_on(dev);
  857. intel_dp_complete_link_train(intel_dp);
  858. if (is_edp(intel_dp) || is_pch_edp(intel_dp))
  859. ironlake_edp_backlight_on(dev);
  860. }
  861. }
  862. intel_dp->dpms_mode = mode;
  863. }
  864. /*
  865. * Fetch AUX CH registers 0x202 - 0x207 which contain
  866. * link status information
  867. */
  868. static bool
  869. intel_dp_get_link_status(struct intel_dp *intel_dp)
  870. {
  871. int ret;
  872. ret = intel_dp_aux_native_read(intel_dp,
  873. DP_LANE0_1_STATUS,
  874. intel_dp->link_status, DP_LINK_STATUS_SIZE);
  875. if (ret != DP_LINK_STATUS_SIZE)
  876. return false;
  877. return true;
  878. }
  879. static uint8_t
  880. intel_dp_link_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
  881. int r)
  882. {
  883. return link_status[r - DP_LANE0_1_STATUS];
  884. }
  885. static uint8_t
  886. intel_get_adjust_request_voltage(uint8_t link_status[DP_LINK_STATUS_SIZE],
  887. int lane)
  888. {
  889. int i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
  890. int s = ((lane & 1) ?
  891. DP_ADJUST_VOLTAGE_SWING_LANE1_SHIFT :
  892. DP_ADJUST_VOLTAGE_SWING_LANE0_SHIFT);
  893. uint8_t l = intel_dp_link_status(link_status, i);
  894. return ((l >> s) & 3) << DP_TRAIN_VOLTAGE_SWING_SHIFT;
  895. }
  896. static uint8_t
  897. intel_get_adjust_request_pre_emphasis(uint8_t link_status[DP_LINK_STATUS_SIZE],
  898. int lane)
  899. {
  900. int i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
  901. int s = ((lane & 1) ?
  902. DP_ADJUST_PRE_EMPHASIS_LANE1_SHIFT :
  903. DP_ADJUST_PRE_EMPHASIS_LANE0_SHIFT);
  904. uint8_t l = intel_dp_link_status(link_status, i);
  905. return ((l >> s) & 3) << DP_TRAIN_PRE_EMPHASIS_SHIFT;
  906. }
  907. #if 0
  908. static char *voltage_names[] = {
  909. "0.4V", "0.6V", "0.8V", "1.2V"
  910. };
  911. static char *pre_emph_names[] = {
  912. "0dB", "3.5dB", "6dB", "9.5dB"
  913. };
  914. static char *link_train_names[] = {
  915. "pattern 1", "pattern 2", "idle", "off"
  916. };
  917. #endif
  918. /*
  919. * These are source-specific values; current Intel hardware supports
  920. * a maximum voltage of 800mV and a maximum pre-emphasis of 6dB
  921. */
  922. #define I830_DP_VOLTAGE_MAX DP_TRAIN_VOLTAGE_SWING_800
  923. static uint8_t
  924. intel_dp_pre_emphasis_max(uint8_t voltage_swing)
  925. {
  926. switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
  927. case DP_TRAIN_VOLTAGE_SWING_400:
  928. return DP_TRAIN_PRE_EMPHASIS_6;
  929. case DP_TRAIN_VOLTAGE_SWING_600:
  930. return DP_TRAIN_PRE_EMPHASIS_6;
  931. case DP_TRAIN_VOLTAGE_SWING_800:
  932. return DP_TRAIN_PRE_EMPHASIS_3_5;
  933. case DP_TRAIN_VOLTAGE_SWING_1200:
  934. default:
  935. return DP_TRAIN_PRE_EMPHASIS_0;
  936. }
  937. }
  938. static void
  939. intel_get_adjust_train(struct intel_dp *intel_dp)
  940. {
  941. uint8_t v = 0;
  942. uint8_t p = 0;
  943. int lane;
  944. for (lane = 0; lane < intel_dp->lane_count; lane++) {
  945. uint8_t this_v = intel_get_adjust_request_voltage(intel_dp->link_status, lane);
  946. uint8_t this_p = intel_get_adjust_request_pre_emphasis(intel_dp->link_status, lane);
  947. if (this_v > v)
  948. v = this_v;
  949. if (this_p > p)
  950. p = this_p;
  951. }
  952. if (v >= I830_DP_VOLTAGE_MAX)
  953. v = I830_DP_VOLTAGE_MAX | DP_TRAIN_MAX_SWING_REACHED;
  954. if (p >= intel_dp_pre_emphasis_max(v))
  955. p = intel_dp_pre_emphasis_max(v) | DP_TRAIN_MAX_PRE_EMPHASIS_REACHED;
  956. for (lane = 0; lane < 4; lane++)
  957. intel_dp->train_set[lane] = v | p;
  958. }
  959. static uint32_t
  960. intel_dp_signal_levels(uint8_t train_set, int lane_count)
  961. {
  962. uint32_t signal_levels = 0;
  963. switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
  964. case DP_TRAIN_VOLTAGE_SWING_400:
  965. default:
  966. signal_levels |= DP_VOLTAGE_0_4;
  967. break;
  968. case DP_TRAIN_VOLTAGE_SWING_600:
  969. signal_levels |= DP_VOLTAGE_0_6;
  970. break;
  971. case DP_TRAIN_VOLTAGE_SWING_800:
  972. signal_levels |= DP_VOLTAGE_0_8;
  973. break;
  974. case DP_TRAIN_VOLTAGE_SWING_1200:
  975. signal_levels |= DP_VOLTAGE_1_2;
  976. break;
  977. }
  978. switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
  979. case DP_TRAIN_PRE_EMPHASIS_0:
  980. default:
  981. signal_levels |= DP_PRE_EMPHASIS_0;
  982. break;
  983. case DP_TRAIN_PRE_EMPHASIS_3_5:
  984. signal_levels |= DP_PRE_EMPHASIS_3_5;
  985. break;
  986. case DP_TRAIN_PRE_EMPHASIS_6:
  987. signal_levels |= DP_PRE_EMPHASIS_6;
  988. break;
  989. case DP_TRAIN_PRE_EMPHASIS_9_5:
  990. signal_levels |= DP_PRE_EMPHASIS_9_5;
  991. break;
  992. }
  993. return signal_levels;
  994. }
  995. /* Gen6's DP voltage swing and pre-emphasis control */
  996. static uint32_t
  997. intel_gen6_edp_signal_levels(uint8_t train_set)
  998. {
  999. switch (train_set & (DP_TRAIN_VOLTAGE_SWING_MASK|DP_TRAIN_PRE_EMPHASIS_MASK)) {
  1000. case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
  1001. return EDP_LINK_TRAIN_400MV_0DB_SNB_B;
  1002. case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
  1003. return EDP_LINK_TRAIN_400MV_6DB_SNB_B;
  1004. case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
  1005. return EDP_LINK_TRAIN_600MV_3_5DB_SNB_B;
  1006. case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
  1007. return EDP_LINK_TRAIN_800MV_0DB_SNB_B;
  1008. default:
  1009. DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level\n");
  1010. return EDP_LINK_TRAIN_400MV_0DB_SNB_B;
  1011. }
  1012. }
  1013. static uint8_t
  1014. intel_get_lane_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
  1015. int lane)
  1016. {
  1017. int i = DP_LANE0_1_STATUS + (lane >> 1);
  1018. int s = (lane & 1) * 4;
  1019. uint8_t l = intel_dp_link_status(link_status, i);
  1020. return (l >> s) & 0xf;
  1021. }
  1022. /* Check for clock recovery is done on all channels */
  1023. static bool
  1024. intel_clock_recovery_ok(uint8_t link_status[DP_LINK_STATUS_SIZE], int lane_count)
  1025. {
  1026. int lane;
  1027. uint8_t lane_status;
  1028. for (lane = 0; lane < lane_count; lane++) {
  1029. lane_status = intel_get_lane_status(link_status, lane);
  1030. if ((lane_status & DP_LANE_CR_DONE) == 0)
  1031. return false;
  1032. }
  1033. return true;
  1034. }
  1035. /* Check to see if channel eq is done on all channels */
  1036. #define CHANNEL_EQ_BITS (DP_LANE_CR_DONE|\
  1037. DP_LANE_CHANNEL_EQ_DONE|\
  1038. DP_LANE_SYMBOL_LOCKED)
  1039. static bool
  1040. intel_channel_eq_ok(struct intel_dp *intel_dp)
  1041. {
  1042. uint8_t lane_align;
  1043. uint8_t lane_status;
  1044. int lane;
  1045. lane_align = intel_dp_link_status(intel_dp->link_status,
  1046. DP_LANE_ALIGN_STATUS_UPDATED);
  1047. if ((lane_align & DP_INTERLANE_ALIGN_DONE) == 0)
  1048. return false;
  1049. for (lane = 0; lane < intel_dp->lane_count; lane++) {
  1050. lane_status = intel_get_lane_status(intel_dp->link_status, lane);
  1051. if ((lane_status & CHANNEL_EQ_BITS) != CHANNEL_EQ_BITS)
  1052. return false;
  1053. }
  1054. return true;
  1055. }
  1056. static bool
  1057. intel_dp_set_link_train(struct intel_dp *intel_dp,
  1058. uint32_t dp_reg_value,
  1059. uint8_t dp_train_pat)
  1060. {
  1061. struct drm_device *dev = intel_dp->base.base.dev;
  1062. struct drm_i915_private *dev_priv = dev->dev_private;
  1063. int ret;
  1064. I915_WRITE(intel_dp->output_reg, dp_reg_value);
  1065. POSTING_READ(intel_dp->output_reg);
  1066. intel_dp_aux_native_write_1(intel_dp,
  1067. DP_TRAINING_PATTERN_SET,
  1068. dp_train_pat);
  1069. ret = intel_dp_aux_native_write(intel_dp,
  1070. DP_TRAINING_LANE0_SET,
  1071. intel_dp->train_set, 4);
  1072. if (ret != 4)
  1073. return false;
  1074. return true;
  1075. }
  1076. /* Enable corresponding port and start training pattern 1 */
  1077. static void
  1078. intel_dp_start_link_train(struct intel_dp *intel_dp)
  1079. {
  1080. struct drm_device *dev = intel_dp->base.base.dev;
  1081. struct drm_i915_private *dev_priv = dev->dev_private;
  1082. struct intel_crtc *intel_crtc = to_intel_crtc(intel_dp->base.base.crtc);
  1083. int i;
  1084. uint8_t voltage;
  1085. bool clock_recovery = false;
  1086. int tries;
  1087. u32 reg;
  1088. uint32_t DP = intel_dp->DP;
  1089. /* Enable output, wait for it to become active */
  1090. I915_WRITE(intel_dp->output_reg, intel_dp->DP);
  1091. POSTING_READ(intel_dp->output_reg);
  1092. intel_wait_for_vblank(dev, intel_crtc->pipe);
  1093. /* Write the link configuration data */
  1094. intel_dp_aux_native_write(intel_dp, DP_LINK_BW_SET,
  1095. intel_dp->link_configuration,
  1096. DP_LINK_CONFIGURATION_SIZE);
  1097. DP |= DP_PORT_EN;
  1098. if (HAS_PCH_CPT(dev) && !is_edp(intel_dp))
  1099. DP &= ~DP_LINK_TRAIN_MASK_CPT;
  1100. else
  1101. DP &= ~DP_LINK_TRAIN_MASK;
  1102. memset(intel_dp->train_set, 0, 4);
  1103. voltage = 0xff;
  1104. tries = 0;
  1105. clock_recovery = false;
  1106. for (;;) {
  1107. /* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */
  1108. uint32_t signal_levels;
  1109. if (IS_GEN6(dev) && is_edp(intel_dp)) {
  1110. signal_levels = intel_gen6_edp_signal_levels(intel_dp->train_set[0]);
  1111. DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_SNB) | signal_levels;
  1112. } else {
  1113. signal_levels = intel_dp_signal_levels(intel_dp->train_set[0], intel_dp->lane_count);
  1114. DP = (DP & ~(DP_VOLTAGE_MASK|DP_PRE_EMPHASIS_MASK)) | signal_levels;
  1115. }
  1116. if (HAS_PCH_CPT(dev) && !is_edp(intel_dp))
  1117. reg = DP | DP_LINK_TRAIN_PAT_1_CPT;
  1118. else
  1119. reg = DP | DP_LINK_TRAIN_PAT_1;
  1120. if (!intel_dp_set_link_train(intel_dp, reg,
  1121. DP_TRAINING_PATTERN_1))
  1122. break;
  1123. /* Set training pattern 1 */
  1124. udelay(100);
  1125. if (!intel_dp_get_link_status(intel_dp))
  1126. break;
  1127. if (intel_clock_recovery_ok(intel_dp->link_status, intel_dp->lane_count)) {
  1128. clock_recovery = true;
  1129. break;
  1130. }
  1131. /* Check to see if we've tried the max voltage */
  1132. for (i = 0; i < intel_dp->lane_count; i++)
  1133. if ((intel_dp->train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0)
  1134. break;
  1135. if (i == intel_dp->lane_count)
  1136. break;
  1137. /* Check to see if we've tried the same voltage 5 times */
  1138. if ((intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) {
  1139. ++tries;
  1140. if (tries == 5)
  1141. break;
  1142. } else
  1143. tries = 0;
  1144. voltage = intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK;
  1145. /* Compute new intel_dp->train_set as requested by target */
  1146. intel_get_adjust_train(intel_dp);
  1147. }
  1148. intel_dp->DP = DP;
  1149. }
  1150. static void
  1151. intel_dp_complete_link_train(struct intel_dp *intel_dp)
  1152. {
  1153. struct drm_device *dev = intel_dp->base.base.dev;
  1154. struct drm_i915_private *dev_priv = dev->dev_private;
  1155. bool channel_eq = false;
  1156. int tries;
  1157. u32 reg;
  1158. uint32_t DP = intel_dp->DP;
  1159. /* channel equalization */
  1160. tries = 0;
  1161. channel_eq = false;
  1162. for (;;) {
  1163. /* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */
  1164. uint32_t signal_levels;
  1165. if (IS_GEN6(dev) && is_edp(intel_dp)) {
  1166. signal_levels = intel_gen6_edp_signal_levels(intel_dp->train_set[0]);
  1167. DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_SNB) | signal_levels;
  1168. } else {
  1169. signal_levels = intel_dp_signal_levels(intel_dp->train_set[0], intel_dp->lane_count);
  1170. DP = (DP & ~(DP_VOLTAGE_MASK|DP_PRE_EMPHASIS_MASK)) | signal_levels;
  1171. }
  1172. if (HAS_PCH_CPT(dev) && !is_edp(intel_dp))
  1173. reg = DP | DP_LINK_TRAIN_PAT_2_CPT;
  1174. else
  1175. reg = DP | DP_LINK_TRAIN_PAT_2;
  1176. /* channel eq pattern */
  1177. if (!intel_dp_set_link_train(intel_dp, reg,
  1178. DP_TRAINING_PATTERN_2))
  1179. break;
  1180. udelay(400);
  1181. if (!intel_dp_get_link_status(intel_dp))
  1182. break;
  1183. if (intel_channel_eq_ok(intel_dp)) {
  1184. channel_eq = true;
  1185. break;
  1186. }
  1187. /* Try 5 times */
  1188. if (tries > 5)
  1189. break;
  1190. /* Compute new intel_dp->train_set as requested by target */
  1191. intel_get_adjust_train(intel_dp);
  1192. ++tries;
  1193. }
  1194. if (HAS_PCH_CPT(dev) && !is_edp(intel_dp))
  1195. reg = DP | DP_LINK_TRAIN_OFF_CPT;
  1196. else
  1197. reg = DP | DP_LINK_TRAIN_OFF;
  1198. I915_WRITE(intel_dp->output_reg, reg);
  1199. POSTING_READ(intel_dp->output_reg);
  1200. intel_dp_aux_native_write_1(intel_dp,
  1201. DP_TRAINING_PATTERN_SET, DP_TRAINING_PATTERN_DISABLE);
  1202. }
  1203. static void
  1204. intel_dp_link_down(struct intel_dp *intel_dp)
  1205. {
  1206. struct drm_device *dev = intel_dp->base.base.dev;
  1207. struct drm_i915_private *dev_priv = dev->dev_private;
  1208. uint32_t DP = intel_dp->DP;
  1209. DRM_DEBUG_KMS("\n");
  1210. if (is_edp(intel_dp)) {
  1211. DP &= ~DP_PLL_ENABLE;
  1212. I915_WRITE(intel_dp->output_reg, DP);
  1213. POSTING_READ(intel_dp->output_reg);
  1214. udelay(100);
  1215. }
  1216. if (HAS_PCH_CPT(dev) && !is_edp(intel_dp)) {
  1217. DP &= ~DP_LINK_TRAIN_MASK_CPT;
  1218. I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE_CPT);
  1219. } else {
  1220. DP &= ~DP_LINK_TRAIN_MASK;
  1221. I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE);
  1222. }
  1223. POSTING_READ(intel_dp->output_reg);
  1224. msleep(17);
  1225. if (is_edp(intel_dp))
  1226. DP |= DP_LINK_TRAIN_OFF;
  1227. I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
  1228. POSTING_READ(intel_dp->output_reg);
  1229. }
  1230. /*
  1231. * According to DP spec
  1232. * 5.1.2:
  1233. * 1. Read DPCD
  1234. * 2. Configure link according to Receiver Capabilities
  1235. * 3. Use Link Training from 2.5.3.3 and 3.5.1.3
  1236. * 4. Check link status on receipt of hot-plug interrupt
  1237. */
  1238. static void
  1239. intel_dp_check_link_status(struct intel_dp *intel_dp)
  1240. {
  1241. if (!intel_dp->base.base.crtc)
  1242. return;
  1243. if (!intel_dp_get_link_status(intel_dp)) {
  1244. intel_dp_link_down(intel_dp);
  1245. return;
  1246. }
  1247. if (!intel_channel_eq_ok(intel_dp)) {
  1248. intel_dp_start_link_train(intel_dp);
  1249. intel_dp_complete_link_train(intel_dp);
  1250. }
  1251. }
  1252. static enum drm_connector_status
  1253. ironlake_dp_detect(struct drm_connector *connector)
  1254. {
  1255. struct intel_dp *intel_dp = intel_attached_dp(connector);
  1256. enum drm_connector_status status;
  1257. /* Panel needs power for AUX to work */
  1258. if (is_edp(intel_dp) || is_pch_edp(intel_dp))
  1259. ironlake_edp_panel_vdd_on(connector->dev);
  1260. status = connector_status_disconnected;
  1261. if (intel_dp_aux_native_read(intel_dp,
  1262. 0x000, intel_dp->dpcd,
  1263. sizeof (intel_dp->dpcd)) == sizeof (intel_dp->dpcd))
  1264. {
  1265. if (intel_dp->dpcd[0] != 0)
  1266. status = connector_status_connected;
  1267. }
  1268. DRM_DEBUG_KMS("DPCD: %hx%hx%hx%hx\n", intel_dp->dpcd[0],
  1269. intel_dp->dpcd[1], intel_dp->dpcd[2], intel_dp->dpcd[3]);
  1270. if (is_edp(intel_dp) || is_pch_edp(intel_dp))
  1271. ironlake_edp_panel_vdd_off(connector->dev);
  1272. return status;
  1273. }
  1274. /**
  1275. * Uses CRT_HOTPLUG_EN and CRT_HOTPLUG_STAT to detect DP connection.
  1276. *
  1277. * \return true if DP port is connected.
  1278. * \return false if DP port is disconnected.
  1279. */
  1280. static enum drm_connector_status
  1281. intel_dp_detect(struct drm_connector *connector, bool force)
  1282. {
  1283. struct intel_dp *intel_dp = intel_attached_dp(connector);
  1284. struct drm_device *dev = intel_dp->base.base.dev;
  1285. struct drm_i915_private *dev_priv = dev->dev_private;
  1286. uint32_t temp, bit;
  1287. enum drm_connector_status status;
  1288. intel_dp->has_audio = false;
  1289. if (HAS_PCH_SPLIT(dev))
  1290. return ironlake_dp_detect(connector);
  1291. switch (intel_dp->output_reg) {
  1292. case DP_B:
  1293. bit = DPB_HOTPLUG_INT_STATUS;
  1294. break;
  1295. case DP_C:
  1296. bit = DPC_HOTPLUG_INT_STATUS;
  1297. break;
  1298. case DP_D:
  1299. bit = DPD_HOTPLUG_INT_STATUS;
  1300. break;
  1301. default:
  1302. return connector_status_unknown;
  1303. }
  1304. temp = I915_READ(PORT_HOTPLUG_STAT);
  1305. if ((temp & bit) == 0)
  1306. return connector_status_disconnected;
  1307. status = connector_status_disconnected;
  1308. if (intel_dp_aux_native_read(intel_dp,
  1309. 0x000, intel_dp->dpcd,
  1310. sizeof (intel_dp->dpcd)) == sizeof (intel_dp->dpcd))
  1311. {
  1312. if (intel_dp->dpcd[0] != 0)
  1313. status = connector_status_connected;
  1314. }
  1315. return status;
  1316. }
  1317. static int intel_dp_get_modes(struct drm_connector *connector)
  1318. {
  1319. struct intel_dp *intel_dp = intel_attached_dp(connector);
  1320. struct drm_device *dev = intel_dp->base.base.dev;
  1321. struct drm_i915_private *dev_priv = dev->dev_private;
  1322. int ret;
  1323. /* We should parse the EDID data and find out if it has an audio sink
  1324. */
  1325. ret = intel_ddc_get_modes(connector, &intel_dp->adapter);
  1326. if (ret) {
  1327. if ((is_edp(intel_dp) || is_pch_edp(intel_dp)) &&
  1328. !dev_priv->panel_fixed_mode) {
  1329. struct drm_display_mode *newmode;
  1330. list_for_each_entry(newmode, &connector->probed_modes,
  1331. head) {
  1332. if (newmode->type & DRM_MODE_TYPE_PREFERRED) {
  1333. dev_priv->panel_fixed_mode =
  1334. drm_mode_duplicate(dev, newmode);
  1335. break;
  1336. }
  1337. }
  1338. }
  1339. return ret;
  1340. }
  1341. /* if eDP has no EDID, try to use fixed panel mode from VBT */
  1342. if (is_edp(intel_dp) || is_pch_edp(intel_dp)) {
  1343. if (dev_priv->panel_fixed_mode != NULL) {
  1344. struct drm_display_mode *mode;
  1345. mode = drm_mode_duplicate(dev, dev_priv->panel_fixed_mode);
  1346. drm_mode_probed_add(connector, mode);
  1347. return 1;
  1348. }
  1349. }
  1350. return 0;
  1351. }
  1352. static void
  1353. intel_dp_destroy (struct drm_connector *connector)
  1354. {
  1355. drm_sysfs_connector_remove(connector);
  1356. drm_connector_cleanup(connector);
  1357. kfree(connector);
  1358. }
  1359. static void intel_dp_encoder_destroy(struct drm_encoder *encoder)
  1360. {
  1361. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  1362. i2c_del_adapter(&intel_dp->adapter);
  1363. drm_encoder_cleanup(encoder);
  1364. kfree(intel_dp);
  1365. }
  1366. static const struct drm_encoder_helper_funcs intel_dp_helper_funcs = {
  1367. .dpms = intel_dp_dpms,
  1368. .mode_fixup = intel_dp_mode_fixup,
  1369. .prepare = intel_dp_prepare,
  1370. .mode_set = intel_dp_mode_set,
  1371. .commit = intel_dp_commit,
  1372. };
  1373. static const struct drm_connector_funcs intel_dp_connector_funcs = {
  1374. .dpms = drm_helper_connector_dpms,
  1375. .detect = intel_dp_detect,
  1376. .fill_modes = drm_helper_probe_single_connector_modes,
  1377. .destroy = intel_dp_destroy,
  1378. };
  1379. static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
  1380. .get_modes = intel_dp_get_modes,
  1381. .mode_valid = intel_dp_mode_valid,
  1382. .best_encoder = intel_best_encoder,
  1383. };
  1384. static const struct drm_encoder_funcs intel_dp_enc_funcs = {
  1385. .destroy = intel_dp_encoder_destroy,
  1386. };
  1387. static void
  1388. intel_dp_hot_plug(struct intel_encoder *intel_encoder)
  1389. {
  1390. struct intel_dp *intel_dp = container_of(intel_encoder, struct intel_dp, base);
  1391. if (intel_dp->dpms_mode == DRM_MODE_DPMS_ON)
  1392. intel_dp_check_link_status(intel_dp);
  1393. }
  1394. /* Return which DP Port should be selected for Transcoder DP control */
  1395. int
  1396. intel_trans_dp_port_sel (struct drm_crtc *crtc)
  1397. {
  1398. struct drm_device *dev = crtc->dev;
  1399. struct drm_mode_config *mode_config = &dev->mode_config;
  1400. struct drm_encoder *encoder;
  1401. list_for_each_entry(encoder, &mode_config->encoder_list, head) {
  1402. struct intel_dp *intel_dp;
  1403. if (encoder->crtc != crtc)
  1404. continue;
  1405. intel_dp = enc_to_intel_dp(encoder);
  1406. if (intel_dp->base.type == INTEL_OUTPUT_DISPLAYPORT)
  1407. return intel_dp->output_reg;
  1408. }
  1409. return -1;
  1410. }
  1411. /* check the VBT to see whether the eDP is on DP-D port */
  1412. bool intel_dpd_is_edp(struct drm_device *dev)
  1413. {
  1414. struct drm_i915_private *dev_priv = dev->dev_private;
  1415. struct child_device_config *p_child;
  1416. int i;
  1417. if (!dev_priv->child_dev_num)
  1418. return false;
  1419. for (i = 0; i < dev_priv->child_dev_num; i++) {
  1420. p_child = dev_priv->child_dev + i;
  1421. if (p_child->dvo_port == PORT_IDPD &&
  1422. p_child->device_type == DEVICE_TYPE_eDP)
  1423. return true;
  1424. }
  1425. return false;
  1426. }
  1427. void
  1428. intel_dp_init(struct drm_device *dev, int output_reg)
  1429. {
  1430. struct drm_i915_private *dev_priv = dev->dev_private;
  1431. struct drm_connector *connector;
  1432. struct intel_dp *intel_dp;
  1433. struct intel_encoder *intel_encoder;
  1434. struct intel_connector *intel_connector;
  1435. const char *name = NULL;
  1436. int type;
  1437. intel_dp = kzalloc(sizeof(struct intel_dp), GFP_KERNEL);
  1438. if (!intel_dp)
  1439. return;
  1440. intel_connector = kzalloc(sizeof(struct intel_connector), GFP_KERNEL);
  1441. if (!intel_connector) {
  1442. kfree(intel_dp);
  1443. return;
  1444. }
  1445. intel_encoder = &intel_dp->base;
  1446. if (HAS_PCH_SPLIT(dev) && output_reg == PCH_DP_D)
  1447. if (intel_dpd_is_edp(dev))
  1448. intel_dp->is_pch_edp = true;
  1449. if (output_reg == DP_A || is_pch_edp(intel_dp)) {
  1450. type = DRM_MODE_CONNECTOR_eDP;
  1451. intel_encoder->type = INTEL_OUTPUT_EDP;
  1452. } else {
  1453. type = DRM_MODE_CONNECTOR_DisplayPort;
  1454. intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
  1455. }
  1456. connector = &intel_connector->base;
  1457. drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
  1458. drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
  1459. connector->polled = DRM_CONNECTOR_POLL_HPD;
  1460. if (output_reg == DP_B || output_reg == PCH_DP_B)
  1461. intel_encoder->clone_mask = (1 << INTEL_DP_B_CLONE_BIT);
  1462. else if (output_reg == DP_C || output_reg == PCH_DP_C)
  1463. intel_encoder->clone_mask = (1 << INTEL_DP_C_CLONE_BIT);
  1464. else if (output_reg == DP_D || output_reg == PCH_DP_D)
  1465. intel_encoder->clone_mask = (1 << INTEL_DP_D_CLONE_BIT);
  1466. if (is_edp(intel_dp))
  1467. intel_encoder->clone_mask = (1 << INTEL_EDP_CLONE_BIT);
  1468. intel_encoder->crtc_mask = (1 << 0) | (1 << 1);
  1469. connector->interlace_allowed = true;
  1470. connector->doublescan_allowed = 0;
  1471. intel_dp->output_reg = output_reg;
  1472. intel_dp->has_audio = false;
  1473. intel_dp->dpms_mode = DRM_MODE_DPMS_ON;
  1474. drm_encoder_init(dev, &intel_encoder->base, &intel_dp_enc_funcs,
  1475. DRM_MODE_ENCODER_TMDS);
  1476. drm_encoder_helper_add(&intel_encoder->base, &intel_dp_helper_funcs);
  1477. intel_connector_attach_encoder(intel_connector, intel_encoder);
  1478. drm_sysfs_connector_add(connector);
  1479. /* Set up the DDC bus. */
  1480. switch (output_reg) {
  1481. case DP_A:
  1482. name = "DPDDC-A";
  1483. break;
  1484. case DP_B:
  1485. case PCH_DP_B:
  1486. dev_priv->hotplug_supported_mask |=
  1487. HDMIB_HOTPLUG_INT_STATUS;
  1488. name = "DPDDC-B";
  1489. break;
  1490. case DP_C:
  1491. case PCH_DP_C:
  1492. dev_priv->hotplug_supported_mask |=
  1493. HDMIC_HOTPLUG_INT_STATUS;
  1494. name = "DPDDC-C";
  1495. break;
  1496. case DP_D:
  1497. case PCH_DP_D:
  1498. dev_priv->hotplug_supported_mask |=
  1499. HDMID_HOTPLUG_INT_STATUS;
  1500. name = "DPDDC-D";
  1501. break;
  1502. }
  1503. intel_dp_i2c_init(intel_dp, intel_connector, name);
  1504. intel_encoder->hot_plug = intel_dp_hot_plug;
  1505. if (output_reg == DP_A || is_pch_edp(intel_dp)) {
  1506. /* initialize panel mode from VBT if available for eDP */
  1507. if (dev_priv->lfp_lvds_vbt_mode) {
  1508. dev_priv->panel_fixed_mode =
  1509. drm_mode_duplicate(dev, dev_priv->lfp_lvds_vbt_mode);
  1510. if (dev_priv->panel_fixed_mode) {
  1511. dev_priv->panel_fixed_mode->type |=
  1512. DRM_MODE_TYPE_PREFERRED;
  1513. }
  1514. }
  1515. }
  1516. /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
  1517. * 0xd. Failure to do so will result in spurious interrupts being
  1518. * generated on the port when a cable is not attached.
  1519. */
  1520. if (IS_G4X(dev) && !IS_GM45(dev)) {
  1521. u32 temp = I915_READ(PEG_BAND_GAP_DATA);
  1522. I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
  1523. }
  1524. }